1	Root standing crop and chemistry after six years of soil
2	warming in a temperate forest
3	
4	YUMEI ZHOU ¹ , JIANWU TANG ² *, JERRY M. MELILLO ² , SARAH BUTLER ² and
5	JACQUELINE E. MOHAN ³
6	
7	Keywords carbon, nitrogen, root biomass, root diameter, root necromass
8	
9	1. State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology,
10	Chinese Academy of Sciences, Shenyang, 110164, China; 2. The Ecosystems Center,
11	Marine Biological Laboratory, Woods Hole, Massachusetts 02543, USA;
12	3. Odum School of Ecology, University of Georgia, Athens, Georgia 30602, USA
13	
14	*Correspondence author Email: jtang@mbl.edu; Tel: 508 289 7162; Fax: 508 457 1548
15	The Ecosystems Center, Marine Biological Laboratory, Woods Hole, Massachusetts
16	02543, USA
17	
18	RUNNING HEAD: ROOT MASS AND CHEMISTRY
19	

20	Summary Examining the responses of root standing crop (biomass and necromass)
21	and chemistry to soil warming is crucial for understanding root dynamics and
22	functioning in the face of global climate change. We assessed the standing crop, total
23	nitrogen (N) and carbon (C) compounds in tree roots and soil net N mineralization over
24	the growing season after six years of experimental soil warming in a temperate deciduous
25	forest in 2008. Roots were sorted into four different categories: live and dead fine roots
26	(\leq 1 mm in diameter) and live and dead coarse roots (1-4 mm in diameter). Total root
27	standing crop (live plus dead) in the top 10 cm of soil in the warmed area was 42.5%
28	$(378.4 \text{ vs.} 658.5 \text{ g m}^{-2})$ lower than in the control area, while the live root standing crops
29	in the warmed area was 62% lower than in the control area. Soil net N mineralization
30	over the growing season increased by 79.4% in the warmed relative to the control area.
31	Soil warming did not significantly change the concentrations of C and carbon
32	compounds (sugar, starch, hemicellulose, cellulose, and lignin) in the four root categories.
33	However, total N concentration in the live fine roots in the warmed area was 10.5% (13.7
34	vs. 12.4 mg g ⁻¹) higher and C:N ratio was 8.6% (38.5 vs. 42.1) lower than in the control
35	area. The increase in N concentration in the live fine roots could be attributed to the
36	increase in soil N availability due to soil warming. Net N mineralization was negatively
37	correlated to both live and dead fine roots in the mineral soil that is home to the majority
38	of roots, suggesting that soil warming increases N mineralization, decreases fine root
39	biomass, and thus decreases carbon allocation belowground.

41 Keywords: carbon, nitrogen, root biomass, root diameter, root necromass.

42

43 Introduction

44	Tree roots generally constitute between 15 and 30% of the total tree biomass and
45	consume large portions of annual net primary production in forest ecosystems (Bowden et
46	al. 1993, Janssens et al. 2002, Persson 2002). Since tree roots play a critical role in
47	nutrient and water uptake, carbon and nutrient cycling, storage of carbohydrates, and
48	synthesis of growth regulators (Jackson et al. 1997, López et al. 2001), the climate
49	change impact on tree roots may in turn influence the structure and function of entire
50	ecosystems.
51	Previous studies have found that climate warming can change the root function
52	(Pregitzer et al. 2000), dynamics (Hendrick and Pregitzer 1993, Forbes et al. 1997, Fitter
53	et al. 1999, King et al. 1999, Gill and Jackson 2000, Tierney et al. 2003, Majdi and
54	Öhrvik 2004, Wan et al. 2004), morphology, mass and distribution (Björk et al. 2007,
55	Bronson et al. 2008). For example, higher soil temperature increased the root production
56	and mortality associated with soil nitrogen (N) availability (King et al. 1999; Pregitzer et
57	al. 2000; Majdi and Ohrik 2004). In contrast to root production, root standing crop
58	showed different responses to elevated temperature depending on species, research site,
59	heating methods. In a black spruce plantation, live fine root biomass (< 2 mm diameter)
60	in the soil warming plots was decreased by 24% to 46% (Bronson et al. 2008). Elevated
61	temperature decreased fine root mass of maple trees by 34%, 53% and 43% for size class

62	< 0.5 mm, 1.0-2.0 mm, and < 2.0 mm (Wan et al. 2004). The root biomass of <i>Agrostis</i>
63	scabra and A. stolonifera grown at elevated temperature decreased by 8% and 15%,
64	respectively (Lyons et al. 2007). Inconsistently with above studies, it was reported that
65	the fine roots (< 4 mm diameter) and total root biomass either increased slightly with
66	increasing temperature (Allen and Vu 2009), or indicated no significant change with
67	temperature (Kandeler et al. 1998).

While changes in root productivity and biomass have been correlated to changes in 68 temperature, another factor also influences root productivity and biomass, that is, soil N 69 availability, which also responds to temperature. Multiple studies have shown that fine 70 71 root biomass decreases with increasing soil N (Nadelhoffer 2000, Powers et al. 2005, Lee et al. 2007). It has been observed that warming increases the rate of N mineralization in 72 73 the soil, affecting soil N availability (Peterjohn et al. 1994, Lükewille and Wright 1997, Melillo et al. 2002, 2011, Strömgren and Linder 2002). In a meta-analysis of soil 74 warming experiments, Rustad et al. (2001) found that warming increased net N 75 76 mineralization rate by 46%. In a decade-long soil warming experiment at the Harvard Forest, Melillo et al. (2002) reported that constant soil warming at 5 °C above ambient 77 resulted in a cumulative increase in N availability of 41 g m^{-2} . Therefore, we expect that 78 79 root biomass decreases with warming-induced increases in soil N availability. Besides 80 temperature and N availability, soil moisture is also a key factor that has been found to 81 affect root mass (Meier and Leuschner 2008). For example, Dijkstra and Cheng (2007) 82 found that root biomass increased with increased soil moisture content in a European

83	forest. The study observing a decrease in the fine root biomass in the drier stands
84	simultaneously found decreased fine root diameter, which may indicate that fine roots
85	may compensate for the loss in root biomass by increased uptake area or uptake rate
86	(Meier and Leuschner 2008).
87	In addition to biomass and productivity of fine roots, soil warming will likely affect
88	carbon and nitrogen composition of fine roots. Root tissue chemistry plays a key role in
89	controlling metabolic and decomposition dynamics of roots (McClaugherty et al. 1982,
90	King et al. 2005), regulating soil microbial activity (Zak et al. 2000), and determining
91	carbon inputs into soil (Brown et al. 2007). Root N concentration has been emphasized
92	more than other chemical compounds because it is significantly correlated with root
93	growth (Valverde-Barrantes et al. 2007), root respiration (Pregitzer et al. 1998, Burton et
94	al. 2002), and potential decomposition dynamics (Hendricks et al. 2000). Increased soil
95	temperatures are linked to increased N concentration of roots due to the kinetic increase
96	of root activities and greater N availability at higher temperature (Zogg et al. 1996,
97	BassiriRad 2000, Wan et al. 2004). A higher root N concentration is required for enzyme
98	synthesis and activity, resulting in more nutrient uptake (Nadelhoffer 2000).
99	Soluble carbohydrates, holocellulose (hemicellulose and cellulose) and lignin
100	represent three root carbon pools that are associated with specific root functions.
101	Uselman et al. (2000) found that warmer temperature significantly increased root
102	exudation of organic carbon. This indicates that warming might alter the carbon
103	compounds of roots and soil carbon storage. Furthermore, increased root respiration and

