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Abstract 

 We isolated the effect phytoplankton cell size has on varying remote sensing reflectance 

spectra (Rrs(λ)) in the presence of optically active constituents by using optical and radiative 

transfer models linked in an offline diagnostic calculation to a global 

biogeochemical/ecosystem/circulation model with explicit phytoplankton size classes.  Two case 

studies were carried out, each with several scenarios to isolate the effects of chlorophyll 

concentration, phytoplankton cell size, and size-varying phytoplankton absorption on Rrs(λ).  

The goal of the study was to determine the relative contribution of phytoplankton cell size and 

chlorophyll to overall Rrs(λ) and to understand where a standard band ratio algorithm (OC4) may 

under/overestimate chlorophyll due to Rrs(λ) being significantly affected by phytoplankton size.  

Phytoplankton cell size was found to contribute secondarily to Rrs(λ) variability and to amplify 

or dampen the seasonal cycle in Rrs(λ), driven by chlorophyll.  Size and chlorophyll were found 

to change in phase at low to mid-latitudes, but were anti-correlated or poorly correlated at high 

latitudes.  Phytoplankton size effects increased model calculated Rrs(443) in the subtropical 

ocean during local spring through early fall months in both hemispheres and decreased Rrs(443) 

in the Northern Hemisphere high latitude regions during local summer to fall months.  This study 

attempts to tease apart when/where variability about the OC4 relationship may be associated 

with cell size variability.  The OC4 algorithm may underestimate [Chl] when the fraction of 

microplankton is elevated, which occurs in the model simulations during local spring/summer 

months at high latitudes in both hemispheres.  

 

Keywords: phytoplankton cell size; chlorophyll; remote sensing reflectance; ecosystem 

modeling; optics; global ocean 
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1. Introduction 

 Biogeochemical/ecosystem/circulation models represent our best estimate of global 

distributions of many biogeochemical parameters at temporal and spatial scales unattainable by 

ship-based observations and/or unobservable from satellite platforms.  They play an important 

role in our understanding of how ocean biogeochemistry and carbon cycling operates as an 

integrated ecological, physical and chemical system.  These models are crucial for understanding 

observed trends in satellite observations (Antoine et al., 2005; Gregg et al., 2005); can help 

inform satellite-based primary production algorithms that strive to incorporate ecological 

information beyond just chlorophyll concentration (Mouw and Yoder, 2005); can be used to link 

observed variability in bloom functioning to variability in carbon export and air-sea CO2 fluxes 

(Bennington et al., 2009); and are the basis for predictions about the future state of marine 

ecology, biogeochemistry, and ocean carbon storage in a changing climate (Bopp et al., 2001; 

Orr et al., 2005; Henson et al. 2010). 

 A significant amount of research has gone into linking observed biogeochemical 

variables to optical properties (Dickey et al., 2006).  Progress in ocean color remote sensing 

technology and inversion algorithms has provided ways to assess standing stocks of 

phytoplankton pigments (Maritorena et al., 2002; O’Reilly et al., 1998), carbon (Behrenfeld et 

al., 2005), particulate organic carbon (Stramski et al., 1999), colored dissolved and detrital 

material (CDM) (Maritorena et al., 2002), and most recently phytoplankton size structure (Mouw 

and Yoder, 2010; Bracher et al. 2009; Kostadinov et al., 2009; Hirata et al., 2008; Ciotti and 

Bricaud 2006; Uitz et al. 2006).  Given the progress in optical observational capabilities, if we 

are to compare models to measurements and/or assimilate measurements into models, it is 

necessary to model not only the biogeochemical, but also the optical properties as state variables, 
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and to directly compare model results to remotely sensed and in situ measurements (Fujii et al., 

2007; Gregg and Casey, 2009).   

Physical and biogeochemical processes drive the distribution of optical properties in the 

ocean, and the study of upper ocean ecology requires a clear understanding of optics.  One can 

argue that these fields are intricately linked and the future developments in either of these fields 

will require integrated approaches to both of their studies (Bissett et al., 2001).  Yet, there have 

been only a few attempts to link optics to ecosystem models.  The coupled physical-ecosystem-

optical models that have been developed thus far (Bissett et al., 1999a; Bissett et al., 1999b; Fujii 

et al., 2007; Gregg and Casey, 2009) have demonstrated a better fit with observations and were 

able to more closely reproduce biogeochemical processes than their non-optical counterparts.  

Beyond these few exceptions, most ecosystem models use sophisticated treatments of physical 

mixing, circulation and biology but use oversimplified physics and bio-optics associated with the 

underwater light field.  It has been recommended that ecosystem models be developed to include 

optics (Rothstein et al., 2006), while others (Liu et al., 1999) have indicated that the empirical 

simplistic optical models used to parameterize scalar irradiance or photosynthetically available 

radiation in terms of chlorophyll concentration (Morel, 1988) are insufficient in comparison to 

numerical radiative transfer software such as Hydrolight (Mobley, 1989; Mobley and Sundman, 

2008a; Mobley and Sundman, 2008b).  

We focus our efforts on understanding the impact of considering phytoplankton cell size 

within optical constructs.  Phytoplankton cell size is important ecologically in determining both 

the intensity and efficiency of carbon fixation and export.  Cell size is also important optically.  

There are notable differences in the absorption of pico (< 2 µm) (Ciotti and Bricaud, 2006) and 

micro (> 20 µm) phytoplankton cells (Ciotti et al., 2002).  The absorption spectra of a given 
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phytoplankton size class change with intracellular chlorophyll concentration (packaging effect) 

(Duysens, 1956).  Microphytoplankton cells have a lower specific absorption coefficient and 

dampened peak absorption heights relative to their troughs compared to picophytoplankton 

(Bricaud et al., 1983).  Kostadinov et al. (2009; 2010) has demonstrated success retrieving 

phytoplankton cell size distribution from satellite measurements, based on relationships between 

the backscattering slope and the slope of the particle size distribution.  Mouw and Yoder (2010) 

also demonstrated successful retrieval of phytoplankton cell size distribution based on absorption 

relationships.  Given the demonstrated success with an absorption-based approach, this study 

focused on absorption as the primary characterization of optical difference in phytoplankton.  

Several scenarios were evaluated to isolate phytoplankton cell size and chlorophyll concentration 

compared to full variability of the model.   

In this study, we apply optical and radiative transfer models (Mobley 1989; Mobley and 

Sundman 2008a; Mobley and Sundman 2008b) to the output of a global biogeochemical / 

ecosystem / circulation model (Doney et al., 2009).  The linking of the optical and radiative 

transfer models were performed as an off-line diagnostic, having no feedback with the ecosystem 

/ biogeochemical model (Fig. 1).  For our application, model output was used to provide a 

reasonable approximation of the time-space variability and co-variability of phytoplankton 

chlorophyll, colored dissolved organic matter and phytoplankton cell size in the global ocean.  

The purpose was to allow for a clear understanding of the role various optical parameters play in 

the overall remote sensing reflectance spectra (Rrs(λ), sr-1).   

Rrs(λ) is a measure of the proportion of the downwelling light incident onto the water 

surface that is eventually returned through the surface at a direction detected by a radiometer 

(Mobley, 1994).  Rrs(λ) is the primary parameter derived from satellite ocean color radiometer 
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measurements (after calibration and atmospheric correction) and thus has the least amount of 

associated uncertainty compared to secondary derived products such as chlorophyll 

concentration.  For example, SeaWiFS Rrs accuracy is 9-12% over the majority of the ocean, 

while the uncertainty associated with the NASA standard chlorophyll algorithm (ocean color 4-

band ratio, OC4) (O’Reilly et al. 1998) is on average 35% (Bailey and Werdell, 2006).  In 

addition to greater uncertainty in derived chlorophyll estimates, there are numerous approaches 

to estimate chlorophyll concentration from satellite remote sensing that range from empirical 

band ratios (O’Reilly et al. 1998 and references therein) to semi-analytical inversions (Carder et 

al. 1999; Maritorena et al. 2002; Doerffer and Schiller, 2007).  All chlorophyll retrieval 

approaches ultimately utilize Rrs(λ).  To best inform the many possible chlorophyll retrieval 

approaches, the emphasis of this paper is on the impact phytoplankton cell size has on Rrs(λ).  To 

put the cell size impact into a more familiar context, we also demonstrate the impact size has on 

chlorophyll estimated from the NASA standard chlorophyll algorithm.  The specific objectives 

of this study are to 1) determine relative contribution of chlorophyll concentration and 

phytoplankton cell size variation to overall Rrs(λ) variation and 2) understand where standard 

algorithms will under/over estimate chlorophyll concentration due to Rrs(λ) being significantly 

affected by phytoplankton size. 

