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A Spatial Configuration Effect on the Probability of Detection 

Robert A. Frosch1, Fellow, IEEE  

Abstract—This paper discusses a simple problem in detection theory using a model with a 

simple discretized space. This allows the probability problem to be analyzed algebraically 

to demonstrate that separate targets, independent before entering the detection space, do 

not have probabilistically independent detection probability distributions. Several variants 

of the basic case are discussed. 

Index Terms—  Detection probability, probabilistic independence, configural theory 

 

I. INTRODUCTION 

 The problem discussed in this paper was originally motivated by analysis of naval mine 

fields. Naval mines are devices that detect the passage of a ship, and then explode under it to 

destroy it. In a naval mine field, mines are distributed in a channel, or a spatial region through 

which the ships must pass. In this paper I consider only the detection part of the process, 

ignoring questions of possible means for the destruction of the detected targets.  

 As discussed in the last section of the paper, the effects here described apply to a variety 

of real oceanic detection problems, and the conclusions not only make a considerable difference 

in the values, nature and structure of detection probabilities, they open the way to new ways for 

the design of detection probability distributions in space.  

 In this paper, space has been simplified by discretization into boxes to simplify the 

analysis, and to make the effects and the reasoning leading to the effects more transparent. 

Because of the discretization, the analysis requires only simple combinatorics and algebra for its 

solution. The result, however, is general, and is important in two senses:  

1. Analysis of the probability of detection of a sequence of targets by a detector 

generally assumes that detections of separate targets arriving independently may be 

treated as probabilistically independent. Analysis of this simple case shows that this 

assumption is likely to be incorrect, and can lead to gross errors in detection 
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probability distributions. The correct distribution of probability of detection can be 

very different from that derived in the independent case. 

2. In designing detection systems the dependency effects may be used to design 

detection probability distributions that may be of advantage for the purposes of the 

system. 

 

II. THE GAME AND THE RULES 

 Consider a row of 6 boxes numbered 1 through 6. (Figure 1) One of the 6 boxes is 

uniformly randomly selected, and a black ball (a detector) is placed in the box with the number 

selected. (Bi signifies a black ball in box i.) One of the four boxes 2, 3, 4, or 5 is independently 

uniformly randomly selected, and a white ball (a target) is placed in the box with the number 

selected.2  (Wj signifies a white ball in box j.)   Because the black ball can be placed into any one 

of 6 boxes, and the white ball can be independently placed into any one of 4 boxes, that process 

leads to some one of 24 distinct white-ball, black-ball configurations, each of which has 

probability 1/24 of occurring. 

 If a white ball (target) is placed in the same box as the black ball, or in a box adjacent to 

the black ball (on either side), the white ball is detected. If the white ball is placed in any box not 

one of those three, the white ball is 'not detected'. In either case, the black ball remains in the 

same box in which it was originally randomly placed. 

 

↓………………Boxes 1 - 6, that can be occupied by the detector…………………….↓          
      ↓….Boxes  2 - 5, that can be occupied by the target…↓              
      
 

Figure 1: The Game setup. 

 

 

 

 

                                                 
2 In the naval mine field case, the black ball Bi represents an automatically replaced if exploded mine in the mine 
field, and a white ball Wj represents a ship trying to transit the mine field. In an antiaircraft case, the black ball Bi 
represents an immediately reloaded antiaircraft weapon system, and the white ball Aj represents an aircraft trying to 
pass the antiaircraft weapon system. 
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  (X = detected, and 0X = not-detected)  
W     ||B B1 B2 B3 B4 B5 B6 
W2  X  X  X 0X 0X 0X 
W3 0X  X  X  X 0X 0X 
W4 0X 0X  X  X  X 0X 
W5 0X 0X 0X  X  X  X 
 

Table 1: The Truth/Event Table of possibilities. 

 

 The "truth/event table" of possibilities is shown in Table 1. In this table a white ball 

placed in box W2 is detected only if the black ball is in B1, B2, or B3; etc. (X means ‘detected’, 

and 0X means ‘not detected’.) We also note that this table, set by the rules of the game and the 

disposition of the boxes, never changes, and is not contingent on events in the game. 