104	root turnover rates due to soil warming might potentially change root carbon compounds
105	and the relationship between carbon and nitrogen. Burton et al. (2008) reported that root
106	respiration rates increased with rising soil temperatures, consequently leading to
107	decreases in carbon available for biomass construction. If it is true that fine root turnover
108	rates and soil N availability increase with increased temperature, more carbon will be
109	consumed in growth and respiration and less will be allocated to structural costs
110	(Nadelhoffer 2000).
111	Our knowledge in understanding the interactions between root standing crop, soil N
112	mineralization and root chemistry in response to warming is very limited. Here we use an
113	in situ experimental warming to study the effects of soil warming on biomass and
114	necromass of hardwood forest roots with different diameters, and changes in carbon
115	compounds and N concentration in the four different root fractions, including live fine
116	roots (≤ 1 mm in diameter), live coarse roots (1-4 mm in diameter), dead fine roots and
117	dead coarse roots. We also examine the relationships between changes in fine roots, N
118	availability, soil temperature and moisture. We hypothesize that 1) soil warming
119	decreases root standing crop; 2) the soil N mineralization is negatively correlated with
120	root mass; and 3) the N concentration in roots is increased mainly due to increased soil N
121	availability.
122	

123 Materials and Methods

127	The study was conducted in a warmed area and an adjacent control area, each 30 by 30
128	meters, established in 2002 with heating commencing in May 2003 in the Barre Woods
129	tract of Harvard Forest, Petersham, Massachusetts, USA (Melillo et al 2011). The highest
130	mean weekly air temperature is about 20 $^{\circ}$ C and occurs in July, and the lowest, about
131	-6 °C, occurs in January. The average annual precipitation is approximately 1080 mm
132	(Melillo et al. 2002). Each area is divided into 5-by-5 meter subplots. The soil is warmed
133	by resistance heating cables buried at a 10 cm depth and spaced 20 cm apart. The soil
134	temperature in the warmed area is maintained at 5 °C above the adjacent control area. For
135	a detailed description of the soil warming system, see Melillo et al. (2002, 2004). The
136	study areas are within a mixed hardwood stand dominated by Quercus rubra and Acer
137	rubrum, with lesser components of Quercus velutina and Fraxinus Americana. The
138	majority of trees in the study area have naturally regenerated after a major hurricane in
139	1938. The average tree diameter at breast height was 19.3 cm and the stand had a basal
140	area of approximately 31 m ^{2} ha ^{-1} in 2008.
141	This larger warming experiment (30 m by 30 m) follows an earlier warming
142	experiment established in 1991 in the Harvard Forest with multiple small (6 m by 6 m)

143 warmed plots, disturbance control plots (with buried cables but no warming), and

- 144 undisturbed control plots (no buried cable, no warming) (Melillo et al. 2002). Results
- 145 from the smaller warming experiment indicated that soil disturbance caused by the

146	installation of heating cables had no significant effects on soil temperatures and only
147	minor and insignificant impacts on soil moisture, shrub growth, and nitrogen
148	mineralization. This larger warming experiment has an advantage against the previous
149	smaller one in that the plot can be large enough to include all roots from trees inside the
150	warmed area. Due to the high installation and maintenance costs of this large-scale
151	warming experiment, we do not have replicate areas, and nor disturbance control areas.
152	However, we made pre-treatment measurements in the present warmed and control areas
153	in 2002, and found that there were no significant differences in tree characteristics and
154	key soil processes between the two areas such as tree biomass, woody increment, stand
155	basal area, species composition, soil respiration, and nitrogen mineralization rates. The
156	soil temperature at 5 cm depth measured during the sampling period is shown in Figure 1,
157	indicating a consistent increase in soil temperature in the warmed area. For the 2008
158	growing season, the average gravimetric soil moisture in the organic layer was 56% in the
159	heated and 66% in the control horizon. However, in the mineral horizon, the soil moisture
160	was 36% in the heated and 37% in the control areas.
161	
162	Figure 1 here
163	
164	Separation and classification of roots
165	

166 Soil cores were collected six times at approximately monthly intervals during the

167	growing season from April to November 2008 (April 29, May 27, June 25, July 28,
168	September 2 and November 4) from eight subplots within the warmed area and nine
169	subplots within the control area. Soil cores of 10 cm in diameter were taken to a 10 cm
170	depth to cover the most active tree roots in the organic layers and upper mineral layers.
171	The average organic layer depth was 1.4 cm, so the average depth of mineral soil layer
172	sampled in each core was 8.6 cm. Gravimetric moisture content was measured for each
173	soil core. The average bulk density was 0.373 g cm ⁻³ in the organic layer and 0.781 g cm ⁻³
174	in the mineral layer. After weighing, deionized water was put in each bag, and the bags
175	were stored between 0 and 4°C until sorting.
176	We used a 1 mm diameter threshold to define fine roots (≤ 1 mm) and coarse roots (1
177	to 4 mm). Only a small amount of root material was over 3 mm in diameter and roots > 4
178	mm in diameter were not found in this study. Root diameter was measured using a digital
179	caliper. The soil was put into a small tub with some water and roots were separated from
180	the soil with forceps. By frequently changing water and rinsing, we were able to pick up
181	almost all of the roots by hand. When small roots were connected to a larger root, they
182	were cut out and separated into different size classes.
183	Fine roots and coarse roots were separated into live and dead categories based on

visible morphological characteristics, mainly color and strength. Detailed information on 184

- how to judge live roots and dead roots has been described in the literature (Vogt and 185
- Persson 1991, Matamala and Schlesinger 2000, John et al. 2002, Persson and Stadenberg 186
- 2009). Roots from different tree species were not distinguished, but herbaceous roots 187

