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Abstract. Geochemical signatures deposited in otoliths are a potentially powerful means
of identifying the origin and dispersal history of fish. However, current analytical methods for
assigning natal origins of fish in mixed-stock analyses require knowledge of the number of
potential sources and their characteristic geochemical signatures. Such baseline data are
difficult or impossible to obtain for many species. A new approach to this problem can be
found in iterative Markov Chain Monte Carlo (MCMC) algorithms that simultaneously
estimate population parameters and assign individuals to groups. MCMC procedures only
require an estimate of the number of source populations, and post hoc model selection based
on the deviance information criterion can be used to infer the correct number of chemically
distinct sources. We describe the basics of the MCMC approach and outline the specific
decisions required when implementing the technique with otolith geochemical data. We also
illustrate the use of the MCMC approach on simulated data and empirical geochemical
signatures in otoliths from young-of-the-year and adult weakfish, Cynoscion regalis, from the
U.S. Atlantic coast. While we describe how investigators can use MCMC to complement
existing analytical tools for use with otolith geochemical data, the MCMC approach is suitable
for any mixed-stock problem with a continuous, multivariate data.

Key words: Cynoscion regalis; deviance information criterion; Gibbs sampler; Markov Chain Monte
Carlo; mixed-stock analysis; mixture model; natal source; otolith geochemistry; population assignment;
weakfish.

INTRODUCTION

The precarious state of many exploited marine

populations (Botsford et al. 1997, Jackson et al. 2001)

has sparked considerable interest in place-based man-

agement, including the implementation of marine

protected areas (Lubchenco et al. 2003). However, the

success of place-based management can be complicated

by the long-distance movements undertaken by many

marine species. Most benthic organisms have dispersive

planktonic larval stages, so juveniles recruiting to one

area may have been spawned elsewhere (Mora and Sale

2002). Many other fishes migrate between feeding and

spawning grounds as adults, so harvests may consist of a

mixture of multiple independently reproducing stocks

(e.g., Knutsen et al. 2007). In either case, effective

management hinges upon successful determination of

the natal origin of individuals at a particular location

(Carr and Reed 1993, Warner et al. 2000, Botsford et al.

2003). Specifically, it is important to know how many

natal sources contribute to a sample (Palsbøll et al. 2006,

Waples and Gaggiotti 2006) and the degree to which

larvae are exchanged among subpopulations within a

larger metapopulation (Kritzer and Sale 2004). Model-

ing efforts make it clear that misjudging the number or

identity of sources contributing to the harvested

population at a particular location can lead to manage-

ment failures (Crowder et al. 2000, Stockhausen et al.

2000). Recent advances in statistical computing and the

development of Markov Chain Monte Carlo (MCMC)

techniques offer some potential solutions to the daunt-

ing problem of mixed-stock analysis. Here we outline the

basics of this analytical approach and illustrate its use

with both simulated data and empirical data sets.

Determining natal origins remains a difficult problem

in marine population ecology, especially for the case of

larval dispersal (Levin 2006). While efforts to tag large

numbers of larvae prior to dispersal have met with some

success (Jones et al. 1999, 2005, Almany et al. 2007), the

logistics of this approach are daunting at large scales.

Attention has turned to the use of ‘‘natural’’ tags,

including chemical composition of calcified structures in

fish and invertebrates, to characterize stock structure in

marine species (reviewed by Campana et al. 2000),

identify different dispersal histories (Swearer et al. 1999),

and track the movement of individuals among habitats

over different life stages (Thorrold et al. 2001, Warner et

al. 2005, Zacherl 2005, Becker et al. 2007, Standish et al.

2008). In particular, geochemical signatures in fish

otoliths are widely used as records of the environmental
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history experienced by an individual (Campana and

Thorrold 2001), and in this paper we use ‘‘otolith

geochemistry’’ as a generic shorthand for all natural tag

techniques. We describe the use of MCMC in an otolith

geochemistry context, but the basic approach is suitable

for any multivariate continuous data set describing a

mixture of populations.

