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The Patagonian fjords have a clear potential to provide high-resolution sedimentary and 

geochemical records of past climate and environmental change in the Southern Andes. To 

improve our ability to interpret these proxy records, we investigated the processes that control 

fjord sediment inorganic geochemistry through a geochemical, mineralogical and 

sedimentological analysis of surface sediment samples from the fjords of Northern Chilean 

Patagonia. A simple terrestrial index based on measurements of salinity and fraction of 

terrestrial carbon was used to estimate the terrestrial input/river discharge at each site. Our 

results demonstrate that, under the cold climate conditions of Patagonia, chemical weathering 

is weak and the inorganic geochemical composition of the fjord sediments is primarily 

controlled by hydrodynamic mineralogical sorting, i.e., the intensity of river discharge. Our 

results suggest that the distribution of Fe, Ti and Zr in surface sediments is controlled by their 

association with heavy and/or coarse minerals, whereas Al is independent of hydrodynamic 

processes. The elemental ratios Fe/Al, Ti/Al and Zr/Al are therefore well suited for estimating 

changes in the energy of terrestrial sediment supply into the fjords through time. Zr/Al is 

particularly sensitive in proximal environments, while Fe/Al is most useful in the outer fjords 

and on the continental margin. In the most proximal environments, however, Fe/Al is 

inversely related to hydrodynamic conditions. Caution should therefore be exercised when 

interpreting Fe/Al ratios in terms of past river discharge. The application of these proxies to 

long sediment cores from Quitralco fjord and Golfo Elefantes validates our interpretations. 

Our results also emphasize the need to measure Al-based elemental ratios at high precision, 

which can be achieved using simultaneous acquisition ICP-AES technology. This study 

therefore constitutes a strong basis for the interpretation of sedimentary records from the 

Chilean Fjords.

 2



1. INTRODUCTION 40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

Understanding the causes of past climate variability requires an array of high-resolution 

paleoclimate records with geographical and chronological resolutions adequate to analyze 

past patterns of climate dynamics. In this respect, the mid- and high-latitudes of the Southern 

Hemisphere have been relatively understudied, although they play a critical role in our 

understanding of Earth’s climate variability. At these latitudes the climate is dominated by the 

latitudinal position and strength of the Southern Westerly Winds (SWW; Garreaud et al., 

2009). Since Southern South America (SSA) is the only continuous land mass in the Southern 

Hemisphere that intersects the entire westerly wind belt, it constitutes a key region for 

paleoclimate reconstructions (e.g., Toggweiler, 2009).  

Reconstructions of terrestrial climate in SSA are mostly limited to a few lake sedimentary 

records from Argentina (e.g., Gilli et al., 2005; Mayr et al., 2007), the Chilean Lake District 

(e.g., Bertrand et al., 2008; Moreno et al., 2010), and the southern tip of Chile (e.g., Moy et 

al., 2008; Waldmann et al., 2010; Moreno et al., 2010), to discontinuous records of glacial 

activity (e.g., Kaplan et al., 2008; Moreno et al., 2009) and to a limited number of Late 

Holocene tree-ring records from Northern Patagonia (e.g., Lara and Villalba, 1993; Villalba et 

al., 1997). In addition, current paleoceanographic records are limited to a very few sites from 

the southeastern Pacific, mainly from latitudes around or North of 40°S (e.g., Lamy et al., 

2004, Kaiser et al., 2005, 2008; Mohtadi et al., 2007; Muratli et al., 2010). Very few papers 

present paleoenvironmental reconstructions based on fjord and near-shore sediments from 

Chilean Patagonia (Sepúlveda et al., 2009; Lamy et al., 2010; Siani et al., 2010). Our current 

understanding of past changes in SSA climate remains therefore limited and additional high-

resolution and continuous records are critically needed, especially from the “Roaring Forties” 

latitudes (e.g., Villalba et al., 2009, Moreno et al., 2010). 
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Motivated by this lack of data, several research teams recently set out to study the 

sedimentary record of the Chilean Fjords and the adjacent continental margin, and a large 

number of sediment cores were successfully retrieved during oceanographic cruises, such as 

the Cimar-7-Fiordo (e.g., Sepúlveda et al., 2009), the NB Palmer 0505 (e.g., Boyd et al, 2008), 

the R/V Mirai BEAGLE-2003 and MR08-06, and the R/V Marion Dufresne PACHIDERME. 

Sediments from the Chilean fjords are particularly promising because they present high 

accumulation rates (Salamanca and Jara, 2003; Fernandez et al., in press) and can record 

changes in river discharge (e.g., Sepúlveda et al., 2009), which is linked to precipitation and 

glacier melting in the Andes (Dávila et al., 2002).  

With this in mind, the goal of the current study is to investigate the processes that control 

sediment geochemistry in the Chilean fjords, with a particular focus on the lithophile and 

mostly immobile elements Al, Fe, Ti, and Zr (Mc Lennan et al., 2003), since these elements 

are typically associated to the lithogenic fraction of the sediment and are frequently used as 

indicators of terrestrial supply in sediment core studies (e.g., Haug et al., 2001, Lamy et al., 

2004). After assessing the ability of ICP-AES technology to measure inorganic elemental 

ratios at high precision, we present geochemical, mineralogical and sedimentological data 

obtained on a series of surface sediment samples from the fjords of Northern Chilean 

Patagonia. These multi-proxy analyses, which include the parameters that are the most 

frequently measured on sediment cores, are then used to discuss (1) the natural parameters 

that control the bulk composition and the inorganic geochemistry of the sediment, and (2) the 

best proxies for reconstructing past changes in the energy of river sediment discharge. We 

deliberately selected samples from fjords in different geomorphological and glaciological 

settings since, to be useful for paleoclimate reconstructions, the proposed proxies have to be 

(1) applicable to sediment cores from any Northern Patagonian fjord, and (2) largely 

independent of accumulation rates, watershed size, and variations in the nature of the bedrock 
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and soil cover. Our research builds on bulk organic geochemical results previously obtained 

on surface sediments from the Patagonian fjords (Silva and Prego, 2002; Sepúlveda et al., 

2011; Silva et al., 2011), and on multi-proxy studies of surface sediment samples from the 

Chilean continental margin between 25 and 43°S (Lamy et al., 1998; Hebbeln et al., 2000; 

Klump et al., 2000; Romero et al., 2001).  

 

2. REGIONAL SETTING 

The geology of Northern Chilean Patagonia is dominated by the North Patagonian Batholith, 

which forms the core of the southern Andes and is roughly parallel to the coast (Fig. 1). It is 

composed of Cenozoic and Mesozoic granitoids, mainly in the form of hornblende-biotite 

granodiorites and tonalities (Pankhurst et al., 1999; Parada et al., 2007). The batholith is 

flanked by Mesozoic metamorphic rocks to the West, which form the western side of the 

Chonos Archipelago and Taitao Peninsula (Fig. 1), and by Mesozoic volcanic rocks to the 

East (Parada et al., 2007; Sernageomin, 2003). One of the most striking structural features in 

the region is the Liquiñe-Ofqui fault system, which is responsible for the first-order 

morphology of the fjords (Glasser and Ghiglione, 2009), and controls the location of the 

regional volcanoes (Stern et al., 2007). Five of the thirteen Quaternary volcanoes that 

compose the southern segment of the southern volcanic zone (SSVZ, 42-46°S) are located in 

our study region (volcanoes Melimoyu, Mentolat, Cay, Macá and Hudson; Fig. 1). Except for 

Cay volcano, all the SSVZ volcanoes have erupted during the Holocene, Hudson being by far 

the most active (Stern et al., 2007). These volcanoes are mainly composed of lavas and 

pyroclasts of basaltic to dacitic composition (Naranjo and Stern, 1998; D’Orazio et al., 2003). 

The regional soil cover is dominated by andosols, i.e., soils developed on volcanic deposits 

(Chile, 2003; Gut, 2008). The southern part of the study region is covered by the Northern 
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Patagonian Ice Field (NPI), a 4200 km² ice cover that is composed of 70 glaciers larger than 

0.5 km² (Fig. 1; Rivera et al., 2007).  

The morphology of the fjords is complex, with narrow channels and numerous islands 

separating the mainland from the adjacent Pacific Ocean (Fig. 1). Bathymetric surveys have 

demonstrated the presence of deep valleys reaching ~600 m at the mouth of the main fjords, 

and numerous shallow sills of morainic origin (Araya-Vergara, 1997; Rodrigo, 2008). The 

presence of these sills limits the exchange of bottom waters with the Pacific Ocean, favors 

high sedimentation rates, and promotes the preservation of organic matter, although anoxic 

basins have never been observed (Sepúlveda et al., 2005; Silva and Guzman, 2006; Sievers 

and Silva, 2008). Water circulation in the fjords is generally described as a two-layer system, 

with a surface estuarine water mass (Chilean Fjord Water, CFW) flowing out of the fjords 

between 0 and ~30 m depth, and a deeper and more saline subantarctic water mass flowing in 

opposite direction between ~30 m and ~150 m depth (Silva and Guzman, 2006; Sievers and 

Silva, 2008). Where shallow sills do not restrict water circulation, a third deeper and warmer 

layer composed of modified equatorial subsurface water also occurs (Silva and Guzman, 

2006; Sievers and Silva, 2008). The extension and depth of the CFW depends on the amount 

of freshwater supplied by rivers, glaciers, coastal runoff and direct precipitation, and its 

salinity reflects the distance from the fresh water sources (Dávila et al. 2002; Sievers and 

Silva, 2008). The CFW also contributes to the freshening of the northward-flowing Chilean 

Coastal Current (Strub et al., 1998). 