 

2. Methods 

2.1 Biogeochemistry/ecosystem/circulation model 

 We used the Community Climate System Model (CCSM-3) coupled ocean 

Biogeochemical Elemental Cycling (BEC) model (Doney et al., 2009). The BEC model consists 

of upper ocean ecological ( Moore et al., 2002b; Moore et al., 2004) and full-depth 
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biogeochemical (Doney et al., 2006) modules embedded in a global three dimensional Parallel 

Ocean Program (POP) ocean general circulation model (Collins et al., 2006; Smith and Gent 

2004).  The ecological component includes multiple nutrients and phytoplankton functional 

groups; the coupled biogeochemical model incorporates carbon, oxygen, nitrogen, phosphorus, 

silicon, and iron dynamics.  The model is forced with physical climate forcing from atmospheric 

reanalysis and satellite data products (Doney et al., 2007) and time varying dust deposition 

(Mahowald et al., 2003).   

There are fourteen main model components: three phytoplankton classes, zooplankton, 

suspended/dissolved detritus and sinking particulate detritus, dissolved nitrate, ammonia, 

phosphorus, iron, silicate, oxygen, dissolved inorganic carbon, and alkalinity.  The three model 

phytoplankton compartments include a small fraction consisting of pico/nanoplankton (< 20 

µm), diatoms (considered to be all microplankton, > 20 µm) and diazotrophs.  The 

pico/nanoplankton size class is designed to replicate the rapid and highly efficient nutrient 

recycling found in many subtropical, oligotrophic environments.  Diatoms in the model are a 

larger, bloom-forming size class.  As described later in section 2.2.2, diazotroph phytoplankton 

(generally considered to be Trichodesmium spp.) are not assigned to a size class because of their 

unique absorption and scattering properties.  Instead, they are considered a separate class and do 

not contribute to the phytoplankton size effects investigated in this study.  Phytoplankton growth 

rates are determined by available light and nutrients (Geider et al., 1998).  Photoadaption is 

parameterized with dynamically adaptive chlorophyll/carbon ratios.  The diazotrophs fix all 

nitrogen from N2 gas, and calcification is parameterized as a fraction of the pico/nanoplankton 

production as a function of temperature and nutrients adapted for coccolithophores (Doney et al., 

2009).  The model has one adaptive zooplankton class that grazes on phytoplankton and sinking 
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detritus.  Size structure effects are included by varying key zooplankton parameters depending 

on the food source (Lima and Doney, 2004).  A single zooplankton pool grazes on all 

phytoplankton groups.  Zooplankton parameters for grazing and routing of material among 

remineralization and detrital pools vary depending on the type of prey being consumed.  

Consistent with field observations, when zooplankton diets are dominated by diatoms 

zooplankton grazing rates lower and more material from zooplankton grazing and mortality is 

routed to sinking detritus.  This grazing pattern reflects generally larger predators (e.g., 

copepods) and sinking fecal pellet production.  The model suspended/dissolved detrital pool is 

equivalent to the semi-labile component of dissolved organic matter (DOM) and is remineralized 

with a life-time of several months.  The model does not explicitly treat the refractory component 

of DOM.  

 

2.2 Optical model 

An optical model was linked to the CCSM-3 BEC model output in an offline diagnostic 

calculation performed on each grid cell (resolution of 3.6° in longitude, 0.8° to 1.8° in latitude).  

The CCSM-3 BEC model output used in the optical model included size fractionated chlorophyll 

concentration (pico-/nanoplankton and diatoms only), Trichodesmium spp. chlorophyll 

concentration (diazotrophs) and dissolved organic carbon (DOC) (Fig. 1).  We worked with 

CCSM-3 BEC global monthly output for 2004, the most recent year of the model simulations 

available at the time the study was initiated.  The model grid has an unevenly spaced vertical 

distribution across twenty-four layers, with higher resolution in the surface ocean.  We averaged 

the model output over the first photic depth (1/Kd).  The attenuation coefficient (Kd) was 

determined from the linear regression of the log of the modeled photosynthetically active 
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radiation (PAR) versus depth (z).  The ecosystem state variables were converted to inherent 

optical properties (IOPs; absorption and scattering).  The IOPs were then converted to apparent 

optical properties (AOPs), specifically Rrs(λ), through the radiative transfer software Hydrolight, 

version 5 (Mobley, 1994; Mobley and Sundman, 2008a; Mobley and Sundman, 2008b) (Fig. 2).  

Total absorption is the summation of absorption due to seawater (aw, m-1) (Pope and Fry, 

1997), size-dependent phytoplankton absorption (asize, m-1) (Ciotti et al., 2002; Ciotti and 

Bricaud, 2006), Trichodesmium spp. absorption (Subramaniam et al., 1999b) and the absorption 

due to CDM (aCDM, m-1) (Bissett et al., 1999a; Bissett et al., 2004).  Total scattering is the 

summation of seawater scattering (bw, m-1) (Morel, 1974), size dependent (bsize, m-1) scattering 

(Morel and Maritorena, 2001), and Trichodesmium spp. scattering (Subramaniam et al., 1999a) 

(Figs. 2 and 3):   

a(λ) = aw(λ) + asize(λ) + atri(λ) + aCDM(λ)      (1) 
b(λ) = bw(λ) + bsize(λ) + btri(λ)       (2)  

A description of the absorption and scattering properties for each of the non-water components 

follows.  A summary of the parameter notation can be found in Table 1. 

2.2.1 Size Fractionated Phytoplankton 

For the phytoplankton size considerations, total size dependent chlorophyll ([Chlsize], mg 

m-3) (Fig. 4a) was calculated as, 

[Chlsize] = [Chlmicro] + [Chlsmall]       (3) 

where [Chlmicro] and [Chlsmall] (unit: mg m-3) are the CCSM-3 BEC model output for the 

microplankton and the combined pico- and nanoplankton size fractionated chlorophyll 

concentration, respectively.  The phytoplankton size parameter (Sf, %) was first introduced by 

Ciotti et al. (2002) to represent the percentage of picoplankton in a community.  Similar to 

Mouw and Yoder (2005; 2010) and due to the combination of the pico- and nanoplankton size 
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classes in the CCSM-3 BEC model, we utilized a different size parameter defined as the 

percentage of microplankton in a community (Sfm) (Fig. 4b).  Sfm is given by Sfm=1-Sf and varies 

from 0%, where a phytoplankton assemblage is dominated by picoplankton, to 100% where it is 

dominated by microplankton.  The percentage of microplankton in a phytoplankton community 

was calculated as  

Sfm =[Chlmicro]/([Chlsmall] + [Chlmicro])      (4) 

Ciotti et al. (2002) demonstrated that despite taxonomic and physiological variability in 

phytoplankton community structure, variation in the spectral shape of the chlorophyll-specific 

absorption coefficient could be described by an abundance-weighted average of absorption 

spectra for micro- and picoplankton (Fig. 3).  Therefore, the size-dependent chlorophyll-specific 

absorption of phytoplankton (a*
size(λ), m2 mg-1) was represented as a spectral mixing model 

(Ciotti et al., 2002) 

a*
size(λ) = [(Sf) a*

pico(λ)] + [(1-Sf) a*
micro(λ)]      (5) 

where spectral chlorophyll-specific absorption due to picoplankton (a*
pico(λ), m2 mg-1) (Ciotti and 

Bricaud, 2006) and microplankton (a*
micro(λ), m2 mg-1) (Ciotti et al., 2002) were prescribed, 

percent picoplankton (Sf, varies between 0 and 100%) weights the spectra between the size 

extremes, and Sfm=1-Sf.  The spectral size dependent phytoplankton absorption coefficient 

asize(λ) (m-1) was derived by multiplying the size-dependent chlorophyll concentration ([Chlsize], 

mg m-3) by the chlorophyll-specific, size weighted absorption (a*
size(λ), m2 mg-1) 

asize(λ) = [Chlsize] a*
size(λ)        (6) 

 The size dependent backscattering due to particles (bb size, m-1) was modeled in the same 

manner as Morel and Maritorena (2001, their equations 13 and 14), using only the size-

dependent chlorophyll concentration (mg m-3)  
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bb size(λ) = 0.416 [Chlsize]0.766 [0.002 + 0.01(0.5-0.25 log10 [Chlsize]) (λ/550)ν]  (7) 

where the exponent ν allows for altering the backscattering relationship associated with particle 

size as a function of chlorophyll concentration (Morel and Maritorena, 2001).   