The assignment of post-dispersal individuals to the

habitat or population of origin using otolith geochem-

istry typically requires two levels of sampling. An

important first step is to characterize the elemental or

isotopic signatures of potentially contributing popula-

tions or habitats by sampling pre-dispersal individuals.

When dispersal occurs as larvae, this requires sampling

propagules before they enter the plankton; for example

by collecting benthic eggs (e.g., Ruttenberg and Warner

2006), pre-paturition larvae still inside the mother (e.g.,

from rockfishes [Sebastes sp.] or other ovoviviparous

fishes; Warner et al. 2005), recently spawned pelagic

larvae (for broadcast spawners, e.g., DiBacco and Levin

2000), or by culturing larvae in situ (Becker et al. 2007).

Older individuals (i.e., post-disperal recruits or adults)

are then sampled from locations of interest and

geochemical signatures in that portion of the otolith

deposited during the pre-dispersal stage are compared to

the source signatures obtained in step one, typically

using a multivariate technique such as discriminant

function analysis (DFA; e.g., Brown 2006) or maximum

likelihood algorithms (MLE; e.g., Thorrold et al. 2001).

A major limitation of these assignment techniques is the

requirement that all potential source populations or

habitats must be sampled. The natal signature of an

unsampled source is by definition unknown, so individ-

uals originating from those areas will be necessarily

misclassified. It is possible to use MLE techniques (but

not DFA) to identify individuals that are unlikely to

have originated in any of the sampled natal sources

(Standish et al. 2008), but even in this case, no additional

inference can be made about the identity of those

alternative, unsampled sources. These techniques are

thus vulnerable to error whenever recruits from distant,

unknown, or simply unsampled source populations are

present. In certain systems, such as estuarine-dependent

species where spawning locations are discrete and well

characterized (Thorrold et al. 2001), this assumption

may not be limiting. However, for other species, such as

open-coast spawners where much less is known about

specific spawning locations, it may be difficult to know

whether all natal sources were characterized sufficiently.

In some cases, sampling all natal sources is simply not

feasible (Gillanders and Kingsford 1996, Warner et al.

2005).

The task of assigning fish to stocks or natal sources is

a special case of the statistical problem of mixture

models, in which the goal is to identify the number of

unique groups contributing to a mixed sample and to

classify individuals into groups (Titterington et al. 1985).

A popular approach to this type of problem is to use

iterative MCMC algorithms (Gilks et al. 1996). MCMC

techniques have been developed extensively for use in
population genetics, where investigators also face a

mixture-model problem: the presence of cryptic popula-
tion structure (Pritchard et al. 2000, Pella and Masuda

2001). There is great potential for the MCMC approach
in an otolith geochemistry context, primarily because
MCMC can complement existing techniques (e.g., DFA)

by simultaneously estimating the number of unique
natal sources contributing to a sample of unknowns and

assigning individuals to each source without any prior
information on the number or identity of the sources.

We first describe the basics of the MCMC approach and
then demonstrate its use on simulated mixed-stock data

sets and published data sets of weakfish (Cynoscion
regalis) otolith elemental signatures from the U.S.

Atlantic coast.

METHODS

Natal source assignment as a mixture model problem

For the purposes of assignment using otolith geo-
chemistry, a natal source is not strictly equivalent to a

source population in the traditional ecological sense and
carries no assumptions about demographic closure or

genetic isolation. Rather, a natal source is a geographic
locality with a distinctive geochemical signature such

that the concentration of a given element or isotope in
the otolith of a fish from that source can be considered a

random draw from a multivariate normal distribution of
concentrations.