 

III.  PROBABILITY NOTATION AND RULES 

 

 In this work we need to consider probability rules and distributions. We use the 

probability notation and rules [1]: 

 Pr{A} = Probability of A 

 AB  = A and B 

 Pr{A or B or both} = Pr{A} + Pr{B} - Pr{AB} 

 If, and only if, A and B are independent:  Pr{AB} = Pr{A}Pr{B}.  

 If A and B are mutually exclusive, then Pr{AB} = 0, and 

 Pr{A or B} = Pr{A} + Pr{B}. 

 In all uses of the “or” rule in this paper, the variables concerned will be mutually 

exclusive. A target is either killed or not killed; it cannot be both. The black ball B can only be in 

one of positions 1, 2,….6, and a given white ball W can be only in one of the positions 2, 3, 4, 5 . 

All cases have been constructed so that the mean probability of detection (total detections 

divided by total possibilities) is 1/2. 

  

IV. THE FIRST TRIAL 

 For the first trial, a number i from 1 – 6 is uniformly randomly selected, and the detector 

(the black ball) is placed in the one of the 6 boxes Bi which has this number.  A number j from 2 
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to 5 is uniformly randomly and independently selected, and the target (the white ball) is placed in 

the one of the 4 boxes Wj which has this number. If the square in the truth/event table with 

coordinates Bi, Wj has an X in it, white is detected; if it has an 0X in it, white is not-detected. In 

either case, the black ball remains where it was originally placed. 

 
1,2   X  2,2   X   3,2   X  4,2  0X  5,2  0X  6,2  0X 
1,3  0X  2,3   X   3,3   X  4,3   X  5,3  0X  6,3  0X 
1,4  0X  2,4  0X   3,4   X  4,4   X  5,4   X  6,4  0X 
1,5  0X  2,5  0X   3,5  0X  4,5   X  5,5   X  6,5   X 
 

Table 2: The “truth/event table’ for the first target encounter. 

(The notation is that the first number is the location of the black ball, and the number after the 

comma is the location of the white ball.) 

 

 Table 2. shows the ‘truth/event table’ for the first target. Inspection of the truth/event 

table shows that, while the probability of the position of the black ball is independently 

uniformly distributed over the 6 positions, and the probability of the position of the white ball is 

independently uniformly distributed over the four positions allowed for it, the distribution of 

detections and non-detections of the white ball is not uniform over the six possible positions of 

the black ball. Given that the white ball was not detected: 

 the conditional probability of the black ball being in position 1 is 3/12 = 1/4 

 the conditional probability of the black ball being in position 6 is 3/12 = 1/4 

 the conditional probability of the black ball being in position 2 is 2/12 = 1/6 

 the conditional probability of the black ball being in position 5 is 2/12 = 1/6 

 the conditional probability of the black ball being in position 3 is 1/12 = 1/12 

 the conditional probability of the black ball being in position 4 is 1/12 = 1/12  

 The probability that the detector (black ball), which is in whatever box Bi was uniformly 

randomly selected for it, detects the target (white ball), given that the target is in whatever box 

Wj was independently uniformly randomly selected for it, remains 1/2.  Regardless of which box 

the white ball target occupies, there are always three boxes (out of the six) in which the presence 

of a detector means that the white ball is detected. Since the probability of non-detection = 1 

minus the probability of detection, the probability of non-detection is also 1/2. 
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V. THE SECOND TRIAL: THE CASE WITH AN ADDITIONAL TARGET 

 

 At this point, if asked to consider what happens to another target (Y), and then asked for 

the joint detection probabilities for the fates of the two targets (X and Y), most/all of us, and 

certainly anyone using standard Naval warfare analysis, or operations research practice, would 

say that the probabilities for target Y, who is going into the same situation, are the same as for 

target X. We would then say that the probability for the joint fates of the two targets would 

simply be the product of their individual fates. Thus the probability that both X and Y are 

detected is 1/4 (P{XY} =  1/4). The probability that neither is detected is 1/4 (P{0X0Y = 1/4). 

The probability that X is detected, but not Y (P{X0Y}), or that X is not-detected (P{0XY}), but 

Y is detected, each equal 1/4, and thus the probability that one of X and Y is detected is 1/2.  