ν = 0.5(log10[Chlsize]-0.3)  for 0.02 mg m-3 < [Chlsize] < 2 mg m-3          (8a) 
ν = -1.1495      for [Chlsize] ≤ 0.02 mg m-3            (8b) 
ν = 0      for [Chlsize] ≥ 2 mg m-3            (8c) 

Spectral backscattering is the proportion of total light that is scattered in the backward direction 

from a beam.  Total scattering is the summation of scattering in both the forward and backward 

directions.  Spectral backscattering was converted to total scattering (b(λ)) with the 

backscattering efficiency (Bsize, 1%) as in Morel and Maritorena (2001). 

bsize(λ) = bbsize(λ)/Bsize         (9) 

2.2.2 Diazotroph Phytoplankton 

 The CCSM-3 BEC model contains information specific to diazotroph biomass and 

chlorophyll concentration.  The absorption and scattering characteristics of Trichodesmium spp. 

are much different than most other phytoplankton species (Fig. 3).  Their unique optical 

properties do not follow those associated with changes in cell size, and require that they be 

modeled optically as a separate constituent (Fig. 2).  As with size dependent phytoplankton, the 

spectral Trichodesmium spp. absorption coefficient was calculated by multiplying the 

chlorophyll concentration due to Trichodesmium spp. ([Chltri], mg m-3) by the chlorophyll-

specific size weighted absorption for Trichodesmium spp. (a*
tri(λ), m2 mg-1) (Westberry et al., 

2005) 

atri(λ) = [Chltri] a*
tri(λ)         (10) 

where a*
tri(λ) was measured by the quantitative filter technique (Subramaniam et al., 1999b), and 

[Chltri] was output from the CCSM-3 BEC model. 
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 The spectral backscattering due to Trichodesmium spp. (bb tri(λ)), was calculated by 

multiplying the chlorophyll concentration due to Trichodesmium spp. ([Chltri], mg m-3) by the 

chlorophyll-specific backscattering for Trichodesmium spp. (b*
b tri(λ), m2 mg-1) (Westberry et al., 

2005) 

bbtri(λ) = [Chltri] b*
btri(λ)        (11) 

where b*
b tri(λ) was determined in vitro (Subramaniam et al., 1999a).  Spectral backscattering due 

to Trichodesmium spp. was converted to total scattering (btri(λ)) with the backscattering 

efficiency (Btri) of 0.4% (Subramaniam et al., 1999a).   

btri = bbtri/Btri           (12) 

2.2.3 Non-phytoplankton Carbon Pool 

 In order to utilize the non-phytoplankton carbon pool contained within the CCSM-3 BEC 

model, a few assumptions were applied.  Bissett et al. (1999a) describes in detail the justification 

for assumed values of constants used to convert total DOC to the colored fraction of DOC.  

While this assumption contradicts the Siegel et al. (2002) observation that basin-scale 

distributions of CDM and DOC are largely unrelated, the ability to convert from ecosystem state 

variables to optically active constituents was a necessary step to calculate Rrs(λ).  As will be 

discussed in detail later, the analysis was based on the difference between scenarios where only a 

single parameter was varied and all other optically active constituents were treated identically.  

Thus, the optical treatment of DOC does not impact the results.  Bissett et al. (1999a, 2004) 

utilized separate labile and relict DOC pools.  The CCSM-3 BEC model’s DOC pool is semi-

labile (a background ~45 µmol/kg of refractory DOC would need to be added to match observed 

DOC levels).  Given the CCSM-3 BEC varying DOC pool is semi-labile, we utilized the Bissett 

et al. (1999a, 2004) constants for the labile DOC pool.  To convert the DOC concentration 
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([DOC], mg C m-3) to the concentration of colored dissolved material ([CDM], mg m-3) a 

constant 3.23% of the labile [DOC] pool was assigned as colored (colorCDM, %) (Bissett et al., 

1999a; Bissett et al., 2004) 

[CDM] = colorCDM [DOC]         (13) 

Additionally, to move from [CDM] to absorption due to CDM (aCDM(λ), m-1) the weight-specific 

absorption at a reference wavelength needed to be applied.  Bissett et al. (1999a, 2004) also 

determined an appropriate conversion factor for a reference wavelength of 410 nm. 

aCDM(λo) = a*
CDM(λo) [CDM]         (14) 

where a*
CDM(λo), is the weight-specific absorption due to labile CDM at 410 nm and is equal to 

0.00508 m2mg-1 (Bissett et al., 1999a; Bissett et al., 2004).  The spectral absorption due to CDM 

can then be calculated as an exponential function  

aCDM(λ)  = aCDM(λ0) exp [-S (λ-λ0)]       (15) 

where S is the slope of the exponential relationship and assigned a global average value of 0.015 

nm-1 (Barnard et al., 1998) (Fig. 3). 

 

2.3 Radiative transfer model 

The IOP output from the optical model was passed to Hydrolight 5 (Mobley, 1994; 

Mobley and Sundman, 2008a; Mobley and Sundman, 2008b), a radiative transfer software, to 

compute the apparent optical properties (AOP).  Hydrolight was run with four optical 

components including, water, size fractionated phytoplankton, diazotroph phytoplankton and 

colored dissolved material as described above.  Raman scattering, chlorophyll and colored 

dissolved material fluorescence were included and the water column was assumed to be 

infinitely deep (no bottom reflectance).  A semi-analytical sky model was used with a specified 
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solar zenith angle of 30°.  Aerosol type, wind speed, average sea level pressure, relative 

humidity, precipitable water content and horizontal visibility were assumed to be marine, 5 m/s, 

29.92 inches of Hg, 15%, 4 cm, and 300 km, respectively.  The AOP values were computed only 

at specific band-width intervals equivalent to the wavelength bands observed by SeaWiFS (412, 

443, 490, 510, 555, and 670 nm).  The AOP of particular interest was Rrs(λ) because it is the 

parameter directly derived from satellite radiometer measurements (after calibration and 

atmospheric correction have been applied).  The optical model as described above, applied to 

each grid cell of the CCSM-3 BEC model output, was used to capture the full variability in 

Rrs(λ) associated with varying chlorophyll concentration, phytoplankton size assemblage and 

size –varying phytoplankton absorption.   

 

2.4 Optical Scenarios 

In an effort to isolate the effects of chlorophyll concentration, phytoplankton cell size and 

size-varying phytoplankton absorption on overall Rrs(λ) we performed two case studies each 

with several different scenarios.  The goals of the two case studies were different. The first case 

study was used to understand the relative contribution of phytoplankton cell size and chlorophyll 

concentration variation to overall Rrs(λ) variation.  In this case study, the CCSM-3 BEC model 

output was averaged over all months for 2004.  With the annual average model output we ran the 

following scenarios, 1) full cell size and chlorophyll concentration variability, 2) chlorophyll 

concentration held constant at the global mean (0.17 mg m-3) and, 3) phytoplankton size 

composition held constant at the global mean (35% microplankton) (Fig. 4).  These scenarios 

allowed us to independently quantify the impact variation in chlorophyll alone and 

phytoplankton size alone impart on Rrs(λ) variation.  It is believed that chlorophyll variation 
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imparts a larger impact on Rrs(λ) variation than does cell size, but we do not have a clear 

understanding of how much larger the impact is or how variable it can be.  By holding 

chlorophyll at the annual mean, we were able to isolate and understand the impact of size 

variation in the absence of chlorophyll variation, which could have otherwise confused our 

interpretation. 

The second case study was performed to understand seasonal and spatial variability 

where Rrs(λ) was being significantly impacted by phytoplankton size composition.  This case 

study was performed using 2004 monthly CCSM-3 BEC output.  Two scenarios were performed 

in this case study, 1) full cell size and chlorophyll concentration variability, where phytoplankton 

absorption varies due to phytoplankton cell size (size-dependent) and, 2) chlorophyll 

concentration variability only; phytoplankton chlorophyll-specific absorption was held constant, 

thus absorption did not change with variation in cell size (size-independent absorption).  The 

constant chlorophyll-specific absorption was considered in two ways.  First, the constant 

chlorophyll-specific absorption spectra utilized in the size-independent absorption scenario was 

calculated as the mean of the micro-, ultra-, nano- (Ciotti et al., 2002), and picoplankton (Ciotti 

and Bricaud, 2006) chlorophyll-specific absorption spectrum (herein referred to as Ciotti 

average) (Fig. 3).  Second, the constant chlorophyll-specific absorption was determined from 

equation 5 when using the model mean Sfm (35%).  As prescribed by the above optical model, 

the distribution of chlorophyll between the phytoplankton size classes (i.e. Sf and Sfm, equation 

4) determines the chlorophyll-specific absorption spectra (equation 5) in the full variability 

scenario.  Satellite algorithms and optical models often assume constant average chlorophyll-

specific phytoplankton absorption spectra.  This case study aims to demonstrate when and where 
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this assumption does not hold true.  In each of the scenarios only the parameters of interest were 

changed; all other optical parameters were treated identically. 