The climate of Northern Chilean Patagonia is strongly oceanic, with high precipitation 

originating from the combination of the strong SWW with the rough topography of the 

Andes. Precipitation shows a low seasonality and a strong West-to-East gradient, ranging 

from ~3000 mm/yr on the western side of the Andes to less than 600 mm/yr at the border with 

Argentina (Miller, 1976; Aravena and Luckman, 2009). The high precipitation in the area is 
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responsible for a high input of freshwater and terrigenous material to the fjords by river 

discharge and terrestrial runoff. The fragmentary hydrographic data (Dirección General de 

Aguas, Chile) show annual average river discharge of 515 and 256 m3.s-1 for Rio Aysén and 

Rio Cisnes, respectively (Calvete and Sobarzo, 2011). Most of the fjords also receive 

freshwater and terrestrial material from secondary, smaller tributaries located along their 

profiles. The average air temperature is 8-9°C, with the highest values occurring in January 

(13°C) and the lowest in July (4-6°C). 

 

3. MATERIAL AND METHODS 

3.1 Sampling and sample preparation 

Surface sediment samples were obtained with a box-corer during the CIMAR (Cruceros de 

Investigación Marina) 7 Fiordos expedition (CF7) in November 2001, aboard the R/V AGOR 

Vidal Gormaz. Samples were collected at 14 stations between 43.7°S and 46.5°S (Fig. 1, 

Table 1) at depths varying between 52 and 582 m. The sampling stations are roughly located 

along a terrestrial-marine gradient, from the head of the inner fjords to the break of the 

continental shelf (Fig. 1). The box-cores were sub-sampled on board, using 7-cm diameter 

PVC tubes, and the samples used in this study consist of a slice of the 0-1 cm depth interval. 

Samples were stored in plastic bags and frozen at -20 ºC until laboratory analyses. Before 

analysis, all samples were freeze-dried and gently ground and homogenized in an agate 

mortar. According to 210Pb profiles, all surface sediment samples represent modern sediments 

(Rojas, 2002; Salamanca and Jara, 2003; Rebolledo et al., 2005; Sepúlveda et al. 2005; 

Rebolledo, 2007). 

To represent the terrestrial end-member of the sediment, this study uses five river sediment 

samples that were collected ~100 m upstream of river mouths during the CF7 cruise, and 7 

samples from 4 soil profiles that were collected in the fjord watersheds in 2007 and 2008 (Fig. 
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1; Table 1). In the laboratory, the river sediment samples were freeze-dried, and the soil 

samples were oven-dried at 50°C. These samples were subsequently dry-sieved at 125 μm to 

discard the coarse particles that are not representative of the sediment fraction that reaches the 

fjords. They were homogenized in an agate mortar before analysis. Data from the literature 

(Lamy et al., 1998; Hebbeln et al., 2000; Klump et al., 2000) were used to represent the distal 

(open ocean) end-member of the sediment.  

Finally, samples from sediment cores JPC14 (n=44) and PC29A (n=51), which were collected 

in Quitralco fjord and Golfo Elefantes, respectively (Fig. 1), were analyzed to test the 

applicability of our results on long cores. These samples were also freeze-dried and gently 

ground and homogenized in an agate mortar before geochemical analysis. Sediment core 

JPC14 (46.449ºS–73.798ºW) is a 15m long jumbo piston core that was collected at 129 m 

depth in the central basin of Golfo Elefantes. The core was taken during cruise NBP05-05 in 

2005, on board the RVIB N.B. Palmer. It is composed of a 3m thick sand unit, surrounded by 

fine-grained sediment. It covers the last 5400 years and essentially contains sediment 

delivered by a proglacial river system (Bertrand et al., 2011a). Core PC29A is a 208 cm long 

piston sediment core collected at station 29A (45.756ºS–73.467ºW; 112m depth) during 

cruise CF7 (see above). It is entirely composed of find-grained (silt) sediment and it 

represents the last 1400 years (Bertrand et al., 2011b). It was collected in front of Rio Pelu, a 

small river that drains a 128 km2 unglaciated watershed (Ghazoui et al., 2011). 

  

3.2 Inorganic geochemistry 

Samples were prepared using the Li Metaborate fusion technique following Murray et al. 

(2000), which is preferred over HF digestion because it is the only technique that allows the 

complete dissolution of sediment samples containing refractory minerals such as zircon 

(Sholkovitz, 1990; Murray et al., 2000; Huang et al., 2007). Sample preparation consisted in 
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mixing 200±1.0 mg of ultrapure Li-metaborate (SCP Science) in 3ml Pt:Au (95:5) crucibles, 

with 50±0.5 mg of sediment. Ten μl of 25% LiBr were then added to the mixture and the 

crucibles were placed in a muffle furnace for 12 minutes at 1050°C. The newly formed glass 

bead was then allowed to cool down for 2-3 min, detached from the crucible, and poured into 

a Teflon beaker containing a swirling 25 ml solution of 5% HNO3. Complete dissolution 

occurred within ~30 min. The solution was then filtered through a 0.45 μm PVDF Millipore 

filter and diluted in 5% HNO3 to obtain a 4000 x final dilution. The exact dilution factor was 

calculated from the precise weight of sediment used for fusion. 

Thirteen elements (Electronic Annex EA-1) were measured on a JY Ultima C ICP-AES 

equipped with a mono- and a poly-chromator that were used in parallel. The analytical 

conditions (Nebulizer type and flow, pump speed, argon pressure, and gas humidifier) of 

Murray et al. (2000) were strictly applied. The thirteen elements were analyzed on both the 

mono- and poly-chromator, except for P, for which no wavelength was available on the 

polychromator. Measurements were made in triplicates and the measured concentrations were 

corrected for instrumental drift using the measured concentrations of a matrix-matched 

standard solution ran after every sample. Accuracy and analytical precision (EA-1) were 

calculated from the analysis of ten individually-prepared sub-samples of reference sediment 

PACS-2. PACS-2 was selected because its geochemical composition matches the average 

composition of the fjord sediment samples. The results are presented in Table 2, EA-2 and 

EA-3.  

 

3.3 Bulk organic geochemistry 

Approximately 50 mg of ground sediment was weighed in tin capsules and treated with 1N 

sulphurous acid to remove eventual carbonates (Verardo et al., 1990). Total Organic 

Carbon (TOC), Total Nitrogen (TN) and stable isotope ratios of carbon (δ13C) and nitrogen 
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(δ15N), were measured at the UCDavis Stable Isotope Facility by continuous flow isotope 

ratio mass spectrometry (CF-IRMS; 20-20 SERCON mass spectrometer) after sample 

combustion to CO2 and N2 at 1000°C in an on-line elemental analyzer (PDZEuropa 

ANCA-GSL). The working standards, which are periodically calibrated against 

international isotope standards (IAEA N1, N3; IAEA CH7, NBS22), were a mixture of 

ammonium sulfate and sucrose with δ15N vs Air = 1.33 ‰ and δ13C vs PDB = -24.44 ‰. 

The precision, calculated by replicate analysis of the internal standard, is 0.03 ‰ for δ13C 

and 0.08 ‰ for δ15N. Some of the bulk organic geochemical results used in this study were 

previously reported in Sepúlveda et al. (2011). 
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3.4 Biogenic opal 

Biogenic silica (bio-Si) was analyzed according to Carter and Colman (1994) and Mortlock 

and Froelich (1989). Samples were extracted with NaOH after removal of organic matter and 

carbonate with 10% H2O2 and 1N HCl, respectively. They were subsequently diluted in 5% 

nitric acid and analyzed in triplicate for Si, Na and Fe, on a JY Ultima-C ICP-AES. Al was 

measured in triplicate by flame atomic absorption spectrometry (FAAS) on a Varian 

SpectrAA 220. Measured Si concentrations were corrected for detrital Si using the measured 

Al concentrations: bio-Si = measured Si – 2 x Al. The 2:1 ratio accounts for Si leached from 

volcanic glasses and clay minerals, and this value is similar to the Si:Al ratio measured on soil 

samples prepared with the same technique. This correction assumes that all Al originates from 

the dissolution of detrital particles. The analytical precision, determined from 5 entirely 

separate analyses of a sediment sample from site BC29A, was 1.15 % for Si and 3.23 % for 

Al. The precision for bio-Si, i.e. after correction for detrital Si, reached 0.46 wt. %, which 

indicates that the correction procedure also corrects for uncertainties associated with sample 

preparation. Biogenic opal (bio-opal, SiO2 · nH2O, wt. %) was obtained by multiplying the 
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bio-Si values by 2.4 (Mortlock and Froelich, 1989). Lithogenic silica (litho-Si, wt. %) was 

calculated by difference (Total Si [see 3.2] – bio-Si). 

 

3.5 Carbonate content 

The weight percentage of total inorganic carbon (TIC) in bulk sediment samples was 

determined using an UIC CM5014 coulometer equipped with a CM5130 acidification 

module. For each sample, 50-60 mg of sediment was precisely weighed in a 4ml glass vial 

and treated with 1.5 ml 1N H3PO4 to liberate CO2. The percentage of carbonate was 

calculated from the TIC data using the following equation: CaCO3 (wt%) = TIC (wt%) x 8.33, 

assuming that 100% of the measured CO2 is derived from dissolution of calcium carbonate. 

The analytical precision, determined from 7 entirely separate analyses of a sediment sample 

from site BC29A, was 0.04% CaCO3.  

