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Abstract. Kaiser (2011) has introduced an improved method
for calculating gross productivity from the triple isotopic
composition of dissolved oxygen in aquatic systems. His
equation avoids approximations of previous methodologies,
and also accounts for additional physical processes such as
kinetic fractionation during invasion and evasion at the air-
sea interface. However, when comparing his new approach to
previous methods, Kaiser inconsistently defines the biologi-
cal end-member with the result of overestimating the degree
to which the various approaches of previous studies diverge.
In particular, for his base case, Kaiser assigns a17O excess to
the product of photosynthesis (17δP) that is too low, resulting
in his result being∼30 % too high when compared to pre-
vious equations. When this is corrected, I find that Kaiser’s
equations are consistent with all previous study methodolo-
gies within about±20 % for realistic conditions of metabolic
balance (f ) and gross productivity (g). A methodological
bias of±20 % is of similar magnitude to current uncertainty
in the wind-speed dependence of the air-sea gas transfer ve-
locity, k, which directly impacts calculated gross productiv-
ity rates as well. While previous results could and should be
revisited and corrected using the proposed improved equa-
tions, the magnitude of such corrections may be much less
than implied by Kaiser.

1 Introduction

In the manuscript “Consistent calculation of aquatic gross
production from oxygen triple isotope measurements” Kaiser
derives exact equations for calculating gross oxygen pro-
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duction (GOP) from the triple oxygen isotopic composi-
tion of dissolved oxygen (171). The derived equations im-
prove upon previous methods of calculating GOP in that they
avoid approximations and account for additional processes
such as kinetic fractionation during air-sea evasion and in-
vasion of oxygen. These new equations and similar results
of Prokopenko et al. (2011), provide improved methodology
that should be applied to future studies that interpret triple
oxygen isotopic composition of dissolved oxygen in seawa-
ter.

However, in comparing the results of these new equations
to previous methods of calculating GOP, I believe Kaiser has
misinterpreted previous results with the consequence of over-
stating the difference between various previous methods of
calculating GOP (e.g. Kaiser’s Fig. 3). Since differing defi-
nitions of17O excess are used, I repeat here definitions 4 and
7 from Kaiser (2011)
171†

=
17 δ−κ18δ (1)

171#
= ln

(
1+

17δ
)
−λln

(
1+

18δ
)

(2)

whereκ andλ are mass dependent fractionation slopes. For
Kaiser’s “base case”, both are assigned the observed slope
for a ln(1 +18δ) vs. ln(1 +17δ) plot for dark respiration of
γ R = 0.5179 (Luz and Barkan, 2005).

The crux of the discrepancy is in the assumptions Kaiser
uses to calculated the relation between17δP and18δP, where
the subscript “P” refers to dissolved oxygen produced by
photosynthesis. In his “base case” used for comparison
of methods, Kaiser uses Eq. (2) by assuming a171#

P(λ =

0.518) = 249 ppm where 249 ppm is the biological end-
member value reported by Luz and Barkan (2000). I will
argue that the 249 must be applied instead to oxygen in bi-
ological steady state with seawater (171S0) which is influ-
enced by photosynthesis and respiration, rather than171P in
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order for consistent comparison between calculation meth-
ods. I introduce the notation171S0 to refer specifically to the
biological steady-state condition in whichP = R (and thus
f = 0, wheref is the net to gross production ratio).171S0
is distinctly different than171P as noted by Kaiser, because
171P is the pure photosynthetic product, while171S0 is a
balance ofP andR. The 249 ppm value published by Luz
and Barkan (2000) was a measure of171S0 and not171P
because the original experiment measured dissolved oxygen
in an aquarium experiment which was in biological steady
state (P ≈ R). For a system in biological steady state, it has
been demonstrated that the appropriate slope (λBSS) for re-
lating the composition of171S0 and171P is systematically
less thanγ R (Angert et al., 2003). In the following sections I
will describe how17δP and18δP should have been defined us-
ing a slope ofλBSS= 0.5154 instead ofγ R. With this correc-
tion, Kaiser’s “base case”171 value would have been 58 ppm
higher (see Sect. 3) and the discrepancy between the calcula-
tion methods of earlier studies and the new method proposed
by Kaiser becomes much smaller.

I will focus my comments on this aspect of the manuscript
and stress that I am not questioning the validity of the equa-
tions derived by Kaiser, but rather how he has interpreted
previous results and measurements in order to fairly compare
GOP from previous calculation methods to the proposed new
equations. To communicate the difference between previ-
ous methodology and the proposed method, it is important to
clarify the relative roles of (1) measured physical parameters
used in calculations, such as17δ and 18δ and fractionation
factors18εR and (2) the accuracy of various equations under
varying conditions of metabolic balance (f ) and productivity
(g) when the same physical parameters are used.