 

2.5 Analysis methods 

The analysis focused on the overall Rrs(λ) resulting from each optical scenario.  All of the 

resulting Rrs spectra were normalized to 555 nm (referred to as 

€ 

ˆ R rs(λ)  from this point forward, 

units are dimensionless) to focus on the shape of the spectra and emphasize the magnitude shift 

between pico- and microplankton at the 443 nm band (Mouw and Yoder, 2010).  The band 555 

nm was chosen to normalize the spectra because phytoplankton absorption was the lowest at this 

band.  The greatest difference in absorption related to phytoplankton cell size was observed at 

443 nm, thus our analysis is focused on this band (Fig. 5).  To compare scenarios with constant 

chlorophyll (

€ 

ˆ R rs(λ) chl), constant phytoplankton size (

€ 

ˆ R rs(λ)S fm
), or constant chlorophyll-specific 

absorption (

€ 

ˆ R rs(λ)Ciotti−avg or 

€ 

ˆ R rs(λ) indep−mean) to those with full model variability (

€ 

ˆ R rs(λ)dep−aor 

€ 

ˆ R rs(λ)dep−m ), we calculated for each scenario percent fractional error ([(

€ 

ˆ R rs(443) chl  (or 

€ 

ˆ R rs(443)S fm
) –

€ 

ˆ R rs(443)dep−a )/

€ 

ˆ R rs(443)dep−a ] × 100) or percent difference ({(

€ 

ˆ R rs(443)Ciotti−avg –

€ 

ˆ R rs(443)dep−m) / [(

€ 

ˆ R rs(443)Ciotti−avg+

€ 

ˆ R rs(443)dep−m)/2]} × 100).  The use of percent fractional error 

or percent difference allows the analysis to only focus on the portion of the 

€ 

ˆ R rs(λ)  that changed 

due to [Chlsize], Sfm or absorption effects. 

 

3. Results 
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3.1 First case study: annual constant chlorophyll and constant phytoplankton size scenarios 

The variation in the spectral shape of the global annual mean normalized reflectance 

spectra was compared in Figure 6 for three scenarios: the cell size dependent, full variability case 

(

€ 

ˆ R rs(λ)dep−a), the global mean constant [Chlsize] (0.17 mg m-3) case (

€ 

ˆ R rs(λ) chl), and the global 

mean constant Sfm (35%) case (

€ 

ˆ R rs(λ)S fm
).  Figure 6 also displays for each case the envelope 

encompassing one standard deviation about each spectral curve.  One standard deviation of the 

spectral variability of 

€ 

ˆ R rs(λ) chl  fell completely within one standard deviation of 

€ 

ˆ R rs(λ)S fm
.  This 

indicates that 

€ 

ˆ R rs(λ)  variability due to chlorophyll is greater than that due to cell size alone; 

however, 

€ 

ˆ R rs(λ)  variability due to Sfm is important as a secondary effect.  As chlorophyll 

concentration increases, the peak of the maximum 

€ 

ˆ R rs(λ)  shifts to longer wavelengths (O’Reilly 

et al., 1998).  Changes in 

€ 

ˆ R rs(λ)  due to cell size variations primarily alter the magnitude of the 

curve rather than shifting of the peak wavelength.  The greatest 

€ 

ˆ R rs(λ)  difference in magnitude 

was found at 443 nm (Mouw and Yoder, 2010); thus we focused our quantification efforts 

primarily at 443 nm.  At 443 nm, the mean (standard deviation) for 

€ 

ˆ R rs(443)dep−a , 

€ 

ˆ R rs(443) chl , 

and 

€ 

ˆ R rs(λ)S fm
 was 3.31 (0.36), 3.15 (0.14), and 3.19 (0.46), respectively.   

To further explore the difference between 

€ 

ˆ R rs(443)dep−a , 

€ 

ˆ R rs(443) chl , and 

€ 

ˆ R rs(λ)S fm
, 

scatter plots for each of these scenarios were compared (Fig. 7).  To help visualize the general 

trend of each scenario, a linear regression was fit.  The regressions for 

€ 

ˆ R rs(443)dep−a  versus 

€ 

ˆ R rs(λ)S fm  and 

€ 

ˆ R rs(443)dep−a  versus 

€ 

ˆ R rs(443) chl  resulted in correlation coefficients (r2) of 0.74 and 

0.29, root mean square error (RMSE) of 0.529 and 0.587, slopes of 0.887 and 0.374, and 

intercepts of 0.278 and 1.888, respectively (Fig. 7).  The divergence of points from the 1:1 line, 
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and the divergence of the statistically fitted regression line from the 1:1 line, indicates the extent 

to which grid-point  values differed when a single parameter was held constant relative 

to the full variability  simulation.  While there was significant variability about the 

regression fits, the linear regressions and scatter plots indicated that the deviations from 

€ 

ˆ R rs(443)dep−a  were larger for the 

€ 

ˆ R rs(443) chl  scenario than for the 

€ 

ˆ R rs(λ)S fm
scenario; there is also 

considerably more structure in fit residuals in the 

€ 

ˆ R rs(443) chl  scenario, with positive biases at 

low 

€ 

ˆ R rs(443)  and negative biases at high 

€ 

ˆ R rs(443) .  This indicated that geographic variations in 

chlorophyll concentration impact 

€ 

ˆ R rs(443)  more significantly than geographic variations in cell 

size or Sfm.   

To quantify the relative impact of Sfm and [Chlsize] on 

€ 

ˆ R rs(443)  we calculated their 

respective percent fractional error.  Percent fractional error was determined at each model grid 

cell from 

€ 

ˆ R rs(443)dep−a , 

€ 

ˆ R rs(443) chl , and 

€ 

ˆ R rs(443)S fm
 (for example, Sfm percent fractional error 

was calculated as: [(

€ 

ˆ R rs(443)S fm
–

€ 

ˆ R rs(443)dep−a )/

€ 

ˆ R rs(443)dep−a ] × 100) (Fig 8).  The magnitude of 

the contribution of [Chlsize] on 

€ 

ˆ R rs(443)dep−a  was much greater than that due to Sfm.  The sign of 

the percent fractional error between [Chlsize] and Sfm was generally opposite for a given region of 

the ocean.  Assuming a fixed chlorophyll concentration, the optical model resulted in a large 

positive error or bias in 

€ 

ˆ R rs(443)dep−a  at mid- to high-latitudes and a negative bias in the 

subtropics.  The percent fractional errors in assuming a constant phytoplankton size tended to be 

smaller in magnitude and generally opposite in sign, with positive biases in the tropics and 

subtropics (+10 to +20%) and negative biases in temperate to polar environments (-10 to -40%).  

 

€ 

ˆ R rs(443)

€ 

ˆ R rs(443)
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3.2 Second case study: monthly size-dependent and size-independent absorption scenarios 

We were primarily interested in the difference between the size-independent (using the 

Ciotti average chlorophyll-specific absorption spectra) (

€ 

ˆ R rs(443)Ciotti−avg ) and size-dependent (full 

variability) (

€ 

ˆ R rs(443)dep−m) scenarios, we first calculated the percent difference between these 

scenarios for each pixel of the monthly model output: 

{(

€ 

ˆ R rs(443)Ciotti−avg  -

€ 

ˆ R rs(443)dep−m) / [(

€ 

ˆ R rs(443)Ciotti−avg+

€ 

ˆ R rs(443)dep−m)/2]} × 100 (17) 

The annual mean percent difference global field (Fig. 9) was then subtracted from each of the 

monthly fields, and the monthly deviation maps were compared (Fig. 10).   

Considering first the mean field, the highest values for the positive mean percent 

difference between 

€ 

ˆ R rs(443)Ciotti−avg  and 

€ 

ˆ R rs(443)dep−m  were found in the tropical and subtropical 

Atlantic and Indian Oceans, the central gyres and equatorial region of the Pacific Ocean (Fig. 9).  

