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Abstract 

Data assimilation methods, such as the Kalman filter, are routinely used in oceanog­
raphy. The statistics of the model and measurement errors need to be specified a priori. 
In this study we address the problem of estimating model and measurement error statis­
tics from observations. We start by testing the Myers and Tapley (1976, MT) method of 
adaptive error estimation with low-dimensional models. We then apply the MT method 
in the North Pacific (5°-600 N, 132°-252° E) to TOPEX/POSEIDON sea level anomaly 
data, acoustic tomography data from the ATOC project, and the MIT General Circu­
lation Model (GCM). A reduced state linear model that describes large scale internal 
(baroclinic) error dynamics is used. The MT method, closely related to the maximum­
likelihood methods of Belanger (1974) and Dee (1995), is shown to be sensitive to the 
initial guess for the error statistics and the type of observations. It does not provide 
information about the uncertainty of the estimates nor does it provide information about 
which structures of the error statistics can be estimated and which cannot. 

A new off-line approach is developed, the covariance matching approach (CMA), 
where covariance matrices of model-data residuals are "matched" to their theoretical 
expectations using familiar least squares methods. This method uses observations directly 
instead of the innovations sequence and is shown to be related to the MT method and the 
method of Fu et al. (1993). The CMA is both a powerful diagnostic tool for addressing 
theoretical questions and an efficient estimator for real data assimilation studies. It can 
be extended to estimate other statistics of the errors, trends, annual cycles, etc. 

Twin experiments using the same linearized MIT GCM suggest that altimetric data 
are ill-suited to the estimation of internal GCM errors, but that such estimates can in 
theory be obtained using acoustic data. After removal of trends and annual cycles, the low 
frequency /wavenumber (periods> 2 months, wavelengths> 16°) TOPEX/POSEIDON 
sea level anomaly is of the order 6 cm2 • The GCM explains about 40% of that variance. 
By covariance matching, it is estimated that 60% of the GCM-TOPEX/POSEIDON 
residual variance is consistent with the reduced state linear model. 

The CMA is then applied to TOPEX/POSEIDON sea level anomaly data and a 
linearization of a global GFDL GCM. The linearization, done in Fukumori et al.(1999), 
uses two vertical mode, the barotropic and the first baroclinic modes. We show that 
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the CMA method can be used with a global model and a global data set, and that the 
estimates of the error statistics are robust. We show that the fraction of the GCM­
TOPEX/POSEIDON residual variance explained by the model error is larger than that 
derived in Fukumori et al.(1999) with the method of Fu et al.(1993). Most of the model 
error is explained by the barotropic mode. However, we find that impact of the change 
in the error statistics on the data assimilation estimates is very small. This is explained 
by the large representation error, i.e. the dominance of the mesoscale eddies in the TIP 
signal, which are not part of the 20 by 10 GCM. Therefore, the impact of the observations 
on the assimilation is very small even after the adjustment of the error statistics. 

This work demonstrates that simultaneous estimation of the model and measurement 
error statistics for data assimilation with global ocean data sets and linearized GCMs is 
possible. However, the error covariance estimation problem is in general highly underde­
termined, much more so than the state estimation problem. In other words there exist 
a very large number of statistical models that can be made consistent with the available 
data. Therefore, methods for obtaining quantitative error estimates, powerful though 
they may be, cannot replace physical insight. Used in the right context, as a tool for 
guiding the choice of a small number of model error parameters, covariance matching can 
be a useful addition to the repertory of tools available to oceanographers. 

Thesis Supervisor: Carl Wunsch, 
Cecil and Ida Green Professor of Physical Oceanography, 
Department of Earth, Atmospheric, and Planetary Sciences, 
Massachusetts Institute of Technology 
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(~hapter 1 

Introduction 

1.1 Data Assimilation in Oceanography 

In recent years it has become clear that to understand human induced climate change we 

first need to understand the natural variability of the world climate. The world ocean is 

one of the parts of the climate system which we understand least. The spatial scales of 

the large scale ocean circulation are grand, and the intrinsic time scales are very long. To 

date, the dynamics of this enormous physical system have been grossly undersampled. 

Observations in the ocean are very difficult and very expensive to make. Laboratory ex­

periments are useful, but limited to idealized problems. General circulation ocean models 

(GCMs) provide numerical solutions to the physically relevant set of partial differential 

equations (PDEs). They are routinely used to study ocean dynamics. However, GCMs 

are very complicated and often have to be run at very coarse spatial and temporal reso­

lution. The models are imperfect as the equations are discretized, the forcing fields are 

noisy, the parameterization of sub-grid scale physics is poorly known, etc. Therefore, to 

study the dynamics one needs to combine models and observations, in what is known as 

data assimilation, or inverse modeling. The subject of inverse modeling deals with var­

ious techniques for solving under-determined problems, and is well established in many 

fields, e.g. solid-earth geophysics. Wunsch (1996) provides a general treatment of the 
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inverse theory applicable to the oceanographic problems. 

The process of data assimilation can be viewed from two different perspectives. On 

the one hand, it filters the data by retaining only that part which is consistent with a 

chosen physical model. This is a "filter" in the sense of more familiar frequency filters, 

e.g. low-pass filters which eliminate high frequency oscillations. On the other hand, 

it constrains the model by requiring that the state of the model is in agreement with 

the observations. That is, we use the data as constraints for the models and then use 

the model to provide information about the regions, or fields, for which we have no 

observations. 

In oceanography data assimilation has three main objectives, as described in detail 

in an overview of Malanotte-Rizzoli and Tziperman (1996). Using data assimilation for 

dynamical interpolation/extrapolation to propagate information to regions and times 

which are void of data has been one the primary goals of inverse modeling in oceanog­

raphy. For example, the TOPEX/POSEIDON altimeter measures the height of the sea 

surface relative to the geoid. Using data assimilation, altimetric data can be used to 

constrain an ocean GCM, and then the output of the GCM provides information about 

the dynamics of the ocean interior, e.g. Stammer and Wunsch (1996). By using a 

model to extrapolate sea surface height measurements into temperature one can esti­

mate meridional heat transport across various latitudes, see Figure 1.1 reproduced from 

Stammer et al. (1997). Traditionally, one would require sending a ship measuring tem­

perature and density profiles across the ocean at all those locations, e.g. Macdonald and 

Wunsch (1996). Macdonald and Wunsch (1996) used hydrographic data to obtain such 

estimates at several latitudes where zonal sections were available, shown as open circles 

on Figure 1.1a. By combining dynamical models with observations one can obtain a 

global time-dependent picture of the ocean circulation. 

In contrast to altimetric measurements which provide information about the sea sur­

face, acoustic tomography samples the ocean interior by transmitting sound pulses from 

a source to a receiver along multiple paths, Munk et al. (1995). To first order, the sound 
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Figure 1.1: Meridional heat transport (in 1015W) for July-December 1993 estimated 
from global data assimilation with the MIT model and TIP data (solid lines). The 
unconstrained model for the Atlantic, the Pacific and the Indian Ocean respectively, are 
shown with the dashed lines. Bars on the solid lines show RMS variability of the transport 
estimated over individual 10-day periods (reproduced from Stammer et a1. 1997). 

speed depends on temperature along the path of the acoustic ray. This temperature 

information can be then inverted to obtain velocities, displacements, or other physi­

cal quantities which can also be estimated from the model output, e.g. Menemenlis et 

a1. (1997b). An example of this is shown on Figure 1.2, where an estimate of depth­

averaged temperature and horizontal velocity at a particular vertical level were obtained 

for the western Mediterranean during beginning of spring, summer and autumn of 1994. 

Thus, in principle a GCM can be used to extrapolate tomographic data to other areas of 

the global ocean. 

Thirdly, data assimilation can also be used to study dynamical processes by way of 

improving our understanding of ocean models. Even the most complex ocean GCMs 

cannot resolve all the dynamically important physical processes, and some processes 
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Figure 1.2: Estimates of the western Mediterranean circulation, on March 1, June 1, and 
September 1, 1994 obtained by combining tomographic and altimetric observations with a 
GCM. The grey scale shading indicates depth-averaged (O-2000m) potential temperature 
and the arrows indicate horizontal velocity at 40m (reproduced from Menemenlis et al. 
1997). 

have to be parameterized. These parameterizations can be simple or quite complex, but 

are always uncertain in both form and in value of parameters. A few examples of such 

parameterizations are small scale vertical mixing schemes in the boundary layer, Large 

et al. (1994), parameterizations of mesoscale eddies in coarse ocean models, Boning et 

al., (1995), and deep water formation, Visbeck et al. (1996). Observations of most of the 

above unknown parameters are not available, and many of these parameters cannot be 

measured directly. They instead can be estimated by using other available data through 

data assimilation. 

Data assimilation can be used for prediction by providing the best estimate of the 

initial conditions, which are then propagated forward by a model. Forecasting the oceanic 

fields has become much more important in recent years, and is now done for ENSO on a 

routine basis. The importance of good initialization fields is clear from a much publicized 

failure of the Zebiak and Cane model (1987), in predicting the El Nino event of 1997, 
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Figure 1.3: Lamont model forecasts of the 1997/1998 EI Nino with (right) or without 
(left) sea level data assimilation. The thick curve is observed NIN03 SST anomaly. 
Each curve is the trajectory of a 12 month forecast starting from the middle of each 
month.(reproduced from Chen et al. 1998) 

e.g. Kerr (1998). Recent analysis showed that with a different data assimilation scheme, 

and accordingly a different initial field, the model did a much better job of predicting 

that year's ENSO event, Chen et al. (1998). Figure 1.3 shows striking difference between 

two groups, LDE02 and LDE03, of Zebiak and Cane model, 12 month forecasts. The 

positive impact of the sea level data assimilation used in LDE03 but not in LDE02 is 

obvious. 

While the theory of inverse modeling, including error estimation, has been well devel­

oped by the control engineering community, applying it to oceanographic problems is still 

a challenge. There are at least three major obstacles: computational burden, memory 

requirements, and lack of required information. That is, problems encountered in control 

applications typically have a small number of degrees of freedom, 0(10), and long time 
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series measurements of most, if not all, degrees of freedom. The problems encountered 

in oceanography tend to be of the opposite nature, i.e. very large number of degrees of 

freedom, and very short and spatially sparse time series of observations. This differenee 

in the problem size and the amount of available data makes "adoption" of engineering 

methods to oceanography a difficult exercise. Many properties of the estimation algo­

rithms change when observations become sparse and a few, e.g. adaptive Kalman filter 

algorithms fail to converge, see Chapter 2. 

On the other hand, numerical weather prediction, which is based on data assimilation, 

has served as a role model for oceanographic data. Although there are clear differences 

between the ocean and atmosphere, most often applications are similar enough to allow 

use of similar assimilation methods, and the methods and the literature are common. 

The reason why the application to the ocean trails has been the lack of urgent demand 

for forecasting and the lack of appropriate synoptic data sets. However, both of these 

reasons have recently changed. Oceanic forecasting is being done, and synoptic satellite 

data sets have become available. As shown in this work, although one needs to be aware 

of the rich meteorologic data assimilation literature, not all methods can be applied 

to oceanography, and one needs to develop new techniques more directly relevant to 

oceanographic problems. 

Depending on the temporal and spatial scales of interest, and the computational re­

sources available (CPU and memory), one may choose different data assimilation meth­

ods, e.g. nudging, adjoint, or Kalman filtering. Typically, for data assimilation with high 

resolution models one uses the so-called "optimal interpolation" or nudging techniques. 

The main reason for this is that they are relatively inexpensive from the computational 

viewpoint. Their main disadvantage is that the choice of weights for blending data and 

model estimates is chosen in some ad hoc fashion. In a least-squares sense, the optimal 

solution is given by the Kalman filter (KF, hereafter), Kalman (1960), and a smoother, 

Rauch et al. (1965). The computational cost of the KF, where one propagates state error 

covariances at every time step and uses them for estimating the blending weights is great. 
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Because of this the KF is currently limited to coarse GCMs and problems where one can 

significantly reduce number of degrees of freedom. 

The KF provides a sequential estimate of the state of the system using only prior 

information. The estimate is obtained by forming a linear combination of the model 

forecast and observations, weighted by their corresponding uncertainty. For linear mod­

els, the KF, with the companion smoother, is equivalent to the adjoint method. The 

original KF can be extended to non-linear models, in a so-called extended KF. 

The Kalman filter propagates the error covariance matrix, i.e. it provides the accu­

racy of the estimate at every time step. Because of this, the KF is very computationally 

expensive. For a system with n degrees of freedom (DOF, hereafter), 2n + 1 integrations 

of the numerical model are required for a single time step of the KF algorithm. For 

systems with a large number of DOF (grid points times number of prognostic variables), 

at least 0(105) for oceanographic applications, this becomes prohibitively expensive even 

with largest supercomputers. In addition, the size of the covariance matrices is 0(n2 ), 

so that their storage becomes prohibitive as well. To reduce computational and memory 

costs, many suboptimal schemes have been developed. One can reduce the computational 

burden by computing approximate error covariances: either by using approximate dy­

namics, Dee (1991); computing asymptotically constant error covariances, Fukumori et 

al. (1993); or propagating only the leading eigenvectors of the error covariances (empirical 

orthogonal functions, EOFs) as in error subspace state estimation, Lermuisaux (1997). 

An alternative way of reducing the computational load is to reduce the dimensionality 

of the problem. One can reduce the dimension of the model by linearizing a GCM onto 

a coarser horizontal grid or a small set of horizontal EOFs, and reducing the number of 

points in the vertical by projecting the model onto a small set of vertical basis functions 

(EOFs or barotropic and baroclinic modes). For example, Fukumori and Malanotte­

Rizzoli (1995) used vertical dynamic modes and horizontal EOFs for their coarse model. 

A more detailed explanation of this approach is given in Section 2.1. In a different 

method, one computes EOFs of the whole model, and defines new state variables as 
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coefficients for each individual EOF, e.g. Cane et al. (1996), Malanotte-Rizzoli and 

Levin (1999). Although the analysis of Cane et al. (1996) deals with the small domain 

in the tropical Pacific and only several tide gauges are used, the results suggest that 

reduced space assimilation is in general not inferior to full Kalman filter for short times, 

even though the dimension of the model is reduced by several orders of magnitude. 

In this work, questions of a more theoretical nature are addressed, namely how to do 

data assimilation when some of the required input information is absent, e.g. statistics 

of the errors, as explained below. Therefore, we will concentrate on the basic setup and 

treat only linearized models. Because for linear models the Kalman filter is the most 

general data assimilation method, for the purposes of this discussion many other data 

assimilation methods can be viewed as its special cases, and are not considered. 

1.2 Adaptive Error Estimation 

Apart from the difficulties associated with the large dimensionality of the problem, it 

is critical for the statistics of the model errors and the measurement noise to be known 

for the KF estimates to be optimal. Although in some cases of oceanographic interest 

the errors in observations may be relatively well-determined, e.g. Hogg (1996), this is 

not typically true because the measurement errors, as defined in the data assimilation 

context,include the missing model physics, or representation error. This is due to the 

fact that the model cannot distinguish the processes which are missing from the model, 

e.g. scales smaller than the model grid size, from the errors in the observations, see the 

discussion in Section 2.2. The model errors, or system noise, are usually poorly known. 

Therefore, the resulting estimate of the assimilated ocean state is far from optimal. 

Figure 1.4 taken from Dee (1995) shows an example of the effect of incorrectly specified 

model error statistics on the performance of the KF. The plot shows the time evolution 

of the root-mean-square (RMS) energy errors for two data assimilation experiments, per­

formed with the two-dimensional linear shallow water model of Cohn and Parrish (1991). 
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Figure 1.4: RMS energy error evolution for SKF with incorrectly specified (upper part) 
and correctly specified (lower part) model error statistics. Marks indicate actual RMS 
errors, curves correspond to their statistical expectations, the time is in days (reproduced 
from Dee 1995) . 

The curves correspond to statistical expectations of forecast and analysis errors obtained 

from KF theory while the marks denote the errors that actually occurred. In each exper­

iment the same 12-hourly batches of synthetic radiosonde observations were assimilated 

into a forecast model by means of a simplified KF (SKF), Dee (1991). The two experi­

ments differ only in the way that the model error covariance is specified. The RMS-error 

eurve and marks in the lower part of the figure result from a correct specification of 

model error eovariance, while those in the upper part result from a misspecification of 

the model error eovariance. The disastrous effect of erroneous model error information 

is clearly visible. The average analysis error level more than doubles after a few days 

of assimilation. In some cases the assimilation of observations actually has a negative 

impaet on the analysis (e.g. days 0.5, 1.5, and 5.5). 

In Figure 1.5 we demonstrate the effect of error covariances on the estimates of the 

ocean state. The figure shows a comparison of the sea surface height anomaly for one 

particular cycle of the TIP altimeter (January 1-10, 1994). The top plot shows the 
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T /P measurements, and the two lower ones show corresponding estimates obtained us­

ing the T /P measurements with an approximate Kalman Filter (Chapter 5)1. It has to 

be noted that these data assimilation experiments were done with carefully chosen, and 

not very different, error covariances. The small-scale signal seen in the T /P measure­

ments is missing in the KF estimates because the assimilation was done with a coarse 

grid (reduced-state) model, i.e the KF serves as a filter to remove the small scales. Be­

cause the error covariances were similar, the two fields obtained with the KF are similar 

overall. However, there are important differences. For example, the second assimilation 

(Figure 1.5c) has a strong positive anomaly in the West Equatorial Atlantic which is 

completely missing in the first assimilation. Unlike the twin experiment example pre­

sented above, in this case we do not know the true state. Although there are some tests 

which allow to check consistency of the estimates, it has been shown that application 

of such tests to global data assimilation with realistic data distribution is problematic 

(Daley, 1993). Unless one has independent data, it is difficult to decide which of the two 

estimates is "better", i.e. closer to the true field. Only careful choice of the a priori error 

covariances can make the estimates of the state credible. 

To make matters worse, when we have wrong estimates of the error covariances, the 

estimates of the state uncertainty are also wrong, i.e. both estimates of the state and its 

uncertainty depend critically on the covariances of the model and measurement errors. 

In addition, the state itself depends on the first-order moments, or bias, of the errors. 

Error covariances are also very useful for analyzing the performance of a GCM. They 

provide information on which geographic locations and what spatial scales the GCM)s 

performance is good or bad. In addition, they set a metric for comparing different GCMs. 

A quantitative tool which would allow one to perform such comparisons would be highly 

desirable, for an example of the difficulties one faces when attempting to evaluate the 

performance of different atmospheric GCMs see Gates (1995). 

IThe data assimilation estimates have used 1 year of the TIP measurements starting from January 
1, 1993. 

25 



a) [- 100.,- 0.23,109.9) 

40 

50 100 150 200 
longltucle(Easl) 

b) [-25.9.0.209.20.68} 

50 100 150 200 
longltude(East) 

c) [-30.7.0.227,26.9) 

50 100 150 200 
longitude (East) 

250 300 350 

250 300 350 

250 300 350 

20 

15 

10 

5 

o 
-5 

-10 

-15 

- 20 

20 

15 

10 

5 

o 
-5 

-10 

-15 

- 20 

20 

15 

10 

5 

o 
-5 

-10 

-15 

-20 

Figure 1.5: Sea surface height anomalies (in cm) for the a) TIP data set, b) and c) data 
assimilation estimates using the same TIP observations for two different choices of the 
error covariances. The error covariances for the data assimilation were chosen adaptively 
(Chapter 5), and were not very different . Overall, the two assimilation estimates are sim­
ilar, but there are significant differences, e.g. in the equatorial Atlantic. The assimilation 
runs are described in Chapter 5. 
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1.3 Present Work 

The problem of estimating and understanding the error statistics is the subject of this 

work. It has only recently received attention in the oceanographic community. For a 

long time the problem did not attract significant attention for several reasons. First, 

use of the error statistics requires a very significant increase in computational resources, 

and a significant reduction in the number of degrees of freedom. The methods of state 

reduction, see Chapter 2, have not been tested and applied to large GCMs until recently. 

In addition, one needs to use approximate data assimilation schemes, and they also have 

only recently been developed. Thirdly, the fact that the estimation is sensitive to the 

specification of the statistics of the observational, and especially model errors, needed 

to be established, e.g. Wergen (1992). It is worth noting that operational centers still 

routinely use a "perfect model" assumption, even though there is a strong consensus that 

present-day GCMs have great difficulty in simulating the real ocean and atmosphere. 

The following is a sequential account of the work which can be taken by someone 

who faces the problem of estimating error statistics for large-scale data assimilation and 

who wants to understand why the covariance matching algorithm (CMA, hereafter) was 

developed and what are its advantages. Alternative ways of reading the manuscript are 

discussed below in Section 1.3.1. 

We start addressing the error estimation problem by presenting existing adaptive 

data assimilation methods. In the present context the term "adaptive" means that we 

are using data for the simultaneous estimation of the error statistics and the ocean's 

state. Such adaptive methods were applied to an oceanographic problem in a paper by 

Blanchet et al. (1997), (BFC97, hereafter). BFC97 ran twin experiments with three dif­

ferent adaptive data assimilation methods, developed and improved upon by a number 

of different authors in the control and meteorological literature. BFC97 used simulated 

tide-gauge data and a reduced-state model in the tropical Pacific. In Chapter 2 we test 

these adaptive methods by trying to obtain quantitative estimates of the large scale inter­

nal errors in a GCM using simulated TIP altimeter data as well as acoustic tomography 
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data. 

Following the discussion in BFC97 we single out the adaptive method of Myers and 

Tapley (1976, MT) as the representative of these adaptive methods. Firstly, we present 

the analysis of the MT method, with low dimensional models. We show that while in 

principle this method can provide estimates of the model error statistics it has several 

major drawbacks. When we have sparse observations, the estimates of the error statistics 

may be sensitive to the initial guess of the model error covariances. The method requires 

running the Kalman filter, and it takes many iterations for the method to converge. 

This makes it computationally expensive. Estimation of both model and measurement 

statistics is unstable, and can lead to wrong estimates. There is no information about 

uncertainties of the derived error covariances, on how much data is required, and on 

which parameters can be estimated and which cannot. 

We use a twin experiment approach, described in Section 2.8, to show that with 

the linearized MIT GCM, the MT method is sensitive to the initial choice of the error 

statistics, and to the kind of observations used in the assimilation. In Section 2.9 we show 

that similar results are obtained with a maximum likelihood method. The conclusion is 

that neither of the adaptive data assimilation methods is suitable for quantifying large 

scale internal ocean model errors with the available altimetric or acoustic tomography 

observations. 

In a different approach, Fu et al. (1993) and Fukumori et al. (1999) estimated the 

measurement error covariance by comparing the observations with the model forecast 

without any data assimilation. This method is closely related to the new approach, 

which we develop and call the Covariance Matching Approach (CMA). It is described 

in Chapter 3. Although related to the previous methods, the new approach relaxes 

some of the restrictive assumptions of the method used by Fu et al. (1993). It makes use 

of information in a more efficient way, allows one to investigate which combination of 

parameters can be estimated and which cannot, and to estimate the uncertainty of the 

resulting estimates. 
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In Chapter 4 we apply the CMA to the same linearized version of the MIT GCM 

with ATOC and TIP data. Through a series of twin experiments, which use synthetic 

acoustic thermometry and TIP data, we show that the covariance matching approach is 

much better suited than the innovation-based approaches for the problem of estimating 

internal large scale ocean model error statistics with acoustic measurements, but not with 

altimetric measurements. Because the method uses observations directly instead of the 

innovations, it allows concurrent estimation of measurement and model error statistics. 

This is not possible with the adaptive methods based on innovations (Moghaddamjoo 

and Kirlin 1993). 

We then test the CMA with the real TOPEX/POSEIDON altimetry and the ATOC 

acoustic tomography data. We show that for this model most of the model-data misfit 

variance is explained by the model error. The CMA can also be extended to estimate 

other error statistics. It is used to derive estimates of the trends, annual cycles and phases 

of the errors. After removal of trends and annual cycles, the low frequency Iwavenumber 

(periods> 2 months, wavelengths> 16°) TOPEX/POSEIDON sea level anomaly is 

order 6 cm2 . The GCM explains about 40% of that variance, and the CMA suggests that 

60% of the GCM-TOPEX/POSEIDON residual variance is consistent with the reduced 

state dynamical model. The remaining residual variance is attributed to measurement 

noise and to barotropic and salinity GCM errors which are not represented in the reduced 

state model. The ATOC array measures significant GCM temperature errors in the 100-

1000 m depth range with a maximum of 0.3° at 300 m. 

In Chapter 5, we apply the CMA to a second problem, one which involves estimat­

ing global ocean error statistics for a linearized GFDL GCM, with only the barotropic 

and first baroclinic internal modes2 . The obtained estimates of error statistics are sig­

nificantly different from those used in the study of Fukumori et al. (1999), where the 

2 Although the vertical modes can only be defined for the linear ocean model, they can be used as 
a set of vertical basis functions. Fukumori et al. (1998) show that the barotropic and first baroclinic 
mode explain most the variability of the T jP sea level anomaly. A linearized model based on these two 
modes is satisfactory for data assimilation needs. 
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linearized model is used for global data assimilation. The CMA estimate of the model 

error covariance based on the error model of Fukumori et al. (1999) on average explains 

forty percent of the model-data residual variance. Most of the model error variance is 

explained by the barotropic mode, and that the model error corresponding to baroclinic 

velocities has a negligible contribution. 

The CMA estimates of the error covariances are then used with a global data as­

similation scheme. Based on analysis the statistics of the innovations, we show that the 

quality of the data assimilation estimates is improved very little. As pointed out in Chap­

ter 3 the problem of error statistics estimation is very under-determined. Therefore, to 

obtain statistically significant estimates of the error statistics it is crucial to have a good 

physical understanding of the model shortcomings. The covariances used in Fukumori et 

al.(1999), already tuned to the model-data residuals, use the error structures which prove 

to be quite robust. Comparison of several data assimilation experiments which differ only 

by the choice of the error covariances demonstrate that data assimilation estimates are 

not very sensitive to a particular parametrization of the adaptively tuned error statistics. 

The summary of the thesis and perspectives for future research are given in Chapter 6. 

1.3.1 Outline of the Thesis 

With a complete description of the work given above, we give advice on how to read the 

thesis. A complete summary of the notation (with a reference to the original equations) 

and acronyms is given in tables A.1 and A.2. 

The reader who is primarily interested in the results can start directly with the 

examples. An application of the CMA to a linearized version of the MIT GCM with the 

TOPEX/POSEIDON altimetry and the ATOC acoustic tomography data is presented 

in Chapter 4. Second application of the method and an example of data assimilation 

with adaptively tuned error covariances are presented in Chapter 5. The model used in 

this chapter is a linearization of the global GFDL GCM and the data consist of the TIP 

measurements of sea level anomaly. 
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For a more detailed description of the CMA the reader should consult Chapter 3. The 

basic algorithm is presented in Section 3.2. For a discussion of practical issues which are 

important in realistic applications and for the extensions of the method to other statistics 

one should consult Sections 3.3 and 3.5. 

For a reader familiar with, or interested in, innovation based adaptive methods, a 

comparison of innovation based methods and the CMA is presented in Section 3.6. To get 

a deeper understanding of an innovation-based approach due to Myers and Tapley (1976), 

one can consult Section 2.6, where an analytical representation of the method with a 

scalar model is discussed, and Section 2.7, where a numerical implementation of the 

method with a multivariate (2 DOF) model is given. In Section 2.8 we demonstrate that 

this method fails with a linearized version of the MIT GCM, while the CMA can be 

successfully used in the same setup presented, Section 4.3. 

The reader who is willing to take the time and travel the long road can read the work 

sequentially as described above. 
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'Chapter 2 

:Methods of Adaptive Error 

:Estimation 

We start this chapter by setting the problem up and providing a mathematical descrip­

tion. We then discuss available methods of adaptive error estimation. To illustrate the 

methods we restrict our attention to the following question: "For a linear model with 

four vertical modes, can we estimate the mean variance of model error for each mode 

based on the two kinds of available measurements: altimetric measurements of the sea 

surface height and acoustic tomography measurements of sound speed converted into 

temperature anomalies?" We use a linearized GCM of the North Pacific, where more 

than a year of high quality acoustic data are available in addition to the altimetric data. 

We use the GCM of Marshall et al. (1997a, 1997b) and the reduced state linearization 

described in Menemenlis and Wunsch (1997). We concentrate on the adaptive method 

of Myers and Tapley (1976) (MT, hereafter), and in addition consider the maximum 

likelihood approach of Dee (1991, 1995). 

After we describe the model and the methods, we investigate properties of the MT 

algorithm with low-dimensional systems in order to gain better understanding of the al­

gorithm. We start with a model with one degree of freedom, and then extend the results 

to a model with two degrees of freedom. The analysis with low-dimensional models illus-
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trates the non-linear character and complexity of the adaptive error estimation problem. 

It provides guidelines for the applicability of the MT algorithm. 

Next, we present results of twin experiments with a linearized GeM, i.e. experiments 

for which synthetic data are used. We start with a series of the experiments in which 

we compute a single posterior estimate of both model and measurement uncertainties. 

These runs allow us to sample the parameter space and to develop intuition for the par­

ticular linear model appropriate to our experiment and for the two kinds of measurement, 

altimetric and tomographic. We then present a series of fully adaptive twin experiments. 

Based on the twin experiments we show that the performance of the adaptive filter de­

pends on the type of observations. The adaptive method of MT cannot estimate the 

correct uncertainty structure with synthetic altimetric observations, but can do so once a 

significant number of synthetic tomographic rays are included in the assimilation. How­

ever, it fails with the tomographic measurements available at the time this analysis was 

carried out. 

Based on these results, and the fact that the method is sensitive to the initial guess of 

the error covariances, and, moreover, provides no information on the uncertainty of the 

derived estimates, we conclude that the estimates we would obtain with real data could 

not be trusted. In addition, we show why the maximum likelihood method of Dee (1995), 

provides similar negative results (Section 2.9.1). 

The chapter is organized as follows. In the next Section we present the model and 

the observational networks used in this chapter. In Sections 2.4-2.5 we review the basic 

and adaptive Kalman filter algorithm. For analysis of the MT method with a one degree 

of freedom (DOF) model for which analytical representation is obtained see Section 2.6. 

In Section 2.7 we turn to the analysis of the MT adaptive filter with a 2 DOF model, 

which allows to consider the important case of incomplete data coverage. In Section 2.8 

we present the results of the twin experiments with simulated altimetric and acoustic 

tomography data. We draw conclusions about the performance and limitations of these 

adaptive techniques in Section 2.10. 
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2.1 Model 

Dynamical models describe how information, or physical properties, propagate in space 

and time. Ocean models describe how the physical quantities of the ocean (e.g. fluid 

velocities, temperature, and pressure) change in time and space. Given boundary and 

initial conditions, we can use the model to obtain information about the state of the 

ocean in a particular region of the ocean, or at some later time. For reasons outlined in 

the introduction we will be concerned only with linear, or linearized, models. Below we 

provide a short description of how a linearized ocean model can be obtained. Complete 

descriptions of the two different linearized models used in this work are given by Mene­

menlis and Wunsch (1997), for the linearized MIT GCM, and by Fukumori et al. (1999), 

for the linearized GFDL GCM. 

The models are discretizations of the incompressible Navier-Stokes (NS) equations 

together with an equation of state. The MIT GCM, developed by Marshall et al. (1997a, 

1997b), the linearization of which is used in this chapter, solves the NS equations in 

spherical geometry with height as a vertical coordinate and with arbitrary basin geometry. 

It is integrated in hydrostatic mode for the Pacific Ocean with realistic topography and 

coast lines, and insulating bottom and side walls. A no-slip wall side condition and 

a free-slip bottom condition are used. The model domain extends from 30° S to 61° N 

meridionally, and from 123°E to 292°E zonally, with a uniform horizontal grid spacing 

of 1°. There are 20 vertical levels, with a maximum depth of 5302m. The model time 

step is 1 hour. 

The model is relaxed to climatological values of temperature and salinity at the surface 

with a time scale of 25 days. Because the model is restricted to the northern part of the 

Pacific, at the southern boundary the model is relaxed over a 500 km zone with a time 

scale of 5 days at the boundary increasing linearly to 100 days at the edge of the 500 km. 

To obtain a model for large scale ocean climate estimation studies, we need to linearize 
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the model and to reduce its dimension. First, the GCM is represented algebraically as 

(2.1) 

where wGCM(t) represents boundary conditions and model parameters at time t. Column 

vectors are written as bold lower case characters, and matrices as bold upper case char­

acters. A complete summary of the mathematical notation is presented in Table A.I. 