188	were excluded. Herbaceous roots are white, light and succulent, while tree roots are
189	slightly brown or yellow and well branched. After sorting, live and dead roots of different
190	size classes were dried at 60 °C for at least 48 h and then weighed.
191	
192	Chemical measurements
193	
194	Since the amount of root material in each sample class was too small for chemical
195	analysis, we pooled roots from all subplots after sorting and weighing. This gave us
196	monthly chemical composition data of four categories (live fine roots, live coarse roots,
197	dead fine roots, and dead coarse roots) from each area.
198	Root samples were analyzed for total soluble sugars, starch, hemicellulose, cellulose,
199	lignin, total C and total N. Total C and N were determined by combustion in a CHN
200	analyzer (PerkinElmer 2400 Series, Waltham, Massachusetts 02451, USA). The
201	concentrations of the carbon compounds were measured in a sequential extraction
202	process with anthrone-sulfuric acid method (Gao 2006). Samples submerged in deionized
203	water were extracted in a boiling water bath twice. The supernatant was used to analyze
204	the concentration of total soluble sugars, and then the residues were extracted with hot
205	deionized water and hydrolyzed with perchloric acid to determine starch concentration.
206	After sugars and starch were removed, the residues were hydrolyzed with hydrochloric
207	acid for three hours in a boiling water bath to analyze hemicellulose concentration. The
208	residues in the extraction tubes were washed twice with ethanol and acetone to remove

209	lipids and pigments. Then the residues were dried and digested with concentrated sulfuric
210	acid in boiling water bath for five hours to determine cellulose concentration. All final
211	reducing sugar was measured colorimetrically using the anthrone-ethyl acetate method
212	with a spectrophotometer at 630 nm (Shimadzu UV-1201, Shimadzu Scientific
213	Instruments, Columbia, MD, USA). Lignin, an acid-insoluble structural component, was
214	assessed by the weight difference.
215	

216 N mineralization

217

We measured net nitrogen mineralization rates using the standard in situ buried bag 218 219 method (Eno 1960) approximately every five weeks from April through November 2008. 220 We took two 10 cm deep soil cores from each of the ten subplots per treatment during each sampling period. We designated one core as the "initial" sample, which was split 221 into organic and mineral horizons and each horizon was transported to the laboratory for 222 223 analysis. The second core, designated as the "final" sample, was placed intact inside a gas-permeable polyethylene bag and positioned back in the ground. The 'final' bags were 224 incubated during April-November and then transported to the lab for analysis. 225

226 In the laboratory, soils were separated into organic and mineral layers and sieved through a 5.6 mm screen to remove rocks and roots. Approximately 10 grams of soil was 227 placed in 100 ml of 2M KCl, incubated for 36 hours, and filtered. The extracts were 228 analyzed for nitrite/nitrate (NO₂^{-/} NO₃⁻-N) and ammonium (NH₄⁺-N) using a Lachat 229

230	QuikChem FIA+ 8000 Series Flow Injection Analyzer with Omnion 3.0 software (Lachat
231	Instruments Inc., Loveland, CO, USA). Using these techniques, the detection limit for
232	NO_2^{-1}/NO_3^{-1} -N was 0.02 mg L ⁻¹ and the detection limit for NH_4^{+} -N was 0.005 mg L ⁻¹ .
233	
234	Statistical Analyses
235	
236	The statistical analysis was conducted with SPSS 13.0 (SPSS Inc. Chicago, IL, USA).
237	Effects of soil temperature, soil depth and sample dates on root mass were tested using
238	three-way ANOVA. The effect of soil temperature on the ratio of biomass to necromass
239	from different soil fractions was analyzed using a one-way ANOVA. We used
240	paired-sample T-tests to analyze the difference in total N, total C and all carbon
241	compounds between warming and control areas. We conducted Spearman's correlation
242	between root mass, net mineralization and soil moisture data across each sample location
243	after these data were averaged over the growing season.
244	
245	Results
246	
247	Changes in root mass
248	
249	Warming decreased live plus dead root mass in the upper 10 cm of soil compared with
250	the control (Tables1, 2). Significant decreases in both live and dead root mass between

251	warmed and control areas were confined to the mineral soil ($P < 0.001$) (Table 1). No
252	significant seasonal change in total root mass and four root categories was found from
253	April to November (Table 2, Figure 2).
254	
255	Table 1 here
256	Table 2 here
257	Figure 2 here
258	
259	Live root mass – Relative to the control, soil warming resulted in a significant
260	decrease in live root biomass, with a 61.9% decline in fine root biomass and a 61.1%
261	decrease in coarse root biomass (Table 1).
262	Dead root mass – The necromass in the warmed area was significantly lower than in
263	the control area (242.3 g m ⁻² vs. 304.6 g m ⁻²) (Table 1). The fine root necromass in the
264	warmed area was 22.7% lower than in the control area. Coarse root necromass was not
265	significantly affected by soil warming (Table 2).
266	Ratio of live to dead fine roots - When we aggregated all live roots into one pool
267	and dead roots into another (regardless of root diameter) and examined the ratios of live
268	to dead roots, soil warming led to significantly lower ratios in the organic layer, mineral
269	layer, and organic plus mineral layer relative to the control (Table 3). No significant
270	differences were found in the ratios of root biomass to necromass of fine roots in the
271	organic layer, but there was a trend toward a decreased ratio in the warmed area relative

272	to the control (Table 3). Soil warming significantly decreased the ratios of fine root
273	biomass to necromass by 61.5% in the mineral soil and 50.0% in the organic plus mineral
274	soil relative to the control area (Table 3). The ratios of coarse root biomass to necromass
275	were not significantly affected by higher soil temperature.
276	
277	Table 3 here
278	
279	Changes in C and N
280	
281	Soil warming significantly increased the total N concentration in live fine roots by 10.5%
282	(13.7 vs. 12.4 mg g ⁻¹) compared with the control area ($P < 0.05$, Table 4). With no change
283	in C concentration, this led to a significant decline in C:N ratio (-8.6%) (38.5 vs. 42.1) (P
284	< 0.05, Table 4) since there was no significant difference in total C concentration in live
285	fine roots between the warmed and control areas. There were no significant effects of soil
286	warming on total N concentration and C:N ratio in the other root classes.
287	There were no significant differences in the concentrations of total C or any of the
288	carbon compounds analyzed in four root categories in the warmed area compared with
289	the corresponding chemistry observed in the control area ($P > 0.05$). Although soil
290	warming resulted in lower concentrations of total soluble sugars in four different root
291	categories and higher starch concentrations in live roots compared with control, the
292	differences were not statistically significant. The total nonstructural carbohydrate content

293	(TNC, the sum of soluble sugars and starch) of live roots, especially live coarse roots,
294	was significantly higher than that of dead roots, regardless of treatment (Table 4). Since
295	the absolute concentration of hemicellulose in roots was very low (less than 10 mg g^{-1})
296	and hemicellulose and cellulose have similar structure, we combined hemicellulose and
297	cellulose. The holocellulose (hemicellulose plus cellulose) concentrations in live roots in
298	the warmed area were very close to those in the control area. However, soil warming
299	resulted in a decreased trend in holocellulose concentration in dead roots relative to the
300	control. Soil warming caused a slight increase in the lignin concentrations in live fine,
301	live coarse and dead coarse roots compared with the control area although the difference
302	was not statistically significant.
303	
304	Table 4 here
305	
306	Soil N mineralization
307	
308	Soil net N mineralization showed pronounced seasonal patterns during the sampling
309	period in both warmed and control areas, with highest values in July and lowest values in
310	November (Table 2, Figure 3). Net N mineralization was also affected by warming
311	treatment and soil layer (Table 2, Figure 3). Net N mineralization in the upper mineral
312	soil was over four times higher than that in the organic layer for both warmed and control