A positive percent difference was found across much of the global ocean, with the exception of 

portions of the Southern Ocean, the Arctic Ocean and southeast of Greenland in the North 

Atlantic.  Global fields of 

€ 

ˆ R rs(443)Ciotti−avg  were on average 14% higher than 

€ 

ˆ R rs(443)dep−m  (Fig. 

9, Table 2).  This indicated that on average, the Ciotti-average chlorophyll-specific absorption 

was lower (higher Sfm) than the size-dependent scenario.  In other words, a positive percent 

difference resulted when the chlorophyll-specific absorption for the size-dependent scenario was 

higher (lower Sfm) than the chlorophyll-specific absorption for the size-independent Ciotti-

average scenario.  This suggests that over the majority of the ocean, the model phytoplankton 

assemblage contains a greater percentage of picoplankton than that associated with the Ciotti-

average chlorophyll-specific absorption.  In the high latitudes of the Southern and Arctic Oceans 

and also southeast of Greenland, the negative percent difference between Ciotti-average and 
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size-dependent scenarios indicated that the size-dependent scenario had a greater percentage of 

large cells (higher Sfm), lower chlorophyll-specific absorption, and thus higher  than the 

Ciotti-average scenario.  

Two main patterns emerge from the monthly percent difference deviation maps.  First, 

there are seasonal changes to the size-independent (using the Ciotti-average chlorophyll-specific 

absorption spectra) (

€ 

ˆ R rs(443)Ciotti−avg ) and size-dependent (full variability) (

€ 

ˆ R rs(443)dep−m) 

scenarios throughout the global ocean.  Second, seasonal deviations are generally much larger in 

higher latitudes than elsewhere, particularly in the Southern Ocean. 

Briefly, April and November were transitional months in the subtropical ocean, with 

generally negative deviations in the local spring through early fall months in both hemispheres.  

The sub-polar deviations were opposite in sign compared to the subtropical ocean with positive 

deviations in the local summer to fall months between hemispheres.  The Arctic Ocean displayed 

positive deviations only in the brief summer months.  The Southern Ocean consistently had 

strong anomalous patches persistent throughout the year, with the patches displaying opposing 

signs in November through March compared to April through October.  In other words, 

phytoplankton size effects act to increase 

€ 

ˆ R rs(443)  over the subtropical oceans in both 

hemispheres during the local spring through early fall months, decrease  during local 

winter months.  At high latitudes in the NH, size effects increase 

€ 

ˆ R rs(443)  for December through 

April and decrease  for May through November.  The very patchy Southern Ocean made 

generalizations about this region difficult. 

 

3.2.1 Correlation Analysis 

Correlation analysis was performed and the r2 was mapped between monthly 

€ 

ˆ R rs(443)

€ 

ˆ R rs(443)

€ 

ˆ R rs(443)
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€ 

ˆ R rs(443)dep−m  and [Chlsize] (Fig. 11a), [Chlsize] and Sfm (Fig. 11b), and 

€ 

ˆ R rs(443)dep−m and Sfm (Fig. 

11c).  As expected, the seasonal correlation between 

€ 

ˆ R rs(443)dep−m  and [Chlsize] was strongly 

negative across the majority of the global ocean (-0.87) (Fig. 11a, Table 3).  The reason for the 

negative relationship is that chlorophyll concentration increases phytoplankton absorption, thus 

decreasing 

€ 

ˆ R rs(443)dep−m .  Over most of the ocean, [Chlsize] and Sfm are in phase seasonally; 

meaning seasonal blooms were associated with an increase in microplankton.  The exception to 

this was found in the subpolar North Pacific and subpolar and polar Southern Ocean (Fig. 11b).  

An increase in [Chlsize] or Sfm independent of any other change would have opposite effects on 

€ 

ˆ R rs(443)dep−m .  In the large part of the global domain, where [Chlsize] and Sfm are positively 

correlated, the net effect on the seasonal variation in 

€ 

ˆ R rs(443)dep−m  depends on the strength of the 

seasonal variation of [Chlsize] to Sfm.  The seasonal correlation between 

€ 

ˆ R rs(443)dep−m  and Sfm was 

generally both highly negative in the tropics and subtropics and highly positive at high latitudes 

(Fig. 11c).  Low seasonal correlation was found in the transitional zones between the subtropical 

and polar regions and in much of the western Pacific.  Examining all three panels of Fig. 11 

suggested that Sfm was largely secondary to [Chlsize] in forcing seasonal variations of 

€ 

ˆ R rs(443)dep−m  and that the sign of the correlation of Sfm and 

€ 

ˆ R rs(443)dep−m  (Fig. 11c) reflects 

primarily the underlying regional relationships between Sfm and [Chlsize] (Fig. 11b) and the 

strong global anti-correlation of 

€ 

ˆ R rs(443)dep−m  and [Chlsize].  

 

3.2.2 Chlorophyll Concentration Analysis 

To portray the size-dependent and size-independent scenarios in a more familiar way, the 

ocean color 4-band ratio (OC4) algorithm for chlorophyll concentration was calculated from the 
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monthly remote sensing reflectance for Ciotti-average size-independent (

€ 

Rrs(λ)Ciotti−avg ), model 

mean size-independent (

€ 

Rrs(λ) indep−mean) and size-dependent (

€ 

Rrs(λ)dep−m ) optical output.  OC4 is 

the standard chlorophyll algorithm used when processing SeaWiFS imagery and is an empirically 

fit polynomial that utilizes band shifting to longer wavelengths with increasing chlorophyll 

concentration (O’Reilly et al., 1998).  The global 2004 annual mean OC4 [Chl] for the Ciotti-

average size-independent, model mean size-independent (i.e. equation 5 when Sfm is set constant 

at 35%) and size-dependent absorption simulations were 0.174, 0.219 and 0.216 mg m-3, 

respectively (Table 2).  This resulted in an annual average -21.5% and 1.4% difference in OC4 

[Chl] estimates from the size-dependent scenario for the Ciotti-average size-independent and 

model mean size-independent scenarios, respectively (Fig. 12; Table 2).  The difference between 

the size-dependent and Ciotti-average size-independent estimates is not just an overall mean bias; 

the Ciotti-average size-independent OC4 [Chl] estimates displayed a greater magnitude change in 

the subtropical to temperate gradient compared to the size-dependent OC4 [Chl] estimates.  Over 

most of the global ocean the annual size-dependent OC4 [Chl] estimates were on average 15% to 

30 % higher than the annual Ciotti-average size-independent OC4 [Chl] estimates.  However, in 

the central gyre of the North Atlantic, the annual size-dependent OC4 [Chl] estimates are 

approximately 50% higher than the annual size-independent OC4 [Chl] estimates.  Conversely, 

in the Southern Ocean and high latitudes of the North Atlantic, the size-dependent OC4 [Chl] 

estimates are equal to or up to 20% lower than the annual size-independent OC4 [Chl] estimates 

(Fig. 12d).  The low percent difference between the size-dependent and model mean size-

independent scenarios is related to the positive difference in the high latitudes, but negative 

difference in the low latitudes (Fig. 12e).  The distinct zonal regions occur because the model 

mean size-independent scenario represents a picoplankton-dominated case, which is closer to 
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CCSM-3 BEC model’s size distribution in low latitudes.  The model mean size-independent 

scenario was considered to understand the bias present when choosing a chlorophyll-specific 

absorption spectra not associated with the model mean conditions.  The bias was examined by 

differencing the Ciotti-average size-independent percent difference with the model mean size-

independent percent difference.  The mean annual bias is -22%.  The lowest bias is found in the 

Southern Ocean, the high latitudes of the North Atlantic and across much of the low latitudes 

with the exception of the equatorial upwelling region and the southern portion of the North 

Atlantic gyre.  The greatest bias is observed in the mid-latitudes particularly west of Argentina, 

south of Australia and in the northern portion of the North Pacific gyre (Fig. 12f). 

The monthly temporal changes in OC4 [Chl] percent difference between the size-

dependent and Ciotti-average size-independent scenarios were considered.  Keeping in mind the 

negative percent difference bias between the Ciotti-average and model mean size-independent 

scenarios, [Chl] is underestimated when Sfm is elevated, which generally occurs at high latitudes 

in the local spring and summer.  Specifically, in the low to mid latitude regions, size-dependent 

OC4 [Chl] estimates were generally 30-60% higher than the Ciotti-average size-independent 

OC4 [Chl] estimates across all months.  In the high latitude regions, size-dependent OC4 [Chl] 

estimates were 50-150% lower than the Ciotti-average size-independent OC4 [Chl] estimates 

during local spring to summer months.  During local winter months at high latitudes, the size-

dependent and size-independent OC4 [Chl] estimates at high latitudes were nearly equal (Fig. 