The state (GCM(t) consists of all prognostic variables used in the GCM, and as such has 

dimension of 1,335,582 for the configuration used in computing the linearized model. We 

make a fundamental assumption that for large scales, the difference between the true 

state on the model grid and the model state, 

(2.2) 

is governed by linear dynamics: 

p(t + 1) = A(t)p(t) + r(t)u(t), 

where p(t) is the coarse state (large scale) error vector, B* defines a mapping from the 

fine (GCM grid) to the coarse (large scale) grid; A(t) is the coarse state transition matrix; 

u(t) is the model error vector, and r(t) projects the large scale model error u(t) onto 

the coarse state. Note that we distinguish the GCM error in the reduced (coarse) space, 

p(t), from the stochastic noise driving the GCM error, u(t), denoted as model error for 

consistency with the standard KF notation. The true state is denoted by the circumflex. 

The time step of the reduced state model has been taken to be unity, and in practice is 

considerably longer than the time step of the GCM. We use a 30 days time step for the 

linearized model (LM, hereafter) and one-hour time step for the MIT GCM. 

It is important to realize that the linear model is not a linearization of the model 

around its mean state, such as a commonly used linearization of the non-linear quasi­

geostrophic model (Pedlosky, 1987 , p. 499). The linear model, equation (2.3), provides 

an approximate description of how the large scale differences of the GCM estimate and 

the true ocean on the GCM grid propagate in time. This assumption is based on a 
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fundamental requirement that the large, slow scales of oceanic variability are separated 

from meso-scale and other short-term variability, and that the smaller scales effect on 

the large scale differences can be modeled as a white noise process; see Menemenlis and 

Wunsch (1997). 

The state reduction operator B* projects the difference between the hypothetical 

true state and the model state onto some truncated basis set. In practice, the true state 

':GCM(t) is approximated by some reference state" and the linearization is effectively done 

around that state; see Fukumori and Malanotte-Rizzoli (1995). The reduction operator 

may be thought of as a filter which attenuates small scale noise in order to capture the 

relevant ocean-climate signal. A pseudo-inverse operator, B*, which maps back from the 

coarse (reduced) state to the fine (GCM) state can be defined such that 

B*B = I BB* -'- I , I' (2.4) 

and I is the identity matrix. Therefore, it is possible to write 

(2.5) 

where €( t) represents the high frequency/wavenumber components that lie in the null 

space of the transformation B*, 

B*€(t) = 0, (2.6) 

10 is the matrix of zeroes. These operators are represented schematically in Figure 2.l. 

The linearized model implies that the large-scale perturbations described by the linearized 

state vector p(t) are approximately dynamically decoupled from the null space, i.e. 

B* M(€(t)) ~ o. (2.7) 

The validity of this assumption needs to be tested with each particular model. We refer 

the reader to Sections 4 and 6 of Menemenlis and Wunsch (1997), for a demonstration 

of its validity with the MIT GCM. 
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Figure 2.1: Schematic representation of the interpolation and state reduction operators. 

The primary purpose of the state reduction operator, B* in (2.2), is to reduce the 

problem size while preserving sufficient resolution to characterize the important physical 

processes under study. The choice of B* needs also to be guided by sampling requirements 

so as to avoid aliasing. One may wish to define B* as a combination of horizontal, vertical, 

and time reduction operators: 

(2.8) 

Corresponding pseudo-inverse operators can be defined and 

In practice, each pseudo-inverse operator can be defined as 

B = B*T (B*B*T) -1 , (2.10) 

where superscript T denotes the transpose. Non-singularity of B*B*T is satisfied for any 

but the most unfortunate choice of B* since the number of rows of B* is much less than 

number of columns. For the linearization of the MIT GCM, the vertical state reduction 

operator B~ maps perturbations onto four vertical temperature EOFs, computed from 

the difference between GCM output and measured temperature profiles; see Menemenlis 

et al. (1997a). The EOFs are displayed on Figure 2.2. Horizontal filtering is done using a 

two-dimensional Fast Fourier Transform algorithm, and setting coefficients corresponding 
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Figure 2.2: Response of the Marshall et al. (1997a, 1997b), Ocean General Circulation 
Model (OGCM) to a large scale meridional temperature perturbation: the first column 
displays four vertical temperature Empirical Orthogonal Functions (EOFs) used for state 
reduction in this study; the second column displays the exact OGCM response projected 
onto these four EOFs; and the third column is the response of a time-invariant reduced­
state linear model to the same perturbation. The perturbation response shown here 
follows the initial temperature anomaly by a six-month interval and displays a char­
acteristic Rossby-wave-like pattern, with the information propagating westward at an 
increasingly faster rate as one approaches the equator. 
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to wavelengths shorter than 16° to zero. The resulting fields are then subsampled at 8° 

intervals, both zonally and meridionally. This particular choice of B~ and B;;' is one of 

convenience and suffices for the present study. No explicit time filtering is required as 

the the fields have red frequency spectra, and horizontal filtering makes the time filtering 

unnecessary. 

For the MIT GeM the perturbations were obtained in the following manner. The 

model was initialized from climatological annual mean temperature and salinity obtained 

from Levitus (1982), and a resting flow field. It was then integrated for 17 years with 

annual mean temperature, salinity, and surface wind forcing. From year 18 onwards 

it was integrated with monthly mean temperatures and seasonal salinities and monthly 

winds from Trenberth et al. (1989), all linearly interpolated to 24 hour intervals. From 

year 29, surface heat and freshwater fluxes from Oberhuber (1988) were introduced in the 

surface layer, while continuing to relax to climatological temperature and salinity. This 

run of the model adequately reproduces the large scale wind driven circulation, but fails 

to properly represent the small scale processes. It is however adequate for the present 

work which aims to quantify the large scale error structure. Figure 2.3 shows a particular 

monthly-mean sea surface elevation and horizontal velocity produced by the GeM. 

The MIT GeM was then integrated for 2 more years with monthly forcing starting 

from the spun-up state, obtained above, to produce a reference state, (, for the pertur­

bation analysis. To generate perturbations relative to this reference state (used instead 

of the true (GCM(t) in equation (2.2)), temperature anomalies are introduced, and the 

model is integrated with the same boundary conditions and model parameters as for the 

reference state, following the Green's function approach of Stammer and Wunsch (1996). 

The anomalies are computed by applying BvBhSp temperature perturbations to the MIT 

GeM, where Sp represents a delta vector, with all zeroes except for only one element, of 

the same size as the reduced state vector p. The resulting perturbations relative to the 

reference state are projected back onto the coarse grid, and form columns of the coarse 

state transition matrix A. The time-invariant linear model A is able to satisfactorily re-
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Marshall et aI. GeM: Surface elevation and horizontal velocity at 37.5 for Ju~ 1996 

o 50 100 150 200 250 300 350 
Longitude East ~10cm's 

-210 -180 -150 -120 -90 -60 -30 0 30 60 90 120 
sea sulface elevation (em) 

Figure 2.3: July monthly-mean sea surface elevation and horizontal velocity in the 2nd 
layer produced by the MIT GeM run. 
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produce the large scale response to a temperature perturbation of fully non-linear GCM 

(Figure 2.2). 

There are other methods available for state reduction. For example, one can choose 

to start from the coarse to fine transformation B instead of B* as above; see Fukumori 

and Malanotte-Rizzoli (1995). In addition, one can choose the coarse state entirely of 

EOF coefficients, as in Cane et al. (1996). Alternatively, instead of using the Green's 

functions one can use principal oscillation patterns and compute the response of the GCM 

to random initial fields. 

2.2 Data 

The first dataset used in this study consists of over four years (October 1992 - Febru­

ary 1997) of TOPEX/POSEIDON satellite altimeter sea-surface anomaly. Altimetric 

observations provide a dynamical surface boundary condition for the ocean general cir­

culation, Stammer et al. (1996). In contrast acoustic tomography samples the interior 

ocean by transmitting sound pulses from sources to receivers along many paths, Munk et 

al. (1995). Variations in acoustic travel times are, to first order, a measure of temperature 

anomalies. To a much lesser degree they are also related to variations in current velocity 

and salinity. Figure 2.4 displays the estimation domain and ATOC acoustic paths used 

in the present analysis, superimposed on a map of rms sea-surface variability from the 

TOPEX/POSEIDON altimeter. 

These observations measure properties of the real ocean and can be described sym­

bolically as 

(2.11) 

where (oceaJt) represents the state of the real ocean (an infinite dimensional vector), Eocean 

represents the measurements' sampling operator, and vocean(t) denotes the instrument 

noise. The true state on the model grid 'GeM (t) is assumed to be related to the real 
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Figure 2.4: Sea surface height variability, in cm rms, measured by the TOPEX­
POSEIDON altimeter for the period November 21, 1992 - November 17, 1995. The 
solid lines indicate the present coverage of the Acoustic Thermometry of Ocean Climate 
(ATOC) array using a single acoustic source near the California coast in operation since 
January 1996. The paths shown in dashed lines represent the increased coverage that 
will result from the installation of a second source near Hawaii in early 1997. The present 
study is of the region enclosed by the red rectangle and is based on a preliminary analysis 
of acoustic data from paths K, L, N, and 0 (bold lines). 
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ocean through some operator N: 

(2.12) 

To relate the observations 1JoceaJt) to the model state we rewrite equation (2.11) as 

where projection operator E(t) has been redefined as the model and the real ocean states 

are defined on different grids. Furthermore, the relation between observations and the 

GCM state is assumed to be linear. Typically, matrix E(t) is sparse with only a few 

non-zero elements. 

The second term on the RHS of equation (2.13) describes the difference between the 

real ocean and the finite dimensional model, and is termed "representation error"; see 

Fukumori et al. (1998). It corresponds to processes which affect observations but that are 

missing from the model, and typically correspond to scales smaller than the model grid 

size. As far as the model is concerned it is indistinguishable from the instrument error 

and the two can to be lumped together into, for a lack of a better term, measurement 

error v(t): 

(2.14) 

To summarize, the measurements can be represented as some linear combination of 

the state vector (GCM(t) plus noise v(t): 

1JoceaJt) = E(t)(GCM(t) + v(t). (2.15) 

It is convenient to define the observed difference between the measurements and the 

GCM prediction: 

y(t) 1JoceaJt) - E(t)(GCM(t) 

E(t)Bp(t) + r(t). 

43 

(2.16) 



The observed difference is now expressed in terms of the reduced state vector p(t). The 

observational noise term includes two contributions, one due to measurement error v(t), 

which includes unresolved scales and the missing physics of the GCM, and another due 

to high frequency, small-scale variability present in the GCM but not in the reduced state 

model, €(t): 

r(t) = E(t)€(t) + v(t). (2.17) 

Our goal is to quantify errors in the large scale baroclinic variability of the GCM in 

the North Pacific relative to the variability measured by the altimeter and the acoustic 

tomography array. 

~~.3 Mathematical Formulation 

With the reduced state model described above, we present adaptive estimation algorithms 

in a more general setup of a linear prediction model, written as 

p(t + 1) = A(t)p(t) + G(t)w(t) + r(t)u(t), (2.18) 

p(t) denotes the state space vector, w(t) denotes the known forcing, u(t) denotes the 

model error, or system noise. The time step is taken to be 6t = 1 for simplicity. The state 

space vector p(t) includes physical quantities necessary to describe the system at time t 

(CGM error on the coarse grid for the reduced state model (2.3)). The vector p(t) has 

length N. Forcing w(t) includes boundary conditions, and is externally prescribed to the 

model. G(t) maps the forcing onto the state. For the reduced state model, equation (2.3), 

the forcing w(t) is assumed to be identically zero. The model prediction at time step 

t + 1 depends on A(t), the "state transition matrix" which represents an approximation 

of the model dynamics, the estimate of the state at the previous time step t, and the 

forcing. 

We complete the description of the model by providing initial conditions, with the 
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corresponding error covariance 

I1(0) =< [p(O) - p(O)][p(O) - p(O)]T > . (2.19) 

In the same way we define the state error covariance at time t 

I1(t) =< [p(t) - p(t)][p(t) - p(t)V > . (2.20) 

We rarely have good estimates of the uncertainty covariance matrix I1(0) for the initial 

condition. However, for stable models results of data assimilation are insensitive to the 

choice of I1(0) and a matrix with very large diagonal elements is chosen. In that case 

I1(t) rapidly decreases with time and reaches a steady value if the system is controllable 

and observable, see Anderson and Moore (1979). 

We relate observations y(t) to the state space vector p(t) in the same way as for the 

reduced state model (linearized GeM) in equation (2.16): 

y(t) = H(t)p(t) + r(t), (2.21) 

where r(t) stands for the observational, or measurement, noise. H is the "observation 

matrix". The length of vector y(t) is equal to M and is typically smaller than N (for 

altimetric measurements on the LM grid M = 128). The observations are available over 

T time steps. 

2.3.1 Errors 

The model error u(t) accounts for imperfect knowledge of the forcing, the linearization 

error, the discretization error, the truncation error, and external forces that are not 

represented by the forcing term w(t), etc. The model errors u(t) are typically assumed to 

be white and stationary in time, and normally distributed with the mean and covariance 

given by: 

< u(t) >= u; < [u(t') - u][u(t) - uV >= Q6t ,tl , (2.22) 
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where < .. > stands for the expectation operator. In principle, the assumption that the 

model errors are uncorrelated in time can be relaxed; see Gelb (1979), but then one 

needs to provide the correlation structure for the errors. The mean u is conventionally 

set to zero, i.e. the model error is assumed to be unbiased. In principle, the algorithms 

can be readjusted for the biased case; see Blanchet (1997), and Dee and da Silva (1997). 

Equations (2.18) to (2.20) give a full description of the model and we can integrate the 

initial conditions forward. However, in the absence of any data assimilation uncertainty 

ofthe estimate, II(t), will grow with time and very soon the estimate will become useless. 

vVe rescue the situation by assimilating data when it becomes available. This prevents 

the uncertainty of the estimate from growing linearly with time. 

The observational noise r(t) has two contributions: 1) error inherent III any real 

physical observation, i.e. instrument error, and 2) any physics which is in the data and 

not in the model; see equation (2.17). The noise is assumed to be stationary, white in 

time, Gaussian with zero mean and covariance matrix R: 

< r(t) >= 0; < r(t)r(t')T >= R8t,tl. (2.23) 

The terms model and observational errors, adapted from the control theory, are per­

haps confusing. Namely, the model error term, u(t) does not include all the shortcomings 

of the model, and some of the model flaws, the representation errors, are included in the 

term r(t), called observational errors. Moreover, this division is data-dependent, i.e. the 

split will differ from one data set to another. Only when the measurements are available 

on the grid of the linear model, the observational error will consist of the inaccuracies of 

the observations alone. This complicates the interpretation of the results, as small model 

errors do not necessarily imply that the model is very good, since the part of the model 

flaws termed representation errors, e.g. inaccurate representation of the eddies in coarse 

grid models, is large (see Chapter 5 for additional discussion). 

Another example is that of observations which include effects of the internal waves 

and a model which completely neglects the internal waves. For consistent assimilation 

of such data into this model one would need to remove the internal waves from the 
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observations. This may be difficult to do, and an alternative is to model the internal 

waves as errors in the observations, as the so-called representation errors. 

2.4 Kalman Filter 

With the model and measurement models given above, we can now define the estimation 

problem. The objective of inverse theory is to obtain a best possible, here in the least 

squares sense, estimate of the state of the model p(t) from observations y(t). Mathemat­

ically, the goal is to minimize a suitably defined cost function. The cost function can be 

written as 

T 

Jtotal = (p(O) - Po)TII(O)-l(p(O) - Po) + 2:: J(u(t), r(t), tit) 
t=l 

J(u(t), r(t), tit) = r(t)TR -lr(t) + U(t)TQ-1U(t), 

subject to the models 

r(t) = y(t) - H(t)p(t), 

u(t - 1) = p(t) - A(t - l)p(t - 1) - G(t - l)w(t - 1). 

(2.24) 

(2.25) 

The notation J(u(t), r(t), tit) means that only observations prior and including time t 

are used. The cost function seeks the state vector p(t), 0 :::; t :::; T, and the model error, 

or control, vector, u(t),O :::; t :::; T - 1, that satisfy the model equation (2.18) and that 

agree with the observations and the initial conditions to an extent determined by the 

weight matrices, namely the covariance matrices II(O), R, Q. Accordingly, the first term 

on the RHS of equation (2.25) penalizes the misfit between the observations and the 

model estimate, and the second term acknowledges the fact that driving the model with 

arbitrarily large controls is not acceptable. 

The Kalman filter sequential algorithm yields a minimum of the cost function when we 

use real-time observations (the individual terms given by J(u(t), r(t), tit)), as is typical 

in engineering applications. When observations are stored and available all at once (the 

individual terms change to J(u(t), r(t), tiT)), as is typical of oceanographic studies, the 
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Kalman filter needs to be supplemented by a smoother; see Wunsch (1996). In this case 

of batch observations and with the assumptions made above, the sequential algorithm 

provides an answer identical to an adjoint solution, which tries to minimize the global 

sum (2.24) as one huge optimization problem. 

The important point is that error covariance matrices serve as weights for the cost 

function. Therefore, they are central to data assimilation, independent of a particular 

algorithm (such as Kalman filter, adjoint, or an approximation such as a nudging al­

gorithm). When we have a poor estimate of error covariances the solution minimizes a 

wrong cost function, and is therefore far from optimal; see Todling and Cohn (1995). To 

make this distinction explicit, we introduce new notation for the prior error covariance 

matrices, Q and R, that is we drop the hats over the error covariance matrices. 

Before we turn our attention to adaptive algorithms we present the Kalman filter 

algorithm. For a complete treatment one should consult Anderson and Moore (1979). 

One of the many equivalent Kalman filter formulations taking the state from time t to 

time t + 1 is 

p(t + lit) 

TI(t + lit) 

K(t + 1) 

p(t + lit + 1) 

TI(t + lit + 1) 

Ap(tlt) + Gw(t), 

ATI(tlt)AT + rQrT
, 

TI(t + llt)HT(HTI(t + 1It)HT + R)-l, 

p(t + lit) + K(t + 1) (y(t + 1) - Hp(t + lit)), 

TI(t + lit) - K(t + l)HTI(t + lit). 

(2.26) 

(2.27) 

(2.28) 

(2.29) 

(2.30) 

Estimates obtained using data assimilation are denoted by a tilde. We assume that A, 

G, r, H, Rand Q are time independent. This assumption can be relaxed without any 

change in the algorithm, and is used only to simplify the discussion. We use the notation 

where (t + lit) represents estimates after the model simulation, or forecast, from time t 

to t + 1, and (t + lit + 1) represents estimates after the Kalman filter assimilation, or 

analysis. It is shown schematically in Figure 2.5. 

The Kalman filter, with the full algorithm given above, provides an optimal estimate 
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Figure 2.5: Two graphical representations of the Kalman filter. Top) Tn represents all 
model variables, T~b. represents observations, An dynamical model which forecasts Tn+! 
using Tn, Hn projection operator which maps model variables onto observations at time 
n. Both model and measurement equations have errors, emodel and e°

bs
, respectively. The 

average magnitudes of these errors (given by their covariances) are used as weighting 
matrices to obtain the best possible estimate at time n, denoted by the question mark, 
which is then propagated forward to obtain the forecast at time n + 1. Bottom) Al­
ternative view of the Kalman filtering. Starting from the initial condition at time 0, we 
obtain the forecast at time 1, and then get a weighted average of the forecast and the 
observations (the difference is called innovation vector) to obtain the update state at 
time 1. This update is then used as initial condition and the model is propagated again 
to give a forecast at time 2, and so on. 
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of the state vector in the least squares sense only when the correct estimates of Q and 

It are available, i.e. Q = Q and R = R. In any practical situation, even when all other 

assumptions are valid, the estimates are suboptimal because we do not know the true 

covariances. To complicate the matter, the results of the data assimilation are dependent 

on the estimates Q and R in a complex non-linear fashion. 

The part of the observational error covariance matrix R which corresponds to in­

strument error is typically better known. The other part, which represents the missing 

physics is model dependent and is therefore poorly known. In some oceanographic studies 

it is reasonable to assume that R is dominated by the instrument error. 

The model error covariance matrix is most often poorly known. For a system with 

N state elements, we have to specify N(N + 1)/2 elements of Q. But we cannot hope 

to estimate the full matrix Q. In a typical oceanographic application N is at least on 

the order of 1000. This enormous informational requirement, rather than the computa­

tional cost, is the real obstacle to a successful implementation of the optimal filter. No 

data assimilation procedure can produce meaningful results if the required information 

is missing. However, we can try to remedy the problem by applying an adaptive Kalman 

fllter. 

2.5 Adaptive Kalman Filter 

The subject of adaptive estimation is a vast one. Here we present only a summary of 

the methods which may be useful in the oceanographic context. The sources come from 

oceanographic, meteorological, and control engineering literature. 

The Kalman filter employs a large number of assumptions. In a real system many of 

them are violated and the filter estimate is suboptimal. Some studies have concentrated 

on analyzing effects of one particular assumption. For example, Daley (1992a) considered 

effects of serial correlation in the model error. Here we consider the most fundamental 

case where all the assumptions are valid but that the error covariance matrices of the 
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model error, Q, and the measurement error, Il, are not known. 

This problem received a lot of attention in control engineering literature in the late 

nineteen sixties and the beginning of the nineteen seventies. Different methods dealing 

with a general class of problems have been developed, ranging from estimation of the 

noise statistics as well as the state transition matrix to methods which were applicable 

to real time applications with little additional computational cost, e.g. reviews of Sage 

and Rusa (1969), and Mehra (1970). For the problem considered in this work, where the 

dimension of the state is relatively large, the noise statistics are assumed stationary in 

time and is the only unknown, only some of these methods are of interest. In a recent 

paper Blanchet et al. (1997) considered the relevant methods of adaptive error estimation 

using twin experiments based on a reduced space tropical Pacific ocean model. 

2.5.1 The Method of Myers and Tapley 

The first method, originally due to Myers and Tapley (1976) (MT, hereafter), uses esti­

mates obtained with the Kalman filter to compute approximations of the system noise. 

That is, the true values for the model error, u(t), defined in equation (2.18), are replaced 

by the KF ones, ii(t), 

ii(t) = p(t + lit + 1) - p(t + lit), (2.31) 

where the definition of the Kalman filter forecast, equation (2.26), has been used. To 

obtain the KF estimates, p(t+ 11t+ 1) and p(t+ lit) one needs to run the KF, and thus 

to provide initial guesses for the error covariances, Qo and RD. The method is empirical, 

but related to the maximum likelihood methods presented in Abramson (1968), and 

Maybeck (1982); see BFC97. 

We then define an unbiased estimator of the mean of ii and the covariance of the 

system noise by using sample estimates over the last S steps, and subtracting the expected 

values, 

< ii(t) > 
1 t 

S L ii(i), 
i=t-S+l 
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1 t 
S _ L ([ii(i)- < ii(t) >][ii(i)- < ii(t) >]T 

1 i=t-S+l 

(2.32) 

S; 1 [AII(i _ Iii - I)AT - II(ili)J) 

Note that if we know that the model error has zero mean, we can set < ii(t) >= O. 

To derive the last term on the RHS of equation (2.32), the bias correction, derived in 

Myers (1974), the sample estimates, equation (2.31), are assumed to be independent 

in time1. The bias correction is only valid when the prior estimate of the model error 

covariance is equal to the true one, i.e Qo = Q. Still, its use for an incorrect prior 

estimate is justified if recursive application of the algorithm can be shown to converge to 

the true estimate. For example, analysis with a scalar model, i.e. a model with 1 degree 

of freedom, shows that the MT algorithm converges to the correct estimate when the 

bias correction is applied, (Section 2.6). 

A similar estimate can be derived for the measurement noise covariance: 

r(t) = y(t) - Hp(tlt - 1), 

R(t) = S ~ 1 t [r(i)r(i)T], 
i=t-S+l 

(2.33) 

and it is assumed that the measurement error has zero mean. After a similar correction 

for the statistical bias, the MT estimate of the measurement noise covariance becomes 

_ _ 1 t 

Rmt(t) = R(t) - s L HII(ili - l)HT. 
i=t-S+l 

(2.34) 

To apply the algorithm, we choose initial estimates for Q and R, allow for initial 

transients to settle, and then replace Q and R by their estimates, using equations (2.32) 

and (2.34), at every time step. A complete description of the algorithm is given in 

Section 2.6. There are several potential problems with this algorithm. 

Maybeck (1982) states that the existence of an independent and unique solution for 

his method is subject to question, and furthermore, simultaneous estimation of both Q 

IThis assumption is not strictly correct as both ii(t) and ii(t - 1) depend on the observations y(t -
1), y(t - 2), etc. 
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and R is not well behaved. This fact was originally recognized by Myers (1974), and 

later confirmed by Groutage et al. (1987). In the twin experiments below we test the 

algorithm by estimating the model error covariance only and performing sensitivity study 

with wrong choices for the measurement error covariance R. 

The estimates from equations (2.32) and (2.34) can be non-positive semidefinite. This 

is clearly troublesome as a true covariance matrix must always be positive semidefinite. 

When a covariance matrix is non-positive semi-definite, the Kalman filter algorithm, 

see equations (2.26-2.30), becomes numerically unstable. Several ways to deal with this 

problem have been proposed. Myers and Tapley (1976) reset negative diagonal elements 

to their absolute value, while BFC97 proposed setting negative eigenvalues to zero. We 

have used the latter approach. 

The method can be unstable if one tries to estimate too many parameters. The 

method also can be sensitive to the choice of the averaging window length S (see the 

discussion in BFC97). For the model and data considered in BFC97 the algorithm gave 

a unique estimate; it did not depend on the initial choice of Q and R. However, in our 

case (Section 2.8) we find that the algorithm did not give unique estimates. 

To address some of these problems and to limit the number of parameters to be 

estimated, we can parameterize the error covariances: 

k=K k=L 

Q = L D:kQk, R = L D:IHkRk' (2.35) 
k=l k=l 

The exact forms of Qk and Rk are specified based on the physical understanding of the 

model and the measurements. The number of parameters K is much smaller than the 

number of elements in Q, but in principle we can take delta matrices (all zeroes except 

for one element) as the basis. In that case the algorithm is identical to the original 

MT algorithm. Ideally, the adaptive method should return error bars on the vector n. 

Unexpectedly large (or small) error bars could signal wrong parametrization, at which 

point, one would need to change the parametrization (2.35), and rerun the algorithm. It 

is important to note that the MT algorithm does not provide such error bars, and is one 

of the reasons why we develop a covariance matching algorithm in Chapter 3. 
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An alternative is then to estimate the coefficients a instead of the full matrix Qmt at 

every step of the MT algorithm. This can be done by finding the parameter vector which 

minimizes the difference between the MT estimate and the parametrization (2.35). The 

updated estimate of the parameter vector a provides an estimate of the error covariances. 

Note that one can guard against numerical problems, such as non-positive definiteness, 

by suitably limiting the search space for parameters a. 

Despite all of the problems discussed above the MT algorithm is appealing. First, the 

additional cost relative to the cost of the Kalman filter is insignificant. It is very simple 

and intuitive. In BFC97 the empirical estimate of MT is shown to give results similar 

to the maximum likelihood method of Dee (1995) (Section 2.9) which is much more 

computationally expensive, but has been applied in a number of studies, e.g. Dee and da 

Silva (1997). In addition, it is proven in BFC97 that the MT algorithm is identical to the 

maximum likelihood estimator of Maybeck (1982), under the same set of assumptions as 

above. 

We investigate convergence and stability properties of the MT method by analyzing 

a scalar model (Section 2.6). In Section 2.7 we present analysis of the MT algorithm for 

the model with two degrees of freedom, and show that the algorithm behaves differently 

depending on the choice of observational network, state model, and error covariances. 

We then extend these results to a real case through a series of twin experiments with the 

linear model described in Section 2.3. 

2.6 Derivation of the Myers and Tapley Algorithm 

with a Scalar Model 

To introduce the MT method, we start by applying the method to a scalar model, i.e. a 

model with only one DOF2 . Evidently, when the observations are few or poor we should 

not be able to obtain good estimates of the model statistics. The results may depend 

2This derivation is original. 
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on the type of observations, i.e. on the structure of the observation matrix H, and the 

model A. However, quantifying these intuitive concepts is not simple because adaptive 

algorithms are non-linear. For example, simply increasing the number of observations or 

the length of the time series does not guarantee that adaptive algorithms produce reliable 

estimates. A scalar model oversimplifies the analysis a great deal, but it can be solved 

analytically and provides useful guidance for the more complicated examples discussed 

in the following sections. 

For the scalar case, all matrices become scalars, but the notation remains the same. 

We assume that the state-transition matrix A and covariances Q and R are time-invariant, 

that the direct observation of the state is available at every time step and that the 

measurement matrix H = 1. Note that we can always rescale variables to make H = 1. 

To summarize, the model and the measurement equations are given by 

p(t + 1) = Ap(t) + u(t), u(t) I"'-.J N(O, Q) 

y(t) = p(t) + r(t), r(t) I"'-.J N(O, R), 

(2.3(3) 

(2.37) 

and u(t) I"'-.J N(O, R) denotes that a variable u(Ot) comes from a normal distribution with 

mean ° and variance Q. The state transition matrix A represents an estimate of the 

dynamical model - a scalar in this simplest case. It may be, and often is, different from 

the true transition matrix A of the physical system. Because the observations are not 

perfect, R "I 0, we can define new variables 

q Q/R, rrf(t) II(tJt -l)/R, rra(t) II(tJt)/R, (2.38) 

where II(tJ) denotes the uncertainty of the KF forecast, and II(tJt) denotes the uncer­

tainty of the KF analysis; see section 2.4. 

The equations for the uncertainties of the forecast and the assimilated state, given in 

full form in Section 2.4, reduce to scalar equations: 

A2rra (t) + q 

rrf(t + 1)/ (rrf(t + 1) + 1) 
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The Kalman gain K is given by 

K(t) = rr! (t)/(rr! (t) + 1) (2.41) 

The matrices Q and R represent our best a priori guesses of the variance of the system 

and measurement noise, respectively. Note that for a stable model (IAI < 1) both gains 

are always less than 1 in absolute value. Because the scalar system as defined in equations 

(2.36)-(2.37) is both controllable and observable the existence of a steady-state limit is 

guaranteed; see Fukumori et al. (1993). It is achieved after very few time steps of the 

Kalman filter and we use the steady-state filter approximation. Solving the system of 

equations (2.39) -(2.40) we obtain 

Ks 

((A2 -1) - q + J(q + (A2 -1))2 + 4q)/(2A2), 

( (A 2 - 1) + q + J (q + (A 2 - 1)) 2 + 4q) 

( (A 2 + 1) + q + J (q + (A 2 - 1)) 2 + 4q) , 

(2.42) 

(2.43) 

where subscript s denotes steady-state estimates. Note that the steady-state uncertainties 

and the Kalman gain depend only on the model A and the ratio q. 

For the case when the mean of the system and the mean of the measurement noise 

are assumed to be known and equal to zero, an estimate of the system noise is given by 

a product of the Kalman gain and innovation vector (Section 2.5) 

u(t) = Ksv(t). (2.44) 

For the scalar case the innovation sequence v(t) can be easily evaluated given obser­

vations y(t): 

k=t 
v(t) L At,ky(k), (2.45) 

k=l 

where Atk = 1 k = t· , , , 

At,k = -AKs((l - Ks)A)t-k-l, k i= t. 

For future use, we now evaluate the sum of squares of the innovation sequence over S, 
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the length of MT averaging window, time steps: 

s s s s 
Lv(t? f30 Ly(k)2 + 2f31 Ly(k)y(k - 1) + 2f32 Ly(k)y(k - 2) + ... , 
t=1 k=1 k=2 k=3 

S 

f30 L A~,k = 1 + A2 K~ + A4K~(1- KS)2 + ... , (2.46) 
k=1 
s 
L AS,kAS,k-1 = -AKs + A2 K~(l - Ks) + ... , and so on. 
k=2 

We can assume that S is sufficiently large, so that the lower index of the summation can 

be kept the same. Because for a stable model the terms f30 > f31 > f32 .... are decreasing i.n 

magnitude and coefficients At,k are rapidly decreasing as (t - k) increases we can neglect 

terms of higher order in equation (2.46). 