 

3.6 Grain size 

Grain size was measured on the terrigenous fraction of the sediment using a Coulter LS200 

laser grain size analyzer. The terrigenous fraction was isolated by treating the samples with 

boiling H2O2, HCl and NaOH, to remove organic matter, carbonates and biogenic silica, 

respectively. Prior to analysis, samples were boiled with 300 mg of sodium pyrophosphate 

(Na4P2O7 · 10H2O) to ensure complete disaggregation of the particles. The grain size 

distribution of the samples was measured during 90 seconds and the arithmetic mean was 

calculated from the 92 size classes.  

 

3.7 Bulk and clay mineralogy 

Bulk and clay mineralogy was analyzed by X-ray diffraction (XRD) on a Bruker D8-Advance 

diffractometer with CuKα radiation. A first aliquot was separated and mounted as unoriented 
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powder by the back-side method (Brindley and Brown, 1980), and subsequently scanned by 

XRD between 2° and 45° 2θ. Peak intensities were used to quantify (± 5 wt. %) the mineral 

proportions, following Cook et al. (1975). Clay minerals were not identified or quantified on 

the bulk diffractograms. Although halite was detected in all the surface sediment samples, it 

was not quantified because it derives from interstitial water salts that precipitated during 

freeze-drying. Clay mineralogy was analyzed on the decarbonated sediment fraction < 2 µm. 

Sample preparation consisted in wet-sieving at 63 µm, decarbonatation with 0.01 N HCl, and 

removal of organic matter with H2O2. Samples were then rinsed twice with DI water and the < 

2 um fraction was separated from the aqueous suspension using the pipette method (1 cm 

after 50 min, according to Stokes settling law with d=2.65). Oriented mounts were prepared 

by the “glass-slide method” (Moore and Reynolds, 1989) and subsequently scanned on the 

diffractometer between 2° and 30° 2θ after air drying at room temperature, between 2° and 

30° 2 θ after solvation with ethylene-glycol for 24h, and between 2° and 15° 2 θ after oven-

heating at 500°C during 4h. In addition, slides solvated with Ethylene-glycol were scanned at 

slow speed between 23 and 27° 2θ. Diffractograms were interpreted according to Petshick et 

al. (1996) and the mineral proportions were quantified (wt. %) in MacDiff v 4.2.5, following 

the peak area method of Biscaye (1965). Five clay minerals were identified: smectite, illite, 

chlorite, kaolinite and vermiculite.  

 

3.8 Magnetic susceptibility 

Magnetic susceptibility (MS) is one of the most frequently measured parameters in sediment 

cores, owing to the speed and cost effectiveness of the method. Bulk MS is usually used as an 

indicator of the concentration of allochtonous mineral matter in sediments (e.g.., Sandgren 

and Snowball, 2001). It is a measure of the net contribution of ferromagnetic (magnetite, 

hematite, etc) and paramagnetic (olivine, pyroxene, amphibole, etc) minerals, with the 
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contribution of the latter being more important when ferromagnetic minerals occur in very 

low concentrations (Houdra and Kahan, 1991; Sandgren and Snowball, 2001). Volume 

magnetic susceptibility was measured with a Bartington MS2G single-frequency (1.3 kHz) 

sensor, connected to a Bartington MS3 meter. Sediment samples were gently packed into 1 ml 

plastic vials and were analyzed in duplicate.  

 

3.9 Statistical analyses 

Statistical analyses, including Pearson correlation coefficients, p-values (two-tailed test of 

significance), Shapiro-Wilk normality tests, Principal Component Analysis (PCA) and 

Redundancy Analysis (RDA) were conducted with XLSTAT v. 2010.3 (EA-4 and EA-5). The 

soil and river sediment samples were not included in statistical analyses to prevent any bias 

by entirely terrestrial samples. Except where indicated, correlations with p<0.05 were 

considered significant. The PCA dataset consisted of the 52 variables that are presented in 

EA-2. Statistical analyses were also conducted on a restricted dataset including samples from 

Puyhuapi and Jacaf fjords only (i.e., sites 33, 35, 36, 39, 40 and 42; see Fig. 1) to assess the 

influence of regional variability in lithology on the geochemical results (EA-5). The results of 

the RDA were essentially similar to those of the PCA.  

 

4. RESULTS AND INTERPRETATION  

4.1 Analytical precision and elemental ratios 

The analytical precision obtained on the elemental concentrations with the polychromator is 

always better than or similar to the precision obtained with the monochromator (EA-1). The 

limits of detection (LODs), on the other hand, are generally, but not systematically, better for 

the monochromator lines (EA-1). For fjord sediment samples, and for sediment and 

sedimentary rocks in general, the concentrations of the 13 elements of interest are far above 
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(>25x) the LODs of the poly- and mono-chromator lines (EA-1). The only two exceptions are 

K (very high LOD on the polychromator due to the broad peak associated to the high 

wavelength of the K line) and Zr (concentration in most sediment samples is only 10-20 x 

LOD). Data obtained with the polychromator lines were therefore selected for Al, Ba, Ca, Fe, 

Mg, Mn, Na, Si, Sr, and Ti. The monochromator lines were used for P (not available on the 

polychromator), K (very high LOD on the polychromator) and Zr (the monochromator peak 

was more stable through time). The final analytical precision on the elemental concentrations 

is therefore lower than 2% (1 sigma) for all elements, except for P (3.60%) and Zr (4.18%). 

Accuracy for the selected lines was better than 1% for Al, better than 4% for Fe and Ti and 

could not be calculated for Zr since no reference value exists for PACS-2 (EA-1). 

In sedimentary geochemistry, elemental ratios are frequently used to overcome dilution by 

organic and/or biogenic phases (e.g., Van der Weijden., 2002). The theoretical precision on 

elemental ratios is calculated using Eq. (1). 

22
/ )()( baba RSDRSDRSD +=  326 

327 

328 

329 
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331 

332 

333 

334 

335 
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337 

where RSD is the relative standard deviation (analytical precision at 1 sigma divided by 

mean), and a and b are two elements. The precision measured on the elemental ratios obtained 

with the monochromator is very similar to the theoretical precision. For Ti/Al, for example, 

the measured precision is 2.25%, whereas the theoretical precision is 2.16%. For the 

polychromator, however, the measured precision (e.g., 0.68% for Ti/Al) is always much better 

than the theoretical precision (e.g., 1.22% for Ti/Al), and is also superior to the precision 

obtained with the monochromator (EA-1). It is also remarkable that, with the polychromator 

data, the precision of the elemental ratios (Elt/Al) is systematically better than the precision of 

the corresponding elemental concentrations (EA-1). This increase in precision for elemental 

ratios is due to the simultaneous acquisition of the elements, which results in the elimination 

of the signal variability associated with sample preparation and introduction in the plasma, 
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since all spectral lines are affected in similar ways (Schrag, 1999). In consequence, the 

flickers in signal intensity simply cancel out as elements are detected simultaneously. This 

demonstrates that ICP-AES is an ideal technique to measure elemental ratios rapidly and at 

high precision (from 0.1%), provided the instrument is equipped with a 

polychromator/simultaneous acquisition system. 

 

4.2 Calculation of a terrestrial index  

One of the main objectives of this study is to define one or several geochemical proxies for 

terrestrial input/river discharge in the Chilean Fjords. In the modern environment, terrestrial 

input/river discharge clearly affects (1) surface salinities (Dávila et al. 2002) and (2) the 

proportion of terrestrial organic carbon in surface sediments (Sepúlveda et al., 2011, Silva et 

al., 2011). These two variables were therefore used to define a Terrestrial Index (TI), which 

serves as a reference to evaluate relations between inorganic geochemical results and the 

energy of the terrestrial river supply. TI is calculated as the score of the first axis of a PCA 

(Fig. 2) that comprises (1) spring salinity data averaged over the upper 10 m (2, 5 and 10 m 

depth data, collected during leg 2 of CF7 cruise in November 2001), and (2) the fraction of 

terrestrial organic carbon (Fterr), which is calculated from the N/C ratio of the bulk 

sedimentary organic matter (Perdue and Koprivnjak, 2007; data in Fig. 3 and Table 2). The 

inclusion of the Fterr data ensures that TI is representative of year-round sedimentation, and it 

limits the influence of particular salinity values that may be affected by short-term or seasonal 

changes in precipitation and river discharge (only spring salinity data were available). To 

calculate Fterr, we defined the aquatic end-member as the N/C value of site GeoB3323-4, 

which was sampled on the continental margin off the coast of Northern Chilean Patagonia 

(Fig. 1) by Hebbeln et al. (2000) (N/C = 0.130, δ13C = -19.86) and the terrestrial end-member 

as the average of five sediment samples (fraction <125 μm) collected in rivers that discharge 
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into the fjords (N/C = 0.0624, δ13C = -27.72). The N/C value obtained on the river samples is 

very similar to the average of the seven soil samples (N/C = 0.0680) but it is preferred 

because it is known that N/C ratios are affected by transport in rivers and by weathering in 

soil profiles (Bertrand et al., 2010). Although bulk sedimentary δ13C data can also be used to 

calculate Fterr (e.g., Sepúlveda et al., 2011), we prefer using the N/C data because δ13C values 

of marine organic matter are affected by several processes such as changes in productivity 

(e.g., Bickert, 2006). The values of Fterr obtained using the two methods are highly positively 

correlated (r=0.94, p<0.0001). Fterr and salinity (2-10m) are highly correlated (r=-0.92, 

p<0.0001, Fig. 3a) and both parameters are independent of sedimentation rates. The resulting 

TI values, which are linear combinations of Fterr and salinity, range between -2.44 (BC1) and 

1.74 (BC27), with positive values indicating a higher terrestrial input (Fig. 2; Table 2). These 

values were also used to classify the sedimentary environments in inner- (TI>0), mid- 

(0<TI<-1) and outer- (TI<-1) fjords (Fig. 2). The main advantage of this index is that it is 

sensitive to all types of terrestrial inputs, from direct runoff to small streams and large rivers. 

