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[1] A common approach for estimating the oceanic uptake of anthropogenic carbon
dioxide (Canthro) depends on the linear approximation of oceanic dissolved inorganic
carbon (DIC) from a suite of physical and biological ocean parameters. The extended
multiple linear regression (eMLR) method assumes that baseline correlations and the
resulting residual fields will remain constant with time even under the influence of
secular climate changes. The validity of these assumptions over the 21st century is tested
using a coupled carbon‐climate model. Findings demonstrate that the influence of both
changing climate and changing chemistry beyond 2–4 decades invalidates the assumption
that the residual fields will remain constant resulting in significant errors in the eMLR
estimate of Canthro. This study determines that the eMLR method is unable to describe
Canthro uptake for a sampling interval of greater than 30 years if the error is to remain
below 20% for many regions in the Southern Ocean, Atlantic Ocean, and western Pacific
Ocean. These results suggest that, for many regions of the ocean basins, hydrographic field
investigations have to be repeated at approximately decadal timescales in order to
accurately predict the uptake of Canthro by the ocean if the eMLR method is used.
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1. Introduction

[2] Since the early 1900s, the burning of fossil fuels has led
to the ongoing accumulation of CO2 in the atmosphere. The
rapid rise in atmospheric CO2 has been documented through
both atmospheric and ice core measurements [Etheridge
et al., 1996; Keeling et al., 1976]. Rising atmospheric CO2

is generally accepted to increase atmospheric temperatures,
precipitating wide changes in global climate. The ocean is of
critical importance due to its ability to absorb CO2 from the
atmosphere. Currently, the oceans sequester roughly 25% of
the anthropogenic carbon emitted each year [Fung et al.,
2005; Le Quéré et al., 2009; Quay et al., 2003; Sabine et al.,
2004a], a proportion that is predicted to decrease over the
21st century.
[3] Carbon budgets employed for emission reduction cal-

culations and future climate projections rely heavily on esti-
mates of oceanic carbon uptake. However, the ocean carbon
sink is difficult to accurately detect or predict due to chal-
lenges of measuring relatively small amounts of anthropo-

genic carbon (Canthro) against the large and variable oceanic
dissolved inorganic carbon background (DIC) [Levine et al.,
2008; Sabine and Tanhua, 2010]. Empirical and tracer
dependent methods have been developed to correct for
natural variability in DIC, including isolating both changes
to the anthropogenic signal (e.g., the Multiple Linear
Regression (MLR), C* and d13C techniques [Gruber et al.,
1996; Quay et al., 2003; Wallace, 1995]), and changes to
Canthro with time (DCanthro) (e.g., extended Multiple Linear
Regression (eMLR) andDC* [Friis et al., 2005; Peng et al.,
1998; Sabine et al., 2004b]). Combining these approaches
with the massive sampling effort of global hydrographic
surveys such as the World Ocean Circulation Experiment
(WOCE)/Joint Global Ocean Flux Study (JGOFS) and the
U.S. and International Climate Variability and Predictability
(CLIVAR)/CO2 programs has provided insight into both the
magnitude of the integrated ocean carbon sink since pre‐
industrial periods and the ongoing temporal evolution of
this sink.
[4] Several significant sources of error remain for quan-

tifying ocean carbon uptake. In particular, given financial
limitations and sampling constraints, repeat hydrography
programs typically only re‐occupy stations on decadal time‐
scales. However, natural DIC exhibits large variability on
seasonal and annual timescales. The inability of tracer‐based
approaches and empirical methods to fully account for this
variability leads to significant errors in estimates ofDCanthro,
especially in regions of water mass formation [Levine et al.,
2008].
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[5] Secular trends in ocean properties further exacerbate
the difficulties of detection. Specifically, most empirical
approaches for estimating Canthro rely on the assumption that
baseline correlations between hydrographic properties‐ e.g.,
temperature, salinity, O2, and nutrients‐ remain constant
with time [Goyet et al., 1999; Peng et al., 1998; Sabine et al.,
2004b; Touratier et al., 2005]. This assumption will most
likely break down in an evolving climate as a result of
secular warming, deoxygenation trends, and changes in
transport, ventilation, and remineralization [Johnson and
Doney, 2006; Le Quéré et al., 2009; Levitus et al., 2009;
Lovenduski et al., 2008; Stramma et al., 2010]. This is
particularly true for MLR based analyses that assume that
variations in water properties at a specific location, resulting
from changes in circulation and remineralization, follow
statistically derived linear relationships. The MLR based
methods are not designed to account for long‐term trends,
such as the secular warming of the oceans, which will
nonlinearly shift the correlation between DIC and tempera-
ture, salinity, and nutrients. It is unclear precisely how
current empirical methods for determining Canthro will
respond to anthropogenically induced changes.
[6] Here we use a three‐dimensional global ocean model