Next, we obtain an expression for the statistics of observations by using the true 

model parameters. To do this we assume that the time series are sufficiently long, and 

the sampling error is negligible. Using equations (2.36) and (2.37) and the assumptions 

of serial and mutual independence of the system and measurement noise, we derive 

< p(t)2 >= A2 < p(t)2 > +Q, 

< y(t)2 >=< p(t)2 > +ii. 

(2.4'1) 

Using assumptions of stationarity we replace expectations by a sample estimate ~ I:~=1 '. 

Next, we obtain an estimate of the sum of squares of the observations: 

1 S-1 A A 

S Ly(t)2 = R(l + q/(l- A2)), where q = Q/R. 
t=1 

(2.48) 

In a similar fashion we find that 

(2.49) 

Thus, when S is large and the assumptions of independence are valid, the sum of the 

squares of the innovation vectors becomes 

~ 'I: V(t)2 ~ f3oR(l + q/(l - A2)) + 2f31 RqA/(1 - A2)) + .... 
t=k+1 

(2.50) 
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We are now ready to proceed with adaptive estimation of the system noise variance Q. 

In the scalar case only the ratio q can be determined. Therefore, we cannot determine 

model and measurement error variances separately, only the ratio of the two. This is 

true about any innovation based approach: only the ratio of the norms, IQI/IRI, can 

be determined, but not the norms themselves. Substituting expressions above into the 

equation for MT estimate (2.32), the sample estimate of q is given by 

qmt,biased 
1 S-l 

= R-1Cov(u(t)) = K~R-1 S I: v(t)2 
t=k+1 

= K~ (/301'(1 + iil(l - EP)) + 2/31I'iiAI(1 - A2) + ... ) (2.51) 

where I' RI R is the misspecification of the measurement noise variance, and /30, /31, ... 

are defined in equation (2.46). 

When the a priori Q is equal to Q this estimate can be shown to be statistically 

biased by (A2 - l)rras , i.e. on average it produces an estimate greater than the true one 

by the value of the bias term. It is important to realize that when the a priori Q is not 

equal to the true one the bias term expression is no longer correct. That is, if we use 

a mis-specified Q, on average the estimate minus the bias term is not equal to the true 

one. Nonetheless, we use the bias correction term as it stands above, and demonstrate 

below that in this setup it leads to a unique and convergent estimate. The nominally 

unbiased estimate is equal to 

(2.52) 

Substituting from equations (2.42), (2.43), and (2.46) we obtain that the MT posteriori 

estimate depends only on the prior estimate of q, estimate of the model A, A, ii, and the 

misspecification of the measurement variance I' _ RI R. 

To summarize, we have obtained an analytical approximation for the MT adaptive 

algorithm for estimation of the error statistics which for a scalar model depends only on 

four parameters A , A, ii, and 1'. Thus, to understand the adaptive algorithm we turn to 

the equation (2.52). 
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2.6.1 Analysis of MT Algorithm with a Scalar Model 

We are interested in the behavior of the function 

iJ = iJ(q; A, A, £1,,,) (2.5:3) 

for different choices of parameters. For the analysis we only consider the case of stable 

model, IAI < 1, although our estimates ofthe model, A, can be both stable and unstable. 

The adaptive algorithm is equivalent to the following procedure: 

(it = iJ(qo; A, A, £1, ,,), 

iJ2 = iJ(iJl; A, A, £1, ,,), 

iJ3 = iJ(iJ2;A,A,£1,"), and so on. 

(2.54) 

That is, running the algorithm for A = A = 0.9 and a priori estimate of q = 5, we obtain 

iJl = 2. Using this estimate as the next a priori guess for q we obtain iJ2 = 1.4, and then 

ij3 = 1.2, and so on. Finally, we converge to an estimate of q = 1, which is equal to the 

true value. Figure 2.6 illustrates this recursive process graphically. 

The value to which the adaptive algorithm converges is given by a solution of the 

equation 

ij(q; A, A, £1,,,) - q = o. (2.5~») 

The contour plot of iJ as a function q and A for a case when we have a correct estimate 

of R, i.e. ,,= 1, the true model is A = 0.9, and the ratio £1 is 1, is shown on Figure 2.7 

(solid lines). It shows posterior estimates of iJ for estimates of A in the range from 0 to 2 

(corresponding to both stable and unstable models), and the prior ratio qo in the range 

from 0 to 10 (corresponding to cases with system noise variance less than measurement 

noise variance and vice versa). For this system, the adaptive algorithm produces a correct 

estimate of the system noise variance when we have a correct estimate of the measurement 

noise variance and the model. This result holds in general for any stable model when 

A = A and" = 1. This is shown in Appendix B. It has to be stressed again that these 
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1.4 

1 
And so on 

1 1.4 2 
Prior estimate q (QIR) 

5 

Figure 2.6: A graphical representation of the MT adaptive algorithm. The thick continu­
ous line represents the MT adaptive estimate for different choices of initial q. The dotted 
line is the line x = y, used to project the values of the function back onto the abscissa. 
'iVe start with initial estimate of q = 5. After first run of the algorithm we obtain that 
q = 2.0. We then project it back on the x-axis by tracing the estimate with a dashed 
line, and use it as a new prior estimate, and so on. It converges to 1, the true value of q. 

results are correct only when we have a sufficiently large number of measurements so that 

the analytical approximations for the covariances, equations (2.48-2.49), remain valid. 

The solution to equation (2.55) for all possible choices of the model A is given by a 

dashed line in Figure 2.7. It demonstrates that the resulting estimate is not very sensitive 

to the choice of the model used in the analysis: if we use A = 0.8, instead of the true 

value of 0.9, the estimated if is different only by 15 %. We also see that there is a unique 

estimate for each choice of the model A independent of the initial guess. Thus, when we 

do not have perfect knowledge of the model the algorithm produces a unique, but wrong, 

estimate. 
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Qtilde using MT with bias correction True A = 0.9 

1.8 
A 

Q=1 R= 1 N=1000 

Figure 2.7: Contour plot of ij as a function q and A for a case when we have a correct 
estimate of R, the true model is A = 0.9 (dash-dotted vertical line), and the ratio ij is l. 
Dashed line represents the values to which the algorithm will converge depending on the 
choice of the model A. 
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Qtilde using MT without bias correction True A = 0.9 
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Figure 2.8: The contour plot of gmt biased' without the bias correction, as a function , 
q and A for a case when we have a correct estimate of R, the true model is A = 0.9 
(dash-dotted vertical line), and the ratio if. is 1. Dashed lines represent the values to 
which the algorithm will converge depending on the choice of the model A. 

For comparison we show a similar plot for the estimate without the bias correction, 

i .. e. gmt biased (q) given in equation (2.51); see Fig. 2.8. The dashed line shows what , 
values the adaptive algorithm converges to when the bias is not accounted for. The 

results are drastically different. First, the algorithm does not produce a correct estimate 

of q. Second, for slightly different estimates of the model A it either does not converge 

or it has more than one solution. This again shows that correction for the statistical bias 

is essential in MT adaptive algorithm. 
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2.6.2 Summary for a MT Algorithm with a Scalar Model 

We presented the analysis for a simplest possible case, a scalar model and a scalar obser­

vation. This is the only case for which an analytical representation of the MT adaptive 

algorithm is known to exist. The results suggest that the adaptive MT algorithm is 

well-behaved if we have a long time series of observations after the correction for the 

statistical bias. The following results are valid for any stable, i.e. IAI < 1, model. The 

adaptive estimate of the system noise variance converges to its true value when we have 

perfect knowledge of the model, A, and the measurement noise variance, R. When we 

do not know the two latter quantities perfectly, we still obtain a unique estimate of Q 

irrespective of the initial guess. This estimate is close to the true one for sufficiently 

large misspecification either of the model or of the measurement noise variance. If these 

conclusions apply to higher-dimensional models for short time series and a general mea­

surement matrix, the MT algorithm is of great practical importance for optimal data 

assimilation. The scalar case lacks many important characteristics present in multidi­

mensional models. For example, we cannot consider a case of non-identity observation 

matrix H. Thus, we cannot compare different observation networks, such as altimet­

ric and tomographic ones. In addition, we cannot look at effects of misspecification in 

cross-correlations in the model and/or observation error, the off-diagonal elements. This 

is important because very often non-diagonal elements in Q and R are neglected. Thus, 

though the scalar case provides much hope for the adaptive method it does not shed any 

light onto many important questions and we have to reserve to numerical experiments. 

2.7 Derivation of the MT Algorithm for Systems 

with Several DOF 

In this section we generalize analytical results obtained for a scalar model to a two DOF 

model. This case retains all the essential features of adaptive data assimilation with large 
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models, but is much simpler to analyze. The approach mimics that developed above for 

the scalar model (Section 2.6). However, we cannot derive closed form solutions. The 

difficulty is that we need to solve the algebraic Ricatti equation (to obtain the steady 

Kalman filter, Anderson and Moore, 1979, p. 155) and the Lyapunov equation (to obtain 

the model state covariance as a function of the model error covariance, Anderson and 

Moore, 1979, p. 62). Neither the Ricatti equation nor the Lyapunov equation has a 

closed form solution (except in the scalar case) and we solve them numerically. Similarly 

to the scalar case, the method described below is identical to running a twin experiment, 

with sufficiently large number of observations (for 2 DOF model we need at least 500 

observations) . 

Based on the scalar model analysis presented above, we know that the adaptive 

algorithm can be viewed as a function which has several inputs and outputs. When we 

have a sufficiently large number of observations, the statistics of the observations can be 

deduced from the model and measurement equations, and thus the number of parameters 

is significantly reduced. Namely, instead of providing the time series of observations we 

specify the true covariances of the model and measurement error to compute statistics 

of the observations. 

The number of parameters is significantly increased from that of the scalar case. When 

we consider only diagonal Q and R for a two degrees of freedom model, the number of 

parameters is greater than 10, as compared to 4 for the scalar case. Unlike the scalar 

case, we need to consider a non-identity observation matrix, and below we show that 

convergence properties of the algorithm depend on the observation matrix. The adaptive 

estimates depend on the true model, true model and measurement error covariances, the 

prior model, prior model and measurement error covariances, and the observation matrix: 

Qmt = function(A, Q, R, A, Q, R, H). (2.56) 

To obtain this function we proceed as in the scalar case. Because we are dealing with 

non-commuting matrices the results of the scalar case are not directly transferable and 

we present a derivation below. Combining the model and the measurement equations 
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for the true state, we can obtain estimates of the observation statistics, i.e. covariance 

and the lag-covariances of the observations. To simplify the notation, we assume that 

the model error is given on the same grid as the model state, and that there is no 

deterministic forcing (equation 2.18). Multiplying both sides of (2.18) by p(t + 1) and 

taking expectations, we obtain the discrete Lyapunov equation, 

(2.57) 

which relates the covariance of the state, P, to that of the true system error, Q. We have 

assumed that the true state is stationary, i.e. P(t + 1) = P(t) = P. For stable A, the 

Lyapunov equation is readily solved for P using any of a number of iterative schemes. 

Similarly, multiplying both sides of (2.37) by y(t)T and taking expectations we have, 

Y =< [y(t)- < y(t) >][y(t)- < y(t) >F >= HPHT + it, (2.58) 

and by y(t + k)T and taking expectations we have, 

Yk =< [y(t + k)- < y(t + k) >][y(t)- < y(t) >F >= HAkpHT, k 2: 1, (2.59) 

which relates the measurement covariance, Y, and the measurement lag covariances, Yk' 

to the covariance of the state. These equations are analogous to the scalar case equations 

(2.48) and (2.49). 

To find the MT estimate we need to compute the sum of squares of the innovation 

vector. We use the steady state Kalman filter. To find the steady state Kalman gain we 

need to solve the algebraic Ricatti equation, which can be easily derived from (2.27-2.28) 

and (2.30): 

II(t + lit) = A [II(tlt - 1) - II(tlt - l)HT (HII(tlt - l)HT + R)-l 
HII(tlt - 1)] AT + Q, 

lIs ( -) = II(t + lit) = II(tlt - 1), Ks = IIs(-)HT (HIls ( - )HT + R) -1 . 

(2.60) 

Subscript S denotes steady state filter. The hats have been dropped as the filter repre­

sents actual Kalman filter assimilation, and therefore the matrices Q, R, and A represent 
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our prior estimates instead of the true values. To solve the Ricatti equation (2.60) we 

use one of many available numerical techniques - the doubling algorithm (Appendix C). 

The steady state Kalman gain, K s, depends on our estimates of the prior model, model 

and measurement covariance matrices (A, Q, and R). Now, we are ready to evaluate the 

sum of squares of the innovation vector: 

1 s 
s L:: v(t)v(t)T 

t=l 

where 

s s s 
L:: Ak YAI + L:: L::(Ak YlAI+l + Ak+lYl

T AD 
k=O k=O 1=1 

Ao = I, Ak = -H [A(I - K sH)t-1 AKs. 

(2.61) 

(2.62) 

Note that for a stable model A, the terms Ak rapidly decrease with k, and, in fact, only 

a few first terms in the series are important. The length of the averaging window, S, is 

assumed sufficiently large to accommodate all significant terms in the series (2.61). 

Then, we can readily obtain the MT estimate; see (2.31-2.32), 

_ 1 s 
Qmt = Ks( S L:: v(t)v(tf)K~ - bias correction, 

t=l 

(2.63) 

where the bias correction is given by 

bias correction = (AIlsA T - Ils) , (2.64) 

and Ils is the steady state uncertainty of the model update, 

Ils = AIls ( - ) AT + Q. (2.65) 

2.7.1 Analysis of the MT method with a Two-DOF Model 

We can now investigate the properties of the MT method. We need to address several 

important questions. First, we need to investigate whether recursive application of the 

algorithm gives the same result independent of the prior guess- the uniqueness property. 

Second, we need to consider the sensitivity of the solution to the misspecification of pa­

rameters, such as wrong prior measurement covariance R =I- R, or wrong state transition 

matrix, A =I- A. Third, we need to find out whether the solution is convergent, i.e. 
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equal to the true one when all the assumptions are valid. Certainly, when a solution 

is not unique it cannot be convergent. We need to do this for different choices of the 

state transition matrices, observation networks, and true model and measurement error 

covanances. 

We parameterized the model error covariance in the form suggested by Belanger (1974): 

K 

Q = L>~iQi' (2.66) 
i=l 

where the matrices Qi are known. In principle, one can take the number of parameters ni 

to be equal to the number of basis elements of Q (N(N + 1)/2 for a symmetric matrix of 

size N), as proposed by Shellenbarger (1967). Mehra (1970), provides an analytical limit 

on the number of parameters which can be estimated by an innovation based adaptive 

algorithm. He shows that since the Kalman gain depends only on the N x M linear 

functions of Q only that many parameters can be identified: 

Kmax ~ N x M. (2.67) 

Since the parameter space is rather large; see equation (2.56), in each series of ex­

periments we only vary a few parameters. We display the results of a series of twin 

experiments on one figure (Figure 2.9). The left column of plots shows the varying in­

puts; and the right column of plots shows the outputs, i.e. the elements of the model 

error covariance. Thus, in this case we apply the MT algorithm to 30 different initial 

guesses of prior Q. We vary prior Q from [1 0; 0 1] to [90; 09], keeping the off-diagonal 

elements at zero. The output, Qmt' which lies in 3 dimensional space (symmetric 2 by 

2 matrix), is plotted on 3 different plots, one for each element. We decided to plot the 

difference between the MT estimates and the true ones (thick dots) to ease the compar­

ison between different experiments. The reason is that in this section we are primarily 

interested whether the MT estimates are close to the true ones, and not in the estimates 

themselves. In addition on the right column of plots we show the difference between the 

prior and the true elements (pluses) to facilitate comparison of the prior and adaptive 

estimates of the model error covariance. 
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Figure 2.9: MT adaptive algorithm with a 2 DOF model (Section 2.7). The left column of 
plots shows the varying inputs against the experiment number (thick dots); and the right 
column of plots shows the outputs, i.e. the elements of the model error covariance against 
t.he experiment number. The plots on the right show estimates for c) Qmd1, 1] - Q[1, 1J 
(thick dots), and Q[1,1J - Q[1, 1J (pluses) d) the same for element [2,2]' and e) for 
element [1,2]. Note that since a covariance matrix is symmetric these three elements 
completely define it in the 2 dimensional case. The values of all the necessary matrices 
are given below the graphs. In this group of experiments H has rank 2, and the prior Q 
is changed for each of 30 experiments. The MT algorithm gives a correct estimate of the 
true covariance independent of the prior guess. 
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First, we establish whether the recursive application of the MT method produces 

unique solution irrespective of the initial choice of the prior covariance Q. We ran a large 

number of experiments with different choices of parameters, .A, Q, etc. If we have two 

distinct observations, i.e. we observe both elements of the state, the algorithm converges 

to a unique solution. An example is shown in Figure 2.9 when the measurement matrix 

is [1 1; 0 0.5]3. The state transition matrix has non-zero off diagonal elements and 

eigenvalues inside the unit circle. The left column of plots shows how we change the 

prior model error covariance Q for different runs, and right column shows the resulting 

estimate of the model error covariance Qmt relative to the true Q. The right plots show 

that for each initial guess the MT algorithm produces perfect estimates, as the difference 

between the MT estimate and the true one is zero. The MT estimate is unique, and 

equal to the true one. 

However, when we repeat the same set of experiments with only one observation, 

namely the sum of the two state elements, the results are different (Figure 2.10). In this 

case, the MT estimate depends on the prior Q. The estimate is equal to the true one 

only when the prior is equal to the true one, experiment 30. The reason is that the rank 

of the product of the Kalman gain, K s , and the observation matrix, H, is less than the 

rank of the covariance matrix; see Blanchet et a1. (1997). In this case, we only tried to 

estimate two diagonal elements of Q. The off-diagonal elements are set to zero, the true 

value. That is, at each step of the iteration, the prior covariance is chosen to be diagonal; 

that is the covariance is parameterized as 

(2.68) 

Mehra's criterion, equation (2.67), is satisfied, but the estimate is not unique. That is, 

Mehra's criterion sets the upper limit for the number of parameters in Q but even with 

an infinite amount of data it is not guaranteed that many parameters can be estimated. 

3The rows of the matrix are separated by a semi-colon, i.e. [~ o.!] ++ [11; 00.5] 
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Figure 2.10: MT adaptive algorithm with a 2 DOl" model (Section 2.7). The left column 
of plots shows the varying inputs against the experiment number (thick dots); and the 
right column of plots shows the outputs, i.e. the elements of the model error covariance 
against the experiment number. The plots on the right show estimates for c) Qmtl1, 1]­
(~[1, 1] (thick dots), and Q[l, 1]- Q[l, 1] (pluses) d) the same for element [2,2]' and e) 
for element [1,2]. The values of all the necessary matrices are given below the graphs. 
In this group of experiments there is only one observation which averages the two state 
elements, and the prior Q is changing. Only the diagonal elements of Q are estimated. 
Unlike the case with full rank H, figure 2.9, the estimate is wrong except when the prior 
is accidentally equal to the true. 
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This sensitivity to the initial guess is a weak point of the method. There is no infor­

mation on what combination of parameters a can be reliably estimated and what is the 

uncertainty of the estimates. In these experiments, sampling uncertainty of the statis­

tics of observations is assumed to vanish, and all the assumptions are satisfied. In more 

realistic applications, when this no longer holds, and we do not have a good prior guess, 

the algorithm may not converge to the true estimate. We ran a number of experiments 

with different state-transition matrices with similar results. 

However, estimation of only one parameter, the mean variance of the model error, is 

well-behaved (Figure 2.11). In this experiment at each iteration we set the prior covari­

ance to the identity times the mean of the diagonal of the previous iterative estimate: 

(2.6~)) 

The MT method provides the correct estimate independently of the prior guess, the dif­

ference between the MT estimate and the true one is identically zero. The true covariance 

matrix has diagonal elements equal to 5 and 7 respectively, and the adaptive estimate 

of the mean is equal to 6, i.e. it overestimates the first diagonal element Q[l, 1], and 

underestimates the second diagonal element Q[2,2]. These experiments suggest that i.n 

the perfect case when we have the right model and measurement error covariance, and 

infinite time series of observations, the algorithm is stable and converges to the true esti­

mate for the mean model error variance independent of the initial guess for Q. However, 

the number of iterations (we stopped the algorithm when the MT estimate is less than 1 

per cent different from the prior), is on the order of 10. This is a large number since we 

needed very long observational time series; see equation 2.61, to achieve good estimates 

of statistics of the innovation sequence. 

To understand the dependence of the MT algorithm on the measurement matrix H 

we ran the following series of experiments: we changed the second diagonal element of 

H from 0, as in the latter case above, to 0.1, for which a MT estimate is unique, and 

kept everything else unchanged, i.e. we added a second measurement to the original 
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Figure 2.11: MT adaptive algorithm with a 2 DOF model (Section 2.7). The left column 
of plots shows the varying inputs against the experiment number (thick dots); and the 
right column of plots shows the outputs, i.e. the elements of the model error covariance 
against the experiment number. The plots on the right show estimates for c) Qmtr1, 1]­
(~[1, 1] (thick dots), and Q[l, 1]- Q[l, 1] (pluses) d) the same for element [2,2]' and e) for 
element [1,2]. The values of all the necessary matrices are given below the graphs. In this 
group of experiments there is only one observation which averages the two state elements, 
a.nd the prior Q is changing. With the reduced number of parameters to be estimated 
the algorithm gives a correct estimate of the parameter, the mean of the diagonal of Q. 
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averaging measurement of the state. The measurement equation (2.21) can be rescaled, 

and increasing H[2, 2] is equivalent to reducing uncertainty of the measurement of the 

second state element. The prior model error covariance Q is misspecified. We tried to 

estimate the two parameters as in equation 2.68. The results are displayed in Figure 

2.124. The estimates of the model error covariance become closer to the true ones as 

we increase the value of H[2, 2], or, equivalently, decrease the uncertainty of the second 

measurement. Therefore, although uniqueness is not guaranteed even with full rank 

observation matrix, it is achieved when the additional measurement has error variance 

more than hundred times as much as that of the averaging measurement. The additional 

information is sufficient to make the algorithm converge to the unique estimate. This 

unique estimate is equal to the true one. 

To study the sensitivity we ran experiments where either the true model transition 

matrix is different from the model used in the analysis, or the measurement error covari­

ance is misspecified. For example, we show results of experiments where we change both 

the true and the prior state transition matrices keeping all other parameters the same 

(Figure 2.13). Namely, we underestimate the diagonal elements of A by 0.1; see the left 

column of plots. The prior guess for Q overestimated the variance by a factor of 2. Vle 

tried to estimate mean of the diagonal elements of Q, as in equation (2.69). The MT 

estimate is significantly better than the prior, but is off by as much as 35 percent. In 

general, the estimates get worse as the eigenvalues of A get closer to one. The results 

are similar for other choices of the state transition matrix. 

In another group of experiments, we misspecified the measurement error covariance 

(Figure 2.14). The estimates get closer to the truth when the measurement error co­

variance R gets larger, and thus misspecification of R becomes less significant as its 

weight in the Ricatti equation (2.60) diminishes. Thus, the method is less sensitive to 

misspecification of R when the ratio of IQI/IRI is is smaller. 

To check the sensitivity of the MT method to off-diagonal elements, we ran exper-

4The number of iterations of the MT algorithm was limited to 300. 
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Figure 2.12: MT adaptive algorithm with a 2 DOl" model (Section 2.7). The left column 
of plots shows the varying inputs against the experiment number (thick dots); and the 
right column of plots shows the outputs, i.e. the elements of the model error covariance 
against the experiment number. The plots on the right show estimates for c) Qmd1, 1]­
C~[l, 1] (thick dots), and Q[l, 1] - Q[l, 1] (pluses) d) the same for element [2,2]' and e) 
for element [1,2]. The values of all the necessary matrices are given below the graphs. 
In this group of experiments the observation matrix H is changing and the prior Q is 
kept constant. When we add a second observation which measures the second element 
of the state to the averaging observation, the algorithm starts to converge to a unique 
estimate. However, if the uncertainty of such a measurement is great, i.e. H[2, 2] « 1 
the algorithm needs a very large number of iterations to converge. Because we limited 
the number of iterations to 300, it cannot provide the correct estimate for the first 7 
experiments. 
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Figure 2.13: MT adaptive algorithm with a 2 DOF model (Section 2.7). The left column 
of plots shows the varying inputs against the experiment number (thick dots); and the 
right column of plots shows the outputs, i.e. the elements of the model error covariance 
against the experiment number. The plots on the right show estimates for c) Qmd1, 1]­
Q[l,l] (thick dots), and Q[l, 1]- Q[l, 1] (pluses) d) the same for element [2,2]' and e) 
for element [1,2]. The values of all the necessary matrices are given below the graphs. In 
this group of experiments there is one observation which averages the two state element.s. 
The state transition matrix is changing and misspecified. The MT estimates are much 
closer to the truth than the prior, and get worse with the increasing eigenvalues of A. 
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Figure 2.14: MT adaptive algorithm with a 2 DOF model (Section 2.7). The left column 
of plots shows the varying inputs against the experiment number (thick dots); and the 
right column of plots shows the outputs, i.e. the elements of the model error covariance 
against the experiment number. The plots on the right show estimates for c) Qmtl1, 1]­
(~[1, 1] (thick dots), and Q[l, 1]- Q[l, 1] (pluses) d) the same for element [2,2]' and e) 
for element [1,2]. The values of all the necessary matrices are given below the graphs. In 
this group of experiments there is one observation which averages the two state elements 
and changing, and misspecified measurement error covariance matrices Rand R. The 
estimates of Q are wrong, and get worse with smaller R. This signifies the fact that 
misspecification of the measurement error is more important when the measurement 
error is small. 
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iments with a true covariance matrix having non-zero off-diagonal elements, but with 

a model for the covariance which assumes zero-off-diagonal elements (equations (2.68) 

and (2.69)). The resulting estimates (Figure 2.15) are wrong, and rather sensitive to the 

effect of misspecification of the model error covariance model. 

EXPER 120: A=Atrue: R=Rtrue RECURSIVE w. 1 paramo estim. 
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Figure 2.15: MT adaptive algorithm with a 2 DOF model (Section 2.7). The left column 
of plots shows the varying inputs against the experiment number (thick dots); and the 
right column of plots shows the outputs, i.e. the elements of the model error covariance 
against the experiment number. The plots on the right show estimates for c) Qmd1, 1]­
Q[l,l] (thick dots), and Q[l, 1]- Q[l, 1] (pluses) d) the same for element [2,2]' and e) 
for element [1,2]. Note that since a covariance matrix is symmetric these three elements 
completely define it in the 2 dimensional case. The values of all the necessary matrices 
are given below the graphs. In this group of experiments H has rank 2, and the prior Q 
is changed for each of 30 experiments. In addition, the parametrization of the prior Q is 
wrong (which neglects cross-correlations of the model errors). The estimates are wrong 
independent of the prior guess for Q. 

The check for convergence is appropriate only when there is a unique estimate. Thus, 

based on the discussion above and by running extensive experiments sampling the pa-
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rameter space we checked that this is the case either when we have two observations or 

we are trying to estimate a single parameter with one observation, e.g. the mean variance 

of the model error. An example is shown on Figure 2.16, where we present MT estimates 

with different choices of state transition matrices. The MT estimates are perfect for all 

EXPER 111: A=Atrue: R=Rtrue RECURSIVE w. 1 paramo estim. 
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:Figure 2.16: MT adaptive algorithm with a 2 DOF model (Section 2.7). The left column 
of plots shows the varying inputs against the experiment number (thick dots); and the 
right column of plots shows the outputs, i.e. the elements of the model error covariance 
against the experiment number. The plots on the right show estimates for c) Qmt[l, 1]­
(~[1, 1] (thick dots), and Q[l, 1]- Q[l, 1] (pluses) d) the same for element [2,2]' and e) for 
element [1,2]. The values of all the necessary matrices are given below the graphs. With 
one observation which averages the two state elements and changing, and misspecified, 
state transition matrix A. Only one parameter is estimated, the mean of the diagonal. 
The estimate is independent of the prior and equal to the true. 

choices of state transition matrices. 
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2.7.2 Summary for The MT method with several DOF Models 

We have considered the MT algorithm for a system with two DOF. This allowed us to 

consider in detail most cases of interest for systems with more than one DOF (i.e. different 

observational networks, diagonal and off-diagonal covariance matrices, etc). We have 

considered only the most idealized case when all the assumptions are perfectly satisfied, 

and we have infinite length time series of observations. Even in this setup, the MT 

algorithm is sensitive to the initial guess of Q and the number of parameters estimated, 

a fact often observed with non-linear algorithms. The limit given by Mehra (1970), is 

only an upper bound for the number of parameters. Even with infinite time series of 

observations, the number of parameters that can be reliably estimated is less than that 

given in equation (2.67). The algorithm produces perfect results when we try to estimate 

one parameter with one observation, and we have good estimates of the other parameters. 

The algorithm is sensitive to misspecification in the model and observation error statistics. 

The algorithm is not efficient, even with perfect knowledge of observational statistics; it 

takes a lot of iterations for the algorithm to converge. 

2.8 Twin Experiments with the Linearized MIT GeM 

and the MT Method 

With the details of the linearized MIT GeM (LM) and the data given in Sections 2.1 

and 2.2, and the MT method described in Sections 2.5 - 2.7, we turn our attention to twin 

experiments with the LM. All twin experiments are run in the same fashion. We start by 

running the model from random initial conditions, and forced stochastically at every time 

step of the model (1 month for the LM). The stochastic forcing is assumed to be normally 

distributed in space with zero mean and covariance Q and white in time. This defines 

the true state of the model. To simulate the observations, we add measurement noise 

to the projection of the true state onto the measurement space. Measurement noise is 

79 



TWIN EXPERIMENT SETUP 
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Figure 2.17: Schematic representation of the twin experiment. 

assumed to be normally distributed in space with zero mean and covariance R and white 

in time. These pseudo-observations are then assimilated into the model. The procedure 

is shown schematically in Figure 2.17. 

Rather than trying to estimate the full model error covariance we restrict our attention 

to the case where the covariance, Q, is block diagonal with four diagonal blocks given by 

a multiple of the identity: 

a1 I 128 0128 0128 0 128 

Q= 
0128 a2I 128 0128 0 128 

Q f-+ [aI, a2, a3, a4], (2.70) , or 
0128 0128 a3I 128 0 128 

0128 0128 0128 a4I 128 

where 1128 is an identity matrix of 128 by 128 and 0128 is a zero matrix of 128 by 128. Thus, 

the problem is reduced to estimating 4 parameters aI, a2, a3, a4, each corresponding to 

the variance of a particular vertical EOF. The variables are non-dimensional. 

80 



The true covariances are given in the same block diagonal form (equation (2.70)). 

That is, there are no cross-correlations between model errors at different locations. Three 

choices of true Q are chosen for the experiments, 

Ql +-7 [1,1,1,1]' 

Q2 +-7 [1,2,4,8]' 

Q3 +-7 [8,4,2,1]. 

(2.71) 

In this very simplified case the correct estimation of the coefficients Q is identical to 

correct estimation of the true covariance matrix. This represents the ideal scenario when 

our parametrization of the model error covariance matrix is correct. In any practical 

situation, one would have to use approximations, and there would be additional errors 

in parameters Q associated with the error in parametrization. The true measurement 

noise covariance is taken to be a multiple of identity. The a priori measurement noise 

covariance R used in the experiments was chosen to be equal to the true one, unless 

noted otherwise. 

2.8.1 Single Posterior Estimate Experiments with The MT method 

We first present the results with the MT adaptive algorithm running the Kalman filter for 

50 time steps, or 4 years, and then computing the posterior estimate, Q, averaging over 

the whole time history. Subtracting the bias correction we obtain the unbiased estimate 

Qmt (equation (2.32)). In addition, we compute an estimate of the measurement noise 

covariance R, and a corresponding unbiased estimate Rmt using equations (2.33-2.34). 

Note that we are not trying to estimate both model and measurement error covariances 

as that procedure is known to be unstable; see Groutage et al. (1987). 