This is particularly well illustrated by stations 29 and 29A, which are located only 4.3 km 

from each other but that have clearly distinct TI values (-1.13, and -0.27, respectively) 

because station 29A is located immediately in front of a small river (Rio Pelu) that discharges 

into Quitralco fjord. 
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4.3 Sediment composition  

4.3.1 Bulk sediment composition  

Surface sediments from the fjords of Northern Chilean Patagonia are composed of lithogenic 

particles (86.1 ± 6.1 %; calculated as 100 % - bio-opal – 2.2 x TOC – CaCO3, e.g., Nederbragt 

et al., 2008), biogenic opal (9.0 ± 4.8 %), organic matter (4.2 ± 2.2 %; calculated as 2.2 x 

TOC), and carbonate (0.7 ± 0.9 %) (average ± 1 s.d.; see Table 2 and EA-2 for data). 
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Distribution plots (Fig. 3b) clearly show that biogenic opal is concentrated in the mid- and 

outer fjords, while carbonate only occurs in the open ocean and outer fjord sites, where it 

represents carbonate aquatic productivity. TOC concentrations are very variable and reflect 

the combined contribution of the terrestrial and aquatic sources of organic matter. In 

consequence, the lithogenic fraction of the sediment is significantly higher in the inner fjords 

than further towards the open ocean (Fig. 3b). The absence of carbonate in the river and soil 

sediment samples provides evidence that all CaCO3 originates from aquatic productivity, in 

agreement with the geological map (Sernageomin, 2003; Fig. 1). Similarly, the low biogenic 

opal content of the river and soil sediment samples (1.47 and 2.27 %, respectively, Fig. 3b 

and EA-2) compared to the fjord sediment samples (9.0 ± 4.8 %) demonstrates that biogenic 

opal mainly reflects the fjords productivity in siliceous organisms, predominantly diatoms 

(Rebolledo et al., 2005). The low amounts of biogenic opal measured in the river and soil 

sediment samples most likely represent a mixture of siliceous organisms thriving in rivers and 

fresh volcanic glasses that were not entirely accounted for by the detrital Si correction. 

4.3.2 Mineralogy  

4.3.2.1. Bulk mineralogy. The bulk mineralogical composition of the surface sediment 

samples (average ± 1 s.d.; data in EA-2; Fig. 4a) is dominated by plagioclase (42 ± 10 %), 

alkali feldspars (20 ± 7 %), and quartz (15 ± 7 %). Accessory minerals detected by XRD 

include amphibole (9 ± 8 %), pyroxene (10 ± 6 %), and calcite (4 ± 4 %). Plagioclase was 

also the dominant mineral in the soil (39 ± 9 %) and river (45 ± 7 %) samples, but alkali 

feldspar was only detected in 3 soil samples (Burgos 1, Burgos 2, and Trapial 1). Quartz was 

relatively abundant in the soil (32 ± 25 %) and river (22 ± 15 %) sediment samples, while 

amphibole was abundant in the river sediment samples (30 ± 12 %) but was below detection 

limits in the soil samples (Fig. 4a). Calcite was always absent from the river and soil sediment 

 17



412 

413 

414 

415 

416 

417 

418 

419 

420 

421 

422 

423 

424 

425 

426 

427 

428 

429 

430 

431 

432 

433 

434 

435 

436 

samples and traces of pyroxene were detected in all the soils samples and in some of the river 

sediment samples (EA-2). 

The presence in high proportions of plagioclase, alkali feldspar and pyroxene in the soil 

samples (EA-2) reflects their volcanic origin (Bertrand and Fagel, 2008), in agreement with 

the soil map of Gut (2008). In addition, the presence of quartz and the absence of amphibole 

in these samples most likely reflects the alteration of the underlying bedrock which results in 

the dissolution of amphibole and in the incorporation of quartz grains in the volcanic ash 

soils. The high amount of feldspars (plagioclase and alkali feldspar) in the two Burgos soil 

samples (82 ± 5 %) confirms the dominating volcanic nature of soil parent material in this 

area, which is frequently affected by explosive eruptions of Hudson, Cay and Maca volcanoes 

(Chile, 2003; Fig. 1). This interpretation is confirmed by the absence of quartz, and the 

presence of a broad XRD amorphous diffraction band, which is typical for soils developed on 

pure volcanic deposits (Bertrand and Fagel, 2008).  

For the river and fjord sediment samples, the average proportions of plagioclase, alkali 

feldspar, pyroxene and quartz are representative of a mixture of the volcanic (andosol) and 

granodioritic sources. The presence of significant amounts of amphibole in these samples 

reflects the importance of the granodioritic source since amphibole is generally absent from 

regional volcanic ash deposits (Bertrand and Fagel, 2008) but commonly occurs as 

Hornblende in the rocks of the North Patagonian Batholith (Nelson et al., 1988; Pankhurst et 

al., 1999). It was however not possible to quantify the contribution of these two main sources 

based on our mineralogical results since no quantitative mineralogical data exists for the 

North Patagonian Batholith. 

The only minerals that show significant (p < 0.05) linear correlations with TI are alkali 

feldspar (r = −0.57), which increases towards the open ocean, and calcite (r = −0.65), which 

only occurs in the open ocean and outer fjord samples, in agreement with the carbonate 
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content data. Amphibole and quartz also decrease towards the open ocean (Fig. 4a), but these 

relations are not significant at p<0.05. An explanation for the concentration of quartz and 

amphibole in the inner fjords samples is their refractory and density properties (Galy and 

France-Lanord, 2001, Nebsitt and Young, 1996), i.e., quartz is a relatively refractory mineral 

that is frequently concentrated in the coarse fraction of the sediment and amphibole is 

relatively dense and can therefore not be transported on long distances. Therefore, only some 

small grains of these two minerals can be transported to the Pacific Ocean by the CFW.  

 

4.3.2.2. Clay mineralogy. The clay mineralogy of the fjord samples is dominated by illite (48 

± 14 %) and chlorite (27 ± 9 %), with minor amounts of smectite (12 ± 14 %) and kaolinite 

(13 ± 7 %) (average ± 1 s.d.; data in EA-2). These proportions seem to be typical for clay 

minerals at the mid- to high latitudes of the eastern south Pacific (Fütterer, 2006). The 

dominance of illite and chlorite is explained by physical erosion of the biotite-rich North 

Patagonian batholith. The high variability in the smectite content of the fjord sediments (0 to 

36 %) most likely originates from regional variations in volcanism, since smectite typically 

originates from the low temperature alteration of volcanic products (Fütterer, 2006). Illite 

decreases (r = 0.55, p=0.04) and smectite increases (r = −0.62, p=0.02) towards the Pacific 

Ocean. Kaolinite and chlorite do not show any significant trend.  

 

4.3.3 Grain size  

The grain size of the lithogenic fraction shows a general decreasing trend towards the open 

ocean (Fig. 4b; data in Table 2 and EA-2). The only two exceptions are the fine-grained 

sediments at site 27, which is located in front of a pro-glacial river and therefore mainly 

receives fine glacial clays and silts, and the sand-dominated sample from site 1, which is 

located at a depth of 240 m in front of Guafo Island, where strong currents are frequent 
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(Sievers and Silva, 2008), and were steep slopes may result in the development of mass-

wasting deposits. The relation between grain size and TI is very well expressed in the 

restricted dataset (r=0.76, p=0.08). 

 

4.3.4 Inorganic geochemistry  

4.3.4.1 Elemental concentrations and selection of an element representative of the lithogenic 

fraction. Among the thirteen measured geochemical elements, only Al is positively correlated 

with the lithogenic fraction of the sediment at p<0.05 (r=0.90, p<0.001; EA-4). This 

observation implies that the Al content of the lithogenic fraction of the sediment is almost 

constant for the entire fjord region (Fig. 4a). It does not vary with TI (r=0.03; Fig. 4) or with 

grain size (r=0.04). In addition, the Al concentration of the river sediment samples (8.09 ± 

0.48 %) varies little and is similar to the Al concentration of the North Patagonian Batholith 

(8.16 ± 1.16 %, data from Pankhurst et al., 1999) and of the Quaternary volcanic rocks (8.87 ± 

0.63 %, data from Naranjo and Stern, 1998 and D’Orazio et al 2003). The only source that has 

higher Al concentrations is the regional volcanic soils (9.25 ± 0.98 %), where Al is 

concentrated during pedogenesis (preferential dissolution of K, Na, Mg and Ca-rich minerals; 

Nesbitt and Young, 1989). The similar Al concentrations of the fjord, river and regional rock 

samples is due to the lithogenic and immobile nature of Al, and its presence in similar 

concentrations in most igneous and metamorphic rock-forming minerals (Calvert et al., 2001; 

McLennan et al., 2003). The difference with the soil samples most likely indicates that the 

contribution of soil material to sedimentation in the fjords is relatively minor. Al is therefore 

relatively insensitive to changes in the nature of sediment sources, catchment size, and 

hydrodynamic sorting. As a result, Al is the ideal element to represent the lithogenic fraction 

of the sediment, and to use as a normalizer for other lithophile elements. Although Fe, Ti and 

Zr are also generally considered as lithophile and immobile elements (McLennan et al., 2003), 

 20



487 

488 

489 

490 

491 

492 

493 

494 

495 

496 

497 

498 

499 

500 

501 

502 

503 

504 

505 

506 

507 

508 

509 

510 

they only show weak and statistically insignificant positive linear correlations with the 

lithogenic content of the sediment (r=0.22 to 0.39). 