to understand the impact that climate trends may have on
estimates of the ocean carbon sink on decadal to centennial
time scales. We focus on the extended MLR method
(eMLR), one of the approaches used most frequently in the
literature [Friis et al., 2005]. The benefit of using the eMLR
approach over a standard MLR method is described in detail
below. We find that both secular trends in climate and the
rise in CO2 itself decrease the eMLR method’s reliability for
future estimates of Canthro.

2. Coupled Carbon‐Climate Model

[7] The biogeochemical output of the Climate Community
System Model 3.1 (CCSM3.1) [Thornton et al., 2009] is
used as a synthetic data set to address the impacts of secular
climate changes and rising atmospheric CO2 on the perfor-
mance of the eMLR technique. The model has fully coupled
physical climate and carbon cycles for the ocean, atmo-
sphere, sea‐ice and land. The ocean model is noneddy
resolving and has a grid spacing of 3.6° longitude and 0.8 to
1.8° latitude with 25 vertical levels. A full description of the
CCSM 3.1 coupled carbon‐climate model, including the
spin‐up and initialization procedure, can be found in Thornton
et al. [2009], and details on the ocean ecosystem and bio-
geochemistry are provided by Doney et al. [2009a, 2009b].
[8] We focus on the final 120 years (∼1980–2100) of

three model simulations: a 1000 year control simulation
(control), a transient CO2 simulation with no physical cli-
mate feedbacks (transient no‐feedback), and a transient CO2

simulation with full physical climate feedbacks (transient
feedback). The two transient simulations are forced with
historic fossil fuel CO2 emissions for the 19th and 20th
centuries and then IPCC “business‐as‐usual” emission sce-
nario (A2) for the 21st century [Intergovernmental Panel on
Climate Change, 2000]. The primary analyses are com-
pleted using decadal averaged data (i.e., 1980s, 1990s, etc),
in which each variable (DIC, salinity, temperature, etc.) is
averaged for each decade in order to evaluate the influence
of long‐term trends on Canthro attribution while minimizing

the influence of seasonal and interannual variability. An
additional analysis is done using monthly model output to
investigate the impact of temporal variability on the model
estimate of Canthro. For this study we focus on the Southern
Ocean, where upwelling of deep and intermediate waters
strongly impact the carbon cycle, and where noticeable
anthropogenic impacts appear to be underway [Lovenduski
et al., 2008]. The Southern Ocean is defined as all lati-
tudes south of 32°S. To investigate the impact of secular
trends on repeat hydrography programs we focus on a north‐
south hydrographic section along 150°W in the Southern
Ocean that corresponds to the WOCE Pacific P16, section
(http://cdiac.esd.ornl.gov/oceans/home.html) [Sabine et al.,
2008]. Unless otherwise specified, the analysis is con-
ducted for the model thermocline (280–1669 m based on the
model vertical grid).
[9] To evaluate model skill at reproducing the uptake of

anthropogenic carbon, the model output for the southern
portion of the P16 transect (P16S, 152°W 17°S–70°S) was
compared to the observed estimate from Sabine et al. [2008].
The model uptake of anthropogenic carbon was calculated
as the difference between the transient feedback and control
simulations over the sampling interval using monthly model
output from the months of occupation, August 1991,
October 1992, and November 1992 for the first occupation
and January and February 2005 for the second occupation.
The average model uptake over this time period was 4.09
mol m−2 decade−1 which is consistent with the observed
estimate of 4.13 mol m−2 decade−1 [Sabine et al., 2008]. In
addition, the spatial pattern of Canthro uptake in the model
compares favorably with the observed pattern with an
average RMS error at the grid point scale of 2 mmol kg−1

(Figure 1).