First we present results with purely altimetric simulated measurements. H is a matrix 

with 128 by 512 elements. The results of the perfect twin experiments for each choiee 

of the true Q, defined in (2.71), are presented in table 2.1. The table shows results £or 

each experiment separately, and the experiment number is given in the leftmost column. 
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No. 1st EOF 2nd EOF 3rd EOF 4th EOF MLF 
1 Q 1 1 1 1 R 1 

Q 1 1 1 1 R 1 
Q 0.22 0.56 0.14 0.20 R 2.94 

Qmt 1.01 1.05 1.00 1.02 Rmt 1.28 1.21 
2 Q 1 2 4 8 R 1 

Q 1 2 4 8 R 1 
Q 0.20 0.96 0.52 3.42 R 6.61 

Qmt 0.89 2.02 3.83 8.07 Rmt 1.38 1.63 
3 Q 8 4 2 1 R 1 

Q 8 4 2 1 R 1 
Q 2.64 2.31 0.19 1.87 R 6.46 

Qmt 7.80 3.93 1.87 0.99 Rmt 1.37 1.62 

Table 2.1: Estimates of the parameter vector a for single-posterior estimate MT exper­
iments with perfect initial guess for Q and simulated altimetric measurements H. The 
model error covariance is found by substituting the values of a into equation 2.70. For 
each experiment we present four model error covariances: true Q, prior Q, biased MT 
estimate Q, and unbiased Qmb and similarly for the measurement error. 
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The four rows show the true values of the error covariances, Q and R, the prior guesses, 

Q and R, the sample estimates before the bias correction, Q and R, and the unbiased 

estimates, Qmt and Rmt (equations (2.32) and (2.34)). In these first experiments the 

prior guesses are taken to be equal to the true values. 

In Experiment 1 the true model error covariance is the identity; in other words the 

model error variance is equipartitioned, and the prior guess is correct. The measurement 

error covariance is assumed to be the identity as well. After 50 steps of the KF, we obtain 

posterior sample estimate, Q f-+ [0.22,0.56,0.14,0.20]. It grossly underestimates the 

model error variance for all vertical modes. However, after we apply the bias correction 

the estimate is nearly indistinguishable from the true one, Qmt f-+ [1.01,1.05,1.00,1.02]. 

Results for the two other choices of the true model error covariance, when the model 

error variance grows and diminishes with the EOF number, respectively, are very similar. 

That is, the unbiased estimates are indistinguishable from the truth. In Section 2.6 we 

have shown that bias correction is essential for satisfactory performance of the adaptive 

technique. The bias correction works better for the model error variance than for the 

measurement error variance. The largest error of the model error variance estimate is 

only 11 per cent, while the largest error for the measurement error variance is 38 per cent. 

It has to be noted again, that since there are no estimates of the uncertainty for Qmt, 

we use posterior estimate of R to judge whether we have reached good estimates of the 

model error covariance Q; see additional discussion below. To recapitulate, independent 

of how the model error variance is partitioned, the MT estimate is very good if we have 

the correct prior estimates of the model error. 

In the next set of experiments, we misspecify the prior model error covariance Q -

a more realistic case. The results are summarized in table 2.2, which is given in the 

same format as the Table 2.1. In experiment 4, the prior estimate is an overestimate 

of the true error covariance. We can observe that when the prior Q is different from the 

true Q, the posterior estimates are are not equal to the true ones, unlike the "perfect" 

experiments above. However, they are a little closer to the truth than the prior ones. 
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No. 1st EOF 2nd EOF 3rd EOF 4th EOF MLF 
4 Q 1 1 1 1 R 1 

Q 1 2 4 8 R 1 
Q 0.08 0.48 0.27 1.61 R 2.90 

Qmt 0.79 1.56 3.58 6.22 Rmt -2.29 1.34 
5 Q 1 1 1 1 R 1 

Q 8 4 2 1 R 1 
Q 1.29 1.19 0.09 0.12 R 2.81 

Qmt 6.46 2.80 1.77 0.92 Rmt -2.28 1.31 
6 Q 1 2 4 8 R 1 

Q 1 1 1 1 R 1 
Q 0.49 1.26 0.30 0.49 R 6.77 

Qmt 1.26 1.74 1.16 1.30 Rmt 5.104 1.97 
7 Q 1 2 4 8 R 1 

Q 8 4 2 1 R 1 
Q 2.84 2.58 0.22 0.21 R 7.26 

Qmt 8.00 4.19 1.90 1.01 Rmt 2.18 1.67 
8 Q 8 4 2 1 R 1 

Q 1 2 4 8 R 1 
Q 0.20 0.97 0.56 3.30 R 6.71 

Qmt 0.91 2.04 3.87 7.95 Rmt 1.48 1.64 

Table 2.2: Estimates of the parameter vector a for single-posterior estimate MT experi­
ments with misspecified Q and simulated altimetric measurements H. The model error 
covariance is found by substituting the values of a i~to equation 2.70. For each expe~i­
ment we present four model error covariances: true Q, prior Q, biased MT estimate Q, 
and unbiased Qmt, and similarly for the measurement error. 
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This is the foundation of the MT algorithm, with the expectation that the recursive 

update of the covariance will eventually produce a good estimate of the true covariance 

Q. As in the "perfect" experiments above, the sample estimate Q grossly underestimates 

the model uncertainty, and the bias correction increases the estimates significantly. 

The same is true about Experiment 5, where the prior model error variance is dis­

tributed as [8,4,2,1] among the vertical modes of the model. Note that estimates of 

the mean measurement error variance are 2.9 and -2.3 for Experiment 4, and 2.8 and 

-2.3, for Experiment 5, before and after the bias correction correspondingly. The MT 

estimate of the measurement error is clearly wrong as a variance can never be negative. 

Ideally, the bias correction would always correct for the error in the prior estimate. Due 

to the complexity of the Kalman filter algorithm this is not practical. At the same time, 

the apparent negative variance indicates that our estimate for the prior statistics of the 

model error was wrong, and we should try something else. The MT algorithm prescribes 

substituting the posterior estimate Qmt for the prior, and keep on going. In fact, the 

posterior estimate is closer to the true one than the prior, and we would indeed expect 

to obtain a good estimate after a few iterations. Similar conclusions are reached when 

we start with an underestimate of the model error variance, e.g. Experiment 6. 

Experiment 7, and especially Experiment 8, show that there is a subtlety. In Experi­

ment 7 the true Q has variance partitioned as [1,2,4,8] between the four vertical modes. 

The prior estimate is partitioned in the opposite way, [8,4,2,1]. The posterior MT esti­

mates are within 5 per cent of the prior, that is, essentially the same. Thus, we expect 

that recursive application of the algorithm is not going change the prior estimate of the 

model error covariance, and this is indeed the case as is shown in Section 2.8.2. The 

mean variance of the posterior measurement error variance, R mt , is close to the prior 

one, which was taken to be equal to the true. Thus, if we were to hide the information 

about the true values of the model and measurement error covariances, experiments 7 

and 8 should be grouped together with the perfect experiments 1-3 (experiments 2 and 7 

share the same true statistics, and so do experiments 3 and 8). But in experiments 7 and 
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8 we have a totally wrong partitioning of the model error variance. Thus, the adaptive 

algorithm of MT does not have a unique estimate of the model error with the LM and 

altimetric measurements. Therefore, we cannot be certain that our estimate of the model 

error we were to obtain using real altimetric data is the correct one. 

The results change dramatically once we assimilate additional observations. First, 

we present the results with the complete observational network (H given by the identity 

matrix). Of course, at present, we have no observational technique which can provide 

that kind of observations on global scale. But it provides a convenient benchmark for 

comparison of different observational networks. The results are presented in Table 2.3. 

These experiments are identical to the ones discussed above, except for the change of 

H. Only results for experiments with the same choice of true and prior model error 

covariances as in the experiments 2, 6 and 7 above are shown. Experiment 2a shows 

that with this measurement matrix the perfect experiments are still the same, that is, 

the prior and the posterior are nearly the same. But the results for Experiment 7a are 

now different. The posterior estimate for Qmt is no longer the same as the prior Q, and 

is much closer to the true one. The Kalman filter has efficiently assimilated information 

available in the observations and eliminated the wrong partitioning of the variance among 

the modes. Similar conclusions are valid when we reverse the partitioning; see experiment 

G. We can see that assimilation with an observation for each element of the state makes 

a big difference. We should be able to estimate the model error covariance adaptively 

with this set of parameters. 

Next, we present results for experiments where simulated idealized tomographic sec­

tions are used in addition to altimetric observations. To test whether tomographic mea­

surements can even in principle be as useful as full observational network, i.e. identity 

observation matrix, we assume that tomographic sections are given at each latitudi­

nal and longitudinal grid point. This gives us 24 tomographic rays (16 longitudinal grid 

points and 8 latitudinal grid points). Thus, the number of observations at every time step 

increases to 224. The results are presented in table 2.4. They indicate that augmenting 
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No. 1st EOF 2nd EOF 3rd EOF 4th EOF MLF 
2a Q 1 2 4 8 R 1 

Q 1 2 4 8 R 1 
Q 0.83 1.98 3.85 7.53 R 5.84 

Qmt 0.86 1.91 3.91 7.85 Rmt 1.42 6.80 
6a Q 1 2 4 8 R 1 

Q 1 1 1 1 R 1 
Q 0.83 1.39 1.99 3.11 R 5.89 

Qmt 0.87 1.32 1.99 3.27 Rmt 4.34 8.41 

7a Q 1 2 4 8 R 1 
Q 8 4 2 1 R 1 
Q 2.13 2.58 2.88 3.20 R 6.00 

Qmt 2.28 2.55 2.91 3.34 Rmt 1.57 8.48 

Table 2.3: Estimates of the parameter vector a for single-posterior estimate MT exper­
iments with with misspecified Q and identity H. The model error covariance is found 
by substituting the values of a into equation 2.70. For each experiment we present four 
model error covariances: true Q, prior Q, biased MT estimate Q, and unbiased Qmt, 
and similarly for the measurement error. 

additional tomographic lines makes the results similar to those in which H is given by the 

identity. However, the MT estimates are not nearly as good as with the identity observa­

tion matrix, e.g. Qmt B [6.83,3.81,2.50,2.35] in 7b versus Qmt B [2.28,2.55,2.91,3.34] 

in 7a, with the truth given by Q B [1,2,4,8]. Thus, based on these twin experiments 

we can conclude that a combination of altimetric and latitudinal and longitudinal to­

mographic measurements has the same information content for estimation of the error 

properties as measurements of each state element, but it would take a longer time series 

to reach the true estimates. This is a non-trivial conclusion given that we only have 

224 observations at every time step versus 512 state elements, and altimetric observa­

tions alone are not capable of differentiating the vertical partitioning of the model error 

variance. 

In addition, we ran experiments with misspecified measurement error covariance, i.e. 

R =I=- R. The results were not qualitatively different, and are summarized in table 2.5. As 

87 



No. 1st EOF 2nd EOF 3rd EOF 4th EOF MLF 
2b Q 1 2 4 8 R 1 

Q 1 2 4 8 R 1 
Q 0.46 1.18 1.27 4.79 R 25.32 

Qmt 0.97 1.92 3.90 7.98 Rmt 2.53 3.70 
6b Q 1 2 4 8 R 1 

Q 1 1 1 1 R 1 
Q 0.65 1.48 1.01 1.97 R 26.15 

Qmt 1.20 1.73 1.65 2.52 Rmt 19.11 4.60 
7b Q 1 2 4 8 R 1 

Q 8 4 2 1 R 1 
Q 2.84 2.71 1.12 1.87 R 27.38 

Qmt 6.83 3.81 2.50 2.35 Rmt 4.76 4.32 

Table 2.4: Estimates of the parameter vector a for single-posterior estimate MT exper­
iments with misspecified Q and simulated altimetric and tomographic (latitudinal and 
longitudinal sections) measurements H, No=224. The model error covariance is found 
by substituting the values of a into equation 2.70. For each experiment we present four 
model error covariances: true Q, prior Q, biased MT estimate Q, and unbiased Qmt, 
and similarly for the measurement error. 
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expected, if we underestimate the measurement error variance we tend to overestimate 

the model error variance (e.g. experiments 1u, 10 and 1, u and 0 stand for underestimate 

and overestimate respectively). However, the estimates are not very sensitive and the 

change of prior measurement error variance by a factor of 4 produces only a change of 

less than 25 per cent in estimates of Qmt (experiments 4u and 40, 6u and 60). 

2.8.2 Fully Adaptive Twin Experiments 

Having discussed preliminary results where we computed only the posterior estimate, we 

now present results using fully adaptive estimation. First we have to decide on the size of 

the averaging window used in the MT adaptive scheme (equation (2.32)). As discussed 

in BFC97, the results are sensitive to the choice of N, the shorter the window the better. 

Note that since real data is only available over 50 time steps of the LM (i.e. 4 years), and 

we also have to allow for an initialization period, we have a limited choice for the length 

of the averaging window. In fact, the experiments with posterior estimate experiments 

discussed in Section 2.8 can be viewed as adaptive experiments with the window of length 

50 and with observations available over 50 time steps. We decided to use a window of 

size S = 10 (equation (2.32)), which is close to that used in BFC97. The difference from 

the earlier experiments is that we estimate the model error covariance, Qmt, at every 

time step starting with the 11 th time step and then use that estimate in the Kalman 

filter algorithm, equations (2.26-2.30) to obtain an estimate at the next step, and so on. 

We estimate only four coefficients, namely the mean variance of the model error for each 

of four vertical modes. The measurement error covariance R is not updated at all. In all 

other respects, these twin experiments are identical to the earlier ones. 

The time series of the MT estimates of the mean model error variance for each vertical 

mode are shown in Figure 2.18. Four different experiments corresponding to different 

choices of the measurement matrix H are shown. The results with H = I, (Figure 2.18, 

yellow) show that when every state element is directly measured, the MT algorithm is 

very efficient at changing the model error variance partitioning, and converges to the 
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No. 1st EOF 2nd EOF 3rd EOF 4th EOF 
10 Q 1 1 1 1 R 1 

Q 1 1 1 1 R 2 
Q 0.12 0.38 0.09 0.12 R 2.81 

Qmt 0.93 0.87 0.95 0.96 Rmt 0.90 
1u Q 1 1 1 1 R 1 

Q 1 1 1 1 R 0.5 
Q 0.31 0.78 0.20 0.30 R 2.90 

Qmt 1.08 1.25 1.05 1.09 Rmt 1.39 
40 Q 1 1 1 1 R 1 

Q 1 2 4 8 R 2 
Q 0.07 0.38 0.20 1.10 R 2.88 

Qmt 0.77 1.42 3.51 6.07 Rmt -2.75 
4u Q 1 1 1 1 R 1 

Q 1 2 4 8 R 0.5 
Q 0.12 0.71 0.36 2.21 R 3.04 

Qmt 0.82 1.80 3.06 6.60 Rmt -2.75 
60 Q 1 2 4 8 R 1 

Q 1 1 1 1 R 2 
Q 0.33 0.90 0.21 0.31 R 7.02 

Qmt 1.13 1.40 1.07 1.16 Rmt 5.11 
6u Q 1 2 4 8 R 1 

Q 1 1 1 1 R 0.5 
Q 0.67 1.67 0.40 0.70 R 6.68 

Qmt 1.44 2.15 1.26 1.50 Rmt 5.18 

Table 2.5: Estimates of the parameter vector Q for single-posterior estimate MT exper­
iments with perfect initial guess for Q, misspecified R, and simulated altimetric mea­
surements H. The model error covariance is found by substituting the values of Q into 
equation 2.70. For each experiment we present four model error covariances: true Q, prior 
Q, biased MT estimate Q, and unbiased Qmt, and similarly for the measurement error. 
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Figure 2.18: Time series for MT estimates Qmt with averaging window of 10 time steps 
for simulated altimetric measurements (red), altimetric and 4 ATOC tomographic rays 
(blue), altimetric and 24 idealized tomographic rays (green), and identity observation 
matrix H (yellow). The thick black line represents the true values. 
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specified true value of [1,2,4,8]. The estimates fluctuate a little around the true value. 

The final estimate is within 10 per cent of the true one, even though the prior was 

under-specified by as much as a factor of 8. 

However, when we assimilate simulated altimetric observations, the adaptive results 

are poor (Figure 2.18, red). We see that the recursive update does not change the prior 

at all, in spite of the fact that the prior Q is totally wrong. This was predicted by the 

results of a single posterior estimate (Experiment 8). Based on these twin experiments 

we conclude that using the altimetric measurements alone we cannot infer the true model 

error covariance using the MT method. Since the number of parameters is very small, this 

implies that the MT method cannot be used for estimation of the model error covariance 

for this particular linear model. 

We next include additional observations from 24 synthetic latitudinal and longitudinal 

tomographic lines (Section 2.8.1), increasing number of observations to 224 at every time 

step. Still, we observe less than half the number of degrees of freedom in the model. 

The performance of the algorithm is now dramatically different (Figure 2.18, blue). This 

shows that tomographic data can be successfully used to differentiate between model 

errors variances of different internal modes. In addition, we ran a number of other twin 

experiments with other choices of true and prior covariances, Q and Q, with similar 

results. 

Last, we ran a twin experiment with four simulated tomographic arrays, those cur­

rently available from the ATOC acoustic array (Figure 2.18, green). These four rays are 

shown by thick solid lines L, K, N, 0 in Figure 2.4. They are very similar to the ones 

obtained with altimetric measurements alone. Thus, while in principle the tomographic 

measurements are capable of saving the situation, the ones currently available do not. 

Even when all the assumptions required by the method are perfectly satisfied the MT 

method fails with the kind of observations available in oceanography. 
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2.9 Maximum Likelihood Estimator 

The other algorithm which can be applied to oceanographic problems is a maximum 

likelihood (ML, hereafter) algorithm of Dee (1995). It has been reformulated in BFC97 to 

allow use of a sequence of observations. The ML algorithm was also shown to be identical 

to Maybeck's algorithm when the innovations are assumed to be normally distributed, 

and thus to that of MT. It is directly related to the covariance-matching with innovations 

algorithms, (e.g. Shellenbarger, 1967; Belanger, 1974). 

We start as in the MT algorithm, section 2.5.1, by defining the innovation vector: 

v(t) = y(t) - Hp(tlt - 1), (2.72) 

which represents additional information provided by the observations. Next, we define a 

lag covariance of the innovations 

(2.73) 

It can be shown that Cj(t) = 0 for j =1= 0, i.e. the innovation sequence is white, if and 

only if the Kalman filter is optimal, Jazwinski (1969). The lag zero covariance of the 

innovation sequence is given by 

Co(t) = HII(tlt - l)HT + R (2.74) 

The uncertainty of the Kalman filter forecast, II(tlt -1), is dependent on the model and 

measurement error covariances through the KF equations ( 2.27-2.30). 

The goal of the adaptive filter is then to compute the error covariances, given by the 

parameter vector a through equations 2.35, which lead to a "white" innovation sequence 

with the sample covariance of the innovations matching the expected one. Thus, we 

define a likelihood function 

K steps 
f(a) = L (In[det Co(t, a)] + v(tfC01(t, a)v(t)l) , (2.75) 

where Co(i, a) is related to Q and R through equation (2.74). One then proceeds 

to maximize the likelihood function with respect to the parameter vector a. Once a 
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parameter vector is chosen, the KF can be ran forward again with a new prior guess of 

Q, similar to the MT algorithm. 

2.9.1 Twin Experiments With a Maximum Likelihood Estima­

tor 

The maximum likelihood estimator of Dee (1995) is described in Section 2.9. The results 

of BFC97 suggest that this approach yields results very similar to use of the MT algorithm 

but is much more computationally demanding. In our case the dimension of the state is 

more than four times that used in BFC97, and therefore the computational cost is even 

g;reater. Therefore, instead of doing optimization we compute the values of the likelihood 

function for the MT method experiments (Section 2.8.1), and show that the ML method 

g;ives results similar to the MT method. 

While we did not run full tests of the ML algorithm, we computed the value of 

the likelihood function for each of experiments described in Section 2.8.1. The values 

(normalized by 104) are shown in the most right column in the tables 2.1-2.5. If we 

compare values of the likelihood function for experiments with the same true model and 

measurement error covariances, and therefore the same statistics of observations, we can 

see which of the prior guesses for Q, is the most likely. For example, experiments 1, 4, and 

5 were identical, but used different initial guesses for Q, and the values of the likelihood 

function are 1.21, 1.31, and 1.34. Thus, for this case with vertical equipartitioning of 

the model error the likelihood function is considerably smaller when the prior is equal 

to the true (Experiment 1). However, for the experiments 2, 6, and 7, which all share 

the same true model error covariance given by a of [1,2,4,8], the likelihood function 

is 1.63, 1.97, and 1.67, respectively. That is, just as for the MT method the two prior 

choices, the true one and the one with opposite partitioning of the model error variance, 

are nearly indistinguishable. We would need a very efficient optimization routine to be 

able to find the global minimum (assuming it is indeed at the true value of the model 

error covariance). Considering the fact that we need to run a Kalman filter for many 
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time steps for each evaluation of the likelihood function, this procedure is computationally 

very expensive. Therefore, the ML method cannot provide a stable estimate of the model 

error with just altimetric measurements. The ML algorithm would fail to converge to 

the true estimate in this case, similar to the MT method. 

The results are once again quite different if we have a perfect observational network, 

Table 2.3, and synthetic altimetric and tomographic measurements, Table 2.4. The 

values of the likelihood function are much lower with the correct choice than with the 

misspecified model error covariance, and the ML algorithm quickly converges to the true 

estimates of the model error statistics. 

2.10 Summary 

Our immediate goal was to obtain a practical method for the quantitative estimation 

of large scale baroclinic GCM errors in the North Pacific using TOPEX/POSEIDON 

altimeter and ATOC tomographic data. This goal remains elusive. Following the sug­

gestion of Blanchet et al. (1997), we singled out the Myers and Tapley (1976) adaptive 

algorithm for the investigation. Simultaneous estimation of the model and measurement 

error statistics with such adaptive methods is unstable, and we concentrated on the 

problem adaptive estimation of the model error statistics. 

In a series of twin experiments, we applied the MT algorithm to a reduced state linear 

model which approximates the dynamics of large scale GCM errors (large scale is here 

defined as 4 vertical degrees of freedom and 8° horizontal sampling). The twin experi­

ments were carried out under the simplifying assumption that GCM errors are consistent 

with a diagonal, horizontally homogeneous, covariance matrix for the linear model system 

error. Instead of estimating the full covariance matrix as proposed in the original MT 

algorithm we estimated only several parameters (the mean diagonal values), as described 

in Dee (1991). Our principal conclusion is that even under this simplifying assumption, 

the simulated altimeter data fail to provide sufficient information for quantifying GCM 
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errors. In particular, we find that the MT algorithm converges to different solutions 

depending on the initial guess. The addition of a simulated tomographic array consisting 

of 8 zonal and 16 meridional basin-wide acoustic paths forces the MT algorithm to con­

verge to a unique solution. However our numerical experiments also indicate that, due 

to its limited spatial and temporal coverage, the available ATOC data is insufficient to 

uniquely constrain the present adaptive estimation problem. 

These negative conclusions about the MT algorithm are supported by the analysis 

of low-dimensional systems presented in Sections 2.6 and 2.7. The results with low­

dimensional models, tested over a very large parameter space, showed that the MT algo­

rithm is sensitive to the initial guess of the model error covariance and misspecification 

of the dynamic model matrix and the measurement error statistics. Even with infinitely 

long time series of observations, it does not always converge to the true estimates. The 

limit on the number of parameters given by Mehra (1970), can only serve as an upper 

limit. There is no information on the uncertainty of the estimates, and no information on 

what choices of parameters can be estimated. The algorithm is very inefficient; it takes 

many iterations to produce correct estimates in the idealized setup with infinite time 

series of observations. Thus, while it may work in some cases (for example, the problem 

considered in Blanchet et al. (1997), where it is assumed that the prior is wrong by a 

factor of 50), it is not guaranteed to succeed in other cases. Similar conclusions were 

reached with a ML algorithm of Dee (1995). This leads us to development of a different, 

but closely related approach described in the next chapter. 

It has to be noted that the issue of systematic error, i.e non-zero mean of the sys­

tem and measurement noise, has been completely neglected here. The reason is that it 

has been shown that estimating first-order statistics is more difficult than second-order 

statistics (see Anderson and Moore, 1979). We return to this issue in the next chapter 

where we consider a new covariance matching approach. 
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Chapter 3 

Covariance Matching Approach 

(CMA) 

In this chapter we present a new method, a covariance matching approach (CMA), for 

estimation of error statistics. It is closely related to the adaptive methods presented in 

Chapter 2 and the method of Fu et al. (1993) (reviewed in Appendix D), but is dif­

ferent in several important ways. The name comes from the main idea of the method: 

matching expectations for the data covariances with the sample estimates. Unlike the 

covariance matching methods developed in the control literature (Shellenbarger 1967, 

Belanger 1974) we use observations directly and not through the innovation sequence. 

The covariance matching with innovations provided basis for the adaptive methods dis­

cussed in Chapter 2. Other differences are that we use a Green's function approach, 

utilize several lag-difference covariances at once, and provide a reliable way to estimate 

uncertainties of the estimates. 

We start by presenting the method and discussing various theoretical and practical 

aspects. We then present a small numerical example in Section 3.4, and contrast it with 

similar tests with the MT method (Section 2.7). Differences and similarities with other 

adaptive methods are discussed in Section 3.6. We also extend the method to estimate 

not only the covariances of the model and measurement errors but also the trends and 
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annual cycles (Section 3.5). 

To test the CMA in a more realistic setup we ran a series of twin experiments using 

the same setup as that used to test the MT method (Section 4.3). Experimental results 

with real data are presented in Chapter 4. 

Major part of this and the next chapter is presented in the article Menemenlis and 

Chechelnitsky (1999). The discussion below follows the one in the article, but a number 

of important theoretical and practical questions are addressed in much greater detail. 

:3.1 Statistical Modeling 

Here we summarize the notation and setup which are described in detail in Section 2.3. 

Let p(t) represent GCM simulation errors, which we model dynamically as 

p(t + 1) = A(t)p(t) + r(t)u(t). (3.1) 

where A(t) is the state transition matrix and r(t) u(t), the model, or system, error 

(errors in the boundary conditions, indeterminate GCM parameters, etc.). The residual 

of oceanographic observations, 'TIocean(t) and GCM predictions, (GCM(t), can be expressed 

as a noisy linear (or linearized) combination of p (t), 

y(t) = H(t)p(t) + r(t), (3.2) 

where H(t) is the measurement matrix and r(t) is measurement error. In addition to 

instrument errors, r(t) includes oceanic signal that is not resolved by the GCM, the 

so-called representation error. Vectors u(t) and r(t) are taken to be random variables 

and are described by their means, (u(t)) and (r(t)), and by their covariance matrices, 

Q(t) - covu(t) and R(t) covr(t), where the covariance operator is defined in the usual 

way, covu = ([u- (u)][u- (u)JT), (-) is the expectation operator, and T is the transpose. 

This is a complete statistical description of the errors if the random vectors u(t) and 

r(t) have multivariate normal distribution (Mardia et al. 1979), that is, if the errors can 
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be modeled as resulting from a set of stationary Gaussian processes. If the errors are 

non-Gaussian, the mean and covariance remain useful, though incomplete, descriptors. 

Our objective is to use measurements y(t) to estimate (u(t)), (r(t)), Q(t), and R(t) (See 

Table A.1 for a summary of the notation, Section 2.3 for a discussion of the errors). 

3.2 The Basic Algorithm 

We start by considering the case where A, r, H, Q, and R are steady (time-independent); 

A, r, and H are known; A is stable, that is, all its eigenvalues are less than one by 

absolute value; r is the identity; and vectors u(t) and r(t) have zero mean and are 

independent of p(t), 

(u(t)) = 0, (r(t)) = 0, (p(t) U(t)T) = 0, (p(t) r(t)T) = 0. (3.3) 

(The assumption of independence between u(t) and p(t) is less restrictive than that used 

by Fu et al. (1993) who assumed the model simulation error to be independent of the true 

state, (p(t) CGCM(t)T) = 0, Appendix D). For stable A, equations (3.1), (3.2), and (3.3), 

imply that (y(t)) = (p(t)) = 0; equations (3.1) and (3.3) imply that (u(t1) U(t2?) = ° 
for tl =f. t 2 · Finally we parameterize Q and R as 

J( L 

Q = 2: CtkQk, R = 2: CtJ(+kRk. (3.4) 
k=l k=l 

Multiplying equation (3.1) by its transpose and taking expectations produces the steady 

state Lyapunov equation (Anderson and Moore, 1979, p. 62), 

P _ cov p = APA T + Q, (3.t» 

which relates the covariance of the GeM error to that of the system error. The Lyapunov 

equation can readily be solved for P using a numerical scheme in Section 3.3.2. Similarly, 

multiplying equation (3.2) by its transpose and taking expectations yields 

y covy = HPHT + R. (3.6) 
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From equations (3.5) and (3.6) it follows that each element of Y is linearly related to the 

elements of Q and R, and hence to parameters CXk in equation (3.4). An elegant way to 

solve this system of equations is through the use of Green's functions, GY,k, here defined 

as the response of the measurement covariance matrix, Y, to unit perturbations of Qk 

or R k , that is, 

(3.7) 

where P k can be calculated from Qk by the Lyapunov equation (3.5). Rewriting Y and 

GY,k as column vectors, n, yields a set of linear equations, 

(3.8) 

which can be solved for parameters CXk using any of several discrete linear inverse methods, 

e.g. Menke (1989), Wunsch (1996). To reduce computational cost, the column operator 

(:) (Section 3.3.3) in equation (3.8) can be replaced by some representative subset of 

matrix Y, for example its diagonal elements, arranged in column vector format. For 

any given definition of the operator (:) and set of matrices A and H, linear inverse 

theory provides powerful tools for understanding which, and how well, combinations of 

parameters CXk in equation (3.8) can be determined. 

This completes a basic description of the estimation algorithm. We next consider 

a series of algorithmic refinements and the effects of relaxing some of the simplifying 

assumptions. One issue is whether Rand Q can be estimated simultaneously, that is, 

whether an arbitrary set of parameters CXk in equation (3.8) can be resolved indepen­

dently (e.g. Groutage et al., 1987 ; Maybeck, 1982). In Sections 3.2.1 and 3.2.2 we 

demonstrate that, under a very general set of conditions, Rand Q can be resolved by 

making use of time-lag correlations in the data. A more serious limitation is that Y is 

estimated as the sample covariance of y(t): the consequences of sampling uncertainty 

are discussed in Section 3.3. The algorithm is illustrated with a small numerical example 
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in Section 3.4. Systematic and time-correlated errors are considered in Sections 3.5.1 

and 3.5.2. Section 3.5.3 deals with time-dependent models. Section 3.5.4 discusses sta­

tistical consistency tests. The comparison with innovations based approaches is given in 

Section 3.6. 

3.2.1 Using Lag-Difference Covariance Matrices 

The covariance matrix Y does not describe temporal correlations in the data. It i.s 

therefore reasonable to expect that estimates of Q and R might be improved by making 

use of lag-difference covariance matrices. From a recursive application of equation (3.1) 

and from the definitions of Q, R, and P, the covariance matrix of the lag-s difference is 

Ds cov[y(t + s) - y(t)] 

2HPHT - HAsPHT - HPAs'HT + 2R 
s 

H(AS - I)P(AS - I)THT + L HAs-kQA(s-k)'HT + 2R, (3.9) 
k=l 

where it is assumed that measurement errors are uncorrelated in time, 

Y and several lag-s-difference covariance matrices can be combined in an equation of 

type d = ga, that is, 

GY,l(:) 

GD1,1(:) 

GY,K+L(:) 

GD1,K+L(:) 
(3.10) 

As before GDs,k represents the Green's function associated with the data covariance 

matrix Ds and parameter Cik. Because Dr - Ds is independent of R for any r #- s, it is 

possible to resolve a particular Qk independently of R (see Section 3.2.2), provided there 

are sufficient data, and provided Qk is observable in the sense that HAsQkAs'HT #- 0 
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for several s 2: 1. An equation of type (3.10) can also be written in terms of the lag 

covariance, 

(3.11) 

Whether it is preferable to use lag rather than lag-difference covariance matrices, that 

is, Y s rather than D s , is addressed in section 3.3. 

3.2.2 Maximum Number of Resolvable Parameters 

If the number of observations is less than the dimension of the state (M :::; N) the max­

imum number of parameters (K and L defined in equation 3.4) which can be estimated 

by using the CMA is: 

K max = M (N + 1 - (M + 1) /2) , (3.12) 

when only the model error covariance Q is estimated; and 

Kmax + Lmax = M(N + 1), (3.13) 

when both the model and measurement error covariances are estimated. 