To understand the MCMC approach to the mixture
problem, consider the classic statistical analogy of urns

containing balls of multiple colors in different propor-
tions. If the proportion of each type of ball in each urn is

known (the parameters), it is easy to predict the expected
composition of a sample of balls drawn from several

urns (the data). MCMC performs the reverse operation:
given the sample of balls, it obtains estimates of the

composition of each urn. This is done by applying
Bayes’ theorem, which describes the probability of the
parameters given the data. In statistical notation, this is

Pr(parameters j data). This method is computationally
intensive and requires the careful choice of appropriate

probability distributions and resampling algorithms,
notably the Gibbs sampler and the Metropolis-Hastings

sampler. We outline the basics of these methods in the
following paragraphs; more detail can be found in the

Appendix and in technical reviews of MCMC techniques
by Gilks et al. (1996), Robert and Casella (2004), and

Jasra et al. (2005).
Describing the mechanics of MCMC is necessarily a

notation-intensive exercise, so Table 1 summarizes the
symbols used throughout the paper. Consider a sample

of n individuals (i.e., recently settled larvae) drawn from
j natal sources. These might be recently settled recruits

at a particular coastal location, and the primary
question is which recruit originated in which source.

Each individual i has a concentration xi
l for variable l
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(these variables might be elemental concentrations or

isotope ratios); a total of L variables are sampled, giving

each individual a ‘‘signature’’ xi (a vector of length L).

Throughout this paper, subscripted indices refer to the

natal source, k, or geochemical variable, l, with which a

parameter is associated, while superscripted indices

designate particular observations, either an individual

sampling unit, i, or, if in parentheses, a step in a Markov

chain, (m).

Given the n3L matrix of signatures X (the data from

the sample of recruits), the goal is to estimate (1) the

number of natal sources, j, contributing to the sample,

(2) the relative proportion of individuals from each natal

source in the mixture, U, (3) the vectors of signature

means, P, and (4) covariance matrices, S, corresponding

to each of the j sources, and (most importantly) (5) the

source assignments, Z, an n 3 1 vector containing each

individual’s natal source assignment. This problem is

twofold. If the number of sources in the mixture, j, is
known, it is straightforward to estimate source param-

eters and source assignments using MCMC methods.

Estimating j must be done separately and is most easily

treated as a model selection problem.

Estimating natal source parameters and assignments

using MCMC

Given the data, X, and assuming, for the moment, a

particular number of natal sources, K, the values of Z,

P, S, and U could be estimated using Bayes’ theorem.

Bayes’ theorem gives the probability of a parameter h
conditional on the data, D. The probability of a

particular value of h given D, p(h jD) (called the

posterior), will be equal to the likelihood of the data

given that parameter value, f (D j h), multiplied by the

prior probability of the parameter taking that value, and

scaled by the likelihood integrated over all possible

values of h,
R

p(D j h) dh (Hilborn and Mangel 1997,

Clark 2007). For the set of parameters in a mixture

model, Bayes’ theorem can be written as

pðZ;P; S;UjXÞ

¼ f ðXjZ;P; S;UÞf ðZÞf ðPÞf ðSÞf ðUÞ
R

f ðXjZ;P; S;UÞf ðZÞf ðPÞf ðSÞf ðUÞ dZ dP dS dU
ð1Þ

where f is a generic probability density function and p is

the posterior probability density to be estimated. The

mode of the multivariate distribution p provides an

estimate for each parameter, and the shape of p indicates

the variance around those estimates. It is straightfor-

ward to write expressions for the likelihood f (X jZ, P, S,
U) and priors f (Z), f (P), f (S), and f(U) in the numerator

of Eq. 1, but calculating the denominator requires

integrating over a high-dimensional parameter space,

which is daunting. MCMC methods avoid this difficulty

by generating a sequence (a Markov chain) of parameter

values for Z, P, S, and U that are approximate samples

from the posterior distribution p(Z, P, S, U jX). In this

sequence, each step depends only on the value of the

previous step, so it is a Markov chain. By generating a

long chain of samples, it is possible to approximate the

posterior distribution and use it to estimate the correct

parameter values (a Monte Carlo technique). This

approach is easiest to visualize with univariate data

(Fig. 1). The methods we describe here largely follow

standard MCMC practices that one could implement in

WinBUGS (Spiegelhalter et al. 2004) or R (available

online),5 although we also describe several nonstandard

MCMC steps that might be more appropriate for otolith

TABLE 1. List of symbols used in the paper.