314	60.9% (13.3 vs. 8.3 kg N ha ⁻¹) in the organic layer, by 83.7% (65.2 vs. 35.5 kg N ha ⁻¹) in
315	the mineral layer and 79.4% (78.5 vs. 43.7 kg N ha ⁻¹) in the organic plus upper mineral
316	layer compared with control area.
317	
318	Figure 3 here
319	
320	Relationship among soil N mineralization, root mass, soil temperature and moisture
321	
322	Soil net nitrogen mineralization was significantly correlated (negatively) to both fine root
323	biomass ($P = 0.0018$, correlation coefficient = -0.70) and fine root necromass ($P = 0.0093$,
324	correlation coefficient = -0.61) in the mineral soil that is home to the majority of root
325	mass. In the mineral soil, moisture was significantly correlated to fine root necromass (P
326	= 0.0467, correlation coefficient = 0.49), but not to other root categories. The soil net N
327	mineralization in the warmed and control areas was linearly correlated with soil
328	temperature, and the slope of the net mineralization against temperature was higher in the
329	warmed area than that in the control area (Figure 4).
330	
331	Figure 4 here
332	
333	Discussion
334	
	16

Fine roots (≤ 1 mm) made up a majority of the root biomass in the heated and control areas to a depth of 10 cm. We did not find any roots greater than 4 mm in diameter due to shallow depth of our sampling. Our results indicate that soil warming does not alter seasonal patterns of root biomass and necromass.

The root mass in this study is within the range of global estimations of root mass in 341 other forest ecosystems. Jackson et al. (1997) estimated that the average total and live 342 343 fine root ($\leq 2 \text{ mm}$ in diameter) mass in the upper 30 cm of soil of global temperate deciduous forest were 780 g m⁻² and 440 g m⁻². The two values are a little higher than the 344 values in the control area (658.5 and 354.0 g m^{-2}) because the sampling depth was only 345 346 10 cm in our study. However, the percentage of live roots to total root mass is similar, 56% for global average and 54% in the control area. In the warmed area, the absolute 347 values of total and live fine roots and the percentage of live roots are significantly lower 348 349 than the average global values or our control. Soil warming resulted in a more than 60% decrease in fine root or coarse root biomass, while fine root and coarse root necromass 350 decreased by less than 23%, consistent with previous research (Bronson et al. 2008). 351 352 Results from our study support the first hypothesis that soil warming leads to a decrease in root standing crop, but the decline is probably not the direct effect of elevated 353 soil temperature. Correlation analysis shows that decreased fine root mass is mainly 354 355 attributed to the increase in soil N mineralization rates and thus soil N availability, and

therefore support our second hypothesis. The carbon allocation theory indicates that 356 plants maximize growth rates by partitioning carbon to optimize the capture of limiting 357 358 resources (Tilman 1988, Cannell and Dewar 1994, McConnaughay and Coleman 1999). 359 When soil N availability increases by warming, the demand for carbon allocation to roots decreases, leading to a decline in fine roots, the functional tissue for N uptake. Here we 360 361 used net N mineralization rates to indicate soil N availability, but we acknowledge that plant roots and associated mycorrhizal fungi may directly use organic N such as amino 362 acid (Schimel and Bennett 2004). Given the difficulty in directly measuring total N 363 364 availability, N mineralization remains a useful index to indicate N availability (Schimel and Bennett 2004). In addition, the seasonal pattern of soil N mineralization in the 365 warmed and control areas is positively correlated with soil temperature, which is 366 367 consistent with many previous publications (Hill and Shackleton 1989, Tietema and Verstraten 1992, Owen et al. 2003, Zak et al. 1999, Rustad et al. 2001, Strömgren and 368 Linder 2002, Pajuste and Frey 2003) and this research site at Harvard Forest (Melillo et 369 370 al. 2002, 2011).

Compared with N availability changed by soil warming, soil moisture does not strongly affect live fine root mass. Although gravimetric soil moisture was lower in the organic horizon in the warmed area compared to the control (56% in the warmed area versus 66% in the control), there was little difference between the soil moistures measured in the upper mineral horizon in the warmed and control areas (36% and 37% respectively). Since significant decreases in live and dead root mass between warmed and

377 control areas were confined to the mineral soil, we have concluded that the

378 warming-induced change in soil moisture had little effect on root mass in this temperate

379 forest with average annual precipitation of 1080 mm. However, it has been found in other

studies that root mass decreases with soil water availability (Cavelier et al. 1999;

381 Metcalfe et al. 2008; Vanguelova et al. 2005).

382 The ratio of live to dead root mass is considered as a useful index of root turnover (Persson and Stadenberg 2009). The biomass:necromass ratio of fine roots has been 383 reported to be 0.4-3.0 in a beech and Norway spruce stand (Stober et al. 2000), 1.4-2.2 in 384 385 a coniferous forest (Persson and Stadenberg 2009), and 0.3-2.9 collected from various natural stands (Persson 2000). In the present study, we found that the biomass:necromass 386 of fine roots ranged from 1.0-1.3 in the control area and 0.5-0.7 in the warmed area, 387 388 within the range of previous studies. If the low biomass:necromass ratio indicates reduced fine root longevities (Leuschner et al. 2004, Persson and Stadenberg 2009), the 389 significant decrease in the biomass:necromass ratio in the warmed area implies that fine 390 391 roots at elevated temperature have a higher turnover rate relative to the control. As expected, we also found that the biomass:necromass ratios of fine roots were lower than 392 those of coarse roots for both warming and control areas, since coarse roots have a longer 393 394 life span or a lower turnover rate (Gill and Jackson 2000, Gill et al. 2002, King et al. 2002). 395

396

397 *Effects of warming on root chemistry*

399	The most pronounced changes in the chemical composition of roots in the warmed area
400	are the increased N concentration and the decreased C:N ratio in the live fine roots. It has
401	been observed in some forests that fine root N concentration increases with increased soil
402	N availability (Majdi and Rosengren-Brinck 1994, Zogg et al. 1996, Högberg et al. 1998,
403	Burton et al. 2000). In addition to inorganic N, trees also have capability to directly take
404	up organic N such as amino acid (Schimel and Bennett 2004, Finzi and Berthrong 2005).
405	If warming stimulates root activity, we reason organic N uptake via live fine roots will be
406	increased. Thus, our third hypothesis is supported only for the live fine roots.
407	In contrast to nitrogen, total C of roots were not significantly changed with soil
408	warming. The ratio of C:N is an important predictor of root longevity or decomposition
409	rates (Müller et al. 1988, Entry et al. 1998, Hishi and Takeda 2005, Withington et al.
410	2006). In the current study, only the C:N ratios of live fine roots were decreased by soil
411	warming (-8.6%) compared to the control area due to the significant increases in total N
412	and no change in total C. The decrease in C:N ratios with warming, indicating an
413	increase in root mortality (Withington et al. 2006), is consistent with our earlier
414	discussion that soil warming decreases root longevity based on the biomass:necromass
415	ratio. The C:N ratios found in our study are between 38 and 92, a range consistent with
416	previously published values. For example, Jackson et al. (1997) reported that the global
417	average is 42 for live roots less than 2 mm in diameter. The C:N ratio is 22 to 32 in
418	tropical tree species (Valverde-Barrantes et al. 2007). Gordon and Jackson (2000) found