13).  There are known spatial biases in the CCSM-3 BEC model that will be reflected here 

(Doney et al., 2009), thus the spatial distribution is not expected to look identical to satellite 

retrievals of OC4 [Chl].  For band-ratio algorithms, such as OC4, an increase in Sfm effectively 

looks like a decrease in chlorophyll concentration.  If as in the CCSM-3 BEC, chlorophyll 
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concentration and phytoplankton size are positively correlated over most of the global domain, 

the impact by cell size has the effect of dampening large-scale spatial gradients. 

 

4. Discussion and Conclusions   

The focus of this study was to understand the impact of phytoplankton cell size and 

chlorophyll concentration on Rrs(λ) using models to approximate the global variation and co-

variation in phytoplankton cell size (two size classes only) and chlorophyll concentration that 

occurs in nature.  We were not overly concerned with the model’s agreement with in situ or 

satellite data; these issues are treated elsewhere (Doney et al., 2009).  The CCSM-3 BEC model 

represents a global coincident estimate in space and time of phytoplankton cell size, chlorophyll 

concentration, and other pertinent ecosystem state variables that are dynamically consistent and 

unattainable by any other approach owing to a paucity of global in situ observations.  These 

estimated parameters were exploited as a means to isolate variation in Rrs(λ) due to changes in 

phytoplankton size and chlorophyll concentration over a reasonable range of global variability.  

It is important to point out that assumptions in the optical model were used to obtain a best 

guess, such as some of the spectral shape coefficients, backscattering efficiency, and the 

conversion from DOC to aCDM(λo).  Comparisons were made directly between full variability 

output and sensitivity experiments with a single parameter altered (with all other optical 

parameters treated identically between scenarios) isolating only the effect on remotely sensed 

reflectance resulting from the altered parameter. 

Compared to chlorophyll concentration, phytoplankton size imparts a secondary impact 

on remotely sensed reflectance in the model and by implication, in nature.  Globally, the 

magnitude of the percent fractional error of Sfm on 

€ 

ˆ R rs(443)dep−a  was lower than the percent 
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fractional error of [Chlsize], and generally opposite in sign.  High latitude regions expressed the 

greatest impact on 

€ 

ˆ R rs(443)  due to phytoplankton size.  

€ 

ˆ R rs(443)  was impacted by both [Chlsize] 

and Sfm (although in opposite sign) in regions influenced by large scale upwelling and monsoon 

dynamics, however impact due to Sfm was smaller in magnitude.  The correlation between 

[Chlsize] and Sfm indicate that these two parameters were generally positively coupled over the 

seasonal cycle in low latitude regions.  This indicates that seasonal increases in chlorophyll in 

low latitude regions were generally accompanied by increases in larger phytoplankton cells 

within the phytoplankton assemblage.  At very high latitudes, there are regions in the CCSM-3 

BEC simulation where Sfm and [Chlsize] are strongly anti-correlated and other regions where 

correlation is poor.  These results suggest that at high latitudes, the idea that increases in 

chlorophyll concentration is largely related to an increase in the percentage of large cells, does 

not hold true, at least in this particular ecosystem model.  

A comparison of 

€ 

ˆ R rs(443)  in simulations with constant chlorophyll-specific absorption 

spectra (and thus constant size structure) (

€ 

ˆ R rs(443)Ciotti−avg ) against full time and space varying 

phytoplankton size structure (

€ 

ˆ R rs(443)dep−m) indicated positive percent differences across the 

tropical and subtropical global ocean.  These differences result from the community structure in 

the CCSM-3 BEC model consisting of a greater percentage of pico- and nanoplankton, thus 

resulting in a higher chlorophyll-specific absorption (and lower 

€ 

ˆ R rs(443) ) than the Ciotti average 

absorption.  In a converse example, the only negative percent difference between 

€ 

ˆ R rs(443)Ciotti−avg  

and 

€ 

ˆ R rs(443)dep−m  was found in the Southern and Arctic Oceans and southeast of Greenland in 

the North Atlantic.  In these cases, the phytoplankton community in the CCSM-3 BEC model 

was comprised of cells larger than those associated with the Ciotti-average chlorophyll-specific 
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absorption, resulting in lower size-dependent chlorophyll-specific absorption and higher 

€ 

ˆ R rs(443)dep−m .   

As explained previously, loosely packaged microphytoplankton (i.e. high Sfm), absorb 

comparatively less light per unit chlorophyll.  Conversely, tightly packaged picoplankton (i.e. 

low Sfm), absorb comparatively more light per unit chlorophyll and tend to be associated with 

low [Chlsize].  Thus, the same high 

€ 

ˆ R rs(443)  can result from two different conditions: (1) low Sfm 

in low [Chlsize] regions of the ocean such as the Sargasso Sea, or high Sfm and moderate [Chlsize] 

such as in the Southern Ocean. 

Most biogeochemistry/ecosystem/circulation models predict [Chl] not Rrs(λ).  This can 

lead to complications in the comparison of model output with observations of remotely sensed 

properties because the uncertainty of satellite derived [Chl] is much higher than the uncertainty 

associated with Rrs(λ).  However, a straight comparison of model and satellite observed 

chlorophyll concentration is appropriate as long as the observational approach takes 

phytoplankton size into account either empirically or semi-empirically.  The spatial changes in 

percent fractional error and the spatial and temporal changes in percent difference indicate 

variations in phytoplankton size can substantially impact 

€ 

ˆ R rs(443) .  High latitudes are 

particularly susceptible to under and overestimation of remote sensing reflectance.  When not 

considering phytoplankton size effects, 

€ 

ˆ R rs(443)  will be underestimated in the subtropical oceans 

in both hemispheres during local spring through early fall months and overestimated during local 

winter months.  The high latitudes are generally out of phase with each other; underestimation 

occurred during the local winter months and overestimation during the local summer months, 

with the deviations being stronger and patchier in the Southern Ocean.  When applying band-

ratio algorithms, remote sensing reflectance and chlorophyll concentration are empirically 
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related; thus an impact on Rrs(λ) by phytoplankton size will also impact [Chl] estimates.  In 

general, our calculations from model output indicate that when phytoplankton size effects are not 

considered, [Chl] will be on average underestimated by standard satellite algorithms (e.g. OC4).  

These results have important implications as to when and where the satellite standard algorithms 

will either overestimate or underestimate [Chl] due to Rrs(443) being significantly affected by 

phytoplankton size.  As [Chl] increases, phytoplankton absorb more light, resulting in decreased 

Rrs(443).  Thus in tune with the Rrs(443) seasonal changes, we expect the OC4 algorithm will 

overestimate [Chl] during in the tropical and subtropical oceans in both hemispheres during local 

spring through early fall months and underestimate during local winter months.  At high 

latitudes, we expect [Chl] will be overestimated during the local winter and underestimated 

during the local summer.  The impact of cell size variability on Rrs(λ) was not a factor in the 

development of the OC4 relationship between Rrs(λ) and [Chl] but it is indirectly encapsulated 

due to the inclusion [Chl] associated with various phytoplankton assemblages across the global 

ocean.  However, the OC4 empirical relationship is a regression fit that cannot capture the full 

variability between chlorophyll concentration and Rrs(λ).  This study attempts to tease apart 

where and when the variability about the OC4 relationship may be associated with cell size 

variability rather than chlorophyll variability alone.  The monthly OC4 [Chl] calculations from 

the model simulated output generally indicated that when not considering cell size, [Chl] in low 

to mid latitudes regions was overestimated throughout the year and at high latitudes, [Chl] was 

underestimated during the local spring to summer months.  

We found that considering size-varying phytoplankton absorption in an optical model 

resulted in the global average 

€ 

ˆ R rs(443)  and OC4 [Chl] calculations with 14% lower and 22% 

higher than when holding phytoplankton absorption constant.  The difference between scenarios 
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reflects the impact phytoplankton size has on remote sensing reflectance and chlorophyll 

estimates, in addition to the difference between the CCSM-3 BEC model’s output phytoplankton 

size structure compared to the Ciotti-average estimate.  More work is needed to quantify the size-

structure from observations and to evaluate and improve model predictions of size structure.  The 

negative seasonal correlation between [Chl] and Rrs(443) is indisputable and has been utilized in 

standard satellite algorithms (O’Reilly et al., 1998).  However, the relationship of Sfm to Rrs(λ) 

has not been extensively explored.  In the model results, we found that Sfm also was generally 

strongly correlated with 

€ 

ˆ R rs(443)dep−m , but the sign of the relationship varied with location.  