2 Biological steady state

Understanding the distinction between composition of pho-
tosynthetic oxygen (P ) and oxygen in biological steady-state
(S) is essential to the following discussion. Photosynthetic
oxygen is produced from seawater with only a small frac-
tionation (Eisenstadt et al., 2010) and thus has a18δP much
closer to that of VSMOW, than to air (Kaiser’s base case is
18δP = −22.835 ‰, where air is the standard). Biological
steady-state refers to the composition of dissolved oxygen
reached with a constant rate of photosynthesis and respira-
tion (see Kaiser Sect. 3.4). For the special case whereP = R,
I use the subscript “S0”. Angert et al. (2003) described the
relationship between∗δP and ∗δS0 using the mass balance
equation

P
(
1+

∗δP
)
=

∗ αRR
(
1+

∗δS0
)

whereP = R (3)

where “∗” indicates 17 or 18 andαR is the fractionation fac-
tor for respiration. Since average oceanαR is 0.980 (18αR =

1+
18εR = −20 ‰) (Kiddon et al., 1993),∗δS0 is much closer

to 0 ‰ (with air as the standard) than to∗δVSMOW.

Inferring 171P from an observed171S0 involves extrap-
olating across a large difference in18δ and thus large error
can be introduced if an incorrect mass dependent slope is
used (Luz and Barkan, 2005) causing171P and171S0 to dif-
fer significantly unless an appropriate “tuned” definition is
used. Angert et al. (2003) demonstrated that171P equals
171S0 when the following definition is used (see Appendix
for derivation of Eqs. 4 and 5):

171BSS
= ln

(
1+

17δ
)
−λBSSln

(
1+

18δ
)

(4)

The slope (λBSS) that satisfies the criteria that171BSS
P =

171BSS
S0 depends on the magnitude of fractionation during

respiration such that

λBSS=
ln

(
17αR

)
ln

(
18αR

) =
ln

(
1+γR

18εR
)

ln
(
1+18εR

) (5)

Thus, for18εR = −20 ‰ andγ R = 0.5179 I calculateλBSS=

0.5154. Additionally, assuming an error in18εR of ±2 ‰ the
differencebetweenγ R andλBSS is well constrained(γR −

λBSS= 2.5×10−3
±2.5×10−4).

For the above definition, the same171BSS should be
acquired whether measuring the direct product of photo-
synthesis or a system in biological steady-state (171BSS

S0 =

171BSS
P ). The experimental determination of the biologi-

cal end-member by Luz and Barkan (2000), (171bio = 249±

15 ppm) was a measurement of dissolved oxygen in biolog-
ical steady-state with seawater (P ≈ R) and thus its com-
position relative to seawater should be governed by Eq. (4)
(Angert et al., 2003; Luz and Barkan, 2000). A more de-
scriptive definition of the original approximate equation for
calculatingg (Luz and Barkan, 2000) can then be written

g =
P

kcsat
=

171#
−

171#
sat

171BSS−171#
(6)

It is important to note that171BSS is the appropriate photo-
synthetic end-member term, not171#

P.

3 Consistent comparison of equations used to
calculateg

Equation (6) for calculatingg uses171BSS as the biological
end member, while both the iterative equation (Hendricks et
al., 2004) and Kaiser’s equation use17δP and18δP. To con-
sistently compare the skill of such equations relative to each
other, Eq. (4) andλBSSmust be used to relate17δP to 171BSS.
However for the default case, Kaiser calculates values for
17δP = −11.646 ‰ and18δP = −22.835 ‰ (Kaiser Table 2)
by applying the equation for171# (Eq. 2) rather than171BSS

(Eq. 4), effectively underestimating the17O excess of pho-
tosynthetically produced oxygen. The implied171BSS from
Kaiser’s “base case” scenario using Eq. (4) is 191 ppm rather
than 249 ppm.
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Fig. 1. Relative deviation ofg from the “corrected base case” as calculated using the equation proposed by Kaiser. All values are the same as
Kaiser’s base case except17δP= −11.588 ‰ instead of17δP= −11.646 ‰ as described in Sect. 3. The dashed green line “approx” shows
error when “modified base case” values are used with the approximate equation from Luz and Barkan (2000) (Eq. 5) and171#(λ = 0.5179).
The solid green line “iter” shows error due to using the corrected “base case” values (17δP = −11.588 ‰,18εR = −20 ‰ andλ = 0.5179)
with the iterative method from Hendricks et al. (2004). Red and black lines show deviation from base case using the parameters and
approaches employed in previous studies (see Table 3 in Kaiser, 2011 for details). They are calculated from the same values as used by
Kaiser, except now compared against the “corrected base case”. Within typical oceanic conditions (−0.1< f < 0.4 and 0.01< g < 1), the
methods generally agree within±20 %. The following abbreviations are used to refer to previous studies: (H04: Hendricks et al., 2004; S05:
Sarma et al., 2005; JQ10: Juranek and Quay, 2010; JQ05: Juranek and Quay, 2005; R07: Reuer et al., 2007; LB00: Luz and Barkan, 2000;
S05).