3. Calculations

3.1. Understanding Canthro

[10] Present‐day DIC (Cobserved) can be thought of as the
sum of a natural carbon pool (Cnatural) and an anthropogenic
carbon pool (Canthro). Therefore, anthropogenic carbon
content can be estimated as:

Canthro ¼ Cobserved � Cnatural ð1Þ

The change in Canthro over time (DCanthro) is therefore the
difference between the change in the total and natural carbon
pools:

DCanthro ¼ DCobserved �DCnatural ð2Þ

which can be expanded to:

DCanthro ¼ Cobs t1ð Þ � Cobs t0ð Þð Þ �DCnatural or
DCanthro ¼ Cobs t1ð Þ � Cobs t0ð Þ þDCnaturalð Þ ð3Þ

where Cobs(t0) and Cobs(t1) are the observed DIC concentra-
tions at times t0 and t1 respectively andDCnatural is the change
in natural DIC concentrations over this time period. In a
stationary ocean, Cnatural would remain constant with time
(DCnatural = 0) such that changes in DIC would be entirely
attributable to changes in Canthro, and DCanthro could simply
be estimated as Cobs(t1) − Cobs(t0). However, due to signifi-
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cant short‐term natural variability in the ocean carbon system,
we cannot assume thatDCnatural = 0. In the model output, we
use the control simulation to estimate DCnatural, however,
field estimates ofCanthro rely on empirical methods to account
for this natural variability.
[11] The MLR approach uses the relationship between

DIC and physical and biological measurements to estimate
Cobs(t0) with the same natural variations as Cobs(t1), in other
words Cobs(t0) + DCnatural from equation (3). This assumes
that spatial relationship between DIC and the MLR para-
meters at t0 is a good predictor of the temporal relationship
between DIC and the MLR parameters (t0 → t1). Here we
use temperature (�), salinity (S), dissolved oxygen (O2),
phosphate (PO4) and alkalinity (ALK) as MLR parameters.
A linear regression of DIC versus chosen MLR parameters
measured at time t0 (data(t0)) yields a set of optimized MLR
coefficients p(t0) such that:

CMLR ¼ aþ b�þ cS þ dO2 þ ePO4 þ fALK ð4Þ

where a‐f are the optimized MLR coefficients (p). These
coefficients can then be used with parameters measured at
time t1 (data(t1)) to calculate CMLR [p(t0),data(t1)], an
estimate of Cobs(t0) + DCnatural. Through substitution,
equation (3) becomes:

DCMLR
anthro ¼ Cobs t1ð Þ � CMLR p t0ð Þ; data t1ð Þ½ � ð5Þ

However, this formulation neglects error in the MLR
estimate of Cobs(t0) due to variance in the observed DIC
field that does not project linearly onto the set of physical
and biogeochemical variables used in the regression
(equation (4)). This error, the MLR residual, is defined as:

CMLR
residual txð Þ ¼ Cobs txð Þ � CMLR p txð Þ; data txð Þ½ � ð6Þ

whereCobs are the observed DIC concentration values that are
used to fit the MLR coefficients. This error is propagated into
the estimate of Cobs(t0) + DCnatural such that equation (5)
must be re‐written as:

DCMLR
anthro ¼ Cobs t1ð Þ � CMLR p t0ð Þ; data t1ð Þ½ � þ CMLR

residual t0@1ð Þ� �

ð7Þ

where Cresidual
MLR (t0@1) is the error in the estimate of Cobs(t0) +

DCnatural. Equation (7) only gives an unbiased estimate of
DCanthro when the residual term is small.
[12] The extended MLR (eMLR) analysis replaces Cobs(t1)

in equation (7) with a second MLR estimate using coeffi-
cients and data from t1 [Friis et al. 2005]:

DCeMLR
anthro ¼ CMLR p t1ð Þ; data t1ð Þ½ � þ CMLR

residual t1ð Þ� �

� CMLR p t0ð Þ; data t1ð Þ½ � þ CMLR
residual t0@1ð Þ� �

if CMLR
residual t1ð Þ � CMLR

residual t0@1ð Þ; then
DCeMLR

anthro � CMLR p t1ð Þ; data t1ð Þ½ � � CMLR p t0ð Þ; data t1ð Þ½ � ð8Þ

Figure 1. Comparison of model output to observational measurements along P16S from 70°S to 17°S.
(a) Model derived DCanthro (mmol kg−1 decade−1) between the second occupation in 2005 and the first
occupation in 1991/1992. (b) Observationally derived DCanthro (mmol kg−1 decade−1 [Sabine et al.,
2008]) between the second occupation in 2005 and the first occupation in 1991/1992.
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This effectively reduces the error in the estimate of DCanthro

by assuming that the MLR residuals for the two time periods
are similar and thus mostly cancel [Friis et al., 2005; Levine
et al., 2008; Wanninkhof et al., 2010]. However, if the
differences between the residuals are substantial, as may
happen under climate change and rising CO2, additional
error will be introduced into DCanthro

eMLR .

3.2. Estimating Canthro From Model Output

[13] In the model, our best estimate of Canthro (Canthro
predicted)

can be calculated using equation (1) by setting Cobserved

equal to the DIC concentration in the transient simulation
(Ctransient, no‐feedback or feedback) and Cnatural equal to the
DIC concentration in the control simulation (Ccontrol).
Similarly, DCanthro is calculated using equation (2) and is
given in units of mmol C kg−1 seawater.
[14] For the model estimate of DCanthro

eMLR , model tempera-
ture (�), salinity (S), dissolved oxygen (O2), phosphate
(PO4) and alkalinity (ALK) are used as MLR parameters. All
five MLR parameters are significantly linearly related to
DIC for the 1980s however this linearity decreases with
time, the consequences of which are discussed in detail
below (Table 1 and Table S1 in the auxiliary material).1

Model concentrations are converted to mass‐normalized
units (concentration kg−1) by dividing by model density
(kg m−3). Variables are detrended to remove model related
drift (as distinct from climate trends) by subtracting the
linear trend calculated for the control simulation from the
control and transient simulations at each geographical grid
point over the 120 year period. Our analysis focuses on the
thermocline (280–1669 m), as the MLR method cannot
account for the significant seasonal variability experienced
by surface waters (<250 m) [Matsumoto and Gruber,
2005; Wallace, 1995].

4. Impact of Temporal Trends on the eMLR
Method

[15] As discussed above, the eMLR method aims to
remove the natural variability in the carbon system by

assuming that the relationship between the pre‐industrial
component of DIC and a chosen set of physical and bio-
logical parameters remains constant in time such that any
secular trends in the MLR coefficients, p(t), reflect uptake of
anthropogenic CO2 (equations (4) and (8)). This basic
premise of the eMLR method is illustrated using model
output in Figure 2. The MLR coefficients for the control
simulation (light gray lines) are nearly constant over time,
exhibiting only a small, not unexpected, amount of decadal
variability. In contrast, the MLR coefficients for the tran-
sient cases (dark gray and black lines) change often by more
than a factor of 2, sometimes linearly but often nonlinearly
with time.
[16] The MLR coefficient trends can be understood by

recalling that the MLR method projects the spatial DIC field
onto a set of linear basis functions determined by the spatial
fields of the physical and biological variables used in
the regression. Consider the simple case of the transient
no‐feedback simulation, where the only long‐term trends in
the variables entering the MLR regression (equation (4)) are
in the total DIC term on the left‐hand side. Because Canthro

uptake is not spatially uniform in the ocean, the spatial
pattern of DIC is also changing, requiring the regression to
shift the weights (coefficients) among the different, fixed,
basis functions (parameters).
[17] In the transient feedback case, the physical and bio-

geochemical basis functions are also evolving with time,
which can further contribute to trends in the MLR coeffi-
cients. While the patterns are similar between the transient
feedback and transient no‐feedback simulations, there are
noticeable differences indicating an influence of secular
changes in climate on the MLR coefficients (Figure 2). It is
important to note that the climate sensitivity of the
CCSM3.1 simulation is on the lower end of the reported
range for coupled models [Thornton et al., 2009], and
greater differences between the transient feedback and
transient no‐feedback cases could be anticipated for models
with larger climate sensitivities. Small differences in atmo-
spheric CO2 trajectories between the two cases can also
contribute to the observed trends, however these atmo-
spheric CO2 offsets can be accounted for by adjusting the
curves in time to match approximately total ocean CO2

uptake and are not large enough to account for all of the
differences.
[18] What is the impact of changing MLR coefficients on