 

4.3.4.2 Geochemical ratios, Terrestrial Index and grain size. In the following we analyze 

changes in the composition of the lithogenic fraction of the sediment by examining the 

behavior of Al-based elemental ratios (Elt/Al) and Ti/Fe, Zr/Fe, Zr/Ti. We specifically 

evaluate the relations between these elemental ratios and TI and grain size (Fig. 5).  

None of the elemental ratios are linearly correlated with TI at p<0.05 (EA-4). The only two 

weakly significant correlations are with Ca/Al (r=−0.51, p=0.06) and Si/Al (r=−0.51, p=0.06). 

However, these two negative correlations do not reflect a change in the lithogenic fraction, 

but they are due to the global increase in carbonate (Ca/Al) and biogenic silica (Si/Al) 

productivity towards the outer fjords. Although the composition of the lithogenic fraction is 

not linearly correlated with TI, elemental ratios Fe/Al, Ti/Al and Zr/Al seem to increase and 

subsequently decrease towards the marine environment (Fig. 5), with the slope of the 

decreasing side of the paraboloid being steeper for Zr/Al than for Ti/Al, which is itself steeper 

than for Fe/Al.  

Grain size, on the other hand, is strongly positively correlated with litho-Si/Al (r=0.74, 

p=0.003; EA-4), which supports the interpretation that quartz is concentrated in the coarse 

fraction of the sediment (see 4.3.2.1). Grain size is also negatively correlated with Fe/Al 

(r=−0.71, p=0.005), which implies that Fe-rich minerals are concentrated in the fine fraction 

of the sediment. The other elemental ratios do not show significant linear correlations with 

grain size.  

 

4.3.5. Magnetic susceptibility 
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In the surface sediment samples, magnetic susceptibility (MS) displays strong variations that 

are remarkably parallel to the grain size of the lithogenic fraction of the sediment (r=0.93, 

p<0.0001; Figs 4b and 6; data in EA-4). A few geochemical elements are significantly 

correlated with MS, but the most significant correlation is with litho-Si/Al (r=0.67, p=0.009), 

which confirms that the MS of Chilean fjord sediments is mainly driven by grain size. This 

high correlation is confirmed by the restricted dataset (r=0.86, p=0.03 for MS vs litho-Si; EA-

5). This restricted data set also displays a highly significant correlation between MS and the 

lithogenic fraction of the sediment (r=0.89, p=0.02), between MS and grain size (r=0.91, 

p=0.01). As a consequence, MS is positively correlated to the combination of grain size and 

the lithogenic fraction of the sediment (r=0.97, p=0.01; Fig 6b). In the restricted dataset, MS 

is also highly correlated with TI (r=0.86, p=0.03). 

We assume that the relation between MS and the combination of grain size and the lithogenic 

fraction of the sediment is due to (1) signal dilution by non-lithogenic particles, and (2) 

enrichment of heavy ferromagnetic minerals in the coarse fraction of the sediment during 

sedimentary sorting (McLennan et al. 2003). An alternative hypothesis for the significant 

correlation between MS and grain size is the presence of micro-inclusions of magnetite 

(Scofield and Roggenthen, 1986) in refractory, and therefore coarse, minerals usually 

considered as paramagnetic. Although Andrews (2008) observed a correlation between some 

paramagnetic minerals and MS in the Denmark Straight, more specific analyses need to be 

performed to refine this relation. 

 

4.3.6 Principal component analysis 

The results of the PCA on the full dataset show a complex structure, with the first two PCA 

axes accounting for a mere 51.07 % of the total variance (Fig. 7a). The first axis primarily 

reflects variance in (1) Si and Litho-Si, (2) Al and the lithogenic fraction, and, to a lesser 
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extent, (3) Zr, Ti/Fe, Zr/Fe, and Zr/Ti. The loadings of TI and grain size on PCA axis 1 are 

low, but these two variables load nearly equally on both F1 and F2. Calcite, δ 15N, δ13C, 

Ca/Al, and the carbonate content of the sediment load negatively on both F1 and F2, in 

opposite direction of TI. These variables are associated with salinity and depth, which are 

indicative of an increased marine influence. Fig 7a also depicts the combined influence of TI 

and grain size on a series of variables, such as Ti/Fe, Zr/Fe, Zr/Ti, and pyroxene. The PCA 

biplot also displays the relatively tight grouping of Litho-Si, Litho-Si/Al, quartz and grain 

size, which confirms that grain size exerts a strong control on these three geochemical 

variables. Similarly, a tight grouping is observed for Ti, Zr/Al, and TI. Except for P and P/Al, 

which are indicators for the presence of the relatively dense mineral apatite, no variable has a 

strong F2 loading.  

On the restricted dataset, the first two PCA axes account for a cumulative 73.22 % of the 

variance, with PCA axis 1 explaining nearly half (47.77%) of the total variance. The PCA 

biplot of the restricted dataset (Fig. 7b) shows a similar pattern to the PCA biplot of the full 

dataset, but with much higher F1 loadings for TI and grain size (0.78 and 0.79, respectively). 

This results in a tighter grouping of the variables controlled by these two parameters, such as 

Ti/Fe, but also Litho-Si, Zr, Si, Litho-Si/Al and Zr/Al, with respective F1 loadings of 0.99, 

0.98, 0.96, 0.95, and 0.91. The PCA biplot of the restricted dataset (Fig. 7b) also shows that 

PCA axis 2 captures most of the variance in Ti, Fe, Ti/Al, Mg, and amphibole, which are 

typical indicators for mafic minerals, and P and P/Al, which represent apatite. These results 

demonstrate that the grain size of the sediment and its content in mafic, i.e. dense, minerals 

are independent variables, although both seem to co-vary with TI. 

 

5. DISCUSSION  
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The main factors that control the mineralogy and geochemical composition of siliclastic 

sediments are (1) the nature of the provenance, (2) the intensity of physical and chemical 

weathering and (3) the processes that occur during sediment transport (Nesbitt and Young, 

1996). Here, we assess the importance of these three factors for the fjords of Northern Chilean 

Patagonia. 

 

5.1 Provenance  

Our mineralogical data suggest that the fjord sediments originate from varying mixtures of (1) 

volcanic particles from the andosols and (2) minerals from the regional bedrock, which is 

dominated by granitoids and tonalities of the North Patagonian Batholith (Pankhurst et al., 

1999; Parada et al., 2007). In addition, secondary lithologies, such as the Quaternary and 

Mesozoic volcanic rocks and the volcano-sedimentary rocks of the Traiguen Formation (Fig 

1) likely play a role in the supply of sediment to some of the fjords. Since these lithologies are 

not equally represented in all the watersheds, it is reasonable to expect spatial variations in 

provenance. However, the results obtained on our river sediment samples demonstrate that the 

particles that are discharged to the fjords have a relatively constant geochemical composition 

(e.g., Al: 8.09 ± 0.48 %; EA-2) that is in agreement with a mixture of the regional volcanic 

(Al: 8.87 ± 0.63 %) and granitoidic (Al: 8.16 ± 1.16 %) sources. The low variability in the 

concentration of other elements in the river sediment samples (e.g., Fe: 6.57 ± 0.82 %; Ti: 

0.83 ± 0.09 %) confirms the relative homogeneity of the sediment particles supplied to the 

fjords. This relative homogeneity is explained by the effective mixing of the source rocks and 

soils during river transport, which results in the smoothing of the relatively variable chemical 

compositions (e.g., Gaillardet et al., 1999). As a result, the nature of the sediment supplied to 

the fjords of Northern Chilean Patagonia is relatively independent of regional variations in 

lithology, drainage areas, soil thickness, volcanic influence, etc. 
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It is worth noting that drainage areas, soil thickness, volcanic activity, and glacier cover most 

likely varied during the Holocene. Although modern spatial variations of these parameters do 

not seem to significantly affect provenance, the amplitude of change of these parameters 

during the Holocene is relatively unknown. The possibility that provenance changed during 

the Holocene can therefore not be discarded, and it should be taken into account when 

interpreting data from long fjord sediment cores. Additional long-distance sources of 

sediment transported by aeolian processes may also have significantly affected provenance in 

drier and windier climate conditions. 

 

5.2 Weathering 

The presence in important proportions of minerals highly susceptible to chemical weathering 

such as plagioclase, amphibole and pyroxene in the river and fjord sediment samples (EA-2) 

demonstrates that the sources of sediment to the fjords are mostly fresh. Low chemical 

weathering is also confirmed by (1) the clay mineralogy, which is dominated by minerals 

characteristic of physical weathering (illite and chlorite); and by (2) the low values of the 

Chemical Index of Alteration (CIA; Nesbitt and Young, 1982) and Chemical Index of 

Weathering (CIW; Harnois, 1988) calculated for the surface (CIA: 48.1; CIW: 44.0; Table 2) 

and river sediment samples (CIA: 46.4; CIW: 48.2; Table 2, Fig. 8). These values are typical 

for fresh material (≤ 50; fully weathered materials would have values of 100; Price and 

Velbel, 2003) and are nearly identical to the values calculated for the granitoids of the North 

Patagonian Batholith (CIA: 48.8; CIW: 54.3; data from Pankhurst et al., 1999). Low chemical 

weathering in Northern Patagonia is due to the combined effect of (1) the characteristic cold 

climate of the region (Nesbitt and Young, 1996); (2) the regional lithology, i.e. granitoids is 

one of the less reactive lithologies (White and Blum, 1995); and (3) the recent deglaciation of 

the region, which results in limited time for chemical weathering of the bedrock.  
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By comparison, the CIA and CIW indices of the soil samples are significantly higher (CIA: 

66.7; CIW: 71.0; Table 2, Fig. 8), which demonstrates that chemical weathering depleted the 

soils in the most soluble elements (Ca, Mg, Na and K), and enriched them in residual 

elements such as Al. The low values of the CIA and CIW indices for the river and fjord 

surface sediment samples compared to the soil samples (Fig. 8) is therefore an additional 

argument that demonstrates that the soils contribute little to provenance, in agreement with 

the mineralogical and Al concentration data. This statement is also supported by the A-CN-K 

and A-CNK-FM triangular plots (Nesbitt and Young, 1989) presented in Fig. 8. 