419	the C:N was 43 in live roots < 2 mm in diameter and 79 in live roots 2-5 mm in diameter
420	by analyzing 56 published studies. Relatively higher C and lower N concentrations in
421	coarse roots resulted in higher C:N ratios (63 in dead coarse roots and 92 in live coarse
422	roots) in our study. In the control area, we found no difference in the C:N ratio of live
423	and dead fine roots, which is consistent with the results of Valverde-Barrantes et al.
424	(2007).
425	There are no significant changes in nonstructural and structural carbon
426	concentrations of roots due to soil warming. Thus, the lack of change in chemical
427	composition of roots suggests that the intrinsic decomposition rate of dead roots may not
428	be affected by warming. However, kinetic theory indicates that higher soil temperature
429	increases the decomposition rate as an external driver (Fierer et al. 2005, Davidson and
430	Janssens 2006). A confirmed conclusion on temperature sensitivity of root decomposition
431	in response to warming cannot be reached by our study since soil moisture, carbon
432	availability, microbial community and other conditions may also influence temperature
433	sensitivity of decomposition (Tang et al. 2005, Tang and Baldocchi 2005, Davidson and
434	Janssens 2006).
435	Long-term soil warming experiments show that soil respiration increases over the
436	first few years of soil warming, and then the stimulatory effect decreases due to the
437	decrease in the labile soil carbon pool or microbial acclimation to warming (Luo et al.

- 438 2001, Melillo et al. 2002). Our results of an approximately 40% decline in root standing
- 439 crop and previous reports of decreased root metabolic capacity (Burton et al. 2008) due

440	to soil warming suggest that the contributions of root respiration to total soil respiration
441	decreases in response to warming. To understand the mechanisms underlying the
442	belowground dynamics in response to warming, root respiration, root production and
443	turnover, microbial decomposition using various pools of carbon, and microbial
444	community composition should be further studied. Future soil warming experiments
445	could involve manipulation of soil moisture as well because these two environmental
446	factors are so closely related.

448 Acknowledgements

We would like to express special gratitude to Matthew Erickson for the help in using
CHN analyzer and to Don Burnette for lab work. We thank Lifen Jiang and Junqiang
Zheng for the suggestion of statistic analysis. We also thank Rose Smith and Lindsay
Scott for revising the final version of the manuscript.

453

454 Funding

- 455 This study was funded by the US National Science Foundation (NSF-AGS-1005663) and
- 456 the Marine Biological Laboratory (to JT), China Scholarship Council (to YZ), Harvard
- 457 Forest Long Term Ecological Research (NSF-DEB-0620443) and the National Institute
- 458 for Climate Change Research (DOE-DE-FCO2-06-ER64157) (to JM).

References

- Allen, L.H. and J.C.V. Vu. 2009. Carbon dioxide and high temperature effects on growth of young orange trees in a humid, subtropical environment. Arg. For. Meteorol. 149: 820–830.
- BassiriRad, H. 2000. Kinetics of nutrient uptake by roots: responses to global change. New Phytol. 147: 155–169.
- Björk, R.G., H. Majdi, L. Klemedtsson, L. Lewis-Jonsson and U. Molau. 2007. Long-term warming effects on root morphology, root mass distribution, and microbial activity in two dry tundra plant communities in northern Sweden. New Phytol. 176: 862–873.
- Bowden, R.D., K.J. Nadelhoffer, R.D. Boone, J.M. Melillo and J.B. Garrison. 1993. Contributions of aboveground litter, belowground litter, and root respiration to total soil respiration in a temperate mixed hardwood forest. Can. J. For. Res. 23: 1402– 1407.
- Bronson, D.R., S.T. Gower, M. Tanner, S. Linder and I.V. Herk. 2008. Response of soil surface CO₂ flux in a boreal forest to ecosystem warming. Glob. Change Biol. 14: 856–867.
- Brown, A.L.P., F.P. Day, B.A. Hungate, B.G. Drake and C.R. Hinkle. 2007. Root biomass and nutrient dynamics in a scrub-oak ecosystem under the influence of elevated atmospheric CO₂. Plant Soil 292: 219–232.

Burton, A.J., J.M. Melillo and S.D. Frey. 2008. Adjustment of forest ecosystem root

respiration as temperature warms. J. Integr. Plant Biol. 50: 1467-1483.

- Burton, A.J., K.S. Pregitzer and R.L. Hendrick. 2000. Relationships between fine root dynamics and nitrogen availability in Michigan northern hardwood forests. Oecologia 125: 389-399.
- Burton, A.J., K.S. Pregitzer, R.W. Ruess, R.L. Hendrick and M.F. Allen. 2002. Root respiration in North American forests: effects of nitrogen concentration and temperature across biomes. Oecologia 131: 559–568.
- Cannell, M.G.R. and R.C. Dewar. 1994. Carbon allocation in trees a review of concepts for modeling. Adv. Ecol. Res. 25:59–104.
- Davidson, E.A. and I.A. Janssens. 2006. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440: 165–173.
- Cavelier, J., S.J. Wright and J. Santamaría 1999. Effects of irrigation on litterfall, fine root biomass and production in a semideciduous lowland forest in Panama. Plant Soil 211: 207-213.
- Dijkstra, F.A. and W. Cheng. 2007. Moisture modulates rhizosphere effects on C decomposition in two different soil types. Soil Biol. Biochem. 39: 2264–2274.
- Eno, C.F. 1960. Nitrate production in the field by incubating the soil in polyethylene bags. Soil Sci. Soc. Amer. Proc. 24: 277–279.
- Entry, J.A., G.B. Runion, S.A. Prior, R.J. Mitchell and H.H. Rogers. 1998. Influence of CO₂ enrichment and nitrogen fertilization on tissue chemistry and carbon allocation in longleaf pine seedlings. Plant Soil 200: 3–11.