DCanthro
eMLR? The MLR residual fields typically exhibit con-

siderable spatial structure (Figure 3 and Figures S1 and S2).
This is due to the limitations of using a small number of
nonorthogonal basis functions to fit DIC. In addition, both
nonuniform and nonlinear increases in DIC and long‐term
trends in the physical and biological state of the ocean result
in an increasingly nonlinear relationship between DIC and
the MLR parameters with time (Table 1). This acts to both
shift the spatial patterns of the residuals and increase the
magnitude of the residuals, undermining the key premise of
the eMLR approach and introducing systematic spatial
biases in the estimates of DCanthro

eMLR .
[19] We can use the CCSM simulations to test the eMLR

assumption that the residuals from the MLR fit remain rel-
atively constant through time and space. Figure 4 plots the
MLR residuals for the transient and transient no‐feedback
cases for future decades versus the 1980s, the early part of

Table 1. Increasing Nonlinearity Between DIC and eMLR
Parameters Over Timea

Temperature Salinity Oxygen Phosphate Alkalinity

Control
DIC 1980 −0.97 0.97 −0.76 0.97 0.98
DIC 2080 −0.97 0.98 −0.73 0.98 0.99

Transient ‐ No Feedback
DIC 1980 −0.98 0.98 −0.76 0.98 0.98
DIC 2080 −0.72 0.59 −0.53 0.84 0.66

Transient ‐ Feedback
DIC 1980 −0.96 0.98 −0.66 0.98 0.99
DIC 2080 −0.80 0.64 −0.22 0.85 0.71

aCross‐correlation coefficients (r) for biogeochemical and physical
parameters used in the eMLR calculation are presented for the three
model simulations; control, transient no‐feedback, and transient feedback.
Values are generated for the P16S (150°W) transect in the Southern
Ocean using output for the 1980 decade and the 2080 decade.

1Auxiliary materials are available with the HTML. doi:10.1029/
2010GB004009.
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the WOCE/JGOFS global CO2 survey [Sabine et al., 2004a].
The plots demonstrate that initially this assumption is valid,
with a strong 1:1 linear correlation between residuals from
1980 to 1990 (transient: n = 11,034, r2 = 0.96, slope (±1s) =
1.00 ± 0.002, and a regression root‐mean standard error
(RRMSE) of 0.38 mmol kg−1) (Figure 4a) and a slightly
weaker relationship from 1980 to 2010 (transient: n =
11,034, r2 = 0.90, slope (±1s) = 1.00 ± 0.003, and RRMSE
of 0.66 mmol kg−1) (Figure 4b).
[20] As the sampling interval increases, the assumption of

constant residual fields begins to breakdown under condi-
tions of increasing anthropogenic CO2 with or without
changing climate and by 50 years this assumption is no
longer accurate (Figure 4c). A linear regression of 2030
transient residuals versus 1980 transient residuals returns a
significant relationship but with large deviations from a 1:1
line (n = 11,034, r2 = 0.55, slope (±1s) = 1.01 ± 0.01, and a
RRMSE of 1.8 mmol kg−1). In addition, there is a large
degree of scatter in the regression for this 50 year sampling
interval with a regression error (RRMSE = 1.8 mmol kg−1)
equal to 90% of the average 2030 MLR residual value
(2.00 mmol kg−1). Comparable results are found for the
transient no‐feedback case. The relationship continues to
worsen as the time span increases until, by 110 years, the
relationship between t100 and t0 residuals becomes insig-

nificant (Figure 4f) (n = 11,034, adj. r2 = 0.06, slope (±1s) =
0.87 ± 0.03, RRMSE = 6.6 mmol kg−1).
[21] For sampling intervals greater than 40 years, the