First, we consider the case when R is not estimated. The maximum number of 

parameters is given by the rank of the matrix Q, defined in equation (3.10). This matrix 

is made up by the Green functions Gy,kO,GD1,kO, etc. After subtracting twice the first 

row GY,IO, ... , GY,Kn from the negative of all the other rows we find that the rank of 

Q is equal to the rank of the following matrix 

F= 

FO,1 n 
FI,1 n 

FS,1 n 
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Fo,Kn 

FI,KO 
(3.14) 

(3.15) 



To prove that the maximum rank of :F is given by equation (3.12) we use the fact, 

proven in Appendix E, that the dimension of the null space of the operator 

(3.16) 

is equal to the number of linearly independent symmetric matrices of the dimension 

N - M ((N - M)(N - M + 1)/2). The rank of :F is equal to the difference between 

the dimension of the domain, equal to the number of linearly independent symmetric 

matrices of size N, and the dimension of the null space, 

Kmax = N(N + 1)/2 - (N - M)(N - M + 1)/2 = M (N + 1 - (M + 1)/2) 

Of course, the matrix of the Green functions, 9 defined in equation (3.10), must have 

at least M (N + 1 - (M + 1)/2) rows to achieve the maximum rank. When the operator 

(:) represents upper triangular of the covariance matrix (symmetric matrix), i.e. there 

are M(M + 1) elements in Y(:), 

S> M (N + 1 - (M + 1)/2) = 2N + 1 - M 
- (M + 1)M/2 M + 1 

The proof for the case when both the state and the measurement noise covariance are 

estimated is analogous to the one above. The only difference is that there are M(M +1)/2 

additional columns in :F and therefore the maximum rank of 9 is increased to 

Kmax + Lmax = N(N + 1)/2 - (N - M)(N - M + 1) + M(M + 1)/2 = M(N + 1) 

If the number of independent observations is greater than the dimension of the state 

(M > N), then assuming that there are no temporal correlations in the model and 

measurement errors at some lag S, all elements of Q and R can be estimated by using 

the lag-difference covariance, Ds. 

3.3 Finite Number of Measurements 

The discussion so far has assumed that covariance matrices Y and Ds are exact. In 

practice, a finite number of measurements is available and we work with sample estimates 
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Y and Ds , the sample covariance of y(t) is 

_ 1 T 

Y T 2]y(t) - y][y(t) - y]T, 
t=l 

(3.17) 

where T is the total number of time steps and 

1 T 
Y - Ly(t) 

T t=l 
(3.18) 

is the sample mean. 

The first algorithmic modification required concerns the computation of Green's func­

tions. If T spans less than about 20 e-folding periods for each observable normal mode 

of linear system p(t + 1) = Ap(t), the steady state limit given by the solution to the 

Lyapunov equation (3.5) will be inaccurate. A Monte Carlo approach can instead be 

used to estimate P k by driving linear model (3.1) with random system noise generated 

using covariance Qk; P k is estimated by averaging over a large number of independent 

simulations, each with finite time span T. 

A second modification is required to accommodate uncertainty in the sample covari­

ance matrices. This is achieved by appending an error term, vector c, to equation (3.10): 

d=Ya+c. (3.19) 

The probability distribution of sample covariance matrices is approximately normal (Sec­

tion 3.3.1); therefore it is appropriate to use variance minimizing methods. For example, 

parameter vector a in equation (3.19) can be determined by minimizing the weighted 

least-squares cost function, 

(3.20) 

where ao, Reo and Rc represent prior knowledge for (a), cova, and cov c, respectively. 

The uncertainty variance of a sample covariance is O[(Ji(J~(l + p2)/p], where (Ji and 

(J~ denote variances for the two random variables being compared, p is the correlation 

coefficient, and p is the number of degrees of freedom, approximately the number of 
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independent measurements (Section 3.3.1). It follows that for a given sample size, the 

smaller the variances, the more accurately sample covariances can be determined. 

For example, in the twin experiments of Section 4.3.2, statistically significant error 

estimates are possible using lag-diference covariance matrices, D s , but not with lag co­

variance matrices, Y s . In those experiments the errors propagate slowly relative to the 

duration of a time step, that is, the state transition matrix is approximately identity, 

so that, for small values of lag s, (3.9) simplifies to Ds ~ sHQHT + 2R. The sample 

uncertainty of Ds therefore scales with the diagonal elements of (sHQHT + 2R). By 

comparison, the uncertainty of Y s scales with the diagonal elements of (HPHT + R) 

which are much larger. As a rule of thumb, it is preferable to work with Ds when A ~ I 

and IRI ~ IHPHTI· 

Next we turn to a discussion of how to implement these changes in practice. A 

numerical example follows in Section 3.4. 

3.3.1 Uncertainty of a Sample Covariance 

The uncertainty of the sample estimates of the data covariance, Rc in equation (3.20), 

can be estimated using the theory of distributions for sample estimators, see Ander­

son (1971). We assume that the process, y(t), is stationary and Gaussian. Accordingly, 

it is completely described by the first and second order moments. We derive expressions 

which give uncertainty of the sample covariance (of any lag h) in terms of the covariances 

themselves. 

For a scalar Gaussian time series y(t), the covariance of the sample covariance 1 is 

IThe sample covariance of y(t + h) and y(t) is defined as 

T-h 

Y (h) == T ~ h L [y (t + h) - Y h+ ][y( t) - Y hl T , h E {O, ... , T - 2}, 
t=l 

(3.21) 

where T is the total number of time steps and 

1 T-h 

Yh = T _ h L y(t), h = 0,1, ... ,T - 2, 
t=l 

(3.22) 
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defined as 

(3.23) 

where we modified the notation for the variance to that which is commonly used with 

scalar time series. It can be obtained by substituting the sample estimate (3.21) into the 

definition above and computing the expectation of the entire sum (see Anderson (1971), 

p. 452), 

(T - q)(T - r) cov (O"(q), O"(r)) 
T-qT-r 

L L [O"(t - t')O"(t + q - t' - r) + O"(t - t' - r)O"(t + q - t')] -
t=l t'=l 

1 T-q T-r 

-- L L [O"(t - t')O"(t + q - s' - r) + O"(t - s' - r)O"(t + q - t')] -
T-r 

t=l t',s'=l 

1 T-q T-r 

T _ q t~lt~ [O"(t - t')O"(s + q - t' - r) + O"(t - t' - r)O"(s + q - t')] + 

(3.24) 

1 T-q T-r 

(T _ q)(T _ r) t~lt'~l [O"(t - t')O"(s + q - s' - r) + O"(t - s' - r)O"(s + q - t')]. 

In addition, Anderson (1971) also shows that the distribution of cov k(q),O"(r)) is ap­

proximately normal. 

For a vector time series the covariance of the sample covariance is a tensor of rank 

4. Therefore, we present the element-wise analog to equation (3.25). The difficulty is 

mainly in keeping track of the indices. 

Denote the (i,j) element of Y(q) by Y(i,j)(q). Then, the resulting equation for the 

covariance of the estimators Y(i,j)(q) and Y(l,k)(r) is given by 

(T-q)(T-r) cov [Y(i,j) (q) Y(k,l)(r)] = (3.25) 

T-q T-r 

L L [Y(i,k) (s-u) YU,l)(s+q-u-r) + Y(i,l)(s-u-r) YU,k)(S+q-u)] -
s=lu=l 

1 T-h 

Yh+ = T _ h L y(t + h), h = 0, 1, ... , T - 2 
t=l 

are the sample means. 
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1 T-q T-r 

T-r I: I: [Y(i,k) (s-u) Y(j,l)(s+q-v-r) + Y(i,l)(s-v-r) Y(j,k)(S+q-u)] -
s=l u,v=l 

1 T-q T-r 

T- I: I: [Y(i,k)(S-U) Y(j,l)(t+q-u-r) + Y(i,l)(s-u-r) Y(j,k)(t+q-u)] + 
q s,t=l u=l 

1 T-q T-r A A A A 

(T-q)(T-r) S~l U~l [Y(i,k)(S-U) Y(j,l)(t+q-v-r) + Y(i,l)(s-v-r) Y(j,k)(t+q-u)] , 

where true covariance is denoted by the hat: 

Y(h) =< [y(t + h)- < y(t) >][y(t)- < y(t) >]T > . (3.26) 

In practice, to calculate the uncertainty of the sample lag covariances we substitute 

sample estimates, equation (3.21), for the true ones Y(i,k)(h) into equation (3.25). 

Uncertainty for covariance of lag s difference, D s , defined by 

Ds cov[y(t + s) - y(t)] 

can be computed by observing that 

D(s) = 2Y(0) - (Y(s) + Y(S)T). 

Therefore, using the relation for the covariance of the sum we obtain 

COy (D(q), D(r)) = 4 COy (Y(O), Y(O)) - 2 COy (Y(O), Y(r)) - 2 COy (Y(O), Y(r)T) 

+ COy (Y(q), Y(r)) + COy (Y(q)T, Y(rf) - 2 COy (Y(q), Y(O)) 

-2 COY (Y(q)T, Y(O)) - COy (Y(q), Y(r)T) - COY (Y(q)T, Y(r)). 

If the process is non-normal, we would have to include fourth-order cumulants, which 

were assumed to be zero in derivation of the equation equation (3.25). In practice, for 

short time series, sample estimates of fourth order cumulants are very noisy, and one 

benefits by setting them to zero. 

A useful approximation is 

cov(Y(i,j) (0), Y(k,I)(O)) ~ ~ [Y(i,k) (0) Y(j,l) (0) + Y(i,l) (0) Y(j,k) (0)] , (3.27) 
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where p :::; T is the decorrelation number (roughly, the number of time steps T divided 

by the e-folding correlation time). This equation provides an extension of a well-known 

result for a white (in time) time series where the covariance of the diagonal elements of 

data covariance is equal to: 

2(T - 1) A 2 
cov (Y(i,i)(O), YCk,k)(O)) = T2 (YCi,k) (0)) , 

i.e. the decorrelation scale is set to T. 

Validity of the general formula (3.25) was tested by Monte Carlo experiments with dif­

ferent time series and different time and space correlation structure. (MATLAB-callable 

software for estimating uncertainty of sample covariance is available via anonymous FTP 

to gulf.mit.edu, IP Address 18.83.0.149, from directory pub/misha. It is described in 

Appendix F.) 

3.3.2 Lyapunov Equation 

Solving the Lyapunov equation (3.5), 

P covp = APAT + Q, (3.28) 

for systems with more than 500 variables is non-trivial. We found that the following 

approach from Gajic and Qureshi (1995), is best suited for the case when we need to 

solve the equation for several different matrices Qk (equations (3.5) and (3.7)). 

First, compute the Jordan form of the matrix A by finding its eigenvectors and 

eigenvalues, 

A=V A V-I. (3.29) 

Next, we multiply the Lyapunov equation (3.5) by V-Ion the left and V on the right 

to obtain: 

(3.30) 
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This equation has block structure, and each block can be solved individually. The result­

ing covariance P is easily found by applying the transformation inverse to equation (3.30). 

When all eigenvalues of A are distinct, equation (3.30) breaks down into element-wise 

group of equations: 

(3.31) 

We also note that computing inverse of the matrix of eigenvectors can be unstable. When 

all eigenvalues of A are distinct we can instead compute left eigenvectors, i.e. eigenvectors 

of the transpose AT, columns of W. Because eigenvectors are defined up to an arbitrary 

constant, the inverse of V is 

This method is much faster than the traditional ones. Significant computational 

saving comes from the fact that once the Jordan form of A is computed and stored, 

six multiplications with complex matrices of size N are sufficient to solve the Lyapunov 

equation. 

When T is short, i.e. it spans few (> 20) e-folding periods for each observable 

eigenmode of linear system p(t + 1) = Ap(t), a Monte Carlo approach can instead be 

used to estimate P. Namely, we propagate random noise from normal distribution with 

zero mean and covariance Q through the system (3.1), as described in Section 2.8. The 

sample covariance of the resulting state gives a sample P. Repeating this procedure 

with many different realizations of the random noise we obtain an approximation to the 

solution of the Lyapunov equation. 

3.3.3 The Column Operator (:) 

The column operator (equation (3.10)) denotes reshaping a full symmetric matrix of size 

M into a vector of size M(M + 1)/2. If the number of observations M is large, the full 

matrices need to be replaced by a representative subset of the covariance matrices (for 
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example, diagonal elements, or only the first two diagonals). A different subset of matrix 

elements can be taken for different matrices Y, D l , etc, as long as it is the same on 

both sides of equation (3.10). Physical considerations of the problem should guide what 

elements are used. For example, if one believes that spatial correlation is significant, 

off-diagonal elements should be used, and vice versa. The need to provide corresponding 

uncertainties provides an additional constraint on what linear combinations can be used 

in the CMA (Section 3.3.1). 

3.4 Numerical Example with a Covariance Matching 

Approach 

The covariance matching recipe is next illustrated using a numerical example. Consider 

the system of equations (3.1), (3.2) with 

A = [ 0.8 0.2], 
-0.1 0.9 

B=I, (3.33) 

The system and measurement error covariance matrices are parameterized 

(3.34) 

From the steady-state Lyapunov equation (3.5) we obtain the covariance matrices 

_ [ 2.5 -0.4] P l - , 

-0.4 0.5 
_ [1.9 1.7] P 2 - , 1.7 3.7 

_ [5.9 3.2] P 3 - , 

3.2 2.5 
(3.35) 

corresponding to unit perturbations of parameters aI, a2, and a3, respectively, in (3.34). 

Computing the Green's functions associated with Y and Ds results in the following 
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system of equations: 

y 2.2 9.1 14.9 1 CY1 

D1 1.3 1.1 4.4 2 CY2 
(3.36) 

D2 2.3 2.6 8.6 2 CY3 

D3 3.2 4.4 12.6 2 CY4 

The kernel matrix in (3.36) has rank 3 (singular values [24.6 3.7 0.9 o.oF) which 

indicates that only three independent combinations of parameters CYk can be resolved. 

It turns out that the addition of D 3 , or of higher lag covariance matrices, does not 

contribute new information. Rules regarding the total number of resolvable parameters 

are set forward in Appendix 3.2.2. 

Simulated data were generated for 0 = [1 1 0 IF, T = 500. We seek to estimate 

Q using the simulated data and the recipe of Section 3.2.1. From inverse theory, only 

projections onto singular vectors of 9 corresponding to non-zero singular values can be 

determined (Wunsch, 1996; p.147 ). The full solution is 

a = [0.08 0.25 0.47 1.00]T + A [-0.88 - 0.34 0.34 o.ooF, (3.37) 

where A is an arbitrary constant multiplying null space contributions; A cannot be de­

termined without additional information. To set A we assume that there is a priori 

knowledge that the system error covariance matrix is diagonal, that is, CY3 = o. This 

assumption requires that A = -1.4 and hence that a = [1.3 0.7 0 1.0F. 

Next we seek to estimate the solution uncertainty, P a - cova. Formally P a :is 

a function of a priori covariance matrices Rc and Ra in (3.20). Ra is the a priori 

covariance of parameter vector 0, the only a priori knowledge assumed here being that 

CY3 = O. Matrix Rc describes the sample uncertainty of Y and Ds. An estimate of 

R c , consistent with the available data, can be obtained using the expressions derived in 

111 



Section 3.3.1: 
1.8 0.1 0.2 0.5 

0.1 0.1 0.1 0.1 
(3.38) R£~ 

0.2 0.1 0.2 0.3 

0.5 0.1 0.3 0.6 

The solution uncertainty matrix is P a = (9TR;-lQ)-l. Therefore Q = [1.3 ± 0.4 0.7 ± 

0.2 0 1.0±0.2F, consistent with the parameter vector a = [11 0 1F used to generate the 

simulated data. (Unless otherwise specified, uncertainty is reported using one standard 

deviation. ) 

From a set of numerical experiments, like that above, we conclude that the covariance 

matching method gives consistent and statistically significant estimates, provided the 

total number of available measurements is much greater than the number of parameters 

O'.k, that is, MT » K + L, where M is the length of the measurement vector, T is the 

number of time steps, and K + L is the total number of parameters in (3.4), (3.4). The 

requirement for a large number of observations per parameter is a direct consequence of 

the large uncertainty of sample covariance matrices. 

What happens if instead of assuming 0'.3 = 0, which is the condition used to generate 

the simulated data, it is instead assumed that 0'.1 = O? This assumption implies that 

A = 0.09 in (3.37) and leads to a second solution Q = [0 0.2 ± 0.3 0.5 ± 0.2 1.0 ± 0.2F. 

From the data alone there is no way to decide whether this solution is better or worse than 

the previous one. In fact, there exist a large number of consistent solutions depending 

on particular choices of A and of other a priori assumptions. For this particular example, 

a second independent measurement at every time step would permit Q to be determined 

uniquely. But for real oceanographic problems there is rarely, if ever, sufficient data to 

fully determine Q, and one must therefore rely on physical intuition to choose suitable 

models for the errors. 

(MATLAB script files and functions which implement this example, and which can be 

eustomized for different applications, are available by contacting the author or via anony-
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mous FTP to gulf.mit.edu, IP Address 18.83.0.149, from directory pub/misha/Paper1j.) 

3.4.1 Comparison of the Numerical Example with the CMA 

and the MT Method 

The analysis of the MT method with 2 DOF models presented in Section 2.7 allows us 

to contrast the two adaptive methods. First, the MT method is unstable when we try to 

estimate both model and measurement error covariances, and we had to provide a guess 

for R and estimate only Q. The CMA algorithm can estimate both error covariances. 

Second, the CMA method does not require an initial estimate of the model error covari.­

ance, unlike the MT algorithm. In fact, when we tried to estimate two diagonal elements 

of Q in the same setup as above, the MT method estimates were sensitive to the initial 

guess for Q (Figure 2.10). Furthermore, the MT method does not provide estimates of 

the uncertainty of the estimates for Q, while the CMA method does. 

In addition, we ran a similar numerical experiment with non-zero elements on the 

diagonal, i.e. a3 = 0.5, but CMA estimates obtained assuming a3 = 0 .. The resulting 

estimates a = [2±0.5 0.7±0.3 0 1.0±0.3]T. This can be contrasted with Figure 2.Hi, 

where a similar experiment is shown with the MT method (using infinitely long time 

series of observations). The CMA shows that in this case the estimates Q are worse 

since the uncertainty is increased. The MT method does not provide an estimate of the 

uncertainty, or any other information on the reliability of the estimates. 

3.5 Extensions of Covariance Matching 

The same approach can be used for estimation of other statistics, such as systemati.c 

errors and time correlated errors. 
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3.5.1 Systematic Errors 

Systematic errors, or biases, refer to the quantities (r(t)) and (u(t)). These errors are 

important because, even if very small, they can accumulate over long numerical integra­

tions and degrade the predictive skill of a model. A first scenario is that of a stable, 

time-independent system, as before, but with (r) "# 0, (u) "# o. Notice that the esti­

mators which have been developed for R, Q, and P are not, to first order, affected by 

the presence of measurement and model biases because the sample mean is subtracted 

from the data in (3.21) and because the biases cancel out when computing lagged data 

differences. 

Model bias correction in the context of atmospheric data assimilation was recently 

discussed by Evensen et al. (1998) and by Dee and da Silva (1997). They described 

on-line algorithms suitable for sequential estimation approaches. Off-line algorithms, 

whereby biases are removed prior to data assimilation, are also available, e.g. Fukumori 

et al.(1999), and are discussed below for completeness. From equations (3.1) and (3.2) it 

follows that 

(y) = H(I - A)-l(U) + (r), (3.39) 

that is (y) is linearly related to the biases, (q) and (r). The sample mean, Y in equa­

tion (3.22), is an unbiased estimator of (y) with uncertainty (Anderson, 1971 ; Section 

8.2), 

COY (y) = j~T (T ;,Irl) (y(t + r)y(t)T), 

which, using equations (3.1), (3.2)), and (3.5), reduces to 

y T-l (T r) ( ) cov (y) = T + ; ~ HKPHT + HP(K)THT , 

(3.40) 

(3.41) 

where Y is the data covariance matrix( equation 3.6) and P is the GeM error covariance 

matrix equation (3.5), estimates for both matrices having been obtained earlier. Without 

additional information, it is not possible to discriminate between system bias (u) and 

data bias (r). 

114 



A second scenario, that of a gradual change, or trend, in the system error, is discussed 

in Section 3.5.3 which deals with time dependent models. 

3.5.2 Time Correlated Errors 

So far we have assumed that measurement and system errors are uncorrelated in time, 

that is (r(tl) r(t2)T) = 0, (u(t1) u(t2f) = 0 for tl i= t 2. These conditions are required 

to evaluate lag-difference covariance matrices equation (3.9) but it is not required 

to evaluate the data covariance matrix Y which can therefore be used as before. The 

latter condition is implicit in equation (3.3) and presents a more difficult modeling chal­

lenge. Under the Kalman filter formalism this situation is usually addressed by append­

ing additional parameters to the state vector and jointly estimating time-correlated and 

uncorrelated errors. 

Under the Kalman filter formalism this situation is usually addressed by appending 

additional parameters to the state vector and jointly estimating time-correlated and un­

correlated errors. These parameters can also be estimated off-line. Consider for example 

the specific case of an annual cycle in the system and/or in the measurement errors, a 

situation which is of direct practical relevance to oceanographic applications. Taking the 

Fourier transform of equations (3.1) and (3.2), it follows that each frequency component 

of y(t) is linearly related to the same frequency component in u(t) and r(t), 

Ya 

Pa exp(iw/12) 

(3.42) 

(3.43) 

where the subscript a indicates the complex annual cycle amplitude, that is, Ya == 

a exp(icp) , a is the amplitude, cp is the phase, W = 21f/year. We have assumed a time 

step of 1 month in equation (3.43). Again, additional information is required to partition 

the annual cycle error between system and data errors. The important point, however, is 

that it can be removed from the model-data residual to avoid biasing estimates of second 

order statistics. 

115 



3.5.3 Time Dependent Models 

We consider two types of time dependence. The first type is "known" time dependencies 

in the linear models, A, rand H, and also possibly in the measurement error covariance 

matrix, R. These are readily accommodated by using a Monte Carlo approach to compute 

the Green's functions, GO,k. An example of this approach, with a time-varying H(t), is 

the treatment of acoustic time series of differing lengths in Section 4.4. 

The second type of time dependence is due to fluctuations of the "unknown" model 

parameters, Cl:k(t) in equation (3.4). In principle, this situation can be addressed through 

piecewise estimates of Cl:k(t) for periods that are short relative to the time scales over which 

Cl:k varies. A better approach is to parameterize the time dependency and to estimate 

these parameters using all the available data. An example is the detection of a trend, 

(au/at) =1= 0, in the system error. From equation (3.39), and assuming (ar/at) = 0, the 

first difference of u(t) is related to the first difference of y(t) by 

(y(t + 1) - y(t)) = H(I - A)-l(U(t + 1) - u(t)). (3.44) 

The expression (y(t+1)-y(t)) can be approximated using least-squares (or other suitable 

estimators) and in turn used to estimate the quantity (au/at) (Section 4.4). 

3.5.4 Tests of Consistency 

The final step of any estimation study is to test the resulting estimates for statistical 

consistency with all prior assumptions. One possible test is the comparison of estimation 

residuals (c in equations 3.19, 3.20) to the expected posterior covariance, 

(3.45) 

In addition, when Q and R are used in conjunction with a Kalman filter, whiteness tests 

can be applied to the innovation vectors, Daley (1992b). 

The description of the algorithm is now complete. In the remainder of this chapter 

we compare the CMA with the innovation based methods discussed in Chapter 2. In 
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Chapter 4 we illustrate this algorithm by estimating the large scale (>1000 km) baro­

clinic errors in a particular implementation and linearization of a GCM, first with twin 

experiments (Section 4.3), and with real data (Section 4.4). 

3.6 Comparison of CMA with Innovations Based Meth­

ods 

In this section we present a short summary of covariance matching with innovations 

approach (CMIA, hereafter) and compare it to the CMA described in detail in Sec­

tions 3.2- 3.3. We start by introducing the innovations and CMIA, and then compare 

the two methods. In comparison to CMA, CMIA requires additional approximations 

and is more computationally expensive. Therefore, for the problem of interest CMA is 

preferred. Note that CMIA is very similar to other methods which use innovations, see 

Blanchet et al. (1997). 

3.6.1 Covariance Matching with Innovations Approach (CMIA) 

Matching sample lag covariances to their respective theoretical expectations has been first 

proposed in the context of Kalman filtering, Shellenbarger (1967) and Belanger (1974). 

Innovations are defined as a difference between observations and one-step Kalman filter 

forecast, 

v(t) = y(t) - Hp(tlt - 1). (3.46) 

In the Kalman filter, the forecast p(tlt - 1) is a one-step model forecast from the best 

estimate at time t - 1, which is computed using all available information up to time 

t - 1 (Section 2.4). Belanger showed that by linearizing the filtering problem, theoretical 

expectations for lag covariances of the innovations can be linearly related to the prior 

model and measurement error covariances, see Dee et al. (1985) for an insightful dis­

cussion. When the model and measurement error covariances are parameterized as in 
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equation (3.4), we obtain a linear relationship, similar to equation (3.10), between the 

sample estimate of the lag covariances of innovations and the parameters D'-k. One then 

proceeds as in Section 3.2 and finds the parameters which give the best fit to the linear 

equation. 

3.6.2 Comparison of CMIA and CMA 

In this section we explain the similarities and the differences between the two methods. 

The only difference between CMA, described in the main text, and CMIA, described 

above, is that the former uses the observations directly instead of using the innova­

tions. In principle, observations and innovations contain the same statistical information, 

Kailath (1968). We illustrate this at the end of this section by deriving the equation for 

the covariance of observations from that for the covariance of innovations. 

In practice, the two methods may produce different estimates. The difference is due to 

two factors. First, quality of sample estimates for the covariances and lag-s covariances of 

observations and innovations may be different. In CMIA not only do we have to linearize 

the filter around the prior values of Q in CMIA, we also need to use the prior values of 

Q to compute the innovations. That is, CMIA is not guaranteed to converge if we start 

with a bad prior guess for Q, Moghaddamjoo and Kirlin (1993). 

However, CMIA can have an advantage when the initial estimates are close to the true 

ones, as the innovation statistics are nearly white and we do not need to use higher lag-s 

covariances. In such a case, use of innovations offers an advantage as all the information 

is compressed into the covariance of innovations. On the other hand, CMA requires use 

of higher order lag-s covariances, and, therefore, requires more computation and can have 

greater error. 

The second factor is the computational cost, and the approximations we have to make 

when the cost is prohibitively high. To compute the innovations one has to update the 

Kalman filter, which is computationally expensive, O(N3
) operations (even if we resort 

to approximations, such as steady state Kalman filter, the cost is still very high). The 
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CMA does not require running the Kalman filter, and is therefore computationally much 

cheaper. 

3.6.3 Comparison of the CMA and the MT Method 

Relation between CMA and the MT algorithm, see Chapter 2, is similar to that between 

CMA and CMIA. The similarity is best seen by comparing equations derived for the 

MT method with low-dimensional models, Section 2.7, with those of the CMA. In the 

derivation of the MT approach we derived two equations (2.58-2.59) which relate the 

covariance and lag-covariances of the state to those of the observations. These equations 

are identical to those used in the CMA, equations (3.6-3.9), except that in the CMA we 

use covariance of the lag differences, D s , instead of the lag-covariance, Y s ' In MT method 

we then relate statistics of innovations to the observations through Ricatti equation, and 

by computing the bias correction. These introduces additional uncertainties into the MT 

method as discussed in Section 2.7. Another important difference is that in CMA we use 

all observations directly instead of going to innovations. In situations when observational 

time series are short, and only a few iterations of the MT method are possible, uncertainty 

of the CMA estimates can be considerably smaller. 

3.6.4 Illustration of the Similarity of CMIA and CMA 

The two covariance matching approaches are in theory identical. We illustrate this by 

deriving the equation for the covariance of observations from that for the covariance 

of the innovations. This shows that when the sample covariances of observations and 

innovations are perfect, the estimates from the two methods are identical. Similar results 

can be derived for lag-s covariances. 

The goal is to obtain the expression for the covariance of the observations ( equa­

tion 3.6) from the equation for the covariance of the innovations derived in Belanger: 

< v(t)v(t)T >= HS(t)HT + R; S(t) =< e(t)e(t)T >, (3.47) 
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where the forecast error e(t) is defined as the difference between the forecast and the 

true state, 

e(t) = p(tlt - 1) - p(t). (3.48) 

Combining equations (3.46) and (3.48) we obtain the following sum: 

< v(t)v(t)T >=< [y(t) - Hp(t) - He(t)] [y(t) - Hp(t) - He(t)]T > 

< y(t)y(t)T > +H < p(t)p(t)T > HT + H < e(t)e(t)T > HT (3.49) 

- « (y(t) - Hp(t)) e(t)T > HT + transpose) (3.50) 

- ( < y(t)p(t)T > H + transpose). (3.51) 

The terms in equation (3.49) are given by their theoretical expectations: 

< y(t)y(t)T >= Y, < p(t)p(t)T >= P, < e(t)e(t)T >= 8(t). (3.52) 

The terms in equation (3.50) vanish because observation error is independent of the 

forecast: 

< (y(t) - Hp(t)) e(t)T >=< r(t)e(t)T >= o. (3.53) 

The terms in equation (3.51) can be computed as follows: 

since observation error is independent ofthe true state. Combining equations (3.47), and 

(3.49 - 3.54), we obtain that 

H8(t)HT + R = Y + HPHT + H8(t)HT - 0 - 2HPHT, (3.55) 

which after the cancellations gives equation (3.6). Similar equations can be derived for 

the lag-difference covariances (Section 3.2.1), but lag-differences of the innovations are 

difficult to work with and have not been used in CMIA. 

In summary, while the MT and other innovations based methods and CMA have 

common roots, the latter approach is more efficient and robust in situations when we 

have a large number of degrees of freedom and few observations, as confirmed by the 

twin experiments in Sections 2.8 and 4.3. 
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3.7 Summary 

The CMA we propose is similar to the methods described by Shellenbarger (1966) and Be·­

langer (1974), but we use GCM-data residuals directly instead of the innovation sequence. 

Innovation sequence approaches have been preferred by the engineering community be·­

cause they are more readily amenable to online applications and to the tracking of slowly 

varying statistics. When first guess error statistics are accurate, the innovation sequence 

will be less correlated (in time) than the GCM-data residual and, therefore, the available 

information will collapse into a small number of lag covariance matrices. 

However, for the systems of large dimension which are of interest to oceanographic 

studies, it is preferable to work with the GCM-data residual directly for the following 

reasons. First, sample covariances of the residuals can be computed offline, thus avoiding 

the computational burden associated with repeated integrations of the Kalman filter. 

Second, system and measurement error covariance matrices, Q and R, are linearly related 

to those of the GCM-data residual, Y and Ds. In contrast, the innovation sequence 

variants of the algorithm require linearization about some first guess error statistics and, 

therefore, convergence is not guaranteed, Moghaddamjoo and Kirlin (1993). Third, the 

GCM-data residuals contain information about absolute matrix norms IQI and IRI, while 

the innovation sequence can only be used to determine the relative ratio IQI/IRI. The 

key to making direct use of the GCM-data residual is the use of lag-difference covariance 

matrices (equation 3.9). For a diagonally dominant model, matrix A in equation (3.1), 

the lag difference collapses useful statistical information to a small number of lags. 

The proposed CMA is both a powerful diagnostic tool for addressing theoretical ques­

tions and an efficient approach for practical applications. Assuming system and data er­

rors to be uncorrelated from each other and from the oceanic state, theoretical questions 

are addressed within the context of least squares (equation 3.19). For a particular GCM 

and set of measurements, the Green's function matrix, 9 in equation (3.19), establishes 

which GCM and data error components are resolvable. Component Qk of system error 

covariance matrix Q is resolvable provided HAsQkAs'HT =I 0 for several s ~ 1 (Section 
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3.2.1). When all modeled Qk in equation (3.4) are resolved, the data error covariance 

matrix R is fully resolvable. At least N independent measurements and two covariance 

matrices (from the set Y, D I , D2 ... ) are required to fully resolve an N x N matrix Q 

(Appendix 3.2.2). 