Using Eqs. (4) and (5) instead with values of171BSS
=

249 ppm, 18δP = −22.835 ‰, γR = 0.5179 and 18εR =

−20 ‰, I calculate 17δP = −11.588 ‰. Using 17δP =

−11.588 ‰ in Eq. (1) yields171†(κ = 0.5179) = 238 ppm
rather than 180 ppm as reported by Kaiser. Thus if the value
of 249 ppm is used for171BSS in Eq. (5), then the compara-
ble 17δP for an equivalent calculation using Kaiser’s Eq. (48)
should be−11.588 ‰ not−11.646 ‰. This correction has a
significant impact when comparing various equations (Hen-
dricks et al., 2004; Luz and Barkan, 2000, 2005; Miller,
2002) that have previously been used to calculatedg and171

to the equation derived by Kaiser.
Based on the changes I describe, I illustrate the impor-

tance of the suggested correction by recalculating Fig. 3a
and b from Kaiser (2011). In addition to the results pre-
sented by Kaiser, I have added two green lines to the plot
that show the error induced by the choice of equation form
alone (Fig. 1). For these two cases,17O excess is calcu-
lated using the “base case” values from Kaiser except with
17δP = −11.588 ‰ as described above. Using the approxi-
mate Eq. (6) results in an error no greater than about−25 %
at the extremely heterotrophic conditions (Fig. 1a) and 40 %
at very high production rates (Fig. 1b). Under more typi-
cal conditions (−0.1< f < 0.4 and 0.01< g < 1) the error
is less than∼10 %. Using the iterative method of Hendricks
et al. (2004), the bias is much less still, overestimatingg by

less than 5 % under all conditions. The∼5 % overestimate
is caused primarily by the kinetic fractionating effects dur-
ing gas exchange (i.e.εI andεE) which are accounted for by
Kaiser but not by earlier equations.

The red and black lines are calculated from Kaiser Table 3
data except for one correction: in column 6 showing results
of Juranek and Quay (2010) theγ R value should be 0.5205
(not 0.518) because, although not detailed in the publication,
the relationship17αR = (18αR)λ was used (L. W. Juranek,
personal communication, 2011), similarly to Hendricks et
al. (2004) and Reuer et al. (2007). In Kaiser’s Fig. 3, rel-
ative error for many of the methods clusters around−30 %
for f ∼ 0 (Kaiser Fig. 3a) andg ∼ 0.5. Although notation
varied, each study using an iterative approach defined the
composition of17δP using aλBSS slope≈ 2.5× 10−3 less
than the implied respiratory fractionation slope (γ R) as de-
scribed by Eq. (4). Thus, despite taking various approaches,
each previous study has calculatedg in a manner that is ac-
curate to within about 20 % for the relevant environmental
conditions. The more precise equation introduced by Kaiser
and Prokopenko is superior to previous methods and should
be applied to future studies, however much care should be
taken in any attempt to “reinterpret” previous results.

Effectively, Kaiser has compared previous equations
with a 171BSS

= 249 ppm to his equation using171BSS
=

191 ppm (the171BSS value for Kaiser’s “base case” values).
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This difference is responsible for the majority of the appar-
ent discrepancy between methods. The significantly lower
171BSS of 191 ppm is why Kaiser’s calculations yieldg ∼

30 % higher than most other calculation methods (Kaiser
Fig. 3). After correcting Kaiser’s “base case” with17δP =

−11.588 ‰ (and thus171BSS
= 249 ppm), the remaining

differences have clear explanations. Variations in the slope
λ from the base case cause an error dependent onf where
slopes greater than the base case causing an overestimate
under strongly autotrophic conditions (f > 0) and underes-
timate for heterotrophic conditions (f < 0) (Fig. 1a). If a
lower gas exchange end-member (171sat) is used,g is over-
estimated, particularly for low values ofg (Fig. 1b). Neglect-
ing kinetic fractionation during gas exchange causes iterative
methods to be slightly too high. When regressing the results
of Reuer et al. (2007), Kaiser arrives at a result∼40 % higher
than Reuer (Kaiser Fig. 4). I find that about 30 % of the dis-
crepancy is due to the difference in implied171BSS while
the remaining difference is due to how the gas exchange end
member was parameterized.