 Let us now consider a second trial, in which the black ball (detector) remains where it 

was randomly placed in the first trial, and a new target (white ball) is uniformly randomly and 

independently placed in a box j. The result may be obtained by examining the detection table for 

two trials jointly, using the original detection table to construct all the triples Bi,XjYk, and 

counting the various occurrences, where X is a detection in the first trial, Y a detection in the 

second trial, and 0X or 0Y means non-detection in the first or second trial respectively. The 

outcome table is shown as Table 3. 

 

1,22   X    Y   2,22   X    Y 3,22   X    Y 4,22  0X  0Y 5,22  0X  0Y 6,22  0X  0Y 
1,32  0X   Y   2,32   X    Y 3,32   X    Y 4,32   X   0Y 5,32  0X  0Y 6,32  0X  0Y 
1,42  0X   Y 2,42  0X   Y 3,42   X    Y 4,42   X   0Y 5,42   X   0Y 6,42  0X  0Y 
1,52  0X   Y 2,52  0X   Y 3,52  0X   Y 4,52   X   0Y 5,52   X   0Y 6,52   X   0Y 
1,23   X   0Y 2,23   X    Y 3,23   X    Y 4,23  0X   Y 5,23  0X  0Y 6,23  0X  0Y 
1,33  0X  0Y 2,33   X    Y 3,33   X    Y 4,33   X    Y 5,33  0X  0Y 6,33  0X  0Y 
1,43  0X  0Y 2,43  0X   Y 3,43   X    Y 4,43   X    Y 5,43   X   0Y 6,43  0X  0Y 
1,53  0X  0Y 2,53  0X   Y 3,53  0X   Y 4,53   X    Y 5,53   X   0Y 6,53   X   0Y 
1,24   X   0Y 2,24   X   0Y 3,24   X    Y 4,24  0X   Y 5,24  0X   Y 6,24  0X  0Y 
1,34  0X  0Y 2,34   X   0Y 3,34   X    Y 4,34   X    Y 5,34  0X   Y 6,34  0X  0Y 
1,44  0X  0Y 2,44  0X  0Y 3,44   X    Y 4,44   X    Y 5,44   X    Y 6,44  0X  0Y 
1,54  0X  0Y 2,54  0X  0Y 3,54  0X   Y 4,54   X    Y 5,54   X    Y 6,54   X   0Y 
1,25   X   0Y 2,25   X   0Y 3,25   X   0Y 4,25  0X   Y 5,25  0X   Y 6,25  0X   Y 
1,35  0X  0Y 2,35   X   0Y 3,35   X   0Y 4,35   X    Y 5,35  0X   Y 6,35  0X   Y 
1,45  0X  0Y 2,45  0X  0Y 3,45   X   0Y 4,45   X    Y 5,45   X    Y 6,45  0X   Y 
1,55  0X  0Y 2,55  0X  0Y 3,55  0X  0Y 4,55   X    Y 5,55   X    Y 6,55   X    Y 
 

Table 3:  The 6x4x4 Outcome Table for Two Trials 
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Counting occurrences in the columns, then the rows, and adding: 

Pr{0X Y}:   3 + 4 + 3 + 3 + 4 + 3 = 20/96 = 5/24  

Pr{X 0Y}:   3 + 4 + 3 + 3 + 4 + 3 = 20/96 = 5/24  

Pr{X Y}:     1 + 4 + 9 + 9 + 4 + 1 = 28/96 = 7/24  

Pr{0X 0Y}: 9 + 4 + 1 + 1 + 4 + 9 = 28/96 = 7/24  

 The probability that the two targets suffer the same fate is greater than that they suffer 

different fates. Further:  

 Pr{0X}Pr{Y}  =  48/96 x 48/96  =  1/2 x 1/2   =  1/4 = 6/24, while Pr{0X Y} = 5/24,  

and therefore: Pr{0X Y} is not = Pr{0X}Pr{Y}: (ie: 6/24 is not = 5/24). 

 Thus the occurrence of detection of the first white ball in the first trial, and detection of 

the second white ball in the second trial are, by the definition of independent, not independent, 

even when it may be said that "nothing happened" (ie: 0X) on the first trial. 