A major obstacle to obtaining statistically significant results is the large uncertainty 

of sample covariance matrices, O(2(J4jp) where (J2 is the variance and p is the num­

ber of degrees of freedom (Section 3.3.1). The sample uncertainty is represented by Rc: 

in equation (3.20) and standard least squares tools can be used to evaluate the statis­

tical significance of the error estimates (Sections 3.3 and 3.4). The covariance of the 

covariance matrix can be computed using equations for the theoretical uncertainty of 

the second-order moments (Section 3.3.1 and Appendix F). In general, the number of 

error covariance parameters, G'.k in equation (3.4), which can be determined with some 

degree of confidence is two to three orders of magnitude smaller than the total number 

of independent data. The goal is to find a small dimensional error model which can be 

made consistent with the data. 

t with the data. 
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Chapter 4 

Experimental Results with 

Covariance Matching Approach 

In this chapter we use the CMA developed in Chapter 3 to estimate the error statistics 

of a linearized GCM. We use a linearized GCM of the North Pacific, where more than 

a year of high quality acoustic data are available in addition to the altimetric data. We 

start by addressing the following question: "For a linear model with four vertical modes 

can we estimate the mean variance of model error for each mode based on the two kinds 

of available measurements: altimetric measurements of the sea surface height and acous­

tic tomography measurements of sound speed converted into temperature anomalies?" 

Firstly, we perform a series of twin experiments, and show that the CMA can in princi­

ple provide reliable estimates of the mean variance of the model errors with the acoustic 

data but not the altimetric data. This is contrasted with the results of Chapter 2 where 

we showed that other adaptive methods failed with both data sets. We then use the 

TIP altimetric data to estimate spatial structure of the model errors. Using the ATOC 

acoustic data we estimate vertical structure of the model and measurement errors. In 

addition to this, we show that the CMA can be used to estimate other statistics of the 

model and measurement errors, namely trends and annual cycles. 

The major part of this chapter is presented in the article by Menemenlis and Chechel-
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nitsky (1999). 

4.1 Circulation and Measurement Models 

The circulation and measurement models, described below, were used in Chapter 2 (Sec­

tion 2.1) and are common to both the twin and the real experiments. The GCM is that of 

Marshall et al. (1997a, 1997b) integrated in a global configuration with realistic topogra­

phy and driven by surface wind and buoyancy fields obtained from twice-daily National 

Centers for Environmental Prediction (NCEP) meteorological analyses. Horizontal grid 

spacing is 1° and there are 20 vertical levels. 

A linear, time-independent model for GCM errors in the North Pacific is constructed 

by systematically perturbing the GCM with large scale temperature anomalies (Mene­

menlis and Wunsch, 1997). The linear model is defined in a region bounded by 5°-600 N 

and 132°-252°E (Figure 2.4). It operates on a reduced state vector that has 8° -sampling 

in the horizontal, 4 vertical temperature Empirical Orthogonal Functions (EOFs, see Fig­

ure 2.2), and a time step of 1 month. In this representation, sea surface pressure errors in 

the GCM caused by barotropic or salinity effects, or by scales not resolved by the reduced 

state vector, become part of the measurement error r(t), and are described by covariance 

matrix R. The state vector dimension is reduced from 5 x 106 in the GCM to 512 in 

the linear model. Away from coastal regions, this reduced-state linear model describes 

the large-scale temperature perturbation response of the GCM with considerable skill for 

periods up to two years. Similar types of state reduction and linearization are commonly 

used for propagating the error covariance matrix in data assimilation studies (Fukumori 

and Malanotte-Rizzoli, 1995 ; Cane et al., 1996 ). 

The acoustic tomography data from ATOC are first inverted to produce equivalent 

range-averaged oceanographic temperature perturbations along each section, the ATOC 

Consortium, 1998. Data/GCM discrepancy is then projected onto the four vertical EOFs 

and the monthly sampling of the reduced state vector described above. Therefore, the 
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measurement matrix for acoustic tomography data consists of a range-average for each 

vertical EOF and for each section. Acoustic data from five sections (Figure 2.4) are used 

for a total of 20 data points (projections onto the four vertical EOFs for each section), 

once per month. 

The measurement matrix H appropriate for altimetry consists of a weighted sum of 

the four vertical EOFs at each horizontal location of the reduced state grid. The weights 

are chosen to represent the relative contribution of each EOF to sea surface dynamic 

height at each location. In this representation, sea surface pressure errors in the GCM 

caused by barotropic or salinity effects, or by scales not resolved by the reduced state 

vector, become part of the measurement error r(t), and are described by covariance 

matrix R. 

Before applying the estimation algorithm described in Section 3.1 to real data, we test 

the algorithm in a series of twin experiments using simulated data with known statistical 

properties. But first we present an overview of the CMA. 

4.2 Overview of the Covariance Matching Approach 

In this section we present a brief overview of the covariance matching approach (CMA). 

The full description is given in Chapter 3. We start by parameterizing the model and 

measurement error covariances: 

K L 

Q = L akQk, R = L aK+kRk. (4.1) 
k=l k=l 

Next, for each element matrix Qk we obtain its corresponding reduced state covariance 

matrix P k by solving the Lyapunov equation 

(4.2) 
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We then solve a simultaneous set of linear equations for the coefficients ak: 

GY,l(:) GY,l(+L(:) 

GD1,1 (:) GD1,K+L(:) 
al 

( 4.3) 

GDs,l n GDs,K+Ln 
aK+L 

where we use the covariance of the model-data residual y(t) and the covariances of the 

temporal lag s residuals: 

Y covy, Ds cov[y(t + s) - y(t)], (4.4) 

and the Green's functions defined as: 

GYk , GY,K+k = R k , (4.5) 
s 

H(AS - I)P(AS - I)THT + L HAs-iQA(s-i)'HT, GDs,K+k = 2Rk . 

i=l 

Acknowledging the fact there are errors in the sample estimates of the covariance matrices 

on the left hand side of equation (4.3) and that the parameterizations (4.1) may be 

incomplete, we append an error to the equations (4.3), 

d = go. + c. (4.6) 

The parameter vector a in equation (4.1) is determined by minimizing the weighted 

least-squares cost function, 

(4.7) 

where 0.0 , Reo and Rc represent prior knowledge for (a), cova, and cov c, respectively. 

For a discussion on how to estimate the prior Rc see section (3.3.1). This completes the 

description of the basic CMA algorithm. 
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4.3 Twin Experiments 

4.3.1 Generation of simulated data. 

We parameterize Q in equation (3.4) as a diagonal matrix with four parameters, a1 ... a4, 

each representing the system error variance associated with each of the four vertical 

EOFs, that is, we assume that the system error is horizontally homogeneous and white. 

The measurement error covariance, R in equation (3.4), is also modeled as a diagonal 

matrix with two parameters, a5 and a6, corresponding to the measurement error variance 

associated with acoustic tomography and altimeter data, respectively. We do not claim 

that this simple model is correct or unique; our objective is limited to testing whether 

this particular model can be made consistent with the available data. 

The test data are generated using the reduced state linear model and the acoustic 

and altimetric measurement models described above, and by driving equations (3.1) 

and (3.2) with white system and measurement noise characterized by parameters a1 ... at) 

(Figure 2.17). 

4.3.2 Tests with Pseudo-Acoustic Data 

The first set of twin experiments is carried out with noise-free, R = 0, simulated acoustic 

tomography data. It is both impractical, because of computational cost, and unneces·· 

sary, because of information overlap, to match all available lag-difference data covariance 

matrices as in (3.10). An appropriate subset of data covariance matrices must be selected 

by trial and error and by reference to the guidelines of Section 3.3, that is, a preference 

for sample covariance matrices with small matrix norms and hence smaller relative un· 
- - -

certainties. The sample uncertainties of Y, D 1 , and D2 are displayed on Fig. 4.1 as a 

function of number of years of simulated data. Note that :01 and :02 have smaller relative 

uncertainties than Y, suggesting that matching :01 or :02 will produce better estimates 

of Q and R than matching Y. 

Figure 4.2 displays estimates of parameters a1 ... a4, based on matching D 1 , as a 
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Figure 4.1: Mean diagonal values of sample covariance matrices Y, D1 , and D2 , as 
a function of years of simulated data. Error bars represent the associated standard 
uncer~ainty. Dotted lines are the steady state values. (The steady state value associated 
with Y, 30, is not shown. Because the leading eigenvalue of the reduced-state dynamical 
model corresponds to an e-folding time scale of 19 years, a few hundred years of data 
are needed for sample covariance Y to reach a steady value). Lag-1 estimates have the 
smallest relative uncertainty, suggesting that matching the lag-1 data covariance matrix 
will provide the most accurate estimates of system and measurement error. 
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Figure 4.2: Estimates of system error variance based on the lag-1 difference sample 
covariance, :01 , for simulated acoustic tomography data. Dotted lines indicate the values 
of ();'1 ••• ();'4 used to generate the test data. The error bars represent the standard error 
of the estimates. The figure demonstrates the increasing accuracy of the algorithm with 
increasing number of measurements. 
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estimate parameters of covariance matrix Q 
description a1 a2 a3 a4 

truth 16 8 4 2 
from Y 10.8 ± 5.7 9.2 ± 3.2 5.5 ± 1.6 2.1 ± 0.7 

from :01 12.6 ± 2.7 8.0 ± 1.4 5.3 ± 0.8 1.9±0.4 
from diag(:Ol) 11.8 ± 3.4 8.8 ± 1.8 5.2 ± 0.9 1.7 ± 0.5 

from :02 12.5 ± 3.5 5.2 ± 1.8 4.2 ± 0.9 1.6 ± 0.5 

Table 4.1: Estimates of system error covariance matrix Q based on 14 months of simu­
lated acoustic tomography data. The measurements are assumed perfect, that is, R = o. 
The best estimates are obtained by matching the lag-1 difference covariance matrix, :01 , 

with an average standard error of 18% as compared to 38% for Y. 

function of number of years of simulated data. Error bars are obtained as in Section 

3.4. Contrary to the empirical algorithm of Myers and Tapley (1976), which failed to 

converge in this particular example, see Section 2.8, the present algorithm provides useful 

estimates of system error even with two years of data. 

The results of a series of tests based on 14 months of simulated data are summarized 

in Table 4.1 (at the time of this study 14 months of ATOC data were available). Each 

particular estimate is not expected to match the true variance of Q exactly, but over 

a large number of realizations the estimates are unbiased and their standard deviation 

matches the standard uncertainty reported on Table 4.1. For the dynamical and mea­

surement models used here, the lag-1 difference sample covariance matrix, D 1 , provides 

the most accurate estimates, with mean standard uncertainty of 18% as compared to 

38% for Y. Matching only the diagonal elements of :01 leads to a standard uncertainty 

of 23% similar to that obtained by using the fulllag-2 difference covariance matrix, :02 . 

N ext we report on results from a series of experiments with noisy measurements, 

R = I (Table 4.2). Measurement error degrades the estimates of Q considerably: the 

standard error for estimates obtained using :01 is 52%. The uncertainty can be reduced 
- -

by using several lag-s difference covariance matrices simultaneously: using D1 and D2 

simultaneously reduces the estimation uncertainty to 38%. 
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estimate parameters of covariance matrices Q and R 
description Ctl Ct2 Ct3 Ct4 Ct5 

truth 16 8 4 2 1 
from Y 10.4 ± 6.2 10.5 ± 3.6 5.8 ± 2.1 4.0 ± 1.3 0.6 ± 0.3 

from Dl 10.9 ± 4.5 12.7 ± 3.1 0.4 ± 2.4 -.2 ± 1.6 1.3 ± 0.2 
from D2 8.8 ± 4.7 11.3 ± 2.9 4.3 ± 2.1 2.9 ± 1.4 1.0 ± 0.2 

from :0 1 and :02 8.9 ± 3.8 9.5 ± 2.4 6.0 ± 1.7 2.0 ± 1.1 1.0 ± 0.1 

Table 4.2: Estimates of system and measurement error variance based on 14 months of 
simulated acoustic tomography data with R = I. The addition of measurement error 
increases the uncertainty ofthe estimates as compared to those of Table 4.1. Nevertheless, 
usable estimates of Q, with a standard error of 38%, are possible by simultaneously 
matching the lag-1 and lag-2 difference covariance matrices. 

In summary, the estimation uncertainty decreases with increasing years of available 

data and with increasing ratio IQI/IRI. The simulation results indicate that 14 months 

of acoustic data are sufficient to produce usable estimates of Q and R, provided the 

circulation and measurement models of 4.1 are valid and provided IQI ~ IRI. 

4.3.3 Tests with pseudo-altimeter data 

A third set of twin experiments is conducted using simulated altimeter data. In theory, 

it is possible to separate baroclinic modes in the altimeter data by making use of their 

different temporal evolutions at the sea surface (Holland and Malanotte-Rizzoli, 1989 ). 

The results presented below, however, suggest that even with perfect measurements, 

R = 0, and with perfect knowledge of the dynamical and measurement models, A and 

H, altimeter data on their own are ill-suited to the estimation of the vertical GeM error 

statistics. Figure 4.3 is an attempt to estimate the system error using up to ten years of 

perfect altimeter data. At the conclusion of the tenth year, the standard uncertainty of 

the estimates remains too large for the estimates to be of any practical interest. 

At the writing of this manuscript, 48 months of high quality TOPEX/POSEIDON 

altimeter data were available. We therefore performed a further series of tests using 48 
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Figure 4.3: Estimates of system error variance based on the diagonal elements of Dr 
for simulated altimeter data. Dotted lines indicate variances used to generate the data. 
Error bars represent the standard uncertainty of the estimates and they can be compared 
to those of Fig. 4.2 which was created using simulated acoustic data. The large error 
bars associated with the altimetric estimates suggest that altimeter data are ill-suited to 
the estimation of the vertical GeM error structure. 

132 



estimate parameters of covariance matrix Q 
description al a2 a3 a4 

truth 16 8 4 2 
from diag(Y) 30± 14 15 ± 8 -1 ±20 -15±9 

from diag(Dl) -1 ± 16 2±7 -2±30 32 ± 14 
from diag(D2 ) 30 ± 16 7±7 -41 ± 28 10 ± 12 
from diag(D3) 35 ± 14 18± 8 -45 ± 28 -10 ± 11 
from diag(D4 ) 36 ± 13 22 ± 8 -36 ± 29 -19 ± 11 
from diag(D5) 38 ± 13 27±9 -35 ± 30 -26 ± 10 

from all the above 8±6 10± 3 15 ±9 3±4 

Table 4.3: Estimates of system error covariance matrix Q based on 48 months of perfect, 
R = 0, simulated altimeter data. The last row of numbers ~re _estim,:tes obtained using 
the diagonal elements from all six data covariance matrices, Y, Dl ... D5, simultaneously. 

months of simulated altimeter data (see Table 4.3). Because of the large dimensions of 

the sample covariance matrices, only their diagonal elements have been matched. The 

first six rows of Table 4.3 correspond to estimates from matching Y, and Dl through 

D 5. The last row summarizes results from matching all six data covariance matrices 

simultaneously. The standard errors for this last case range from 35% to 235%. The 

situation is worse when measurement errors are included. We conclude that covariance 

matrices for the vertical GeM error structure cannot, in the present setup, be quantified 

from TOPEX/POSEIDON data alone. 

4.4 Experimental Results with Real Data 

4.4.1 TOPEX/POSEIDON data 

The covariance matching approach is next applied to TOPEX/POSEIDON altimeter data 

and to a particular integration of the Marshall et al. (1997a, 1997b) GeM. Figure 4.4 

compares measured sea level anomaly variance to that predicted by the GeM. Both 

the altimetric data and the GeM have been processed in a way consistent with the 
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Figure 4.4: North Pacific sea level anomaly variance for a) GCM output, b) TOPEX­
POSEIDON data, and c) GCM-TOPEX/POSEIDON residual, during the period 1 Oc­
tober 1992 31 May 1997. Annual cycles, trends, periods shorter than two months, and 
length scales smaller than 16° have been removed. Contour intervals are 3 cm2 . 
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reduced state described in Section 4.1, that is, periods shorter than 2 months and length 

scales smaller than 16° have been low-pass filtered. In addition, annual cycles and 

trends have been removed at every location; these will be studied separately. Altimetric 

data and GCM output exhibit the same general patterns of enhanced variability near 

the Kuroshio, the Hawaiian Ridge, and in a band north of the Equator. The GCM 

variability, however, is on average 30% less than that measured by the altimeter, and in 

some regions, notably in the Eastern Tropical Pacific, the altimetric and GCM time series 

are uncorrelated. The variance of the GCM-TOPEX/POSEIDON residual (Fig. 4.4c) is 

60% that of TOPEX/POSEIDON, indicating that the GCM explains 40% of the observed 

low frequency/wavenumber variability. Our objective is to determine which fraction of 

the GCM-TOPEX/POSEIDON residual can be attributed to system error, HPHT in 

(3.6), and which fraction results from measurement and representation errors, R in (3.6). 

The twin experiments conducted earlier indicate that it is not possible to determine 

covariance matrices for the vertical GCM error structure from four years of altimetric 

data. We therefore consider a number of statistical models for covariance matrices q 

and R which assume equipartition of the variance between the four vertical EOFs. The 

first model is an attempt to estimate the full spatial structure of the error variance under 

the assumption that Q and R have zero off-diagonal elements. This model results in 

estimates that have no statistical significance; on average the standard uncertainty of the 

estimates is fifteen times larger than the estimates themselves for the diagonal elements 

of Q and two times larger for the diagonal elements of R. 

To obtain statistically significant error estimates, it is necessary to reduce the num­

ber of parameters to be estimated. Therefore the second model considered is one of 

homogeneous and spatially un correlated system and measurement error, Q = all and 

R = a2I, respectively. Matching this model to covariance matrices Y, D I , D 2, and D3 

yields (h = 0.25 ± 0.02, &2 = 1.00 ± 0.03. Standard uncertainties are computed using 

a set of 100 Monte Carlo experiments whereby covariance matching is applied to 100 

sets of simulated data generated using normally distributed q(t) and r(t) with variance 
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0.25 and 1.00, respectively. Assuming the statistical model chosen to be the correct one, 

the standard deviation of the Monte Carlo estimates represents a lower bound for the 

standard uncertainty of the real estimates. These estimates imply that on average 70% of 

the GCM-TOPEX/POSEIDON residual variance can be explained by system error, that 

i.s, the ratio of the diagonal elements of HPHT in (3.6) to those of Y is approximately 

'70% (see Fig. 4.5a). 

The homogeneous model, however, does not account for some of the regions of en­

hanced variability in Fig. 4.4c. A third plausible model is Q = al Ql and R = a2Rl, 

where Ql and Rl are diagonal matrices with a spatially varying structure proportional 

to that of the GCM-TOPEX/POSEIDON residual variance. Matching this model to 

the data yields iiI = 0.047 ± 0.006, ii2 = 0.28 ± 0.02 which implies that 60% of the 

GCM-TOPEX/POSEIDON residual variance is explained by system error (Fig. 4.5b). 

To within the sample and estimation uncertainties, the prior variance predicted by this 

second model is consistent with the data. 

A fourth model, that proposed by (Fu et al. 1993), results from assuming that the 

ocean state is independent from the GCM simulation error, (xocean pT) = 0 (see Ap­

pendix D). When this assumption holds, 

R 

~ (cov ('fI ocean - H( GCM,r) - cov 'fI ocean + H cov (GCM,r HT) , 

COV ('fI ocean - E( GCM) -

~ (cov ('fIocean - H(GCM,r) - cov'flocean + H COV (GCM,r HT) , 

(4.8) 

(4.9) 

where subscript r denotes the coarse (reduced state) model run. On average, this third 

model predicts that 15% of the GCM-TOPEX/POSEIDON residual variance is caused 

by system error (Figure 4.5c). This relatively low value, compared to the earlier estimate 

of 60%, is consistent with a correlation coefficient of p = -0.55 between Hp(t) and 

H(GCM(t) (see Appendix D). 
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Figure 4.5: Prior estimate for percent variance of GCM-TOPEX/POSEIDON residual 
which is explained by system error, that is, ratio of diagonal elements of HPHT in 
(3.6) to those of Y. The estimates are obtained using the covariance matching method 
for a) a homogeneous model for the errors, b) a spatially varying model, and c) the 
model proposed by Fu eta al. (1993) which assumes that the GCM simulation errors are 
independent from the ocean state. Contour intervals are 20%. Spurious negative regions 
in c) (dashed contours) result from the large uncertainty of the sample covariance matrices 
used in the analysis. 
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4.4.2 ATOC Data 

We now turn our attention to the acoustic data. Fig. 4.6 compares the GCM-ATOC 

residual, converted to an equivalent sea level anomaly, to the range-averaged GCM­

TOPEX/POSEIDON residual along each acoustic path, after removing trends and annual 

cycles. The acoustic data is used to estimate the vertical structure of the errors and to test 

noise model #2 from above, that is, Q = 0.047Ql. We model Q as a diagonal matrix with 

four parameters, al ... a4, each representing system error variance associated with each 

of the four vertical EOFs, and with a spatial structure proportional to that of the GCM­

TOPEX/POSEIDON residual variance (Fig. 4.4c). Measurement and representation 

error are modeled as R = asI. 

The cost function (3.20) is minimized assuming a priori estimates of 0.047 ± 0.047 for 

al ... a4, that is, the estimate obtained using TOPEX/POSEIDON data but allowing for 

a larger uncertainty in order to test the vertical equipartition hypothesis. The a priori 

estimate for as is taken to be 0.28 ± 0.28, that is, the variance of the acoustic data with 

a corresponding uncertainty. A conservative estimate for the prior sample covariance 

uncertainty is Rc = 0.281 (Section 3.3.1). The resulting estimates for system noise 

variance are al = 0.15 ± 0.04, a2 = 0.00 ± 0.04, a3 = 0.11 ± 0.04, and a4 = 0.00 ± 0.04. 

These estimates differ from the altimetric estimate of 0.047 ± 0.006, indicating that the 

vertical equipartition hypothesis is not valid. 

A solution that is simultaneously consistent with both TOPEX/POSEIDON and 

ATOC data can also be obtained: al = 0.04 ± 0.03, a2 = 0.01 ± 0.02, a3 = 0.06 ± 0.03, 

and a4 = 0.12 ± 0.02. This solution differs from that using ATOC data alone in that 

it predicts less error variance associated with vertical EOF 1 and more with vertical 

EOF 4, that is, larger model errors above the seasonal thermocline (see Fig. 2.2). The 

differences are likely caused by different spatial and temporal extents for the ATOC and 

TOPEX/POSEIDON data and by inaccuracies in the assumed statistical models. All 

three covariance matching solutions, however, whether from TOPEX/POSEIDON data 

alone, from the ATOC data, or from their combination predict that about 60% of the 
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Figure 4.6: GCM-ATOC residual, along the five sections shown on Fig. 2.4, converted 
to an equivalent sea level anomaly for comparison with the TOPEX/POSEIDON data. 
Annual cycles and trends have been removed. 
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Figure 4.7: Vertical structure of the errors along the ATOC sections: a) standard error 
in °C excluding trend and annual cycle, b) trend in °C yr-I, c) annual cycle amplitude in 
° C, and d) annual cycle phase in months. The pentagrams, squares, and diamonds in a) 
correspond to estimated GCM, system, and measurement standard errors, respectively. 
The dotted line is the mean standard uncertainty of the acoustic inversions: it can be 
compared to that estimated using covariance matching (diamonds) and it provides an 
approximate measure of statistical significance. Trends and annual cycles are displayed 
for acoustic sections k, 1, n, and 0 of Fig. 2.4. Positive trends correspond to warming 
of the GCM relative to the acoustic data. Annual cycle phase indicates the month of 
maximum positive anomaly for the GCM relative to the data. 

GCM-TOPEX/POSEIDON residual variance is explained by system error. 

Figure 4.7a displays the mean vertical structure of residual errors along the ATOC 

acoustic sections. The dotted line indicates the mean standard uncertainty of the acous­

tic inversions (The ATOC Consortium 1998, ) and can be compared to the covariance 

matching estimate of 0:5 = 0.31 ± 0.03 (diamonds). Also displayed are the estimated 

GCM and system standard errors, p(t) and q(t), respectively. The acoustic data has 

limited depth resolution, being better suited to the measurement of top-to-bottom av­

erages. Nevertheless, the data indicates significant errors in the GCM variability from 

about 100 m to 1000 m depth, with a maximum of 0.2°C at 300 m. 
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Figure 4.8: Trend in the GCM-TOPEX/POSEIDON residual. Contour intervals are in 
cm yr-1 of sea level anomaly. Positive contours indicate a gradual warming of the GCM 
relative to TOPEX/POSEIDON. 

4.4.3 Thend and annual cycle 

Trends and annual cycles of the GCM-data residuals, which were excluded from the pre­

vious analysis, are discussed next. In the tropical Pacific, the GCM exhibits a warming 

trend relative to TOPEX/POSEIDON data of up to 3 cm yr- 1 (Fig. 4.8). The acoustic 

data indicate that most of the warming occurs between the seasonal and main thermo­

clines, 50-1000 m depth, with a peak warming of 0.1 to 0.20 C yr-1 , depending on location 

(Fig.4.7b). 

For most of the subtropical gyre, both the GCM and TOPEX/POSEIDON exhibit 

maximum sea level anomaly in September (month 9), but the TOPEX/POSEIDON 

amplitude is about 2 cm larger than that of the GCM (Fig. 4.9). As a result, the peak 

GCM-TOPEX/POSEIDON residual occurs in March (month 3), six months out of phase 

with the GCM or TOPEX/POSEIDON annual cycle. Excluding the surface layer, where 

resolution is poor, the acoustic data suggest that the annual cycle error is confined to a 

depth range shallower than 200 m, the phase-locked range in Fig. 4.7d, with a peak of 

0.30 C at 120 m depth (Fig. 4.7c). 
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Figure 4.9: Annual cycle peak amplitude for a) GCM output, b) TOPEX/POSEIDON 
data, and c) GCM-TOPEX/POSEIDON residual. Contour intervals are 2 cm. The 
corresponding phase is displayed in d), e), and f), respectively, with 2 month contour 
intervals. 
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4.5 Summary 

In this chapter we illustrate the CMA, developed in Chapter 3, by applying it to a particu-

lar integration of the Marshall et al. (1997a, 1997b) GCM, 56 months of TOPEX/POSEIDON 

sea level anomaly data, and 14 months of acoustic tomography data from the ATOC 

project. The GCM is forced with observed meteorological conditions at the surface and 

integrated in a global configuration with 1° horizontal grid spacing and 20 vertical lev-

els. A reduced state linear model that describes internal (baroclinic) error dynamics is 

constructed for the study area (5°-600 N, 132°-252° E). 

Twin experiments, using the reduced state model, suggest that altimetric data are ill­

suited to the estimation of internal GCM errors, but that such estimates can in theory be 

obtained using the acoustic data (Figures 4.2 and 4.3). These conclusions must however 

be qualified in the following way. First, the vertical modes used here are EOFs, not 

dynamical modes, and second, the tests were conducted using linearized GCM dynamics. 

We do not exclude the possibility that dynamical modes or fully nonlinear dynamics 

could enhance the resolution of internal GCM errors from altimetric data. 

The GCM exhibits a warming trend relative to TOPEX/POSEIDON data of order 

1 cm yr-1 (Figure 4.8) corresponding to a peak warming of up to 0.2° C yc1 in the 

acoustic data at depths ranging from 50 to 200 m (Figure 4. 7b). This trend measures 

GCM drift. At the annual cycle, GCM and TOPEX/POSEIDON sea level anomaly are in 

phase, but GCM amplitude is 2 cm smaller (Figure 4.9). The acoustic data suggest that 

the annual cycle error is confined to the top 200 m of ocean (Figure 4.7c and d). These 

differences result from errors in the surface boundary conditions and in the dynamics of 

the GCM. 

After removal of trends and annual cycles, the low frequency/wavenumber (periods 

> 2 months, wavelengths> 16°) TOPEX/POSEIDON sea level anomaly is order 6 cm2
. 

The GCM explains about 40% of that variance (Figure 4.4). The CMA suggests that 

60% of the GCM-TOPEX/POSEIDON residual variance is consistent with the reduced 

state dynamical model (Figure 4.5b). The remaining residual variance is attributed to 
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measurement noise and to barotropic and salinity GCM errors which are not represented 

in the reduced state model. The ATOC array measures significant GCM temperature 

errors in the 100-1000 m depth range with a maximum ofO.3°at 300 m (Figure 4.7a). The 

remaining GCM-TOPEX/POSEIDON residual variance is attributed to measurement 

noise, to barotropic and salinity GCM errors, and to vertical modes of temperature 

variability which are not represented by the reduced state model. 

This chapter demonstrates that it "is" possible to obtain simple statistical models 

for GCM errors that are consistent with the available data. For practical applications, 

however, the GCM error covariance estimation problem is in general highly underdeter­

mined, much more so than the state estimation problem. In other words there exist a 

very large number of statistical models that can be made consistent with the available 

data. Therefore, methods for obtaining quantitative error estimates, powerful though 

they may be, cannot replace physical insight. But used in the right context, as a tool for 

guiding the choice of a small number of model parameters, covariance matching can be 

a useful addition to the repertory of oceanographers seeking to quantify GCM errors or 

to carry out data assimilation studies. 
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Chapter 5 

Application of the Covariance 

Matching Approach to a Linearized 

GFDL GCM 

In this chapter we present an application of the covariance matching approach (CMA) to 

a linearized global ocean model. We use the same model and data that were used in the 

global data assimilation study of Fukumori et al. (1999) (F99, hereafter). The model is 

a linearization of the GFDL GCM and has only two vertical modes the barotropic and 

first baroclinic modes. The observations are the TIP measurements of the sea surface 

height anomalies. Only two vertical modes are chosen because they explain most of the 

sea surface height variability and have very distinct projections onto the sea level height 

anomaly. A 3 year time series of the GCM-data residuals is sufficiently long for the 

CMA to provide statistically significant estimates for a small but carefully chosen set of 

parameters, a, which describe the model and measurement error covariances. 

Unlike the previous chapter, where we only derived the model and measurement error 

covariances, in this work we use the estimates with a global data assimilation scheme to 

obtain estimates of the state of the global ocean. This work supports the conclusions of 

F99 that it is possible to improve estimates of the ocean state using an approximate data 
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assimilation scheme (Section 5.2) with a global data set and a global GCM. Furthermore, 

it strengthens these conclusions by testing them with several parameterizations of the 

error statistics. 

On the other hand, the results of data assimilation demonstrate that in this case 

adaptively tuned error covariances make very little difference for the estimates of the 

ocean state. This is explained by the fact that the measurement error, dominated by the 

representation error, is much larger than the model error. The representation error is 

due to the coarse resolution of the GCM (and to a smaller extent even coarser resolution 

of the reduced-state model). The coarse resolution means that the GCM is unable to 

adequately simulate the mesoscale eddies, and it is the mesoscale eddies dominate the 

variability of the sea surface height in the TIP altimetric data set. Large measurement 

error leads to very small Kalman gain, i.e. small weight on the measurements. Accord­

ingly, the measurements are hardly used in the assimilation and the resulting estimate 

with adaptively tuned error statistics is improved very little (Section 5.4.3). 

In addition, we use the CMA approach to study the vertical partitioning of the model 

error, where by model error we mean the differences on largest spatial scales between the 

sea surface height estimated by the model and that observed by TIP, for example one 

possible source of model error could be errors in the wind forcing which drive the model. 

Difference on small spatial scales are part of the representation error because we do not 

even attempt to model them with the coarse resolution GCM. The results show that 

most of the model error is explained by the barotropic mode. This can be understood 

by noting that the model-data residual has largest variance in the high latitudes where 

the barotropic mode has a larger projection. Thus, not only the sea level (Fukumori et 

al. 1998) but also the errors are dominated by the barotropic mode in high latitudes. 

We start by describing the model and data. The data assimilation method used in this 

study is described in Section 5.2. We then provide a short overview of the CMA approach 

in section 5.3. Derivation of the error covariances for the data assimilation is presented 

in Section 5.4. The data assimilation based on the parametrization of F99 is presented in 
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Section 5.4.3. Section 5.5 discusses results with a different error parametrization. Vertical 

partitioning of the model error is studied in Section 5.6. The conclusions are given in 

Section 5.7. 

5.1 Description of the Model and Data 

The GeM used in this chapter is based on the Modular Ocean Model developed at the 

Geophysical Fluid Dynamics Laboratory of the National Oceanic and Atmospheric Ad­

ministration. The model is a nonlinear primitive equation model extending over the 

world ocean from 80° S to 80° N with a uniform spatial resolution of 2° longitude and 1° 

latitude. There are 12 vertical levels which are based on the first 12 baroclinic modes cor­

responding to the mean temperature-salinity profiles of the global ocean, Levitus (1982). 

The model has realistic coast lines. For additional details on the model one may consult 

Pacanowski et al. (1991). 