correlation r‐value between the residual fields drops below
0.9 for both the transient and transient no‐feedback cases.
This effect is not due to an inherent inability of the MLR
approach to approximate DIC at the end of the 21st century,
as demonstrated in Figure 4f where the residuals from 2080
are shown to be highly correlated with the residuals from
2090 (transient: n = 11,034, adj. r2 = 0.96, slope (±1s) =
1.11 ± 0.00, RRMSE = 1.3 mmol kg−1, where the average
root‐mean squared residual value of the 2080 residuals is
4.7 mmol kg−1). These findings are consistent with large
changes in MLR coefficients with time as shown in Figure 2.
Specifically, large temporal changes in MLR coefficients
will result in significant changes in MLR residual fields
when these coefficients are applied over long sampling
intervals (Figure 3).
[22] High MLR residuals can be driven by the presence of

multiple water masses with different relationships between
DIC and the chemical and physical parameters used in the
MLR. Much of the spatial distribution in the MLR residual
fields, and consequentially much of the observed error in
DCanthro

eMLR , is due to the presence of multiple water masses.
Variations in the relationship between DIC and other

Figure 2. Values of eMLR coefficients versus decade for the control (light gray), transient (black) and
transient ‐ no‐feedback (dark gray) model simulations from 1980 to 2090 based on equation (4): DIC =
a + b� + cS + dO2 + ePO4 + fALK. (a) Intercept, (b) potential temperature, (c) salinity, (d) dissolved oxygen,
(e) phosphate, and (f) alkalinity.
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physical and chemical properties with time is primarily due
to different CO2 uptake rates and varied responses to
increasing CO2 by water mass and location, which lead to
nonlinear changes in the ocean biogeochemical system. This
is depicted for the P16S transect in Figures 3 and 5, where
the impact of climate feedbacks (transient feedback) accel-
erates the deterioration in the MLR DIC approximation by
changing both the spatial patterns and the magnitude of
uptake (Figures S1 and S2). The impact of multiple and
variable water masses on the error in the DCanthro

eMLR estimate
can be reduced by applying the eMLR by water mass, which
acts to decrease the MLR residuals. Specifically, when the
MLR is applied along the P16S transect to two, alkalinity
defined, water masses, the absolute MLR residuals decrease
on average by 0.2 mmol kg−1 (0.2% of the average absolute
MLR residual value) in the 1980s and 1.8 mmol kg−1 (0.4%
of the average absolute MLR residual value) in the 2080s as
compared to MLR residuals applied to the entire water
column (Text S1). While conducting the analysis by water
mass decreases the magnitude of the MLR residuals, it does
not increase the timescale over which the MLR residuals are
correlated (Figure S3). Water mass definition under secular
changes presents an additional challenge that needs to be
addressed in order to robustly apply the eMLR by water
mass over long time scales. For this analysis, we adopted the
simplified approach of applying the MLR to the entire water
column as this is commonly done in the literature and does
not change the major conclusions of this study.
[23] To assess the impact of the changing MLR residual

field on the eMLR estimate of DCanthro, we compare
DCanthro

eMLR (equation (8)) to DCanthro
predicted (equation (2)) in the

Southern Ocean from 70°–32°S over a range of sampling
intervals, Dtx = t1 − t0. This calculation is done for sampling
intervals ranging from 1 to 10 decades and is completed
along latitudinal bands to provide an evaluation of the range
of results in the Southern Ocean. The root mean squared

error (RMSE) for the eMLR method for each sampling
interval is calculated as:

RMSE Dtx; latð Þ ¼ 1

M

XM
j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN
i¼1

DCeMLR
anthro Dtxð Þ �DCpredicted

anthro Dtxð Þ
� �2

N � 1

vuuut

ð9Þ

where RMSE(Dtx,lat) is the RMSE for a latitude band (lat)
with a width of 0.8°–1.8° and N model grid cells (here
N = 43 to 140 based on land patterns). M is the number of
results forDt = x decades. Specifically, whenDt = 1 decade,
10 RMSE values (M = 10) are calculated for each latitude
band (e.g., 1990 minus 1980, 2000 minus 1990 etc.) and then
averaged to yield a single RMSE(Dt1,lat). Similarly, M = 9
whenDt = 2 decades and M = 1 whenDt = 10 decades. The
mean RMSE and 1s standard deviation (SD) for the entire
Southern Ocean is calculated as the areal weighted average
of the latitude bands. In addition, the error bias (EB) is cal-
culated as [Stow et al., 2009]:

EB Dtxð Þ ¼ DCeMLR
anthro Dtxð Þ �DCpredicted

anthro Dtxð Þ ð10Þ

and the absolute percent error (PerErr) is given as:

PerErr Dtxð Þ ¼ DCeMLR
anthro Dtxð Þ �DCpredicted

anthro Dtxð Þ
DCpredicted

anthro Dtxð Þ

�����

����� ð11Þ

where the depth and areal weighted averages of EB(Dtx) and
PerErr(Dtx) are presented for the Southern Ocean (Figure 6)
and depth weighted averages are presented for the global
analysis (Figure 7). Grid points with DCanthro

predicted less than
2 mmol kg−1 are excluded from the PerErr calculation as
these grid points are less than the nominal measurement
error for DIC and this serves to lessen inflated error due to
very small changes in Canthro

predicted. In addition, the PerErr for
grid points with |DCanthro

eMLR (Dtx) − DCanthro
predicted (Dtx)| less

than the measurement threshold, 2 mmol kg−1, are set to
zero. While these corrections act to lessen inflated error in
regions with low Canthro, they may lead to a slight under-
estimate of PerErr. Finally, for the Southern Ocean, only
latitude bands with greater than 25% of grid points
exceeding the 2 mmol kg−1 threshold are included. By a 20
year sampling interval, on average more than 95% of the
grid cells in each latitude band are used (Figure S4).
[24] As the sampling interval increases, the root‐mean

squared error increases (Figure 6) for both the transient
feedback and the transient no‐feedback simulations.
Increasing the sampling interval from 40 to 100 years
increases the RMSE by 100% for the transient no‐feedback
simulation and 120% for the transient feedback simulations.
Similarly, PerErr increases by 17% for both the transient
no‐feedback simulation and transient feedback simulations.
To investigate the impact of temporal variability on the
eMLR method, the same analysis was performed for the
P16S transect using monthly output (January) instead of
decadal averages. Increased temporal variability has little
effect on PerErr for short sampling intervals, slightly
increases PerErr over longer sampling intervals, and does
not change the long‐term trend in either PerErr or RMSE
(Figure S6). The error bias (EB) becomes increasingly

Figure 5. Impact of climate feedbacks on carbon uptake
(mmol kg−1) over a 100 year period calculated as: (feedback
DICt=2090 − feedback DICt=1990) − (no feedback DICt=2090 −
no feedback DICt=1990). The calculation is done using output
from the transient feedback and transient no ‐feedback simu-
lations for the P16S (150°W) transect in the Southern Ocean
are used.
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positive for the transient feedback simulation (Figure 6).
While a positive bias does not become significant over the
21st century, once the prediction interval has reached
80 years, the bias begins to increase rapidly, with larger
values under changing climate than constant climate condi-
tions. The ranges of bias values (as shown by the standard
deviation error bars) also increase more significantly for the
transient climate feedback simulation.
[25] The PerErr results suggest that when Dt is greater

than 20–40 years the percent error in the DCanthro
eMLR estimate

becomes greater than 20% of DCanthro
predicted (Figure 6). In

addition, there appears to be a tendency for the eMLR to
overestimate Canthro as the bias errors are positive for all
sampling intervals in both the transient feedback and tran-
sient no‐feedback cases. This result indicates that estimates
of Canthro uptake in the Southern Ocean using the eMLR
method are only robust for sampling intervals of less than
40 years and that a sampling interval of 20 years or less is
preferable. This is most likely a conservative estimate as we
use decadal means that average sub‐decadal scale variability
and the calculation using monthly output shows a slight
increase in percent error in the DCanthro

eMLR estimate for large
sampling intervals (Figure S6). Furthermore, the CCSM3.1
simulation has relatively weak climate sensitivity compared
to many other coupled climate models and so may under-
estimate secular ocean trends. Applying the eMLR by water
mass reduces the percent error in the DCanthro

eMLR estimate by
5.5% over a 40‐year interval (Text S1). However, the
overall increasing trend in PerErr remains unchanged due to
nonlinear changes in water mass properties (Text S1 and
Figure S5). This strongly suggests that the modeled impact
of secular changes on the performance of the eMLR method
is not an artifact of the way in which the eMLR method was
applied but rather due to an inherent inability of a linear
approach to capture nonlinear trends.
[26] To assess the impact of secular climate trends and

increasing CO2 at a global scale, the analysis was expanded
to the global ocean using the transient feedback simulation.
GlobalDCanthro

eMLR was calculated using equation (8) applied at
the basin scale over the depth range 280–1668 m, global