 However, this surprising result is not surprising. The position of the defender (black ball) 

was chosen by a uniformly random process, but the ball did land somewhere, and it stays where 

it landed. When the position of the black ball has been decided by the random process, the 

probability distribution of its (unknown) location is different from the uniform probability 

distribution of its (unknown) location before the random choice. The event 0X in the first trial 

being certain, tells us that, wherever the defender (black ball) is, it is more likely to be near B1 or 

B6 than near B3 or B4, and therefore the kill probability in the second trial is no longer 

uniformly random, but now depends upon where the uniformly randomly placed second white 

ball lands. 

 We may see this clearly by examining the probability of a position of the black ball 

conditional upon the fate of the white ball. By looking at the event/truth table we can see that, 

given that the white ball was not detected: 

 the conditional probability of the black ball being in position 1 is 3/12 = 1/4 

 the conditional probability of the black ball being in position 6 is 3/12 = 1/4 

 the conditional probability of the black ball being in position 2 is 2/12 = 1/6 

 the conditional probability of the black ball being in position 5 is 2/12 = 1/6 

 the conditional probability of the black ball being in position 3 is 1/12 = 1/12 

 the conditional probability of the black ball being in position 4 is 1/12 = 1/12 
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 At this point, many readers may be reminded of the Monty Hall Problem, a famous case 

in which most people’s probability intuitions are incorrect (even the probability intuitions of 

many eminent mathematicians trained in probability theory and statistics). [2] 

 

VI:  THE GENERAL CASE FOR N TARGETS 

 Having looked at the game results for 1 and 2 targets, let us now generalize to N targets. 

Consider N separate targets, of whom N-m are detected and m are not detected. 

 If B is in 1 or 6 (which are mutually exclusive), there are 1(N-m) ways for (N-m) targets to 

be detected (by being in 2 if B is in 1; or 5 if B is in 6), and 3m ways for m targets to not be 

detected (by being in 3, 4, or 5 if B is in 1; or 2, 3, or 4 if B is in 6), thus giving 1(N-m)3m 

possibilities, and there are:       

    CN,m = _____N!____     ways to choose m from N, so, 
          m!(N-m)!     
for B = 1 or 6 we have:                                                   

                              CN,m  x  3m        (1) 

 If B is in 2 or 5, there are 2(N-m) ways for (N-m) targets to be detected (by being in 2 or 3 

if B is in 2; or in 4 or 5 if B is in 5), and 2m ways for them not to be detected (by being in 2 or 3 

if B is in 5; or in 4 or 5 if B is in 2), giving for B = 2 or 5: 

   CN,m x  2(N-m)2m  =  CN,m x  2 x 2N     (2)  

 If B is in 3 or 4, there are 3(N-m) ways for (N-m) targets to be detected (by being in 2, 3, or 

4 if B is in 3; or in 3, 4, or 5 if B is in 4), and 1m ways for m targets not to be detected (by being 

in 5 if B is in 3; or in 3 if B is in 5), giving for B = 3 or 4: 

       CN,m  x  2 x  3(N-m)        (3) 

 Thus, if B is in any of the 6 possible positions for it (1 or 6 or 2 or 5 or 3 or 4) we get: 

       CN,m   x   2  x (3m + 2N + 3(N-m))     (4) 

ways for (N-m) targets to be detected, and m targets to not be detected. 

 The total number of possibilities for the game with N targets are: 6 places for B, 4 places 

for A, and N targets, or: 6 x 4N, so the probability distribution over m is: 

 Pc(m)  =  CN,m  x 2 x (3m + 2N + 3(N-m))  =   CN,m  x  (3m + 2N + 3(N-m))     
    6 x 4N                                        3 x 4N 
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 As a check on this result, note that ∑m
N Cn,m 3m  (and also for 3(N-m)) is the binomial 

expansion of (1 + 3)m   =  4N, and ∑m
N CN,m is the binomial expansion of (1 + 1)N  =  2N, so: 

  ∑m
N CN,m (3m + 2N + 3(N-m) )  =  4N + 2N2N  +  4N  =  3 x 4N)   (6) 

 As a further check, note that when N = 2, we get for the probability that all are  

detected or none are detected (m = 0 or m = N): 

  (1 + 22 + 32)/ 3x42 = (1 + 4 + 9)/3x16 = 14/48  =  7/24,   (7) 

 as obtained in the previous solution by enumeration and counting of possible cases. 