The reduced-state model is described in F99. Below we provide a short summary of 

its derivation. The recent study of Fukumori et al. (1998) investigated the nature of large­

scale sea level variability, and the two main processes which dominate sea-level variability 

have been identified. In the tropics (latitude < 20°), low-frequency (>100 days) wind­

driven baroclinic modes are dominant with the first baroclinic mode contributing most of 

the variance. In high latitudes (latitude> 40°), high-frequency wind-driven barotropic 

motions dominate the sea surface variability. In mid-latitude (between 20° and 40°), 

near-surface steric effects due to thermal heating/cooling dominate sea level variance. 

However, they have relatively little dynamic effect, see Gill and Niiler (1973). Therefore, 

dynamics of global large-scale sea level change can be approximated in terms of the 

barotropic and the first baroclinic mode and it is assumed that the steric effects have 

negligible contribution to the error. 

The reduced-state is computed relative to the time-mean state of the model sim­

ulation. The equations of motion are non-separable due to nonlinearity and variable 
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bathymetry. This results in the coupling of dynamic vertical modes. However, locally 

dynamic vertical modes form a complete set of orthogonal basis functions, which are 

then used for expansion in terms of horizontal coefficients. The model's prognostic vari­

ables, namely zonal and meridional velocities, (u, v), temperature, T, and salinity, S, are 

approximated by 

(5.1) 

where overbar denotes the reference state; p and h are the structures of the first baroclinic 

modes of velocity and displacement respectively; 'ljJ is the transport stream function; x and 

yare meridional and zonal coordinates; and au, av, ah are first baroclinic mode amplitudes 

of zonal velocity, meridional velocity, and vertical displacement, respectively. The stream 

function defines the contribution from the barotropic mode. Vertical displacements result 

in changes in the baroclinic structure of the temperature and salinity fields because of 

the adiabatic nature of wind-driven sea level change. Derivation of the vertical modes 

for the linear equations of ocean dynamics is given in Gill (1982). 

A coarse grid was defined with a uniform 10° by 5° zonal and meridional spacing, 

respectively, which was sufficient to resolve the dominant scales. Thus, the total number 

of DOF was reduced to 691 (number of points on the coarse horizontal grid) times 4 

(number of vertical variables, au, av, ah, 'ljJ). 

5.1.1 Observations 

Observations used in this study are given by T /P global sea level anomalies from January 

1, 1993 to December 31, 1995 (see section 2.2 for a more detailed discussion of the T /P 

data). The original data set was averaged along-track in 2.5° latitudinal bins. Linear 

trends were computed and removed from the T /P data. This is done because trends are 

not adequately reproduced by the GeM, see Fukumori et al. (1998). 
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5.2 The Data Assimilation Scheme 

The assimilation in this study uses an approximate Kalman filter based on a reduced­

state and a time-asymptotic approximation (Fukumori and Malanotte-Rizzoli, 1995)1. 

The reduced-state approximation estimates the error covariances with a smaller number 

of degrees of freedom, which are chosen to resolve only the dominant spatial structures 

of the error (Section 5.1). The time-asymptotic approximation uses the time-asymptotic 

limit of the Ricatti equation instead of estimating the time-dependent error covariances 

(Appendix C). In practice the suboptimal character of the two approximations is oflittle 

importance given the uncertainties in the estimates of the error covariances, as discussed 

in detail in Chapter 2. 

In order to compute the time-asymptotic limit for the error covariances, the data 

distribution during one particular sub cycle of T /P is taken as a representative data 

distribution. Furthermore, it is assumed that all data is available instantaneously every 

~3 days. That is, to derive the limit we assume that the observations are given on the 

same grid every 3 days. The time-asymptotic limits for the forecast and update error 

eovariances, lIs ( -) and lIs, are eomputed using the doubling algorithm (Appendix C) 

and stored. However, for the aetual assimilation the time-varying distribution of data 

is used while using the time-invariant error covariances. Namely, the Kalman gain is 

derived at every time step of the assimilation using a modified equation (2.29): 

K(t) = lIs ( - )H(tf (H(t)lIs( - )H(t)T + R(t)) -1 . (5.2) 

Overview of the Covariance Matching Approach 

In this section we present a brief overview of the covariance matching approach (CMA). 

The full description is given in Chapter 3. We start by parameterizing the model and 

1 In contrast to F99, the smoother is not used, because, as shown in the next Section, the KF estimates 
are very similar to the ones derived in F99. It can be shown that when the KF estimates are similar, 
the smoother estimates are very close as well. Accordingly, we restrict our attention to the KF forecast 
and update fields. 
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measurement error covariances: 

J( L 

Q = 2:: akQk, and R = 2:: aK+kRk. (5.3) 
k=l k=l 

Next, for each element matrix, Qk, we obtain its corresponding reduced-state covariance 

matrix, P k , by solving the Lyapunov equation, 

(5.4) 

We then solve a simultaneous set of linear equations for the coefficients ak: 

GY,lO GY,K+LO 

GD1,lO GD1,K+LO 
al 

(5.5) 

DsO GDs,lO GDs,K+LO 
aK+L 

where we use the covariance of the model-data residual, y(t), and the covariances of the 

temporal lag- s residuals: 

Y covy, and Ds cov[y(t + s) - y(t)], (5.6) 

and the Green's functions defined as: 

GYk , (5.7) 
s 

GDs,k H(AS - I)P(AS 
- I)THT + 2::HAs-iQA(s-i)'HT, and GDs,K+k = 2Rk. 

i=l 

Acknowledging the fact there are errors in the sample estimates of the covariance matrices 

on the left hand side of equation (5.5), and that the parameterizations (5.3) may be 

incomplete, we append an error to the set of equations (5.5), 

d = go: + c. (5.8) 

The parameter vector 0: in equation (5.3) is determined by minimizing the weighted 

least-squares cost function, 

(5.9) 
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where 00, Reo and RIO represent prior knowledge of (0), cov 0, and cov c, respectively. 

For a discussion on how to estimate the prior RIO see Section 3.3.1. This completes the 

description of the basic CMA algorithm. 

5.4 The Error Covariances of F99 

The goal of this section is to establish whether we can find consistent estimates of the 

error covariance matrices using the model-data differences and to understand the impact 

of the adaptively estimated error statistics on the data assimilation experiment using real 

data. 

We start by describing the global assimilation presented in F99 which was done with 

a Kalman filter and smoother using asymptotic and reduced-state approximations with 

three years, (1993-1995), of TIP along track sea level anomaly data (Section 5.2). The 

error covariances for the approximate Kalman filter were derived by the method of Fu et 

al. (1993, F93, hereafter). To check the quality of the resulting estimates of the state, 

F99 compared statistics of the assimilated estimates against their respective theoretical 

expectations. In addition, comparison of the estimated fields against independent in situ 

observations, e.g. the sea level as obtained from tide gauges, the currents as measured 

by moorings, and the pressure as obtained from bottom pressure gauges, was performed. 

Overall, the assimilated estimates were shown to be in better agreement with in situ 

measurements than the simulated estimates (i.e. a GCM run with atmospheric forcing 

over the 3 year period without any data assimilation). On the other hand, inaccuracies 

in estimates were identified in some regions. This points to violations of some of the 

assumptions used in assimilating the observations. Here we investigate whether some of 

these violations were due to the misspecification of the model and measurement error 

covariances, and whether we can further improve the data assimilation estimates. 
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Figure 5.2: Variance of the projection of the model error onto the sea level in cm2 

(diag HPHT) a) from equation (5.1O) and b) for the Q actually used in F99. The 
correlation between the two fields is 0.56. The minimum and maximum values are given 
in the square brackets. 

155 



{C~ 

BON 
60N 

-&.ON 

20N 

0 

20S 

+OS 

60s 
BOS 

0 90E LBO 90W 0 
. :>r: .. 

0 L .., 3 ..... (dyn/cm2 f 
Figure 5.3: Variance of the NCEP wind stress(from F99). 

ance at each spatial location was unknown. The values of the local variance were chosen 

to give the best local fit with the deduced HPgr by using the Lyapunov equation (5.4). 

While it should not be literally interpreted as model errors being dominated by the wind 

errors, it is an assumption that the structure of the covariance matrix Q is similar to 

that of the wind stress. 

Figure 5.2b shows the diagonal of HPHT for the model error covariance QF99 used in 

F99 . The total correlation between the two fields (Figures 5.2a and 5.2b) is 0.56. This 

is surprisingly high considering the assumption that the model error is proportional to 

the covariance of the NCEP winds, i.e. to forcing fields themselves rather than to the 

errors in the forcing fields (as is often done, e.g. Miller and Cane 1989, Cane et al. 1996). 

However, it is substantially less than one because of the large negative values in the 

sample estimate (equation 5.10) . The variance of the model error projected onto the sea 

level has strong peaks in the South Pacific west of South America and near Madagascar, 

and is very small in the equatorial region, as expected since its spatial structure roughly 

corresponds to the spatial distribution of the wind variance (Figure 5.3). 

In F99 most of the residual is attributed to the measurement error, which includes 
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both instrument and representation errors (Section 2.2). This is attributed to the absence 

of mesoscale eddies in the model, and the fact the variance of the measurement errors 

is largest in the areas of intense eddy activity (western boundary currents, Figure 5.1b). 

Figure 5.4a shows the fraction of the model-data residual variance explained by the 

model error. Over most of the domain it is less than 20 per cent, and it implies that the 

measurement error is much greater than the model error in these regions. The only large 

areas where the model error accounts for more than a half of the residual variance is in 

the South Pacific west of the South America, in the south-west Indian ocean and in the 

west equatorial Atlantic. This is due to the fact that the covariance of the model errors 

was assumed to be proportional to the covariance of the NCEP winds (Figure 5.3) and 

these are the regions of the strongest wind activity. 

Recapitulating, the method of F93 is constrained to partition the variance of the 

residual, y(t) TJoceaJt) - E(t)(GCM(t), between the model and measurement error co­

variances, as can be easily seen by summing up the equations (5.10) and (5.11). This is 

exactly the first equation used in the CMA (equation 3.6). One of the differences between 

the two methods is that in the CMA algorithm one has to assume the parameterizations 

of both Q and R, while in the method of F93 the measurement error covariance R is given 

directly (equation 5.11), by making the additional assumptions discussed Appendix D. 

The model error covariance Q is estimated in exactly the same way as in the CMA, 

i.e. through the Lyapunov equation (5.4). However, the projection of the model error 

covariance onto the sea level is given by the difference of the covariance of the model­

data residuals and the covariance of the measurement errors, equation (5.10), instead of 

the matching the covariance of the model-data residuals of the CMA, equation (5.5). 

Overall, F99 estimate more than 17,000 parameters, that is, 1362 coefficients for the 

model error covariance (NCEP wind correlation matrix with variances of both zonal and 

meridional winds adjusted at every location to fit the sample estimate of HPHT
) and 

the full diagonal of the measurement error covariance. Estimating such a large number 

of parameters from relatively short time series is known to be unstable, see the discus-
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Figure 5.4: Relative ratio of the model and measurement errors for the covariance model 
used by F99 for: a) the model error (simulation error) diagHPHT /(diagHPHT +diagR) ; 
b) forecast error forecast diag HTIs ( - )HT / (diag HTIs ( - )HT + diag R); c) update error 
diag HTIs( - )HT /(diag HTIs( - )HT + diag R). Values greater than one half indicate 
that most residual variance is explained by the model errors, and less than one half by 
the measurement error (which includes representation error). The minimum, mean and 
maximum values are given in the square brackets. 
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sion in Dee (1995). Other differences between the two methods include use of time-lag 

information and more consistent application of the least-squares machinery in the CMA. 

Estimates of the model and measurement error covariances obtained in F99 are such that 

most of the variance of the model-data residual is explained by the measurement error. 

5.4.2 The CMA Test of the Error Covariances of F99 

The CMA does not use the assumption of decorrelation between the true state of the 

ocean and the model errors, which is a possible source of the wrong partitioning between 

the model and measurement error covariances. Thus, to check the parametrization of 

F99, we parameterize the error covariances (equation 5.3) as 

(5.12) 

where the two matrices QF99 and R F99 are the model and measurement error covariances 

used in F99 (described above). The coefficients a1 and a2 should be equal to 1 if the 

estimates used in F99 are consistent with the CMA. 

To obtain estimates of the coefficients a1 and a2 we need to choose the range of the 

column operator (:) and the subset of the covariances Y, D 1 , ... , D s which we use in 

the CMA. The method of F93 uses only covariances of the data, Y, and does not use 

covariances of the lag-differences, D s , as in the CMA. We start by matching only the 

covariance of the residuals, matrix Y (Figure 5.5). We obtain the following estimates 

using the diagonal elements of the residual matrix Y: 

a1 = 0.68 ± 0.12, and a2 = 0.71 ± 0.03. (5.13) 

Including off-diagonal elements does not change the estimates in a significant way. Both 

coefficients are less than one, that is, the estimates for the error covariances used in F99 

are overly conservative. It may be surprising, since we are matching a single equation: 

diag (Y) = diag (HPHT + R), (5.14) 
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Figure 5.5: LoglO of the variance of the residual between T IF data and the GCM 
simulation over the 3 years, 1993-1995, i.e. diagonal of Y. The highest values are in the 
regions of intense western boundary currents. The minimum and maximum values are 
given in the square brackets. 

and the matrices QF99 and R F99 were chosen based on the equation (5.14). However, as 

explained above, the model error covariance was based on the sample covariance of the 

NCEP wind (forcing field for the GFDL GCM). In fact, large negative values on t.he 

diagonal of HPHT (equation 5.10) had to be discarded, since P represents a covariance 

matrix and hac;; t.o have posit. ive values on the diagonal (Figure 5.2). In other words, the 

magnitude of Q F99 was chosen to be consistent with the large positive values of HPHT 

disregarding the fact that there was a significant number of spurious negative elements. 

The CMA, on the other hand, does no use the sample (>.stimate of HPHT obtained 

through equat ion (5.10), and gives smaller estimates for the parameters 0' ) and Ct2 to 

match the LHS of equation (5.14) . 

Performing data assimilation with these estimates of the model and measurement 

error covariances would produce nearly identical estimates of t he state, since the param­

eters (X l and 0'2 are nearly equal and the Kalman fil t er (and smoother) est.imates of the 

state do not change when we multiply both Q and R by a constant (section 2.4) . How-
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Figure 5.5: Log10 of the variance of the residual between TIP data and the GCM 
simulation over the 3 years, 1993-1995, i.e. diagonal of Y. The highest values are in the 
regions of intense western boundary currents. The minimum and maximum values are 
given in the square brackets. 

and the matrices QF99 and R F99 were chosen based on the equation (5.14). However, as 

explained above, the model error covariance was based on the sample covariance of the 

NCEP wind (forcing field for the GFDL GCM). In fact, large negative values on the 

diagonal of HPHT (equation 5.10) had to be discarded, since P represents a covariance 

matrix and ha'> to have positive values on the diagonal (Figure 5.2). In other words, the 

magnitude of QF99 was chosen to be consistent with the large positive values of HPHT 

disregarding the fact that there was a significant number of spurious negative elements. 

The CMA, on the other hand, does not use the sample estimate of HPHT obtained 

through equation (5.10), and gives smaller estimates for the parameters <:Yl and <:Y2 to 

match the LHS of equation (5.14). 

Performing data assimilation with these estimates of the model and measurement 

error covariances would produce nearly identical estimates of the state, since the param­

eters (.xl and (Y2 are nearly equal and the Kalman filter (and smoother) estimates of the 

state do not change when we multiply both Q and R by a constant (section 2.4). How-
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ever, the estimates of theoretical uncertainties need to be reduced by roughly 17 percent. 

This is consistent with the fact that the theoretical estimates of the uncertainty in F99 

are slightly larger than the sample ones (Figure 5.6). 

The CMA does not use the assumption of independence between the true state of the 

model and the model errors, and therefore provides an estimate of the cross-covariance 

between the true state and the model errors (Figure 5.7). Over most of the domain the 

cross-covariance, and thus the correlation, is very small, but in the areas of intense western 

boundary currents it is higher than 100 cm2
. In fact, over most of the area with high 

model-data residuals the cross-covariance is as important as the model and measurement 

error covariances. Since the cross-covariance cannot be neglected the estimates obtained 

by using the method of F93 are biased. The fact that the cross-covariance is mostly 

positive suggests that either the model error is underestimated or the measurement error 

is overestimated2 . This conclusion is supported by the additional analysis presented 

below. 

To check the above estimates, we used the CMA with the same parametrization as 

above (equation 5.12), but adding time-lagged covariances into the CMA (equation 5.15). 

First we add covariances of the lag 3 difference (9 days), D 3 . the TIP has cycle at 9.9 

days. Since lag-3 corresponds to 9 days (time step of the reduced-state model is 3 days) 

we can obtain significant estimates of the lag-3 difference covariance. In addition, the 

higher lag reduces the effect of neglected time-correlations in the model and measurement 

errors. The estimates of the parameters change to 

O!l = 1.15 ± 0.14, and 0!2 = 0.42 ± 0.03. (5.15) 

These estimates are significantly different from those obtained above (equation 5.13) with 

Y only. That is, use of additional time-correlation information gives estimates which are 

outside the uncertainty range of the earlier ones, equations 5.13. This is explained by 

the fact that now we have to fit not only the variances of the residuals but also the 

2This can be seen by observing that R makes a positive contribution to the cross-covariance, while 
HPHT makes negative contribution to the cross-covariance in equation (D.ll). 
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Figure 5.6: RMS differences of the model-data residuals for the data assimilation done in 
F99; (a) simulation minus KF forecast, (b) expected values of (a), (c) KF forecast minus 
KF update, (d) expected values of (c). Sign as indicated above, e.g. in (a) positive values 
indicate larger simulat ion residual than KF forecast residual (Reproduced from F99). 

162 



I I 0 ... 

IOngttudo(E_1) 

C orF lor a.I_ Ga..,.. .nd p u .'ng Otyp. 1::J R,yp. 21 _ 1 ~ 81S8 01 d 

Figure 5.7: Estimate of the point cross-covariance between H p and H (GCM,r using equa­
tion (D.ll) for parametrization of F99 and estimates given in equation (5.13). T he 
minimum and maximum values are given in the square brackets. 

tim~lag correlations, and the lower estimates of the mean measurement error variance 

are in better agreement with the tim~correlation structure in the residuals. However, 

it has to be pointed out that this change in estimates could be also due to neglected 

tim~correlations in the errors (section 3.2.1). 

With these estimates, the model error on average accounts for 40 percent of the 

model- data residual variance (Figure 5.8a), and explains most of the variance in large 

regions of the global ocean. We obtained similar estimates adding higher lag-differences 

covariances. 

5.4.3 Data Assimilation with Parametrization of F99 

In this section we present results of data assimilation with the error covariances derived 

in the previous section. The question we are going to address is whether we can improve 

quality of the state estimates. We use the data assimilation scheme of F99, but present 

only results with the approximate KF, omitting the smoother (Section 5.2). 
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Figure 5.8: Relative ratio of the model and measurement errors for the rescaled covariance 
model used by F99 for: a) the model error (simulation error) diagHPHT j(diagHPHT + 
diagR); b) forecast error forecast diagHTIs( - )HT j(diagHTIs( - )HT +diagR); c) update 
error diagHTIs( - )HT j(diagHTIs( - )HT +diagR). Values greater than one half indicate 
that most residual variance is explained by the model error, and less than one half by 
the measurement error (which includes representation error). The minimum, mean and 
maximum values are given in the square brackets. 
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We use the rescaled error covariances of F99 (Section 5.4.2) with the parameters Q 

derived using time-correlation information: 

Q = 1.15 QF99' and R = 0.42 R F99 . 

First, we discuss time-asymptotic solutions for the forecast and update error covari­

ances, ITs ( -) and ITs (the reader is referred to Section 2.4 for the KF terminology). 

These error covariances provide a theoretical expectation of the uncertainties for the 

forecast and update fields. In Figure 5.8b we display the local ratio of the forecast error 

variance projected onto the TIP grid and the sum of the forecast and the measurement 

error variances, 

(5.17) 

In Figure 5.8c we display the local ratio of the update error variance projected onto the 

TIP grid and the sum of the update error and the measurement error variances, 

(5.18) 

Figure 5.8a shows the fraction of the total error variance explained by the simulation error 

covariance3 derived in Section 5.4.2. The KF algorithm guarantees that the uncertainty 

is reduced once the assimilation takes place, i.e. 

II P II 2: II ITs ( - ) II 2: II ITs II· (5.19) 

These plots show that, as a result of the assimilation, the uncertainty of the forecast 

should be significantly reduced compared to the simulation, with a similar reduction 

from the forecast to the update. Furthermore, the update error is much less than the 

measurement error everywhere (note that the scale in Figure 5.8c is from 0 to 0.2 and 

from 0 to 1 in the other plots). A similar plot for the original simulation of F99 (unscaled 

3i.e. the solution to the Lyapunov equation, or time-asymptotic approximation of the error covariance 
for simulation of the model without any data assimilation. 
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Q and R) is shown in Figure 5.4. While the simulation and forecast error covariances 

are quite different for the two experiments, the update uncertainties are very similar. 

The simulation model error variance explains on average 39 and 20 percent of the total 

error variance for the rescaled and original cases respectively; the forecast error explains 

on average 23 and 12 percent of the total error variance for the rescaled and original 

cases respectively; and the update error explains on average 6 and 4 percent of the total 

error variance for the rescaled and original cases respectively. Furthermore, the pattern 

of the fraction of the total variance explained by the model state uncertainty becomes 

similar as more data is assimilated. This shows that the rescaling of the measurement 

error covariance would be only significant for the forecasts of the state, but the update 

estimates should be nearly identical. 

The error covariances influence estimates of the state through the weighting matrix, 

the Kalman gain (equation 2.28). In Figure 5.9a we display the projection of the Kalman 

gain onto the measurement grid, i.e. the diagonal of HK. This is equivalent to the local 

sea level anomaly associated with Kalman filter changes in model state corresponding to 

data-model difference (here the data denotes observations used in the KF, i.e. GCM-T/P 

residuals) of 1 cm. The value of zero implies that the weighting on observations is zero, 

and corresponding anomaly is 0, i.e. no assimilation takes place. The value of one means 

that the forecast is completely discarded, and the measurements are projected onto the 

model grid. The maximum projection of the Kalman gain is 0.2 and the average is 0.04. 

In other words, the average update is 96 percent forecast and 4 percent observations. For 

comparison, in Figure 5.9b we show a similar picture with the original assimilation of 

F99. Although the measurement error covariance has been rescaled by 0.4, the original 

Kalman gain is hardly changed. Accordingly, the estimates of the state are changed very 

little when we run the approximate KF with rescaled error covariances. 

We now turn our attention to the estimates of the state. The resulting estimate of 

the ocean state is a three-dimensional (x, y, z) time series for each of the GCM variables. 

To facilitate comparison among different data assimilation experiments {i.e. experiments 
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Figure 5.9: Sea level anomaly (cm) associated wit h Kalman filter changes in model 
state corresponding to an instantaneous 1 cm model- data difference for a) the rescaled 
error covariances of F99, b) the original error covariances of F99. The estimates are 
strictly local reflecting sea level difference at each separate grid point and assuming the 
instantaneous data distribution used to derive the time-asymptotic limit of the KF. 
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with different choices of the error covariances) we only show estimates of the projection 

of the model state onto the sea surface height anomaly on the TIP grid. 

To gain insight into the KF estimates, we compare the skill of different estimates 

of the model state against the TIP observations. Namely, we computed the following 

differences: 

cov (rJ ocean - He GeM, simul) - COV (rJ ocean - He GeM, forecast) , 

COV (rJ ocean - He GeM, forecast) - COV (rJ ocean - He GeM, UPdate) , 

(5.20) 

(5.21) 

where the subscript simul stands for the simulation of the state of the GeM, i.e. without 

any data assimilation; the subscript forecast stands for the forecast state of the GeM, 

i.e. the estimate immediately prior the recursive assimilation of observations; and the 

subscript update stands for the estimate of the state immediately after the recursive as­

similation. The former, equation (5.20), quantifies the ability of the model in propagating 

data information consistently in time, whereas the latter, equation (5.21), quantifies the 

measurements' effect on the model at each instant of the assimilation and is directly 

dependent on the Kalman gain. 

In Figure 5.10 we show these two quantities for the assimilation with the error covari­

ances of F99, a) and b), and for the assimilation with the rescaled error covariances of 

F~)9, c) and d). The most remarkable feature of this figure is that the plots of the model­

data differences for the simulation minus the forecast, a) and c), are very similar for the 

two assimilations. This is in agreement with the earlier estimates of the Kalman gain, 

Figure 5.9, which predicted that the purely local effect of the data assimilation is very 

small, and comparable, for the two assimilations. The average improvement of the RMS 

of the forecast over the RMS of the simulation is 1. 77 em and 1. 79 cm for the run with 

original error covariances of F99 and the rescaled error covariances of F99, respectively. 

The lower plots, Figure 5.10b and Figure 5.10d, show that the assimilation is greater 

in the rescaled case since there is larger difference between the forecast and the update 

fields. However, greater amount of assimilation at time t does not give a better estimate 

of the field, since the one step forecast is not on average closer to the observations. 
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Figure 5.10: Differences (in cm) of model-data residualsj a) simulation minus forecast 
for the KF with the error covariances of F99j b) forecast minus update with the error 
covariances of F99j c) simulation minus forecast for the KF with the rescaled error 
covariances of F99j d) forecast minus update with the rescaled error covariances of F99. 
Values are RMS differences of model-data residual variances. The sign is as defined 
above, e.g. positive values in a) indicate larger simulation residual than forecast residual. 
Values above 5 cm are shown in white, while values less than -5 cm are shown in the 
deep blue. Note that the lower plots, b) and d), are strictly positive indicating that the 
update is always closer than the data, as required by the KF algorithm. In contrast, the 
simulation, a) and c), are often closer to the data than the forecast, indicating poor skill 
of the data assimilation. 
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Next, we consider sample variance of the innovations (equation 2.72), i.e. the differ­

ence between the observations and one-step forecast of the model. The innovations make 

a good check on the quality of the assimilation as they contrast a model forecast (the 

estimate immediately prior the recursive assimilation of observations) with independent 

data, i.e. the data not yet used in the analysis. If the model and the data were perfect, 

the model provides a perfect forecast and the innovations are zero, i.e. there is no new 

information in the observations. However, since the model and the data are not perfect, 

the innovations are different from zero. A more optimal data assimilation scheme on 

average provides a better estimate (update) of the state: a better update at time t is 

used as the initial condition for the model forecast at time t + 1 and thus gives a better 

approximation of the true trajectory. This gives a better estimate of the update, and so 

on recursively (Figure 2.5 demonstrates the process graphically). 

In Figure 5.11 we show an estimate ofthe differences of the RMS of innovations for the 

run of F99 and the run with rescaled error covariances. A positive difference corresponds 

to areas where the RMS of the innovations of the run with the original error covariances 

of F99 is higher, i.e. the areas where the run with the rescaled error covariance gives 

a better data assimilation estimate. Areas where the RMS of innovations for the run 

of F99 is smaller, i.e. the difference is negative, correspond to regions where the run 

with the rescaled error covariances gives a worse data assimilation estimate. The average 

difference is 0.02 cm, i.e. the rescaled run is on average better by 0.4 per cent (the average 

variance of the innovations for the run of F99 is 5.8 cm). This is a very small difference, 

predicted by analysis of the Kalman gain (Figure 5.9). There are several regions where 

we have significant improvement in the quality of the data assimilation estimates, e.g. in 

the North East Pacific. On other hand there are several areas where the estimates are 

worse, e.g. east of South Africa. 

This chapter demonstrated that data assimilation with rescaled error covariances of 

F99 is very similar to the one presented in the original paper of F99. This is shown both by 

the analysis of the theoretical uncertainties and the sample estimates of the state. This is 
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Figure 5.11: Difference (in cm) between the variance of the innovations (data- forecast 
residual) for the run of F99 and the run with the rescaled error covariances of F99. 
The fields has been extrapolated from the T /P grid onto the 20 by 10 grid by using a 
Fourier-based technique. Values less than 0 indicate areas where the assimilation of F99 
is doing better, and values greater than zero indicate areas where the assimilation with 
the rescaled error covariances is doing better. The average is 0.02 cm. 
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explained by the fact that although the rescaled error covariances increase the respective 

weight on the model error as compared to the measurement error, the resulting change 

in the Kalman gain (the weighting matrix used in blending the recursive model forecast 

and the data) is very small. Accordingly, the change of variance of the innovations is 

very small. 

Data Assimilation with an Independent Parametriza-

tion of the Error Covariances 

In the previous section we presented results of data assimilation with the error covariances 

given in F99. There the model-data residuals were used to tune their parametrization 

of the error covariances, and thus the estimates derived in the previous section were 

not based on independent data. Thus the error c in the matching equation (5.8) was 

not completely independent of the sample variances d, and the estimates of the rescaling 

parameters were possibly biased. In addition, we could not provide a proper derivation of 

the uncertainty of the sample estimates of Q as it is very difficult to account for possible 

dependence of the Green function 9 and the sample estimates d (equation 5.8). In this 

section we present analysis with a completely independent parametrization of the error 

covariances. 

We parameterize the model error covariances as the sum of 691 (one for each point 

on 10° by 5° grid of the reduced model) delta matrices: 

691 

Q = :l.:'>}:ir3 days.di,ir§ days' 
i=l 

(5.22) 

where r 3days is a projection from the the wind stress field to the reduced-state model 

variables (a 2764 by 1382 matrix) 4 
, .di,i is a 1382 by 1382 diagonal delta matrix with 

the variance of the zonal wind at the ith and the variance of the meridional wind at the 

4There are 691 spatial grid points for the reduced-state model and 4 variables (Section 5.1), i.e. 2764 
model variables. Wind stress has two components, zonal and meridional, and thus 691 times 2, 1382 
variables. 
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691 + ith positions on the diagonal, and zeros everywhere else. Thus, we assumed that 

the variance is scaled by the same constant for both zonal and meridional winds, but the 

scaling factor is changing in space. Note that because the projection matrix f3days is 

a full matrix, the resulting error covariance Q is a full matrix as well. 

The measurement error covariance is assumed to be diagonal, i.e. measurement errors 

are assumed to be uncorrelated in space. The variance of the measurement errors is 

assumed be locally homogeneous in space. To define local areas of constant measurement 

error variance we divide the global ocean surface into 382 areas of equal variance by 

splitting each of the three oceans: Pacific, Atlantic and Indian, into 4 longitudinal areas 

for each 3° latitudinal band. 

Firstly, we discuss the Kalman gain obtained with this error parametrization. The 

projection of the Kalman gain onto the sea level anomaly is shown in Figure 5.12. This is 

equivalent to the local sea level anomaly associated with Kalman filter changes in model 

state corresponding to 1 cm innovation, or data-model difference (here the data denotes 

observations used in the KF, i.e. GeM-TIP residuals). On average, the Kalman gain 

is smaller than that obtained with either the original or the rescaled error covariances 

of F99, Figure 5.9, i.e. less assimilation takes place with this error model. Furthermore, 

the structure of the local response to the innovations has changed dramatically. This 

choice of the error covariances disregards the observations completely in the tropics, and 

the Kalman gain is significantly reduced in the South East Pacific. On the other hand, 

there are high values in the East Indian ocean, and in the Kuroshio. In Figure 5.13 we 

show an estimate of the differences of the RMS of innovations for the run of F99 and the 

run with this new error covariances. A positive difference corresponds to areas where the 

RMS of the innovations of the run with the original error covariances of F99 is higher, 

i.e. the areas where the run with the new model for the the error covariances gives a 

better data assimilation estimate. Areas where the RMS of innovations for the run of 

F99 is smaller, i.e. negative difference, correspond to regions where the run with the new 

model for the the error covariances gives a worse data assimilation estimate. The average 
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Figure 5.12: Sea level anomaly (cm) associated with Kalman filter changes in model state 
corresponding to an instantaneous 1 cm model data difference for a new parametrization 
of the error covariances. The estimates are strictly local reflecting sea level difference at 
each separate grid point and assuming the instantaneous data distribution used to derive 
the time-asymptotic limit of the KF. 

difference is -0.3 cm, i.e. the run of F99 is on average better by 5 per cent. The negative 

impact is due to very small values of the model error, and accordingly small values of 

the Kalman gain, in the tropical Pacific and in the West Indian ocean (Figure 5.12). 

In other words, this data assimilation run fails to extract information available in the 

observations in these regions, information that was successfully used in the assimilation 

of F99 (Figure 5.10a). On the other hand, in several regions the assimilation is improved, 

e.g. in the East Indian Ocean and the tropical Atlantic. 