The intensity of chemical weathering most likely varied during the Holocene. However the 

continuously cold climate of Northern Chilean Patagonia since the last deglaciation (e.g., 

Kaiser et al., 2005) most likely favored physical over chemical weathering, as higher 

temperature is needed to increase the rate of chemical weathering. More intense physical 

weathering, and therefore a higher supply of unaltered minerals, during the deglaciation is 

very likely. The sediment particles that reach the fjords are therefore mainly fresh, and the 

distribution of soluble elements such as Na, Mg and K in the fjord sediments mainly reflects 

mineralogical sorting. 

 

5.3 Mineralogical sorting during sedimentary transport  

Although inorganic geochemical records are frequently interpreted in terms of past changes in 

terrestrial supply (e.g., Haug et al., 2001; Lamy et al., 2004), there is still an evident lack of 

understanding of the effect of physical processes, mainly sediment transport, on sediment 

mineralogy and geochemistry. One of the most important studies in this respect is by Nesbitt 

and Young (1996), who studied the composition of sediments deposited in the fluvio-glacial 

system of Guys Bight, Baffin Island. These authors found that the primary mafic minerals 

(olivine, pyroxene, amphibole and biotite) of the bedrock, and therefore Mg and Fe, are 
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enriched in fine sands and muds (i.e., silt + clay), while the coarse sands contain a greater 

amount of Si. According to Rosenbaum and Reynolds (2004), this distribution probably 

reflects the small grain size of the heavy mafic minerals of Baffin Island, which makes them 

hydrodynamically equivalent to less dense minerals such as quartz and feldspar. 

Our results from the fjords of Northern Patagonia seem to confirm that grain size and mineral 

density vary independently, but they also show that both variables are partly related to TI.  

In addition, our results show that, among the four lithogenic elements of interest (Al, Fe, Ti, 

Zr), Al is the only element that clearly reflects the lithogenic content of the sediment. Its 

distribution is not influenced by grain size or grain density, which means that Al, as a total 

sum, remains constant in the lithogenic fraction of the fjord sediments. It is therefore 

independent of sedimentary transport processes. The distribution of Zr, Ti and Fe in the 

Chilean fjords, however, seems to be controlled by their association with heavy and/or coarse 

minerals.  

Iron is generally associated with relatively dense mafic minerals (amphibole, pyroxene, 

olivine; d= 2.9−3.5), although it occurs in minor proportions in a large series of minerals, 

including clays (e.g., Monroe and Wicander, 2009). It is absent from minerals that result from 

intense weathering, such as kaolinite, which is rare in the Chilean fjords. In environments rich 

in peat, Fe can also be leached from the peat and transported to sedimentary environments 

fixed on Dissolved Organic Carbon (DOC), where it can precipitate as iron-hydroxides 

(Krachler et al., 2010). In Northern Chilean Patagonia, this source is negligible since peat 

bogs are much more common south of 48°S (Gut, 2008), and DOC values of North 

Patagonian streams (0-6 mg/l; Perakis and Hedin, 2002) are one order of magnitude lower 

than DOC values measured in rivers flowing out of peat bogs (40-70 mg/l; Lal et al., 1997). 

Our data show that the distribution of Fe with TI is rather complex (Fig. 5a). The Fe/Al ratio 

is highest in the inner-fjords with 0<TI<1, and it decreases towards the main land (TI>1), as 
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well as towards to open ocean (TI<0). The distribution of amphibole with TI (Fig. 4) being 

similar to the distribution of Fe/Al with TI, and the close association between amphibole, 

Mg/Al and Fe/Al in the PCA biplots (Fig. 7) confirm that the distribution of Fe is driven by 

the concentration of mafic minerals in the mid-fjords. Our results also show that Fe is 

concentrated in the silt fraction of the sediment (Fig. 5b), in agreement with the observations 

of Nesbitt and Young (1996) in Guys Bight, and probably due to the low refractoriness of 

mafic minerals. These data therefore demonstrate that Fe and Mg in the Chilean fjords are 

associated with sediment particles of low to intermediate grain size and intermediate density. 

The low concentrations of Fe and Mg in some of the most proximal sites most likely reflect 

dilution by coarser and/or denser minerals such as quartz. The occurrence of Fe in open 

marine samples is likely due to its presence in very fine-grained mafic minerals, in 

plagioclase (density: 2.6-2.7), and in most clay minerals.  

Zirconium is most often associated with zircon, which is a typical accessory mineral of the 

North Patagonian Batholith. Zircon is a very dense (d= 4.6-4.7) and refractory mineral, which 

results in Zr being concentrated in the densest and coarsest mineralogical fraction of 

sediments. In Chilean Patagonia, Zirconium concentrations are particularly high in the coarse 

soil and river sediment samples. In the fjord sediments, Zr and Zr/Al show a strong 

association with TI (Fig. 7), which results from its relation with both grain size and density 

(Fig. 5c). The Zr/Al ratio of sediments is therefore maximum where both grain size and grain 

density are high, i.e. in the most proximal environments, where the energy of river discharge 

is maximum. It quickly decreases towards the open ocean (Fig. 5c). 

Titanium is frequent in igneous rock-forming minerals (Verhoogen, 1962). It occurs in most 

mafic minerals (amphibole, pyroxene, olivine; d= 2.9−3.5; Nesbitt, 2003) and in ilmenite, in 

association with iron, and it is a main constituent of less frequent and relatively dense iron-

free minerals such as rutile and titanite (Verhoogen, 1962, Nesbitt and Young, 1996, 
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McLennan et al. 2003; d=3.5-4.8). Ti is therefore associated with minerals of refractoriness 

(i.e., grain size) and density similar or higher than Fe-bearing minerals, but lower than Zr-

bearing minerals. A direct consequence for sedimentary environments is that the distribution 

of Ti is similar to that of Fe, although it is transported on smaller distances than the average 

Fe-bearing minerals. Ti is associated with minerals that are transported on longer distances 

than zircon (Fig 5d). This is also observed in our dataset, where Ti and Ti/Al are in 

intermediate position between Fe and Zr (Fig. 5). The behavior of Ti in very proximal 

(deltaic) environments is not well resolved in our samples but because of its association with 

mafic minerals, Ti concentrations are expected to decrease in the very coarse and very dense 

fraction of the sediment. This relation should however be confirmed by studying samples 

collected in proximal environments at high spatial resolution. 

The consequences of these element-mineral associations for the distribution of Al, Fe, Ti and 

Zr in Chilean fjord sediments are schematically represented in figure 9. Proximal locations, 

such as deltaic environments, contain high amounts of Zr, low amounts of Fe, and 

intermediate amounts of Ti. The concentrations in Zr quickly decrease towards more distal 

locations, while the Fe concentrations increase. The inner fjords are characterized by 

increasing amounts of Ti and Fe. Ti concentrations peak in the mid-fjords and then rapidly 

decrease towards the open ocean. The highest concentrations in Fe occur at the limit between 

the mid and outer fjords. In the outer fjords and on the continental margin, the concentrations 

in Zr and Ti are minimal, and the Fe concentration decreases with distance from the 

tributaries.  

 

5.4 Proxies of terrestrial sediment discharge 
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The distribution of the inorganic geochemical elements Al, Fe, Ti, and Zr in the Chilean 

fjords (Fig. 9) has important implications for inorganic geochemical proxy-records of 

terrestrial sediment discharge: 

(1) Measuring Al-based elemental ratios at high precision is of utmost importance to 

accurately calculate variations in the inorganic geochemical composition of terrestrial 

sediments. For discrete samples, simultaneous acquisition ICP-AES technology is ideal. 

Although this technique allows the measurement of long sediment cores at reasonable 

resolution, XRF core scanning is becoming the technique of choice to generate geochemical 

records at very high resolution. XRF core scanners, however, are limited by their low 

accuracy for lights elements, such as Al (Tjallingii et al., 2007). Technical efforts should 

therefore be put forward to increase the analytical precision of XRF core scanners for light 

elements. Substituting Al by Ti or other lithophile elements such as Rb (e.g., Rothwell et al., 

2006) may lead to a biased interpretation. 

(2) The elemental ratios Fe/Al, Ti/Al and Zr/Al are well suited for estimating changes in the 

energy of river discharge into the fjords through time (Fig. 9). 

(3) Not all elemental ratios are sensitive in all environments (Fig. 9). For example, deltaic 

environments are more sensitive to changes in Zr/Al, than more distal environments, such as 

outer fjords and continental margins, where Fe/Al is especially useful.  

(4) Caution should be exercised when interpreting Fe/Al data in terms of past river discharge, 

particularly in proximal environments. The association of Fe with minerals of intermediate 

grain size and intermediate density results in the non-linearity between Fe/Al and the intensity 

of river discharge. This relation, which if frequently assumed to be linear when interpreting 

sediment core records, is only valid for distal locations, where sediments are relatively fine-

grained. 
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The use of elements other than Al, Fe, Ti and Zr to reconstruct past changes in terrestrial 

supply is less straightforward. Our data demonstrate, for example, that Mg/Al is closely 

associated to mafic minerals (r with Fe/Al =0.91, p<0.001), which indicates that Mg/Al could 

also be used to reconstruct changes in hydrodynamic conditions in distal environments. 