- Fierer, N., J.M. Craine, K. McLauchlan and J. Schimel. 2005. Litter quality and the temperature sensitivity of decomposition. Ecology 86: 320–326.
- Finzi, A.C. and S.T. Berthrong. 2005. The uptake of amino acids by microbes and trees in three cold-temperature forests. Ecology 86: 3345–3353.
- Fitter, A.H., G.K. Self, T.K. Brown, D.S. Bogie, J.D. Graves, D. Benham and P. Ineson. 1999. Root production and turnover in an upland grassland subjected to artificial soil warming respond to radiation flux and nutrients, not temperature. Oecologia 120: 575-581.
- Forbes, P.J., K.E. Black and J.E. Hooker. 1997. Temperature-induced alteration to root longevity in Lolium perenne. Plant Soil 190: 87–90.
- Gao, J.F. 2006. Experimental guidance for plant physiology. Higher Education Press, Beijing, pp 144–148.
- Gill, R.A., I.C. Burke, W.K. Lauenroth and D.G. Milchunas. 2002. Longevity and turnover of roots in the shortgrass steppe: influence of diameter and depth. Plant Ecol. 159: 241-251.
- Gill, R.A. and R.B. Jackson. 2000. Global pattern of root turnover for terrestrial ecosystems. New Phytol. 147: 13–31.
- Gordon, W.S. and R.B. Jackson. 2000. Nutrient concentration in fine roots. Ecology 81: 275–280.
- Hendrick, R.L. and K.S. Pregitzer. 1993. Patterns of fine root mortality in two sugar maple forest. Nature 361: 59-61.

- Hendricks, J.J., J.D. Aber, K.J. Nadelhoffer and R.D. Hallett. 2000. Nitrogen controls on fine root substrate quality in temperate forest ecosystems. Ecosystems 3: 57–69.
- Hill, A.R. and M. Shackleton. 1989. Soil N mineralization and nitrification in relation to nitrogen solution chemistry in a small forested watershed. Biogeochemistry 8: 167– 184.
- Hishi, T. and H. Takeda. 2005. Dynamics of heterorhizic root systems: protoxylem groups within the fine-root system of *Chamaecyparis obtuse*. New Phytol. 167: 509–521.
- Högberg, P., L. Högbom and H. Schinkel. 1998. Nitrogen related root variables of trees along an N-deposition gradient in Europe. Tree Physiol. 18: 823–828.
- Jackson, R.B., H.A. Mooney and E.-D. Schulze. 1997. A global budget for fine roots biomass, surface area and nutrient contents. Proc. Nat. Acad .Sci. USA 94: 7362– 7366.
- Janssens, I.A., D.A. Sampson, J. Curiel-Yuste, A. Carrara and R. Ceulemans 2002. The carbon cost of fine root turnover in a Scots pine forest. For. Ecol. Manage 168: 231– 240.
- John, B., H.N. Pandey and R.S. Tripathi. 2002. Decomposition of fine roots of *Pinus kesiya* and turnover of organic matter, N and P of coarse and fine pine roots and herbaceous roots and rhizomes in subtropical pine forest stands of different ages. Biol. Fert. Soils 35: 238–246.
- Kandeler, E., D. Tscherko, R.D. Bardgett, P.J. Hobbs, C. Lampichler and T.H. Jones. 1998. The response of soil microorganisms and roots to elevated CO_2 and 26

temperature in a terrestrial model ecosystem. Plant Soil 202: 251-262.

- King, J.S., T.J. Albaugh, H.L. Allen, M. Buford, B.R. Strain and P. Dougherty. 2002.Below-ground carbon input to soil is controlled by nutrient availability and fine root dynamics in loblolly pine. New Phytol. 154: 389–398.
- King, J.S., K.S. Pregitzer and D.R. Zak. 1999. Clonal variation in above- and below-ground growth responses of *Populus tremuloides* Michaux: Influence of soil warming and nutrient availability. Plant Soil 217: 119–130.
- King, J.S., K.S. Pregitzer, D.R. Zak, W.E. Holmes and K. Schmidt. 2005. Fine root chemistry and decomposition in model communities of north-temperate tree species show little response to elevated atmospheric CO₂ and varying soil resource availability. Oecologia 146: 318–328.
- Lee, E.H., D.T. Tingey, P.A. Beedlow, M.G. Johnson and C.A. Burdick. 2007. Relating fine root biomass to soil and climate conditions in the Pacific Northwest. For. Ecol. Manage 242: 195–208.
- Leuschner, C., D. Hertel, I. Schmid, O. Koch, A. Muhs and D. Hölscher. 2004. Stand fine root biomass and fine root morphology in old-growth beech forests as a function of precipitation and soil fertility. Plant Soil 258: 43–56.
- López, B., S. Sabaté and C.A. Gracia. 2001. Annual and seasonal changes in fine root biomass of a *Quercus ilex* L. Forest. Plant Soil 230: 125–134.

- Lükewille, A. and R.F. Wright. 1997. Experimentally increased soil temperature causes release of nitrogen at a boreal forest catchment in southern Norway. Glob. Change Biol. 3: 13–21.
- Luo, Y.Q., S.Q. Wan, D.F. Hui and L.L. Wallace. 2001. Acclimatization of soil respiration to warming in a tall grass prairie. Nature 413: 622–625.
- Lyons, E.M., J. Pote, M. DaCosta and B. Huang. 2007. Whole-plant carbon relations and root respiration associated with root tolerance to high soil temperature for Agrostis grasses. Environ. Exp. Bot. 59: 307–313.
- Majdi, H. and J. Öhrvik. 2004. Interactive effects of soil warming and fertilization on root production, mortality, and longevity in a Norway spruce stand in Northern Sweden. Glob. Change Biol. 10: 182–188.
- Majdi, H. and U. Rosengren-Brinck. 1994. Effects of ammonium sulphate application on the rhizosphere, fine root and needle chemistry in a *Picea abies* (L.) Karst. stand. Plant Soil 162:71–80.
- Matamala, R. and W.H. Schlesinger. 2000. Effects of elevated atmospheric CO₂ on fine root production and activity in an intact temperate forest ecosystem. Glob. Change Biol. 6: 967–979.
- McClaugherty, C.A., J.D. Aber and J.M. Melillo. 1982. The role of fine roots in the organic matter and nitrogen budgets of two forested ecosystems. Ecology 63: 1481-1490.
- McConnaughay, K.D.M. and J.S. Coleman. 1999. Biomass allocation in plants: Ontogeny 28

or optimality? A test along three resource gradients. Ecology 80: 2581-2593.

- Meier, I.C. and C. Leuschner. 2008. Belowground drought response of European beech: fine root biomass and carbon partitioning in 14 mature stands across a precipitation gradient. Glob. Change Biol. 14: 2081–2095.
- Melillo, J.M., P.A. Steudler, J.D. Aber, K. Newkirk, H. Lux, F.P. Bowles, C. Catricala, A. Magill, T. Ahrens and S. Morrisseau. 2004. Soil warming-a major consequence of global climate change. In Forests in time: The environment consequences of 1000 years of change in New England. Eds. D. Foster and J. Aber. Yale University Press, New Haven, CT, pp 13: 280–295.
- Melillo, J.M., P.A. Steudler, J.D. Aber, K. Newkirk, H. Lux, F.P. Bowles, C. Catricala, A. Magill, T. Ahrens and S. Morrisseau. 2002. Soil warming and carbon-cycle feedbacks to the climate system. Science 298: 2173–2176.
- Melillo, J.M., S.M. Butler, J. Johnson, J. Mohan, P.A. Steudler, H. Lux, E. Burrows, F. Bowles, R. Smith, L. Scott, C. Vario, T. Hill, A.J. Burton, Y. Zhou, J. Tang. 2011. Soil warming, carbon-nitrogen interactions and forest carbon budgets. PNAS (in press).
- Metcalfe, D.B., P. Meir, L.E.O.C. Aragão, A.C,L. da Costa, A.P. Braga, P.H.L. Gonçalves,
 J. de A. Silva Junior, S.S. de Almeida, L.A. Dawson, Y. Malhi and M. Williams.
 2008. The effects of water availability on root growth and morphology in an Amazon rainforest. Plant Soil 311: 189–199.