[Chlsize] and Sfm were positively seasonally correlated at low to mid-latitudes, while the 

relationship was either anti- or poorly seasonally correlated in high latitudes.  This implies the 

equatorial and subtropical regions of the ocean have an in-phase (positive) relationship between 

[Chl] and Sfm in that [Chl] and Sfm tend to increase together.  The correlation sign reversal 

(negative) at high latitudes implied that decreases in 

€ 

ˆ R rs(443)dep−m  may be caused by a shift to 

larger phytoplankton cells as well as an increase in [Chl].   

There are many implications of adding optics to biogeochemistry / ecosystem / 

circulation models.  Previous physical-ecosystem modeling studies that have implemented an 

optical model found better agreement with in situ observations than models that did not consider 

optics (Bissett et al., 1999a; Bissett et al., 1999b; Fuji et al. 2007).  In the present study, the 

implementation was in an off-line diagnostic manner.  In this way, we were able to isolate 

potential knowledge gained from specific manipulation of the optical model.  We have learned 

that explicitly considering phytoplankton cell size can significantly alter the outcome of 

modeling efforts.  There is potential to gain considerable knowledge about other optically active 

constituents through additional linear coupling of ecosystem numerical output with optical 
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models.  This effort constitutes a step toward understanding the implications of linking two 

traditionally independent fields of study.  

One of the challenges in developing marine biogeochemical/ecosystem models is the lack 

of data with adequate spatial and temporal resolution for calibration and validation.  Satellite 

chlorophyll data has helped tremendously to address this issue (Bennington et al., 2009; Lima 

and Doney, 2004; Moore et al., 2002a; Tjiputra et al., 2007).  However, beyond chlorophyll 

concentration, an advantage gained in the use of an optical model is a greater suite of parameters 

to validate and constrain the biogeochemistry/ecosystem model.  The greatest utility in a 

combined ecosystem-optical model comes at a fundamental level of comparison between satellite 

observations and model output.  As much as possible, we want to compare model results to 

actual observations rather than derived products.  Satellite derived products, such as chlorophyll 

concentration, have inherent error greater than the error associated with the observed parameter, 

in this case, remote sensing reflectance.  If we understand the optical coefficients such as total 

scattering and absorption resulting from the CCSM-3 BEC model, we have greater power over 

the interpretation and are left with fewer uncertainties related to empirical fits.  We could 

compare the resultant Rrs(λ) from the combined ecosystem-optical model to satellite radiometry 

measurements and move beyond satellite derived chlorophyll for model validation.  The 

uncertainty of the satellite measured Rrs(λ) is significantly lower than that of the standard OC4 

chlorophyll concentration product (Bailey and Werdell, 2006).   

Looking ahead to the intersection of optics and ecosystem modeling, the ideal junction of 

these two traditionally independent fields lies in a feedback of the optics into the ecosystem 

model to improve the accuracy of modeling of the underwater light field, which will ultimately 

produce more accurate optical, biogeochemical and ecosystem parameter output.  
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Biogeochemical / ecosystem / circulation models of the ocean are essential tools for 

understanding the global carbon cycle, while remotely sensed optical properties offer the most 

comprehensive spatial and temporal view of the ocean surface.  The data-poor constraint and 

tuning of many numerical models can only benefit from exploiting one of our most data-rich 

sources of ocean observation, remote sensing.  The combination of these two fields of research 

represent, on the long term, a key opportunity to improve our understanding of links between 

variability and change in climate, ecosystems and biogeochemistry. 

In conclusion, we found that while phytoplankton cell size effects on Rrs(λ) were 

secondary to chlorophyll concentration, the impact can be substantial in upwelling and deep 

mixing regions of the ocean.  Differences between the various scenarios have lent insight into the 

importance of considering phytoplankton size when interpreting remote measurements of Rrs(λ). 

By implication, the results also give insight into the possible errors in estimating chlorophyll 

concentration from Rrs when considering a global phytoplankton population having size-

independent mean absorption properties.  The latter is the common assumption when interpreting 

Rrs from satellite measurements.  This study points to the importance of understanding the 

ecological structure of phytoplankton communities, beyond just biomass, and lends credence to 

the accomplishments and on-going developments of phytoplankton size retrieval from satellite 

observations.  
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Table 1. Summary of optical parameter notation 
 
a*

micro(λ)  chlorophyll-specific spectral absorption due to microphytoplankton (m2 mg-1) 
a*

pico(λ)  chlorophyll-specific spectral absorption due to picophytoplankton (m2 mg-1) 
a*

size(λ)  chlorophyll-specific spectral absorption of phytoplankton weighted by Sfm (m2 mg-

1) 
a*

tri(λ)  chlorophyll-specific spectral absorption due to Trichodesmium spp. (m2 mg-1) 
a*

Ciotti-avg(λ) chlorophyll-specific spectral absorption due to an average of the Ciotti pico-, 
ultra-, nano- and microplankton absorption spectra (m2 mg-1) 

a*
cdm(λ)  weight-specific spectral absorption due to the combined effect of colored 

dissolved and detrital matter (m2 mg-1) 
asize(λ)  spectral absorption due to phytoplankton weighted by Sfm (m-1) 
atri(λ)  spectral absorption due to Trichodesmium spp. (m-1) 
aw(λ)  spectral absorption due to pure seawater (m-1) 
acdm(λ)  spectral absorption due to the combined effect of colored dissolved and detrital 

matter (m-1) 
a(λ)  total spectral absorption (m-1) 
bb size(λ)  spectral backscatter due to size dependent phytoplankton (m-1) 
bb tri(λ)  spectral backscatter due to Trichodesmium spp. (m-1) 
b*

b tri(λ)  weight-specific spectral backscatter due to Trichodesmium spp. (m2 mg-1) 
bsize(λ)  spectral scattering due to size dependent phytoplankton (m-1) 
btri(λ)  spectral scattering due to Trichodesmium spp. (m-1) 
bw(λ)  spectral scattering due to seawater (m-1) 
b(λ)  spectral total scattering (m-1) 
Sf  percent picoplankton (%) 
Sfm  percent microplankton (%) 
[Chlsize]  phytoplankton size dependent chlorophyll concentration (mg m-3) 
[Chlmicro]  microplankton chlorophyll concentration (mg m-3) 
[Chlsmall]  combined picoplankton and nanoplankton chlorophyll concentration (mg m-3) 
[Chltri]   Trichodesmium spp. chlorophyll concentration (mg m-3) 
λ,λ0  wavelength, reference wavelength (443 nm) (nm) 
S  slope of the spectral acdm(λ) relationship (nm-1) 
Colorcdm  colored fraction of the DOC pool (%) 
[DOC]  dissolved organic carbon concentration (mg C m-3) 
[CDM]  concentration of colored dissolved and detrital matter (mg m-3) 
ν  exponent of the bbsize(λ) relationship that varies with [Chlsize] 
Bsize  backscattering ratio for size dependent phytoplankton (bb/b, dimensionless) 
Btri  backscattering ratio for Trichodesmium spp. (bb/b, dimensionless) 
Rrs(λ)  spectral remote sensing reflectance (sr-1) 

€ 

ˆ R rs(λ)   normalized remote sensing reflectance (dimensionless) 

€ 

ˆ R rs(λ) chl   normalized remote sensing reflectance for the constant chlorophyll scenario (case 
1, dimensionless) 

€ 

ˆ R rs(λ)S fm
  normalized remote sensing reflectance for the constant size scenario (case 1, 

dimensionless) 
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€ 

ˆ R rs(λ)dep−a   normalized remote sensing reflectance for the annual size-dependent scenario 
(case 1, dimensionless)  

€ 

ˆ R rs(λ)Ciotti−avg  normalized remote sensing reflectance for the Ciotti average size-independent 
absorption scenario (case 2, dimensionless) 

€ 

ˆ R rs(λ)dep−m  normalized size-independent remote sensing reflectance monthly size-dependent 
scenario (case 2, dimensionless) 

€ 

ˆ R rs(λ) indep−mean  normalized remote sensing reflectance for the model mean Sfm size-independent 
scenario (case 2, dimensionless) 

Kd  diffuse attenuation coefficient (m-1) 
z  depth (m) 
PAR photosynthetically active radiation (W m-2) 
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Table 2.  2004 annual summary of 

€ 

ˆ R rs(443)  and OC4 [Chl] global mean values for Ciotti-
average size-independent, model mean size-independent and size-dependent chlorophyll-
specific absorption scenarios from case study 2 and percent difference between the 
scenarios.  2004 global mean SeaWiFS 

€ 

ˆ R rs(443)  and OC4 [Chl] are presented for 
magnitude rather than validation comparison purposes. 
 