 

VII: A NOTE ON THE FREE ENCOUNTER GENERAL CASE 

 As noted earlier, if we assume, naively, that when there are N separate targets we can 

treat the result as though it was the same as one target N times (N free encounters), we obtain for 

N-m detected and m not detected: 

  Pfe(m)   =     CN,m x 1/2(N-m) x  1/2m  =    CN,m  x 1/2N    (8) 

            This is naïve, and incorrect, because it implicitly assumes, contrary to the rules of the 

game, that the black ball, B, has its position re-randomized before each new target. This is a case 

of “doing the wrong problem right”, as opposed to “doing the right problem wrong”. 

VIII: THE SHAPE OF Pc(m)  

Figures 2 and 3 are histograms of numerical results for Pc(m), Pfe(m) with N = 20. An overlay of 

these two histograms is shown in Figure 4.                 

 
Figure 2: Pc(20,m) vs (m+1) 
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Figure 3_:Pfe(20,m) vs (m+1)  

 

 

              
 

Figure 4 :Pc(20,m) & Pfe(20,m) vs (m+1) 
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 Since Pc  is so flat, and the mean is on a local minimum plateau of the probability 

distribution, use of the mean value of Pc to represent the probability distribution would be very 

misleading. 

 It is also interesting to examine the ratio:  

   Pc(m)/Pfe(m)    = 3m + 3(N-m) + 2N    (9) 
             3 x 2N 
  

A histogram of this ratio is shown in Figure 5. 

 

     

Figure 5 : Pc(20,m)/Pfe(20,m) vs (m+1) 

 

 The flat center of Pc(m) is lower than the center of Pfe(m), the binomial distribution for p 

= 1/2, but while the tails of Pc(m)  at m = 0 and m – N for N = 20 are small, they are 1110 times 

larger than the tails of the binomial distribution. This means that the probabilities of two 

interesting extreme cases: all targets are detected, or, no matter how many targets there actually 

are, none are detected, are three orders of magnitude higher than expected from the (incorrect) 

free encounter (binomial) distribution. 
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IX: SOME INTERESTING VARIANT CASES 

A. Variant 1: B±5 

 Let us now construct a case in which the range of the detector is increased from B±1 to 

B±5. The number of possible positions must be increased to maintain the mean probability of 

detection at 1/2, to maintain comparability with the preceding cases. The truth/event table for B±5 

is shown in Table 4: 

         1   2   3   4   5   6   7   8   9   10  11   12   13    14   15   16   17   18   19   20   21   22 
10     0   0   0   0   X  X  X  X  X   X    X    X    X     X    X     0     0     0     0     0     0     0    
11     0   0   0   0   0   X  X  X  X   X    X    X    X     X    X    X     0     0     0     0     0     0 
12     0   0   0   0   0   0   X  X  X   X    X    X    X     X    X    X    X     0     0     0     0     0                 
13     0   0   0   0   0   0   0   X  X   X    X    X    X     X    X    X    X    X     0     0     0     0 
 

Table 4: Truth/Event Table of Variant 1 for B±5 

 

 The black ball may be in any of 1 – 22. The white ball may be in any of 10 – 13. The 

mean probability of detection of the white ball = 1/2. 

 Proceeding as before: if B is in 1, 2, 3, 4, 19, 20, 21, or 22, the number of possibilities is: 

  CN,m  0(N-m) 4m   =  δNm  4N,        (10) 

since 0(N-m) = 0, unless m = N, when it = 1, which we symbolize with the Kronecker δNm. 