Müller, M.M., V. Sundman, O. Soininvaara and A. Merilfiinen. 1988. Effect of chemical ²⁹

composition on the release of nitrogen from agricultural plant materials decomposing in soil under field conditions. Biol. Fert. Soils 6: 78-83.

- Nadelhoffer, K.J. 2000. The potential effects of nitrogen deposition on fine-root production in forest ecosystems. New Phytol. 147: 131–139.
- Owen, J.S., M.K. Wang, H.L. Sun, H.B. King, C.H. Wang and C.F. Chuang. 2003. Comparison of soil nitrogen mineralization and nitrification in a mixed grassland and forested ecosystem in central Taiwan. Plant Soil 251: 167–174.
- Pajuste, K. and J. Frey. 2003. Nitrogen mineralisation in podzol soils under boreal Scots pine and Norway spruce stands. Plant Soil 257: 237–247.
- Persson, H. 2000. Adaptive tactics and characteristics of tree fine roots. In The supporting roots of trees and woody plants: form, function and physiology. Eds, A. Stokes. Kluwer Academic Publishers, pp 337–346.
- Persson, H. 2002. Root system in arboreal plants. In Plant roots: The hidden half. Eds. Y. Waisel, A. Eshel and U Kafkafi. pp 187–204.
- Persson, H.Å. and I. Stadenberg. 2009. Spatial distribution of fine-roots in boreal forests in eastern Sweden. Plant Soil 318: 1–14.
- Peterjohn, W.T., J.M. Melillo, P.A. Steudler and K.M. Newkirk. 1994. Responses of trace gas fluxes and N availability to experimentally elevated soil temperatures. Ecol. Appl. 4: 617-625.
- Powers, J.S., K.K. Treseder and M.T. Lerdau. 2005. Fine roots, arbuscular mycorrhizal hyphae and soil nutrients in four neotropical rain forests: patterns across large 30

geographic distances. New Phytol. 165: 913-921.

- Pregitzer, K.S., J.S. King, A.J. Burton and S.E. Brown. 2000. Responses of tree fine roots to temperature. New Phytol. 147: 105–115.
- Pregitzer, K.S., M.J. Laskowski, A.J. Burton, V.C. Lessard and D.R. Zak. 1998. Variation in sugar maple root respiration with root diameter and soil depth. Tree Physiol. 18: 665–670.
- Rustad, L.E., J.L. Campbell, G.M. Marion, R.J. Norby, M.J. Mitchell, A.E. Hartley, J.H.C. Cornelissen and J. Gurevitch. 2001. A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia 126: 543–562.
- Schimel, J.P. and J. Bennett. 2004. Nitrogen mineralization: Challenges of a changing paradigm. Ecology 85: 591-602.
- Stober, C., E. George and H. Persson. 2000. Root growth and response to nitrogen. In Carbon and nitrogen cycling in European forest ecosystems: Ecological Studies. Eds.E.-D. Schulze. Springer Verlag, Heridelberg, pp 142: 106.
- Strömgren, M. and S. Linder. 2002. Effects of nutrition and soil warming on stemwood production in boreal Norway spruce stand. Glob. Change Biol. 8: 1195–1204.
- Tang, J. and D.D. Baldocchi. 2005. Spatial-temporal variation in soil respiration in an oak-grass savanna ecosystem in California and its partitioning into autotrophic and heterotrophic components. Biogeochemistry 73: 183–207.

Tang, J., L. Misson, A. Gershenson, W.X. Cheng and A.H. Goldstein. 2005. Continuous ³¹

measurements of soil respiration with and without roots in a ponderosa pine plantation in the Sierra Nevada Mountains. Arg. For. Meteorol. 132: 212–227.

- Tierney, G.L., T.J. Fahey, P.M. Groffman, J.P. Hardy, R.D. Fitzhugh, C.T. Driscoll and J.B. Yavitt. 2003. Environmental control of fine root dynamics in a northern hardwood forest. Glob. Change Biol. 9: 670–679.
- Tietema, A. and J.M. Verstraten. 1992. Nitrate cycling in an acid forest ecosystem in the Netherlands under increased atmospheric nitrogen input. Biogeochemistry 15: 21–46
- Tilman, D. 1988. Plant Strategies and the Dynamics and Structure of Plant Communities. Princeton University, Princeton, NJ.
- Uselman, S.M., R.G. Qualls and R.B. Thomas. 2000. Effects of increased atmospheric CO₂, temperature, and soil N availability on root exudation of dissolved organic carbon by a N-fixing tree (*Robinia pseudoacacia* L.). Plant Soil 222: 191–202.
- Valverde-Barrantes, O.J., J.W. Raich and A.E. Russell. 2007. Fine-root mass, growth and nitrogen content for six tropical tree species. Plant Soil 290: 357–370.
- Vanguelova, E.I., S. Nortcliff, A.J. Moffat and F. Kennedy. 2005. Morphology, biomass and nutrient status of fine roots of Scots pine (*Pinus sylvestris*) as influenced by seasonal fluctuations in soil moisture and soil solution chemistry. Plant Soil 270: 233 –247.
- Vogt, K.A. and H. Persson. 1991. Measuring growth and development of roots. In: Techniques and approaches in forest tree ecophysiology. Eds, J.P. Lassoie and T.M. Hinckley. CRS, pp 477–501.

- Wan, S., R.J. Norby, K.S. Pregitzer, J. Ledford and E.G. O'Neill. 2004. CO₂ enrichment and warming of the atmosphere enhance both productivity and mortality of maple tree fine roots. New Phytol. 162: 437–446.
- Withington, J.M., P.B. Reich, J. Oleksyn and D.M. Eissenstat. 2006. Comparisons of structure and life span in roots and leaves among temperate trees. Ecol. Monogr. 76: 381–397.
- Zak, D.R., W.E. Holmes, N.W. MacDonald and K.S. Pregitzer. 1999. Soil temperature, matric potential, and the kinetics of microbial respiration and nitrogen mineralization. Soil Sci. Soc. Amer. J. 63: 575–584.
- Zak, D.R., K.S. Pregitzer, J.S. King and W.E. Holmes. 2000. Elevated atmospheric CO₂, fine roots and the response of soil microorganisms: a review and hypothesis. New Phytol. 147: 201–222.
- Zogg, G.P., D.R. Zak, A.J. Burton and K.S. Pregitzer. 1996. Fine root respiration in northern hardwood forests in relation to temperature and nitrogen availability. Tree Physiol. 16: 719–725.