This section presents results of data assimilation with a different parametrization of 

the error covariances. A much larger, more than a thousand vs. two with the rescaled 

model of the F99, number of parameters is estimated using the CMA. The estimates of 

the parameters are sensitive to the choice of the uncertainty matrices used to invert the 

global matching equation (5.8). Nevertheless, we use one set of such estimates with an 

approximate KF. The results are negative, i.e. the resulting impact of the assimilation on 
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Figure 5.13: Difference (in cm) between the variance of the innovations (data- forecast 
residual) fo · the run of F99 and the run with the new parametrization of the error 
covariances. The fields has been extrapolated from the TIP grid onto the 20 by 10 

grid by using a Fourier-based technique. Values less than 0 indicate areas where the 
assimilation of F99 is doing better, and values greater than zero indicate areas where the 
assimilation with the rescaled error covariances is doing better. The average is -0.3 cm. 
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Figure 5.14: Differences (in cm) of model-data residuals with the new parametrization 
for the error covariances: a) simulation minus forecast for the KF ; b) forecast minus 
update with the error covariances of F99. The sign is as defined above, e.g. positive 
values in a) indicate larger simulation residual than forecast residual. Values above 5 
cm are shown in white, while values less than -5 cm are shown in the deep blue. Note 
that the lower plots, b) and d), are strictly positive indicating that the update is always 
closer than the data, as required by the KF algorithm. In contrast, the simulation, a) 
and c), are often closer to the data than the forecast , indicating poor skill of the data 
assimilation. 

the ocean state estimates is less than that in F99. This is explained by the fact that the 

estimate of the model error covariance is very small in many regions of the global ocean, 

and accordingly the data is not used in the assimilation in these areas, most notably the 

tropical Pacific. Therefore, the assimilation fails to improve the estimate of the ocean 

state in these areas. There are several smaller regions where the estimate is improved, 

but the cumulative impact is negative, and the average variance of the innovations is 

greater by 0.3 cm than that in F99. This demonstrates that while in principle the 

CMA can estimate a large number of parameters, the estimates are not very useful. 

Thus, while the estimate of the state is improved over the simulation (Figure 5.14a), the 

average difference between the update and the forecas t field is smaller than in the data 

assimilation experiments with the error covariances of F99(Figure 5.14a). 
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5.6 Partitioning of the Model Error 

In this section we demonstrate how the CMA method can be used to study partitioning 

of the model errors. To understand contributions of each of the vertical modes to the 

covariance model of F99, equation (5.12), we next choose to parameterize the model error 

covariance as a sum of four diagonal matrices, one Qk for each of the four coarse state 

model variables (equation 5.1): 

4 

Q = 2:= akQdiag,k, R = a5R F99' (5.2:3) 
k=l 

Qdiag,l = diag QF99(U,U) , Qdiag,2 = diag QF99(V,V) , Qdiag,3 = diag QF99(h,h) , 

where diagQ denotes a diagonal matrix with the diagonal equal to the diagonal of Q, and 

QF99(U,U) denotes a model error covariance for the zonal baroclinic velocity u, and so on. 

Thus, we are assuming that the model error covariance has zero off-diagonal elements, 

unlike the full covariance used in F99. Using only the variance of the residual, Y, the 

resulting estimate of the projection for the model error onto the sea level variance is very 

similar to that obtained with the full model error covariance, QF99. In addition, we obtain 

similar estimates for the measurement error covariance, and thus, similar distribution of 

the fraction of model-data residual explained by the model error. Using the lagged 

differences the estimates of coefficients are 

al = 0, a2 = 0, a3 = 1.99 ± 0.05, a4 = 0.49 ± 0.01, a5 = 0.50 ± 0.01. (5.24) 

That is, although we are trying to estimate four parameters for Q, only two, a3 and a4 

are different from zer05. The projections of each of the delta model error covariances 

onto the sea level are shown in Figure 5.15. 

They show that the model errors corresponding to the baroclinic velocities have a 

strong peak on the equator, but the spatial distribution of the associated sea level variance 

5The least squares solution tries to set the other two to negative values, and we have to use constrained 
optimization instead. 
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is different for the zonal and meridional velocities. However, the structure of the model 

errors is inconsistent with the variance of the model-data residual, and therefore the 

estimates for the coefficients a1 and a2 are zero. The model errors corresponding to the 

vertical displacement have a strong peak between 20° and 40° latitude and explain half 

of the model variance. The model errors corresponding to the barotropic stream function 

have maximum in high latitudes and explain the maximum in the South-East Pacific of 

the South America. Fukumori et al. (1998) have found that most of the sea level variance 

in high latitudes is explained by the barotropic mode. Our results suggest that not only 

the sea level but the also the errors in high latitudes are dominated by the barotropic 

mode. Note that these results are very different from the results of Chapter 4 where we 

could not distinguish amplitudes of the errors of different internal modes with the TIP 

data. The difference is due to the fact that here we are trying to discriminate between 

the errors in the barotropic and baroclinic modes instead of the errors in four internal 

vertical modes. 

To recapitulate, the sum of four diagonal matrices can explain the pattern given by 

the full matrix QF99' That is, if we only use diagonals of the covariance and lagged 

difference covariances of the model-data residual, we cannot prefer one parametrization 

over the other (equations 5.12 and 5.23). 

To check the robustness of these results we ran the CMA with the following parametriza-

tion of the model error covariance Q 

a1QT/p 0691 0691 0691 

Q= 
0691 a2QT/p 0691 0691 

(5.25) 
0691 0691 a3QT/p 0691 

0691 0691 0691 a4QT/p 

where QT/P is a diagonal matrix of 691 by 691 with the diagonal given by the variance of 

the TIP measurements and 0691 is a zero matrix of 691 by 691. The resulting contribu­

tions of the model error of each of the four model variables are shown in Figure 5.16. The 

results are similar to those shown above, but the coefficients for the baroclinic velocities, 
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Figure 5.15: LogI0 of diagonals of O'kHPkHT. The covariance model consists of four 
diagonal matrices for Q and the measurement error covariance used in F99. The estimates 
were obtained using Y and D 3 . Note the top two plots are zero, and are presented only 
to show the signature for the baroclinic velocities u and v. The minimum and maximum 
values are given in the square brackets. 

0'1 and 0'2 are different from zero. They are however very small, despite the fact that 

the projections onto the sea level have a significant signal off the equator. The model 

error corresponding to the vertical displacement has a strong peak in latitudes higher 

than 40°, but is smaller that the model error corresponding to the barotropic stream­

function. It is worth noting that the model errors corresponding to the st reamfunction 

are very similar to those in the previous parameterizations. That is, two very different 

diagonal Q4, first with the diagonal given by the NCEP winds variance and second with 

the diagonal given by the TIP measurement variances, have very similar projections on 

the sea surface height. This indicates that the results of data assimilation should not be 

very sensitive to the structure of the prior model error covariance Q. The coefficient for 
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Figure 5.16: LogI0 of diagonals of GkHPkHT. The model error covariance is parameter­
ized as a sum of four diagonal matrices with the diagonal given by the variance of the 
TIP measurements (equation 5.25). The estimates were obtained using Y and D3 . The 
minimum and maximum values are given in the square brackets. 

the measurement error covariance is similar to the one obtained earlier in equation 5.15, 

Gs = 0.50 ± 0.01. Thus, this shows that our estimates obtained earlier are robust. 

5.7 Summary 

In this chapter we applied the CMA to a global integration of the GFDL GCM and 

3 years of TOPEX/POSEIDON data. We have shown that the estimates used in F99 

overestimate the measurement error variance and that in order to match additional lag­

difference covariances we need to increase the fraction of the model- data residual variance 

explained by the model error covariance. We tested this hypothesis with a variety of 

parameterizations for the model and measurement error covariances, and obtained similar 
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conclusions. The resulting estimate of the model error covariance on average explains 40 

percent of the model-data residual variance, but the uncertainty is significantly reduced 

when the model is run with an approximate KF. In addition, we have demonstrated 

that most of the model error variance is explained by the barotropic mode, and that 

the model error corresponding to baroclinic velocities has a negligible contribution. This 

can be understood by noting that the model-data residual variance is much greater in 

the the mid and high latitudes than in the tropics (Figure 5.5). The baroclinic velocity 

contribution to the model errors is maximum in the tropics, and has a spatial pattern 

which is different from the pattern of the GCM-data residual variance. We tested this 

conclusion with two parameterizations of the spatial distribution of the model error 

variance: the first where the model error variance is proportional to the variance of 

the NCEP winds, and the second where it is proportional to variance of the sea level. 

The CMA estimates of the error covariances are used with a global data assimilation 

scheme, but the quality of the data assimilation estimates is improved very little, as shown 

by the statistics of the innovations. While in principle the adaptively tuned error statistics 

should improve the data assimilation estimates, it is not necessarily achieved for each 

particular data assimilation. As pointed out in Chapter 3 the problem of error statistics 

estimation is very under-determined. To obtain statistically significant estimates of the 

error statistics it is crucial to have a good understanding of the structure of the error 

covariances, that is to have a good physical understanding of the model's shortcomings. 

The covariances used in F99, which are already tuned to the model-data residuals, use 

error structures which proved to be quite robust. Other statistical models give similar 

estimates. Ability of the CMA to provide estimates of the error covariances for other 

statistical models makes it possible to run several data assimilation experiments exploring 

the effect of different assumptions for the error statistics. The results of this chapter, 

which compares several data assimilation experiments which differ only by the choice of 

the error covariances demonstrate that data assimilation estimates are not very sensitive 

to a particular parametrization of the adaptively tuned error statistics. 
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tuned error statistics. 
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Chapter 6 

Conclusions 

6.1 Summary of the Thesis 

Data assimilation is routinely used to study ocean processes, to test ocean model sensitiv­

ities, and to initialize ocean fields for forecasting. Data assimilation combines imperfed 

models with noisy observations to obtain the best possible estimates of the state of the 

model. The statistics of the model and measurement errors are prior information required 

to perform data assimilation. The measurement errors include not only the instrument 

noise but also representation error, i.e. processes which affect observations but that 

are missing from the model, and typically correspond to scales smaller than the model 

grid size. These missing processes aggravate the problem because poor knowledge of the 

shortcomings of the model translates into poor knowledge of both the model and the 

measurement error statistics. In addition, estimates of the state and the uncertainty of 

the state depend on the model and measurement error covariances. The major prob­

lem addressed in this thesis is adaptive estimation of the model and measurement error 

statistics for data assimilation with GeMs and global data sets. The term "adaptive" is 

used to stress that estimates of the error statistics are derived from the observations. 

The principal contribution of this thesis has been to couch the error estimation prob­

lem in a familiar least squares context using the so-called covariance matching approach 
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(CMA). It then becomes possible to take advantage of a large number of tools from 

discrete linear inverse theory. The CMA is illustrated with two different models, the lin­

earized MIT GCM and the linearized GFDL GCM which approximate large scale GCM 

dynamics. The data consist of TOPEXjPOSEIDON (T jP) altimeter measurements of 

sea surface height and ATOC tomographic measurements which have been inverted to 

give anomalies of temperature. We show that the CMA can be used to obtain consistent 

and statistically significant estimates of the model and measurement error covariances. 

In addition, the CMA allows one to determine what components of the model and mea­

surement errors can be resolved with a particular type of measurements. The method 

can also be extended to estimate other error statistics. 

Following the introduction in the first chapter of the thesis, the second chapter starts 

by defining model and measurement equations for a reduced-state model. We show that 

in this setup, measurement errors include not only the instrumental errors, but also the 

representation errors. Representation errors correspond to processes which affect obser­

vations but that are missing from the model, and typically correspond to scales smaller 

than the model grid size. We then describe available methods of adaptive error estima­

tion. These methods use new information available in observations at every time step 

(innovations) to update estimates of the error statistics. They are based on the ideas 

from control engineering literature and can be used online. Following the discussion in 

Blanchet et al. (1997) we focus first on the method of Myers and Tapley (1976) (MT). 

To introduce the method we first apply it to a scalar model. We then extend the results 

to a model with two variables, which allows for a thorough testing of the MT method. 

The method has several major drawbacks: (1) when we have fewer observations than 

the number of degrees of freedom in the model, it may be sensitive to the initial guess 

of the model error covariances, (2) it takes many iterations for the method to converge, 

and because the method requires running the Kalman filter, it is computationally very 

expensive, (3) simultaneous estimation of the model and measurement error statistics 

is unstable, (4) the method does not provide estimates of the uncertainties of the de-
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rived error covariances, and (5) no information how much data is required, and which 

parameters can be estimated and which cannot. 

We apply the method to a linearized version of the MIT GCM in combination with 

TOPEX/POSEIDON altimetric and ATOC acoustic tomography measurements in a twin 

experiment setup. As in the case with the low-dimensional models, the estimates depend 

on the initial choice of the error statistics and the type of observations used in the 

assimilation. In Section 2.9 we show that similar results are obtained with a maximum 

likelihood method. The conclusion is that neither of the adaptive data assimilation 

methods are suitable for quantifying large scale internal ocean model errors with the 

altimetric or acoustic tomography observations which are available at present. 

In Chapter 3 we develop a new approach to adaptive error estimation which we call 

the Covariance Matching Approach (CMA). It is related to a method described in Fu et 

al. (1993) and Fukumori et al. (1999) who estimated the model and measurement error 

covariance by comparing the observations with the model forecast. Although related, 

the new approach relaxes some of the restrictive assumptions of the method used by F'u 

et al. (1993). It also utilizes information in a more efficient way, provides information 

on which combination of parameters can be estimated and which cannot, and allows 

the estimation of the uncertainty of the resulting estimates. Through a series of twin 

experiments, we show that the new covariance matching approach seems much better 

suited for the problem of estimating internal large scale ocean model error statistics with 

acoustic measurements, but not with altimetric measurements. In addition it allows the 

simultaneous estimation of measurement and model error statistics. This does not seem 

possible with the adaptive methods described in Chapter 2. 

In Chapter 4 we apply the CMA to actual TIP and ATOC data to obtain estimates 

of the error statistics for the linearized MIT GCM. Based on twin experiments we con­

clude that the acoustic data but not the altimetric data can in principle provide reliable 

estimates of the vertical partitioning of the model error variance. We then use real data 

to show that the model error explains most of the GCM-data misfit variance and that 
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extensions of the CMA can be used to obtain information about the trends, the annual 

cycle amplitudes and the phases of the errors. However the limited duration of the ATOC 

time series and failure of TIP measurements to provide information about the vertical 

structure of baroclinic errors undermine the quality of the obtained estimates. 

In Chapter 5 we apply the CMA to a second problem, one which involves estimating 

global ocean error statistics for a linearized GFDL GCM. The linearization has only two 

vertical modes, the barotropic and first baroclinic internal modes. This model has been 

recently used for a global data assimilation study using TOPEX/POSEIDON sea surface 

height measurements, Fukumori et al. (1999). In this setup the TIP measurements 

have sufficient information to differentiate between the barotropic and baroclinic error 

structures unlike the linearized MIT GCM which had four internal vertical modes based 

on temperature EOFs. Most of the model error is explained by the barotropic mode, and 

the success of the method is attributed to the fact that the barotropic and first baroclinic 

error modes have very different projections onto the GCM-data residuals. 

The obtained estimates of error statistics are significantly different from those used 

in the study of Fukumori et al. (1999). However, the impact of this change on the 

estimates of the ocean state obtained with an approximate Kalman filter is very small. 

This is explained by the fact that the Kalman gain is very small regardless of which 

parametrization of model and measurement error statistics is used. This is due to the 

fact that the measurement errors, dominated by the representation error, are much larger 

than the model errors. In other words, the small-scale structure in the observations, , 

i.e. the mesoscale eddies, makes only a very small fraction of the data consistent with 

the model. 

The thesis shows that the problem of adaptive error estimation of model and mea­

surement error statistics can be addressed even with global GCMs and a few years of 

global ocean observations, such as the sea surface height measurements from TIP al­

timeter. When the error covariances can be parameterized by a few "delta" matrices, the 

CMA allows one to estimate the relative contribution of each matrix and the uncertainty 
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of the resulting parameters. However, it is important to stress that for large dimen­

sional problems a clear physical understanding of the problem is crucial. Only through 

qualitative understanding of the model and the data can one choose reasonable param­

eterizations of the error covariances. Furthermore, the estimates are not guaranteed to 

remain valid if additional observations are included. This work has investigated some 

aspects of the error estimation problem with very large models and global data sets, but 

left many important issues untouched. Used in the right context the CMA can be useful 

to oceanographers facing a data assimilation challenge or trying to quantify the errors of 

a GCM, as exemplified by the two applications of the method with real data. 

6.2 Future Work 

The work presented in this thesis shows that adaptive estimation of error statistics can be 

done in an offline mode by using all available observations. There are several assumptions 

made in the CMA that might not hold, namely, the assumptions of zero correlation in time 

of model and measurement errors and zero correlation between model and measurement 

errors. Consistent biases in atmospheric forcing, such as sea surface winds, result in 

time-correlated model errors, which were neglected in the thesis. 

Measurement error includes representation error, e.g. mesoscale eddies. Eddies can 

be correlated over several weeks, and therefore measurement errors would be correlated 

in time. It would be useful to investigate effect of these assumptions on estimates of the 

error covariances with realistic models. 

Better tests of consistency of estimates would be helpful. A good understanding 

of the effects of misspecifying the delta error covariances, (for example, neglecting or 

over-simplifying spatial correlations in the errors) is also much needed. The second 

application presented in this thesis shows that with global datasets one needs to compress 

the information to be able to invert for the error statistics parameters. It would be very 

interesting to see whether the CMA approach can be coupled with large-scale estimation 
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techniques, such as the multi-resolution optimal interpolation method (Menemenlis et al. 

1997). 

An interesting test of the CMA would be whether it can improve data assimilation 

schemes used to initialize forecasting models, such as that used for El-Niiio prediction. 

Using historic datasets one can do many hind-casts to investigate whether improved data 

assimilation can be indeed achieved. 

The thesis lays the ground work for creation of new adaptive methods suitable for 

large scale problems with few and limited data sets. These efforts, and others like these, 

are needed to guide the selection of weight matrices in the cost function used for ocean 

estimation studies. 
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Appendix A 

Notation and Abbreviations 

Symbol Definition 
bold face vectors and matrices 

normal face scalars 
:; 7; -:-; 0; 1·1 true value; estimate; sample mean; expectation; norm 

T; cov; n transpose; covariance; column operator 
rv comes from a distribution 

a; ak vector of and individual 
parameters for Q and R 

r projects the large scale model error u(t) 
onto the coarse state 

I misspecification of the meas. error cov. IRI/IRI 
6t,t' 1 if t = tf; 0 otherwise 

€ high frequency components of the GeM state 
c sample error 

~ GCM; C GCM true and model states of the GeM 
CoceaJt) state of the real ocean 

'fJ ocean data 
N the real ocean to the GeM state projection 

v ocean data error 
Vocean (t) instrument error 

II uncertainty of the GeM error 
II(t + lit); II(tlt) uncertainty of the KF forecast and analysis 

Table A.l: Summary of notation. 
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Equations 

2.36 
2.35, 3.19, 3.4 

2.3, 2.18 

2.52 
2.22 
2.5 
3.19, 3.38 
2.2 
2.11 
2.11, 2.15 
2.12 
2.14 
2.14 
2.20 
2.27, 2.30 



Symbol 

p, (J 

A 
B*; B 

Definition 
uncertainties of the scalar model forecast and 

analysis (update) dvivided by R 
steady state IP(t) 
correlation coefficient, variance 
linear dynamic model 
state reduction operator and its pseudo-inverse 
horizontal, vertical, and time reduction operators 
lag j covariance of innovations 
cov [y (t + s) - y (t) ] 
vector of elements from Y and D s 

Eocean projection from the real ocean to the observations 
E projection from the GCM state to the observations 

GY,k, GDs,k Green's function 
9 
G 

Green's function kernel matrix 
maps the forcing of the linear model 

onto the state 
H "observation matrix", relates the coarse state 

to the model-data residual 
I; I 128 

K, Ks 
M 
M 
N 
P 

p(t) 
f>(t+1It) 

f>(t + lit + 1) 
p 

A _ 

Q, Q, Qmt 
Qk 

Q +-7 [aI, a2, a3, a4] 
q 

identity matrix; subscript indicates size 
Kalman gain and steady Kalman gain 
GCM model 
number of observations, length of vector y 
number of DOF in the model, length of vector p 
Covariance of the GCM errors 
GCM error 
Kalman filter forecast 
Kalman filter analysis (update) 
decorrelation number 
true, prior and MT model error covariance 
parametrizations of Q 
representation for block diagonal form of Q 
ratio of magnitudes of Q and R 

q MT estimate of q 

Table A.1: Continued. 
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Equations 
2.38 

2.42 
3.23 
2.3 
2.2, 2.4, 2.5 
2.8 
2.73 
3.9 
3.19 
2.11 
2.16 
3.7, 3.10 
3.10, 3.19 
2.18 

2.21,3.2 

2.4, 2.70 
2.28 
2.1 
3.12 
3.12 
2.57 
3.2 
2.26 
2.29 
3.27 
2.22, 2.23, 2.32 
2.35, 3.4 
2.70 
2.38 
2.52 



Symbol Definition 
x .... 

true, prior and MT measurement error cov. 
parametrizations of R 

R a, Rc cova; cov c 
r total cumulative data error 

r(t) MT estimate of measurement error 
S Length of MT averaging window 
S maximum time lag 
T number of time steps 
u system error (white noise forcing for GCM error 

u(t) MT estimate of the model and measurement error 
v(t) innovations 

W GeM GCM forcing 
Y Covariance of the measurements 

Y k lag-covariance of the measurements 
y GCM-data residual 

0; 0128 zero matrix; subscript indicates size 

Table A.l: Continued. 
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Equations 
2.23, 2.34 
2.35,3.4 
3.20 
2.2 
2.33 
2.32 
3.10, 4.3, 5.5 
3.21 
2.17 
2.32 
2.72 
2.1 
2.58 
2.57 
2.16 
2.7,2.70 



Abbreviation Definition 
ATOC Acoustic Tomography Ocean Experiment 
BFC97 (Blanchet et al. 1997) 
CMIA Covariance matching with innovations approach 

CMOA Covariance matching with observations approach 
DOF Degrees of freedom 

ENSO EI-Nifio Southern Oscillation 
EOF empirical orthogonal functions 
F98 Fukumori et al. (1999) 

FU93 Fu et al. (1993) 
GFDL Geophysical Fluid Dynamics Laboratory 
GCM General Circulation Model 
LHS Left Hand Side 
KF Kalman filter 

LDEO Lamont Doherty Earth Observatory 
MLF maximum likelihood function 

MT (method) Myers and Tapley (method) 
RHS Right Hand Side 
RMS root-mean square 
SKF simplified Kalman filter 
TIP TOPEX/POSEIDON 

Table A.2: Summary of abbreviations. 

192 



Appendix B 

Analytics for the MT Method with <1 

Scalar Model. 

The value to which the adaptive algorithm converges is given by the solution of the 

equation 

g(q; A, A, q, 1') = 0 (B.1) 

g(q; A, A, q, 1') q(q; A, A, q, 1') - q 

This results holds in general for any stable model when A = A and l' = 1. To show this 

we need to prove that a) there is a unique solution of the equation (B.1); b) it is a stable 

solution, i.e. the estimates converges to this solution under successive application of the 

algorithm; c) and that a true value q is a solution. 

To show that the first condition is satisfied one would need to prove that the function 

g(q) is strictly monotonic and takes both negative and positive values. This is indeed the 

case as seen in Figure B.1. 

The second condition is satisfied when 

g(q) > 0, q < qo, 

g(q) < 0, q > qo, where g(qo) = o. 
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Figure B.1: Graph of g(q), A = A = 0.9. 
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To show that the last condition is satisfied we show 3 dimensional plot of 

g(ij; A, A, ij, 1) - ij 

for A between -1 and 1, and ij between 0 and 10, see Figure B.2. We see that the 

expression in equation (B.3) is identically equal to zero, which proves that ij is indeed 

a solution of (B.1). Note that because we are using a truncation retaining only low­

lag correlations, cf. equation (2.50), we get non-zero values when the model is close to 

neutrally stable. To check that this is indeed the case we produced an analogous plot 

retaining higher lag correlations, up to order 10, and the maximum values diminished by 

2 orders of magnitude. 

195 



Figure B.2: A plot of g(q; A, A, q, 1) - q for A between -1 and 1, and q between 0 and 5. 

Qtilde(qtrue,Atrue,qtrue,Atrue,l)-qtrue 

0.002 

0.0015 

0.001 
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Appendix C 

Time-Asymptotic Approximation of 

the Kalman Filter. 

Here we present a "doubling algorithm", which provides a recursive solution to the time­

asymptotic Kalman filter. The discussion is based on the paper of Fukumori et al. (1993). 

The "doubling algorithm" allows one to compute II(2t12t - 1) from II(tlt - 1) and 

can be written as: 

q>(k + 1) 

lJ1(k + 1) 

8(k + 1) 

q>(k) [I + lJ1(k)8(k)rl q>(k), 

lJ1(k) + q>(k) [I + lJ1(k)8(k)rl lJ1(k)q>(k)T, 

8(k) + q>(k)T8(k) [I + lJ1(k)8(k)rl q>(k), 

where the recursion is started from 

and 

II(2t12t - 1) = 8(k). 

One pass of the algorithm requires eight matrix multiplications of the dimension of the 

state N, but the algorithm steps in power of two. The computational savings by the dou-
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bling over the full Kalman filter (Section 2.4) which requires two matrix multiplications 

for one time step is exponential. 
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Appendix D 

The Fu et ale (1993) Approach 

The covariance matching approach of Fu et al. (1993) is derived from (2.5), (2.15), and 

(2.16): 

(GCM(t) (GCM(t) - Bp(t) - €(t), (D.l) 

(GCM,r(t) - B*(GCM(t) B*(GCM + p(t), (D.2) 

110cean (t) E(GCM(t) + v(t), (D·~n 

where €(t) and p(t) are small and large scale GeM errors and v(t) are measurement 

errors, respectively. 

In addition, we split the true state and the GeM state into reduced space, or large 

scale (r), and null space, or fine scale (n), components, 

(DA) 

Substituting this into equations ( D.2-D.3), multiplying each expression by its transpose 

and taking the expectations yields 

A A T AT 
COY (GCM,r = COy (GCM,r + P + ((GCM,r P ) + (P(GCM) , (D.I)) 

A TAT 
COY 110cean = H COy (GCM,r H + E COy (GCM,n E + COy v, H = EB. (D.G) 

Next, we compute covariances of the the residuals (model data differences) on the GeM 
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grid assuming that all terms are uncorrelated from each other: 

COy (rJocean - E'GCM) = HP HT + R, R = COy (E€ + v), (D.7) 

where the covariance of the data error of the reduced state, R, includes the measurement 

error and the null space errors. The covariance of the residual on the coarse reduced 

space grid, is given by 

( ) 

A T T 
COY rJocean - H'GCM,r = ECOV'GCM,nE + HPH + COy v, (D.8) 

Assuming that (p(t) (GCM,r(t)T) = 0, as in F99, we manipulate linear equations (D.5-
A TAT T T 

0.8) in five unknowns ECOV'GCM,nE , HCOV'GCM,rH ,HPH ,Ecov€E , and covv, to 

obtain: 

R 

~ (cov (rJ ocean - H, GCM,r) - COy rJ ocean + H COy 'GCM,r HT) 

COY (rJ ocean - E, GCM) -

~ (cov (rJocean - H'GCM,r) - COy rJocean + H COy 'GCM,r HT) . 

(D.9) 

(D.lO) 

Because the CMA does not require ((GCM,r pT) BT = 0, it is possible to evaluate the 

validity of this assumption: 

(
AT AT) T ( ) H ('GCM,r P ) + (P'GCM) H ~ COy rJocean - H'GCM,r (D.ll) 

To compute a correlation coefficient between Hp and H 'GCM we multiply both sides of 
-1/2 A -1/2 

equation (D.ll) by diag (H P HT) on the left and diag (H COy 'GCM,r HT) on the 

right to obtain: 

diag [corr (HP, H(!cM,r)] ~ ~diag [(HPHTrl/2 (cov (rJocean -H'GCM,r) 

+ Hcov 'GcM,rHT + R - COy rJocean - H P HT - COy (rJocean - E'GCM)) (D.12) 

(COvl1ocean -R-cov (rJocean -H'GCM,r) +cov (rJocean -E'GCM)r
1

/

2
]. 
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The correlation coefficient given above can be greater than one by magnitude. This 

implies that either the terms neglected in (D.5-D.8) are significantly different from zero, 

or the estimates of the model and data error covariances are wrong. 

The original paper of Fu et al. (1993) considered only the case of a full state model. 

In this case the null space of the reduction operator B* vanishes and the equations are 

simplified, since (GCM - (GCM,r' see equations (4.9) and (4.8). 
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.Appendix E 

:N ull Space of the Operator 

H (Al . + . (Al)T) HT. 

Now, we prove that the dimension of the null space of H (Al . + . (Al)T) HT is (N -

M)(N - M + 1)/2. By performing singular value decomposition of H, i.e. 

H -

where H 

we can rewrite 

Flk , 

where A 

UHVT , 

Al 0 0 0 0 

0 A2 0 0 0 

0 0 

0 0 AM 0 0 

(UH)(AlSk + Sk(Al)T)(UH)T, 

- T - - T VAV ,8k = V8kV 

(E.1) 

(E.2) 

(E.3) 

(E.4) 

Note, that the transformation V· V T represents rotation, and; therefore, in general, does 

not change any properties of either A or 8k . Therefore, we can drop the tildes on A and 

Sk. We can take Sk to be symmetric delta matrices, defined as 

(E.5) 
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since we can the rank of :F does not change under linear operations on the columns, and 

since 

(E.6) 

The null space of the operator H(.)HT is spanned by all matrices which have zeros in 

the upper M by M corner. We note that if we apply At . + . (At)T to Skl,k2 with 

kl > M, k2 > M, and only those Skl,k2' we get matrices which have upper right corner 

of size M identically equal to O. Therefore all Ft,k matrices corresponding to Skl,1~2 

with kl > M, k2 > M, and only those Skl,k2' are identically equal to zero. There 

are (N - M)(N - M + 1)/2 of them, and they span the null space of the operator 

H (At. +. (At)T) HT. 

203 



.Appendix F 

Covariance of a Covariance Toolbox. 

The toolbox has been written for the covariance matching algorithm, but it implements 

the algorithm described above for the most general case. The software is written in 

Matlab, but most computations are done through MEX interface, both C and Fortran 

versions are available. See README.covcov for installation instructions. It is available 

via anonymous FTP to gulf.mit.edu, IP Address 18.83.0.149, from directory pub/misha/. 

The front end program covdifJ. m is written for the covariance matching applications. 

However, the main callable routine, covcov. m, is completely general, and can be modified 

as appropriate. 

The function covcov.m computes the covariance of Y(i,j)(q) and Y(k,l)(r) using equa­

tion (3.25) for a vector of indices ix, jx, kx, Ix. The function allows one to compute 

uncertainties for all possible combinations (i, k) of pairs (ix(i), jx(i) and kx(k), lx(k), by 

setting ReFlag to 1. In addition, the user can specify the true covariance matrices (if 

known) instead of using the sample estimates. This is useful for testing the validity of 

the method, see example demo-covcov.m. Additional options are available, see help for 

the routine. 
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YFlag E includes ReFlag What part Nn 
of Rr:; is computed 

0 full 0 diagonal Nlags . nY . (nY + 1)/2 
covariance 

1 diagonal of 0 diagonal (nY· Nlags) 
the covariance 

0 full 1 full (nY . Nlags) . (nY . Nlags + 1)/2 
covariance 

1 diagonal of 1 full nY . Nlags . (Nlags + 1)/2 
the covariance 

Table F.1: Number of elements of the covariance matrix R, depending on the inputs into 
covdiff.m or covcov.m (in which case Nlags = 1). nY no. of elements in observation 
vector y(t). 

F .1 Computational time. 

The routines covcov.m and covdiff.m can be very slow, since the number of "do" loops is 

of the order 

8 Nn . (T . MaxLag)2 (F.l) 

where Nn denotes the number of elements of covariance RT = cov[Y(i,j)(q) Y(k,l) (r)] , 

see equation (3.25), being estimated. There are four possible cases for the number of 

elements of R T : In addition, if the maximum significant lag (MaxLag) is much smaller 

than the length of the time series, one can use the following approximation: 

30· MaxLag 
RT = T R300MaxLag (F.2) 
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