 
 

  

  

€ 

ˆ R rs(443)  OC4 [Chl] (mg m-3) 
Ciotti-average Size-independent 4.61 0.174 
Model Mean Size-independent 3.89 0.219 

Size-dependent 4.00 0.216 
Ciotti-average % difference 14.2% -21.5% 
Model Mean % difference  -2.79% 1.38% 



 39 

Table 3.  Correlation coefficient matrix of 

€ 

ˆ R rs(443)Ciotti−avg , 

€ 

ˆ R rs(443)dep−m , and percent difference 
between the scenarios with [Chlsize] and Sfm. 
 
 

  [Chlsize] Sfm 

€ 

ˆ R rs(443)Ciotti−avg  -0.89 0.50 

€ 

ˆ R rs(443)dep−m  -0.87 0.68 
% difference -0.43 0.91 

[Chlsize] - -0.35 
Sfm -0.35 - 
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Figure 1. Schematic overview of the Community Climate System Model-3 coupled 
Biogeochemical Elemental Cycling model output linked in an offline diagnostic manner with the 
forward optical model. 
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Figure 2. Schematic diagram and equations for the forward optical model.  Superscript numbers 
next to each parameter refers to the equation numbers as listed in the text; superscript letters 
indicate reference for constant values (a aw(λ) (Pope and Fry, 1997),b bw(λ) (Morel, 1974), c 
a*

pico(λ) (Ciotti and Bricaud, 2006), d a*
micro(λ) (Ciotti et al., 2002), e a*

tri(λ) (Subramaniam et al., 
1999b), f b*

btri(λ) (Subramaniam et al., 1999a), g a*
CDM(410) = 5.08 m2g-1 (Bissett et al., 1999a; 

Bissett et al., 2004), h colorCDM = 3.23% (Bissett et al., 1999a; Bissett et al., 2004), i S = 0.015 
nm-1 (Barnard et al., 1998), j Bsize (bb/b) = 1% (Morel and Maritorena, 2001), k Bsize (bb/b) = 0.4% 
(Subramaniam et al., 1999a). 
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Figure 3.  Absorption and backscattering spectra: A) spectral chlorophyll-specific phytoplankton 
absorption (a*

ph) for pico- (Ciotti and Bricaud, 2006), microplankton (Ciotti et al., 2002), average 
of the micro-, ultra-, nano- (Ciotti et al., 2002) and picoplankton (Ciotti and Bricaud, 2006) size 
spectra, and Trichodesmium spp. (Subramaniam et al., 1999b; Westberry et al., 2005), B) 
spectral absorption coefficient for dissolved material (aCDM) (Barnard et al., 1998; Bissett et al., 
1999a; Bissett et al., 2004) and sea water (aw) (Pope and Fry, 1997), C) spectral backscattering 
coefficient for particles which includes size dependent phytoplankton (bbp) (Morel and 
Maritorena, 2001), water (bbw) (Morel, 1974), and Trichodesmium spp. (bbtri) (Subramaniam et 
al., 1999a). aCDM, bbp and bbtri are concentration specific.  In the examples here, 10 mg m-3, 0.17 
mg m-3, and 1 mg m-3 were used for [CDM], [Chlsize] and [Chltri], respectively. 
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Figure 4.  2004 annual first optical depth mean CCSM-3 BEC model output for A) size 
dependent chlorophyll concentration ([Chlsize], mg m-3) and, B) percentage of microplankton 
(Sfm, %).  The color bar for panel A is non-linear to emphasize low values. 
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Figure 5.  Chlorophyll-specific absorption spectra due to phytoplankton normalized to 555 nm.  
Microplankton (Ciotti et al., 2002), picoplankton (Ciotti and Bricaud 2006), the average of pico- 
(Ciotti and Bricaud, 2006), ultra-, nano- and microplankton (Ciotti et al. 2002), and the resulting 
spectra from the Ciotti et al. (2002) absorption spectral mixing model for the global mean 
percent microplankton from the CCSM-3 BEC model output (35%).   
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Figure 6.  2004 mean normalized remote sensing reflectance at 443 nm for the size dependent (

€ 

ˆ R rs(λ)dep−a , full variability, red line), constant size (

€ 

ˆ R rs(λ)S fm
, black), and constant chlorophyll (

€ 

ˆ R rs(λ) chl , blue) scenarios.  The mean spectrum for each scenario is displayed as a line.  Shading 
is used to indicate variability about the mean (one standard deviation) for the constant size (gray 
shading) and constant chlorophyll (blue shading) scenarios; the red error bars denote one 
standard deviation for the size dependent scenario. R̂rs  was computed only at specific 
wavelengths corresponding to the SeaWiFS bands. 
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Figure 7.  Scatter plots of 2004 mean normalized remote sensing reflectance at 443 nm (

€ 

ˆ R rs(443) , dimensionless) comparing estimates of the size-dependent scenario (full variability in 
all parameters) with estimates when A) cell size and B) chlorophyll concentration are held 
constant.  A linear regression was preformed for each case.  The 1:1 line is plotted for 
comparison. 
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Figure 8.  2004 annual percent fractional error of normalized remote sensing reflectance at 443 
nm for the A) constant chlorophyll concentration (

€ 

ˆ R rs(443) chl ), and B) constant size scenarios (

€ 

ˆ R rs(443)S fm
).  Percent fractional error was calculated as 

€ 

( ˆ R rs(443) chl − ˆ R rs(443)dep−a )
ˆ R rs(443)dep−a

# 

$ 
% 
% 
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' 
( 
( 
×100  and 

€ 

( ˆ R rs(443)S fm
− ˆ R rs(443)dep−a )

ˆ R rs(443)dep−a
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$ 
% 
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' 
( 
( 
×100  respectively.  Note the larger scale in the color bar of panel 

A) compared to panel B). 
 



 48 

 
Figure 9.  2004 mean annual percent difference between normalized remote sensing reflectance 
at 443 nm size-independent (

€ 

ˆ R rs(443)Ciotti−avg ) and size-dependent absorption (

€ 

ˆ R rs(443)dep−m) 
simulations.   
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Figure 10.  2004 monthly 

€ 

ˆ R rs(λ)  percent difference between normalized remote sensing 
reflectance at 443 nm size-independent (

€ 

ˆ R rs(443)Ciotti−avg ) and size-dependent absorption (

€ 

ˆ R rs(443)dep−m) simulations after the spatially varying annual mean percent difference was 
subtracted from each monthly grid cell.  
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Figure 11.  2004 correlation coefficient (r2) for the second case scenarios.  Linear regression was 
performed at a given grid cell for the monthly CCSM-3 BEC output.  The r2 is mapped between 
A) 

€ 

ˆ R rs(443)dep−m  and [Chlsize], B) [Chlsize] and Sfm, and C) 

€ 

ˆ R rs(443)dep−m and Sfm, respectively. 
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Figure 12.  SeaWiFS standard band-ratio chlorophyll concentration (OC4 [Chl], mg m-3)) 
(O'Reilly et al., 1998) resulting from the spectral remote sensing reflectance values for the 
second case study of A) size-independent chlorophyll-specific absorption (

€ 

Rrs(λ)Ciotti−avg ), B) 
size-independent model mean chlorophyll-specific absorption (

€ 

Rrs(λ) indep−mean , Sfm = 35%), C) 
size-dependent chlorophyll-specific absorption (

€ 

Rrs(λ)dep−m ) scenarios, D) chlorophyll percent 
difference between 

€ 

Rrs(λ)Ciotti−avg  and 

€ 

Rrs(λ)dep−m , E) chlorophyll percent difference between 

€ 

Rrs(λ) indep−mean  and 

€ 

Rrs(λ)dep−m  and F) chlorophyll percent difference bias, calculated as the 
difference between the chlorophyll percent difference for 

€ 

Rrs(λ)Ciotti−avg  and 

€ 

Rrs(λ) indep−mean  (i.e. 
panels D-E). 
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Figure 13. 2004 monthly percent difference for the SeaWiFS standard band-ratio chlorophyll 
concentration (OC4 [Chl], mg m-3) calculated from the spectral remote sensing reflectance 
values for the size-independent absorption (

€ 

Rrs(λ)Ciotti−avg ) and size-dependent absorption (

€ 

Rrs(λ)dep−m ) scenarios.   
 