Figure 1 Averaged daily soil temperature in the warmed and control areas from April to November, 2008. The data from April to July were recorded every six hours. After July, the data were collected hourly. The arrows indicated the period of root sampling.

Figure 2 Monthly root mass of (a) live fine roots, (b) live coarse roots, (c) dead fine roots and (d) dead coarse roots in the organic and upper mineral layer in the warmed and control areas from April to November, 2008. (Mean values \pm SE) (n = 8) WO = organic layer in the warmed area; WM = mineral layer in the warmed area; CO = organic layer in the control area; CM = mineral layer in the control area

Figure 3 The seasonal change of net N mineralization in the organic layer, upper mineral layer and the organic plus upper mineral layer for both warmed and control areas from April to November, 2008 (Mean values \pm SE) (n = 10).

WO = organic layer in the warmed area; WM = mineral layer in the warmed area; CO = organic layer in the control area; CM = mineral layer in the control area

Figure 4 The linear relationship of net N mineralization to soil temperature in the warmed and control areas. (n=8)

Figure 2

Figure 3

Table 1 The averaged mass of live fine roots (LF), live coarse roots (LC), dead fine roots (DF) and dead coarse roots (DC) in the organic layer, upper mineral layer and the organic plus upper mineral layer in the warmed and control plots across all sample dates (Mean values \pm SE) (g m⁻²)

(n=8).

Soil layer	Treatment	LF	LC	DF	DC	
Organic (O)	Warming	22.7±3.8	10.2±3.7	36.7±3.2	19.0 ± 8.8	
	Control	25.7±3.2	20.3 ± 5.5	37.0±4.6	5.3±1.6	
Mineral (M)	Warming	56.2±7.6	43.8±18.9	123.2±9.6	61.3±9.1	
	Control	188.0 ± 22.1	121.0±30.6	172.0±10.6	91.0±16.7	
O+M	Warming	80.9±10.5	55.2±16.7	161.2±5.0	81.1±8.3	
	Control	212.2±21.8	141.8±12.9	208.6±15.1	96.0±19.5	

Table 2. Statistical results (F- and P-values are given) of the effects of soil warming (T), sample dates (M), soil layers (SL) and their interactions

Total mass		ass	LF LC		DF		DC		N mineralization			
	F	Р	F	Р	F	Р	F	Р	F	Р	F	Р
Treatment (T)	13.391	<0.001	20.196	<0.001	3.657	0.058	7.119	0.008	0.394	0.531	6.934	0.012
Soil layer (SL)	77.085	<0.001	43.185	<0.001	8.672	0.004	153.304	<0.001	28.699	<0.001	35.948	<0.001
Month (M)	0.479	0.792	1.105	0.360	0.192	0.965	1.154	0.335	0.906	0.479	13.277	<0.001
T×SL	14.449	<0.001	19.489	<0.001	2.286	0.133	7.762	0.006	3.464	0.065	3.495	0.070
T×M	0.133	0.984	0.297	0.914	0.255	0.937	0.503	0.774	0.708	0.618	1.052	0.395
SL×M	0.476	0.794	0.595	0.704	0.330	0.894	0.996	0.422	1.438	0.214	7.028	<0.001
$T \times SL \times M$	0.109	0.990	0.183	0.969	0.361	0.875	0.433	0.825	0.563	0.728	0.866	0.534

on total root mass, live fine roots (LF), live coarse roots (LC), dead fine roots (DF), dead coarse roots (DC) mass and net N mineralization.

Significant differences (P < 0.05) were highlighted in bold.

Table 3 The ratios of fine root biomass to fine root necromass (FB:FN), coarse root biomass to coarse root necromass (CB:CN) and total

biomass to total necromass (TB:TN) in the organic layer, upper mineral layer and the organic plus upper mineral layer for both warming and

Soil layer	Treatment	FB:FN	CB:CN	TB:TN	
Organic	Warming	0.7±0.1	2.4 ± 2.8	0.7 ± 0.8	
	Control	1.0±0.2	4.2±5.0	$1.5{\pm}1.9$	
	<i>P</i> -value	0.063	0.294	0.015	
Mineral	Warming	0.5 ± 0.1	0.5 ± 0.6	0.6 ± 0.9	
	Control	1.3±0.2	2.5±1.5	$1.5{\pm}1.5$	
	<i>P</i> -value	0.001	0.248	0.002	
O+M	Warming	0.6 ± 0.2	1.4±1.3	0.7±0.3	
	Control	1.2 ± 0.4	3.4 ± 3.2	1.5 ± 0.3	
	<i>P</i> -value	0.008	0.191	0.032	

control plots across all sampling dates (mean value \pm SE) (n=8).

Significant differences (P < 0.05) are highlighted in bold.

Table 4 The concentrations of total N, total C and carbon compounds in the live fine, live coarse, dead fine and dead coarse roots from the warmed and control plots. Data were averaged across all sample dates with one standard error. Different letters (a and b) of total N and C:N

Treatment	Root categories	Total C	Total N	C:N	Sugars	Starch	Hemicellulose	Cellulose	Lignin
		$(mg g^{-1})$	$(mg g^{-1})$		$(mg g^{-1})$	$(mg g^{-1})$	$(mg g^{-1})$	$(mg g^{-1})$	$(mg g^{-1})$
Warming	Live fine roots	449.3±6.1	13.7±0. 3a	38.5±1.2a	$49.9{\pm}4.6$	52.4±4.5	9.0±1.5	87.4±3.7	222.9±16.3
	Live coarse roots	474.5±4.2	6.1±0.3	91.7±5.0	64.8±9.6	61.3±7.1	6.8 ± 1.8	168.5 ± 4.1	173.4±16.8
	Dead fine roots	431.4±6.6	11.2±0.3	45.2±0.7	36.1±4.1	40.4±4.5	4.6±0.4	54.4±2.2	277.8±31.4
	Dead coarse roots	455.2±8.6	8.6±0.5	63.0±3.6	36.1±4.5	42.7±4.7	6.2±0.9	95.5±12.4	227.7±24.2
Control	Live fine roots	444.4 ± 4.8	12.4±0.2b	42.1±1.13b	52.5 ± 4.4	51.7±4.6	7.8±1.2	86.8 ± 5.1	203.8±9.4
	Live coarse roots	469.8 ± 5.4	6.8 ± 0.5	83.6±7.4	67.6 ± 5.5	60.6±4.2	9.3±1.6	164.3±6.6	140.2 ± 17.9
	Dead fine roots	425.1±7.2	11.4 ± 0.2	43.6±0.5	37.3±3.1	44.7±4.4	4.7±0.4	62. 6±4.0	282.0±20.5
	Dead coarse roots	451.4±5.5	8.0±0.9	69.4±7.0	38.6±4.5	46.7±5.2	5.8±0.8	103.5±14.9	218.4±29.7

indicated significant difference at 0.05 level between the warmed and control plots. (Mean values \pm SE)