 If B is in 8, 9, 10, 11, 12, 13, 14, or 15  the number of possibilities is: 

   CN,m 0m 4(N-m)  =   δm0 4N                  (11) 

 For B in 5, or 18 we obtain: 

   CN,m 1(N-m) 3m = CN,m 3m                (12) 

 For B in 6, or 17 we obtain: 

   CN,m 2(N-m) 2m  = CN,m 2N       (13) 

 For B in 7, or 16 we obtain: 

   CN,m 3(N-m) 1m  =  CN,m 3(N-m)       (14) 

 There are 22 possible places for B, 4 places for targets, and N targets, giving 22 x 4N total 

possibilities, so, adding all the “or” cases,  

   PB±5(N,m)     =     4 (δNm + δm0) + 3 Pc (N,m)    (15) 
               11 
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Figure 6 shows the shape of this probability function over m for N = 20. 

 

 
 

 

 

Figure 6 : Histogram for Variant 1, PB±5(20,m) vs (m+1) 

 

 This result is, again, “not surprising”, since a glance at the truth/event table shows the 

high likelihood of detecting all or none of the targets. In this case the range of the detector is 

sufficiently larger than the width of the possible channel for targets that the detector is usually 

either “out of range”, or “in range” of the possible target positions. A free encounter analysis, 

leading to a binomial distribution (Equation 8, Figure 3), would give a distribution with a central 

peak and tails on both sides; which is very wrong: it looks somewhat like a distorted inverse of 

the correct distribution.  

 

B. Variant 2: Inside-out 

 It is interesting to construct a variant case (inside-out) in which we interchange the 

possible places for the black ball and the white ball, while retaining the rule that the black ball, 
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once placed by random selection, remains in that place throughout the game. This can be done by 

allowing the black ball to be only in places 2 through 5, while the white ball can land in any of 1 

through 6.  

These rules result in Table 5 for Variant 2. 

 1 B2 B3 B4 B5 6 
W1  X 0X 0X 0X  
W2  X X 0X 0X  
W3  X X X 0X  
W4  0X X X X  
W5  0X 0X X X  
W6  0X 0X 0X X  
 

Table 5: Truth/Event Table for Variant 2 

 

 If B is anywhere from 2 to 5, it is always the case that white balls in three of the possible 

positions for white (1 through 6) are detected, and white balls in three of the possible positions 

for white (1 through 6) are not detected. The general case for N targets, with N-m detected and m 

targets not detected thus gives 3(N-m) detected, and 3m not detected, or 4 x 3(N-m) x 3m = 4 x 3N  

possibilities, and thus the probability density over m is: 

       Pio     =     CN,m    4 x 3N       =     CN,m   =    Pfe      (16) 
                     4 x 6N                2N     
 This, of course, the same as the result for the naïve free encounter case, the Binomial 

Distribution for p = 1/2. This result is not surprising if we note that the probability that the black 

ball is in position i, conditional upon the location of the white ball, is the same for all positions of 

the white ball: 3/12 = 1/4. 

 An identical result is obtained for the inside-out case for B±5: P±5(N,m)  =   Pfe(N,m) 

 

C. Variant 3: A Missing B position 

 We return to the B±1 case, but now the black ball may be in 1, 2, 4, or 5, but not in 3, 

while the white ball may be in 2, 3, or 4.  

The truth/event table for Variant 3 is shown in Table 6, with:  PMB(X) = PMB(0X)  = 1/2. 

 

     B->   1   2   3   4   5 
W2      X         X                     0X      0X 
 W3       0X        X                      X       0X 
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W4       0X       0X                     X        X 
 

Table 6: Truth/Event table for Variant 3 

 

 We proceed as before, obtaining: 

  PMB(N,m)   =  CN,m (2m + 2(N-m))      (17) 
             2 x 3N 
 Figures 7, 8, and 9 are histograms of PMB(20,m), PMB(20,m) & Pfe(20,m) together, and 

PMB(20,m)/Pfe(20/m) for Variant 3. 

 

 
 

Figure_7: Histogram for Variant 3, PMB(20,m) vs (m+1) 
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Figure_8:  Histogram for Variant 3, PMB(20,m) & Pfe(20,m) vs (m+1) 

 

 

 

Figure  9: Histogram for Variant 3,  PMB(20,m)/Pfe(20,m) vs (m+1) 
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X. BINOMIAL OR NOT? 

 When the possible positions for the target surround (bracket) the possible positions of the 

detector, we obtain a binomial (free encounter) distribution. When the possible positions of the 

detector surround (bracket) the possible positions of the target, we obtain a non-binomial, flatter, 

sometimes double-peaked, distribution. 