However, since Mg is also associated to ocean carbonate productivity (e.g., Raitzsch et al., 

2010), this relationship may not be valid where carbonate productivity is high. In addition, 

our data demonstrate that the litho-Si and quartz contents of the sediment can be used as 

proxies for grain size. Their use is however restricted to low resolution records since they 

require either the analysis of discrete samples by XRD, or the measurement of both total Si 

and bio-Si, which is time-consuming. 

In addition to controlling the inorganic geochemical composition of sediments, mineralogical 

sorting processes also affect other sediment properties, such as magnetic susceptibility. For 

the Chilean Fjords, our data suggest that MS can be used as a first-order indicator of 

hydrodynamic changes, since MS is primarily controlled by the grain size of the lithogenic 

content of the sediment. At sites where the concentration of organic and biogenic particles is 

high and potentially variable, MS data should be normalized to the lithogenic fraction (or Al) 

before being used as a proxy for grain size. 

Finally, our data confirm that the bulk organic geochemical composition of the sediment 

(C/N, δ13C, δ15N) remains a powerful tool for assessing terrestrial sediment supply. One of the 

main advantages of this approach is that it allows the estimation of the relative proportions of 

marine and terrestrial organic carbon preserved in sediments (e.g., Perdue and Koprivnjak, 

2007). Organic-based proxies are however not applicable to sediments with very low TOC, 

such as those deposited in glacio-marine environments.  

 

5.5. Application to sediment cores 
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To test the validity of our geochemical proxies for paleo-reconstructions, we investigated 

variations in Fe/Al, Ti/Al and Zr/Al in two long sediment cores collected in two different 

environments in the fjords of Northern Patagonia. Core JPC14 was collected in front of a pro-

glacial river (Fig. 1) and represents an inner-fjord site (TI = 1.74), while core PC29A was 

collected in the center of Quitralco fjord (TI = 0.-27), and is therefore characteristic of a mid-

fjord site (Fig. 9). The results (Fig. 10) demonstrate that at site JPC14, Zr/Al is the most 

sensitive elemental ratio (higher variability, expressed as RSD), while for core PC29A, Ti/Al 

is the most sensitive. Figure 10 also clearly demonstrates that at the inner fjord site (JPC14), 

Zr/Al increases and Fe/Al decreases with increasing hydrodynamic energy, while Ti/Al 

remains rather insensitive. In core PC29A (mid-fjord site), Zr/Al is rather insensitive, while 

both Ti/Al and Fe/Al decrease with increasing hydrodynamic energy. These data therefore 

support our findings that Zr/Al and Ti/Al are the most sensitive elemental ratios in the inner 

fjords and mid-fjords, respectively. They also confirm that in these proximal environments, 

Fe/Al is always inversely related to grain size and therefore to hydrodynamic energy. 

Furthermore, these results show that the relation between Zr/Al, Ti/Al, Fe/Al and 

hydrodynamic energy is valid for at least the last 5400 yrs. Also, the concentrations in the 

soluble elements Ca, Na and K in the sediment core samples do not change significantly 

through time, an they suggest that chemical weathering in Northern Patagonia was very 

limited during the last 5400 years (Fig. 8). Similar low chemical weathering conditions are 

expected during the deglaciation (17-12 kyr BP; Hulton et al., 2002) since the climate was 

colder and glaciers were more expanded than during the Neoglaciation (~4500-1000 BP; 

Glasser et al., 2004). Although temperature was ~2ºC higher during the early Holocene 

(Heusser and Streeter, 1980; Glasser et al., 2004), this was likely not sufficient to significantly 

increase chemical weathering rates (Gislason et al., 2009), especially since precipitation 

decreased concomitantly (Heusser and Streeter, 1980). Given that chemical weathering likely 
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remained low over the deglaciation and Holocene, the proposed proxies of energy of the 

terrestrial sediment discharge should therefore be valid for the entire period of time recorded 

by Northern Patagonia fjord sediments.  

 

6. CONCLUSIONS 

The inorganic geochemical composition of the sediments deposited in the fjords of Northern 

Chilean Patagonia is primarily controlled by hydrodynamic mineralogical sorting. Among the 

four typical lithogenic and mainly immobile elements that are commonly used for the study of 

past changes in terrestrial input (Al, Fe, Ti, Zr), only Al is independent of hydrodynamic 

processes. Its concentration reflects the proportion of lithogenic particles, which supports the 

common practice of normalizing other lithophile elements by Al for assessing changes in the 

composition of the lithogenic fraction. The distribution of Fe, Ti and Zr is controlled by their 

association with heavy and/or coarse minerals. Our results show that the sensitivity of Zr/Al, 

Ti/Al and Fe/Al to changes in the energy of the terrestrial supply to the fjords varies with 

distance from the tributaries. Zr/Al and Ti/Al are most useful in deltaic and proximal fjord 

environments, respectively, while increases in Fe/Al can only be translated into higher 

hydrodynamic conditions in distal environments, such as outer fjords and continental margins. 

Caution should be exercised when using Fe/Al in proximal environments, where it shows an 

inverse relation with the energy of the terrestrial supply. In addition, our data suggest that MS 

can be used as a first-order indicator of changes in grain size and in the relative proportion of 

lithogenic particles.  

Finally, this dataset constitutes a strong basis for the interpretation of future sedimentary 

records from the fjords of Chilean Patagonia in terms of past climate and environmental 

change. The application of the inorganic geochemical proxies developed in this study to long 

sediment cores should provide important information regarding past changes in river sediment 
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discharge, which is primarily controlled by precipitation and glacier melting. The principles 

derived from this study may also be applicable to other high-latitude sedimentary basins 

dominated by inorganic terrestrial inputs. 
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Table 1 – Location of sampling stations 

a Average of measurements at 2, 5 and 10 m water depth obtained during the second leg of 

CF7 cruise in November 2001 

b from Hebbeln et al. (2000)  

 

Table 2 – Geochemical, mineralogical and sedimentological data used in figures 2 to 6. 

(a) TI = Terrestrial Index 

(b) Salinity data from leg 2 (spring) of cruise CF7 (November 2001) - data are available on the 

CENDHOC website (http://www.shoa.cl/n_cendhoc/) 

(c) Fterr = Fraction of terrestrial organic carbon. See section 4.2 for details. 

(d) GS = Mean grain size 

(e) MS = Magnetic Susceptibility 

(f) Fe in litho. = Percentage of iron in the lithogenic fraction 

(g) Al in litho. = Percentage of aluminum in the lithogenic fraction 

(h) CIA = Chemical Index of Alteration (Nesbitt and Young, 1982), calculated as 

[Al2O3/(Al2O3+CaO+Na2O+K2O)]*100, using molecular proportions and after removal of 

carbonate CaO and salt Na2O 

(i) CIW = Chemical Index of Weathering (Harnois, 1989) calculated as 

[Al2O3/(Al2O3+CaO+Na2O)]*100, using molecular proportions and after removal of 

carbonate CaO and salt Na2O 

(j) s.d. = standard deviation (1 sigma) 
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Figure 1 – Location of the sampling sites on a simplified geological map of Northern Chilean 

Patagonia. The lithological units were drawn according to Sernageomin (2003). Superficial 

Quaternary deposits were omitted. The bathymetric data are from NDGC-NOAA. The border 

between Chile and Argentina follows the drainage divide. Sediment core PC29A was 

collected at the same site than surface sample BC29A. NPI = Northern Patagonian Ice Field 

 

Figure 2 – Results of the principal component analysis (PCA) used to calculate the Terrestrial 

Index (TI = score of PCA axis 1) from the Fraction of Terrestrial Carbon (Fterr) and salinity 

data. TI can be calculated for any site using the equation indicated on top of the plot, with 

Fterr in % and salinity in psu. This equation provides TI values of 6.4 and -4.2 for fully 

terrestrial (salinity: 0‰; Fterr 100%) and fully marine (salinity: 35‰; Fterr 0%) 

environments, respectively. 

 

Figure 3 – Spatial variability of indicators of terrestrial input (a), and bulk sediment 

composition (b). The surface sediment samples are organized according to their terrestrial 

index (TI) in order to visualize the compositional variations along a proximal to distal 

transect: inner fjord (TI > 0), mid-fjord (0 < TI < -1) and outer fjord (TI < -1). Data are 

presented in Table 2. See sections 4.2 and 4.3 for details.  

a) Terrestrial index (TI), salinity (0-10 m), and fraction of terrestrial carbon (Fterr, %)  

b) Bulk sediment composition, expressed as percentages of biogenic opal, total organic 

carbon (TOC), carbonate and lithogenic fraction. 

1 The open ocean data correspond to site GeoB3323-4 off the coast of Southern Chile 

(Hebbeln et al., 2000; Romero et al., 2001). 

 45



1131 

1132 

1133 

1134 

1135 

1136 

1137 

1138 

1139 

1140 

1141 

1142 

1143 

1144 

1145 

1146 

1147 

1148 

1149 

1150 

1151 

1152 

1153 

1154 

1155 

 

Figure 4 – Spatial variability of selected variables. The samples are organized as in Figure 3 

and the data are presented in Table 2. 

a) Selected minerals (amphibole, quartz) and geochemical elements (Fe, Al) 

b) Grain size and magnetic susceptibility. The magnetic susceptibility values are primarily 

controlled by the grain size and the lithogenic content of the sediment. See section 4.3.5 

1 The open ocean data correspond to site GeoB3323-4 off the coast of Southern Chile (Lamy 

et al., 1998; Klump et al., 2000). The grain size data of Lamy et al. (1998) were not used since 

these authors analyzed the silt fraction (2-63 μm) only. 