RMSE at the grid point scale was calculated according to
equation (9), and the percent error was calculated according
to equation (11). The depth weighted average uptake of
Canthro (DCanthro

predicted) for a sampling interval of 30 years is
given in Figure 7a and the RMSE for the eMLR method is
given in Figure 7b. The PerErr value at the grid point scale
for Dt = 30 is shown in Figure 7c. A significant fraction of
the Southern Ocean, Atlantic Ocean, and western Pacific
Ocean as well as much of the eastern tropical and North
Pacific Ocean show percent errors exceeding 20% for a
sampling interval of 30 years. The most substantial errors in
the eMLR estimate occur in the North Atlantic Ocean where
the highest values of DCanthro

predicted are found (Figure 7a) and
PerErr is >45% (Figure 7c). The large errors found in the
tropical Atlantic Ocean and eastern Pacific are likely due to
the presence of multiple water masses or the low penetration
of Canthro into the tropical thermocline, both of which
impact the accuracy of the eMLR method when applied at
the basin scale.

5. Conclusions

[27] Empirical techniques for estimating Canthro uptake by
the ocean from field data assume that natural variability in
the ocean carbon system is limited to seasonal to interannual
scale variability and that the physical and biological state of
the ocean remains unchanged when averaged over long time
periods such that any long‐term changes can be attributed to
Canthro. However, we know that the ocean is undergoing
long‐term, anthropogenically induced, changes in CO2,
temperature, salinity and circulation, which are impacting
oceanic carbon and biogeochemical cycling [Doney, 2010].
If empirical techniques are used to separate the anthropo-
genic carbon signal from a large natural background, non-
linear trends in chemical, physical and biologic properties of
the ocean will diminish our abilities to diagnose Canthro.
[28] Our results indicate that eMLR estimates based on in

situ measurements should not be used to predict Canthro

accumulation over periods greater than 20–40 years, at
which point the error on DCanthro

eMLR will have reached ∼20%

Figure 6. Error estimate forDCanthro
eMLR in the Southern Ocean with varying sampling interval (10–100 years)

for both the transient no‐feedback (gray) and transient feedback (black) transient simulations. (a) Plot of the
root‐mean squared error (RMSE) between the eMLR anthropogenic carbon estimate and the model estimate
(equation (9)). (b) Plot of the percent error in the DCanthro estimate (equation (11)). (c) Plot of the error
bias between the eMLRDCanthro and the model estimate (equation (11)). Error bars represent one standard
deviation of latitudinal bands.
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or greater. As we approach the 30th anniversary of the first
station occupations of WOCE, it is imperative that we
continue to pursue field measurements to detect changes in
Canthro uptake in the ocean and that these measurements
continue at regular intervals of no more than 40 years (and
likely substantially less, closer to 10 years) in order to

maintain a robust estimate of the uptake of anthropogenic
carbon in the ocean. Additionally, studies must continue to
evaluate the residuals of CMLR when calculating eMLR
based predictions to assess if the basic criteria for MLRs are
met. As we continue to emit large quantities of CO2 and
alter atmospheric composition, it is necessary that we

Figure 7. Global estimates of error in DCanthro
eMLR . (a) The depth weighted average DCanthro

predicted for a sam-
pling interval of 30 years. (b) The RMSE for the eMLR method over this sampling interval (equation (9)).
(c) The percent error in DCanthro

eMLR (equation (11)). Stippling denotes regions in which |DCanthro
eMLR (Dtx) −

DCanthro
predicted (Dtx)| is less than 2 mmol kg−1 for greater than 33% of the grid points. In addition, regions

with high percent error (>50%) and low anthropogenic carbon accumulation rates (<8 mmol kg−1 for a
30 year interval) are shaded gray.
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closely monitor the role the ocean can play in moderating
atmospheric CO2 growth rates.
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