 

XI. EXAMPLES OF POSSIBLE REAL SITUATIONS 

 There are a number of real situations in which the “anomalous” (non-binomial) 

distributions will occur, or where it might be advantageous to create a configuration of detectors 

in which they are likely to occur. These include the following: 

1. Any spatial situation in which geography restricts targets to a corridor. For example, 

harbor entrances, straits, such as Malacca, the entrance to the Tongue of the Ocean in 

the Bahamas, the approaches to Stellwagen Bank, near Cape Cod, and any channeled 

situation. 

 The corridor might be vertical, eg: organisms to be detected might be restricted to a 

particular depth interval. In this case it would matter whether the detector: 1. might be above, 

below, or in the same depth interval as the organisms, or 2. whether it can only be at depths 

within the depth corridor occupied by the organisms. In case 2. The probability of detection 

distribution will be binomial, while in case 1. it will be like Pc , configural. 

 2. Any situation, such as a search for endangered species (eg blue whales, bluefin tuna) in 

which it might be advantageous to greatly increase the probability of detecting all, even at the 

possible price of increasing the probability of detecting none. 

 3. Alternatively, if a binomial distribution would be advantageous, the detectors can be 

purposely embedded inside the field of possible target location. Such situations are common, 

even usual in open ocean detection situations. 

 4. Many military situations, including naval mine fields blocking waters in which ships 

are constrained in where they may go (eg harbor or beach approaches), and including many anti-

air situations (eg in which some military reason constrains the corridors through which attacking 

or transiting aircraft may fly) exhibit configural effects, and will exhibit non-binomial 

distributions. 
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XII:  CONCLUSIONS 

 

 The analysis presented demonstrates that the addition of a configural dimension (here 

taken to be the places where the black and white balls may be in a space of discrete positions) 

changes the nature of the probability distributions. Targets that enter separately may not 

necessarily have fates that are probabilistically independent, and the resulting distributions bear 

little resemblance to the usually expected binomial distribution. 

 These effects need to be kept in mind, and taken into account, in designing and analyzing 

detection experiments and systems. 

 While the phraseology of this paper was in terms of detection systems, of course the same 

analysis applies to weapons systems and warfare encounters, in which black and white may 

represent defenders and targets, as well as in other kinds of two actor encounters. 
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occupied by an intruder, corresponds to the Interaction Corridor.  In the configural analysis 

context, it is a subrow of a generally much longer row of boxes, every seventh one of which 

contains a black ball emplaced by the defender. (EG: a mine field with evenly spaced mines, or 

an anti-aircraft setup with evenly spaced anti-aircraft guns or missiles.)  The position of the 

Attack Corridor, which the target must select without knowledge of the locations of the black 

balls, determines the subrow of six boxes that is the analogue of the Interaction Corridor. 

 In the analogue, the boxes adjacent to the ends of the Attack Corridor are the Encounter 

Zones.  The Attack Corridor and its Encounter Zones define the Interaction Corridor. Finally, the 
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subrow of three adjacent boxes centered on the box with the black ball and within any of which a 

white ball is killed is the analogue of the Encounter Region of the defender weapon. 

  The analysis presented here is based on a 1978 Ball-and-Urn Illustration of an Idealized 

Configured Encounter devised by Derrill J. Bordelon (then of the US Navy Underwater Systems 

Center, Newport, RI), as reconstructed by T.J. Horrigan of Horrigan Analytics. The original 

analysis has been greatly simplified and then extended. That analysis, which used chained 

probability formulas, was difficult for the non-probabilist to follow, and did not lend itself to 

extension beyond two targets. John Bailar, Professor Emeritus, University of Chicago, IOM) 

pointed out that it was straightforward to reach the two target result directly by constructing the 

truth/event table. That analysis led to the generalization of the results using combinatorial 

algebra, as presented in this paper. 

 I have also benefited greatly from discussions with T. J. Horrigan of Horrigan Analytics, 

who invented configural theory, introduced me configural theory, to the Bordelon problem, and 

suggested the B ±5 case. 

 I thank James Lynch of WHOI for many illuminating discussions in the course of this 

work. 
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