 

Figure 5 – Relationships between elemental ratios (Fe/Al, Ti/Al and Zr/Al, in g/g) and grain 

size and the Terrestrial Index for the full dataset. The trends shown in red in (a) do not 

correspond to any mathematical function and have therefore no statistical value. Note that the 

grain size scale on the Zr/Al plot is inverted for clarity. The correlation coefficients (r) apply 

to paraboloids fitting through the points. The slope towards negative TI values (distal 

environment) is steeper for Zr/Al than for Ti/Al, which is in turn steeper than for Fe/Al. 

 

Figure 6 – 3-D correlation plot of magnetic susceptibility vs. lithogenic content of the 

sediment and grain size. (a) Full dataset; (b) Restricted dataset (Jacaf and Puyhuapi fjords). 

 

Figure 7 – Principal component analysis (PCA) biplot showing the relationships between the 

52 measured variables. (a) Full dataset (n=14); (b) Dataset restricted to samples from Jacaf 

and Puyhuapi fjords (n=6). The green and red colors highlight the variables that are controlled 

by mineral density (Fe, Fe/Al, Ti, Ti/Al, Mg, Mg/Al, P, P/Al, amphibole, and pyroxene), and 

grain size (mean grain size, quartz, Si, Si/Al, Litho-Si, Litho-Si/Al, Zr, Zr/Al, Zr/Fe, Zr/Ti, 
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Ti/Fe and magnetic susceptibility), respectively. Brown represents more terrestrial and blue 

more marine sediments. Black dots correspond to variables with no clear affinity. The 

variables appear better grouped on the plot corresponding to the restricted dataset (b), where 

specific data clusters can clearly be identified. The plots demonstrate that the variables related 

to grain size and mineral density are not related but that they are both partly controlled by TI. 

See section 4.3.6 for details. 

1: Carbonate content measured by coulometry; 2: Calcite wt. % measured by x-ray diffraction. 

 

Figure 8 – Ternary plots A-CN-K and A-CNK-FM where A=Al2O3, C=CaO (silicate fraction 

only), N=Na2O, K=K2O, F=total Fe as FeO, and M=MgO (in mole fraction, following Nesbitt 

and Young, 1989). The weathering trends and the granodiorite and andesite areas are from 

McLennan et al. (1993). The NPB (North Patagonian Batholith) data are from Pankhurst et al. 

(1999). CIA = Chemical Index of Alteration (Nesbitt and Young, 1982). The two plots 

demonstrate that the composition of the river and fjord sediment samples is relatively 

homogenous, and is similar to the composition of the rocks forming the North Patagonian 

Batholith. They also demonstrate that the contribution of the regional andosols is minor. Data 

are presented in Table 2 and EA-2. 

 

Figure 9 – Schematic representation of the distribution of Al, Fe, Ti and Zr in the lithogenic 

fraction of the sediment, in relation to distance to the tributaries and energy of the river 

supply. This illustration demonstrates that not all elemental ratios are sensitive in all types of 

fjord sedimentary environments. The location of cores JPC14 and PC29A (see Fig. 10) is also 

indicated. The scale of the vertical and horizontal axes is arbitrary. 
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Figure 10 – Normalized elemental ratios (g/g) versus grain size for sediment cores JPC14 

(Golfo Elefantes) and PC29A (Quitralco fjord). Grain size is used here as an indicator of 

hydrodynamic conditions. The relative standard deviation of the normalized data is used to 

describe the variations between extreme conditions. The determination coefficients (r2) apply 

to power curves fitting through the points. This figure confirms that Zr/Al and Ti/Al are the 

most sensitive elemental ratio in the inner fjords and mid-fjords, respectively. Data are 

presented in EA-3. 
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 Site Latitude Longitude Depth/ Salinity a 
    Elevation (m) (psu) 

      
Fjord surface sediment samples   

 BC1 -43.7517 -74.6215 -240 32.84 
 BC6 -43.9877 -73.3658 -176 31.18 
 BC27 -46.4843 -73.8042 -112 22.42 
 BC28 -46.1408 -73.4955 -239 23.33 
 BC29 -45.7812 -73.5087 -114 27.67 
 BC29A -45.7560 -73.4673 -112 27.59 
 BC30 -45.6698 -73.2852 -269 27.98 
 BC30A -45.6810 -73.3898 -110 27.92 
 BC33 -44.3335 -72.9695 -582 28.55 
 BC35 -44.3562 -72.5825 -52 22.24 
 BC36 -44.4368 -72.6110 -219 23.28 
 BC39 -44.7273 -72.7145 -160 22.66 
 BC40 -44.8247 -72.9345 -260 22.40 
 BC42 -44.9202 -73.3073 -320 28.93 
      
River sediment samples    

 Aldunate -44.3000 -72.8500 0  
 Ventisquero -44.3676 -72.5833 0  
 Cisnes -44.7342 -72.7166 0  
 Cuervo -45.3500 -73.0508 0  
 Condor -45.4666 -72.9008 0  
      
Soil samples     

 Burgos soil 1 -45.7131 -72.2174 +380  
 Burgos soil 2 -45.7062 -72.2153 +390  
 Trapial soil 1 -46.7126 -72.7110 +265  
 Trapial soil 2 -46.7161 -72.6944 +250  
 Cisnes soil 1 -47.1166 -72.4550 +435  
 Cisnes soil 2 -47.1166 -72.4527 +435  
 Larga soil 1 -47.4683 -72.8066 +270  
      
Open ocean surface sediment sample b  

 GeoB3323-4  -43.2183 -75.9500 -3697  

 1188 

1189 

1190 

Bertrand et al – Table 1 

 



 Sampling

station

Depth (m) TI (a) Salinity (b)

(psu)

Fterr 
(c) 

(wt.%)

Bio-opal

 (wt.%)

Carbonate 

(wt.%)

TOC

 (wt.%)

lithogenic 

(wt.%)

Amphibole 

(wt.%)

Quartz 

(wt.%)

GS (d) 

(μm)

MS (e) 

(10-6 SI)

Fe in litho. 

(f) (wt.%)

Al in litho. 
(g) (wt.%)

CIA (h) CIW (i) 

1 240 -2.44 32.84 38.12 3.89 2.14 1.00 91.77 7 16 82.48 6824 4.87 8.61 46.58 48.57 
6 176 -1.97 31.18 41.97 7.48 1.89 2.14 85.92 10 21 30.65 2500 5.30 8.59 47.05 46.48 

27 112 1.74 22.42 98.85 5.30 0.07 0.51 93.50 14 26 15.40 1407 6.20 8.77 49.64 50.15 
28 239 1.22 23.33 88.80 10.02 0.04 0.83 88.11 9 14 7.00 777 6.73 8.96 48.49 45.74 
29 114 -1.13 27.67 45.61 8.80 0.06 0.50 90.04 0 6 31.54 1216 5.35 8.95 51.52 45.67 

29A 112 -0.27 27.59 70.62 12.36 0.04 1.36 84.61 16 5 21.45 2093 6.02 8.95 47.84 43.89 
30 269 -0.12 27.98 77.49 17.56 0.37 3.03 75.41 0 9 17.29 747 6.55 8.00 52.06 40.44 

30A 110 -0.55 27.92 64.34 17.69 0.10 2.06 77.68 0 14 12.04 965 6.60 8.52 59.37 41.92 
33 582 -0.91 28.55 57.53 11.26 2.04 3.73 78.50 10 15 10.18 710 5.99 8.36 41.39 35.05 
35 52 1.28 22.24 84.00 5.86 0.20 2.20 89.09 29 8 19.32 1972 6.99 8.23 40.90 40.63 
36 219 1.22 23.28 88.76 4.38 0.32 1.34 92.34 19 20 30.54 2599 6.23 8.62 46.00 45.03 
39 160 1.73 22.66 100.00 1.86 0.05 2.74 92.05 6 30 55.45 3061 4.18 8.02 51.48 51.06 
40 260 1.51 22.40 91.80 6.92 0.17 2.30 87.83 4 10 43.39 2615 6.01 9.10 47.67 41.77 Fj

or
d 

su
rfa

ce
 s

ed
im

en
t s

am
pl

es
 (n

=1
4)

 

42 320 -1.31 28.93 47.97 12.18 2.34 2.87 79.15 6 11 18.24 1552 5.59 8.66 43.92 39.65 

 mean 212 0.00 26.36 71.13 8.97 0.70 1.90 86.14 9 15 28.21 2074 5.90 8.60 48.14 44.00 

  s.d.(j) 132 1.44 3.57 21.87 4.84 0.93 1.00 6.11 8 7 20.54 1576 0.77 0.35 4.73 4.42 
Avg river sed. (n=5)     0.01 1.69 94.80 30 22 80.78 16074 7.00 8.56 46.44 48.22 
s.d.(j)      0.00 2.26 6.96 12 15 7.48 9403 1.30 0.62 2.49 3.30 
Avg soil sed. (n=7)     0.05 4.18 89.14 0 32 38.73 2214 6.79 10.45 66.73 70.95 
s.d.(j)           0.04 1.88 6.33 0 25 8.48 1071 1.44 1.50 6.03 7.24 
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Figures 1193 
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Bertrand et al - Figure 1 
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1199 Bertrand et al - Figure 2
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Bertrand et al - Figure 3 
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Bertrand et al – Figure 4 
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Bertrand et al - Figure 5 
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Bertrand et al – Figure 6 
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Bertrand et al – Figure 7 
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Bertrand et al - Figure 8 
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Bertrand et al - Figure 9 
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Bertrand et al - Figure 10 
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