4 Reconciling measurements of seawater and biological
steady-state

Originally, the excess17O contained in photosynthetically
produced O2, relative to the atmosphere was determined by
measuring the biological steady-state condition (171BSS

=

249 ppm) (Luz and Barkan, 2000). The isotopic compo-
sition of seawater could be inferred through assuming lit-
tle fractionation during photosynthesis. Methodological im-
provements have led to the recent publication of a more ro-
bust direct measure of the isotopic composition of seawater
(Barkan and Luz, 2011). As I will outline in this section,
these new data (not available at the time Kaiser wrote his
initial paper) are consistent with the original measurement
(171BSS

= 249 ppm) by Luz and Barkan (2000).
The oxygen isotopic composition of VSMOW was deter-

mined to be18δsw = −11.883 ‰ and18δsw = −23.324 ‰
(Barkan and Luz, 2011). Addionally, a fractionation during
photosynthesis of a few ppm has been observed (Luz and
Barkan, 2011), such that18δP = 20 ‰. Given this informa-
tion, 17δP and thus171P can be calculated in two ways; start-
ing from the171BSSmeasurement or from the seawater mea-
surement. Using Eqs. (4) and (5),171BSS

= 249 ppm and
18δP = −20 ‰, I calculate17δP = −10.112 ‰. The18δP and
17δP values calculate to171#

P(λ = 0.5179) = 300 ppm (note:
Barkan and Luz report 223 ppm usingλ = 0.516). Calculat-
ing from the seawater side,18δsw= −11.883 ‰ and18δsw=

−23.324 ‰ result in171#
sw(λ = 0.5179) = 268 ppm. Recent

observations show on average that171#
P is 26 ppm higher

than171#
sw. Thus, a calculation starting with the measure-

ment of seawater yields171#
P(λ = 0.5179) = 304 ppm which

is within analytical error of the171#
P(λ = 0.5179) = 300 ppm

inferred from the original measure of171BSS
= 249 ppm. In

summary, the best existing analytical evidence consistently
supports that171#

P(λ = 0.5179) ≈ 300 ppm and171BSS(λ =

0.5154) = 249 ppm. Kaiser’s base case, which has values
of 171#

P(λ = 0.5179) ≈ 249 ppm and171BSS(λ = 0.5154) =

191 ppm is not supported by any analytical evidence.
In practice, the choice of18δP to be −20 ‰ versus the

“base case” value of−22.835 ‰ does not cause a significant
difference in calculatedg values. What is critical, however, is
that17δP is defined a manner that is consistent with Eqs. (4)
and (5). Using the wrong slope to calculate17δP results in
Kaiser’s base case underestimating the17O anomaly of pho-
tosynthetic oxygen and overestimatingg by ∼30 %.

5 Conclusions

Since the introduction of the triple isotopic composition of
dissolved oxygen was introduced as a tracer of gross oxygen
production by Luz and Barkan (2000), the methodology for
calculatingg from measured isotopic ratios has evolved and
improved. While improved equations will better estimates
of g, perhaps the greater cause of error is in analytically de-
termining what the accurate and appropriate photosynthetic
and gas exchange end members should be (17δP, 18δP, 17δsat
and18δsat).

When applying an equation to calculateg that requires
17δP in the calculation, it is essential to set17δP using the
slopeλBSS and Eqs. (4) and (5). By eroneously assigning a
value of 249 ppm to171#

P, Kaiser’s “base case” scenario im-
plies a171BSS

= 191 ppm, resulting in values ofg that are
∼30 % too high when compared to other calculation meth-
ods.

Appendix A

Derivation for biological steady-state

The following derivation is adapted from Angert et al. (2003)
and shows the relationship betweenλBSSandγ R for aP = R

steady-state system.
The slopeλBSS is defined as the slope for which171BSS

P =

171BSS
S0 so that from Eq. (4),

171BSS
= ln

(
1+

17δS0

)
−λBSSln

(
1+

18δS0

)
= ln

(
1+

17δP

)
−λBSSln

(
1+

18δP

)
(A1)

Which can be rearranged to

λBSS=

ln
(

1+
17δP

1+17δS0

)
ln

(
1+18δP
1+18δS0

) (A2)

Noting that whenP = R, Eq. (3) simplifies to(
1+

∗δP
)
=

∗αR
(
1+

∗δS0
)

(A3)
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Substituting Eq. (A3) into Eq. (A2) and noting17εR =

γR
18εR and 1+∗εR =

∗αR yieldsλBSSas described in Eq. (5)

λBSS=
ln

(
17αR

)
ln

(
18αR

) =
ln

(
1+γR

18εR
)

ln
(
1+18εR

) (A4)
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