Symbol Type
Sub-element
(if applicable) Definition

Parameter

b scalar no. burn-in iterations
c scalar thinning interval
U vector /k source mixture proportions
j scalar actual no. sources in mixture
K scalar total no. clusters in a mixture
L scalar total no. elements or isotopes sampled
M scalar total no. Markov chain iterations
l matrix lk,l actual source means
P matrix Pk,l source sample means
Q matrix source assignment probabilities
S array Sk covariance matrices
X matrix xi observations (data)
Z vector zi source assignments

Parameter indices

i individual observation
j individual observation
k source
l element or isotope
m Markov chain step
n no. observations in a sample

5 hhttp://www.r-project.orgi

December 2008 1903MCMC FOR OTOLITH GEOCHEMISTRY



geochemical applications but which require independent

programming. Consequently, we programmed in Mat-

lab and provide our code as Supplementary Material.

Perhaps the most efficient MCMC technique for

sampling from the posterior distribution p(Z, P, S,

U jX) is the Gibbs sampler, which obtains a new value

for a parameter by taking random samples from the

probability distribution of that parameter conditional

on the other parameters and the data. This requires the

full conditional distributions for each parameter (e.g.,

f[P jX, Z, S, U]) but initial values only for Z.

Furthermore, a well-mixing Gibbs sampler will quickly

move away from the initial state, so with an adequate

burn-in (the discarded initial portion of the Markov

chain, prior to convergence on p; Fig. 1B, C) the final

result will be insensitive to the values chosen for Z
(0).

With K sources and no other prior information, it is

reasonable to assume a uniform distribution for Z(0);
that is, each individual in the sample has an equal

probability of originating in any of the sources:

Prðzi ¼ kÞ ¼ 1=K ð2Þ

where zi is the ith element of Z, i.e., the population
assignment of individual i.

After individuals are initially assigned to sources using

Eq. 2, the Gibbs sampler generates a Markov chain of
parameter values (S(1), P(1), Z(1), U(1)), (S(2), P(2), Z(2),

U(2)), an so on, by iterating the following four steps:

Step 1: Sample S(m) from f(S jX, Z(m�1))

Step 2: Sample P
(m) from f(P jX, S(m), Z(m�1))

Step 3: Sample Z(m) from f(Z jX, P(m), S(m), U(m�1))

Step 4: Sample U(m) from f(Z jX, P(m), S(m), (m)).

Here (m) indicates the current step in the Markov chain,

and f indicates a generic conditional distribution. For
example, the Gibbs sampler will begin by drawing at

random a value for S
(1) from the distribution of S

conditional on X and the initial value of Z, Z(0). As

mentioned above, the Gibbs sampler only requires an
initial value for the parameter Z. The initial values of S

and P are conditional on Z(0), and one generally places
relatively flat, noninformative priors on these condi-

tional distributions. If actual prior information is known

about any of the parameters, this could be incorporated
into the MCMC framework, but we assume that such

information does not exist in the examples given here.
We provide a formal description of the various

distributions needed for the Gibbs sampler in the

Appendix. Briefly, the likelihood of an individual
belonging to natal source i is multivariate normal, given

means Pi, covariance Si, and the proportion /i of the
sample drawn from source i. Assignments, Z, are then

drawn (Step 3) from a multinomial distribution defined
by those assignment likelihoods (normalized so that they

sum to unity). Geochemical signature means, P, are
randomly generated (Step 2) from a multivariate normal

distribution defined by the data, X, (assigned to sources

according to Z) and covariances, S. The use of these
distributions require that the data be multivariate

normal or be transformed to approximate normality;
alternatively a different, more appropriate distribution

could be utilized. In practice, we have found that most
otolith geochemical data are either normal or lognor-

mal, and that the MCMC techniques we use here are
rather robust to deviations from normality.

Ideally, U could be generated (Step 4) using the Gibbs

sampler by using a Dirichlet distribution, which is the
multivariate generalization of the beta distribution and

the standard prior for use with multinomial distributions
like a mixture of stocks (cf. Pritchard et al. 2000).

However, we have found that such algorithms frequent-

ly encounter ‘‘trapping states’’ early in the Markov chain

FIG. 1. Application of Markov Chain Monte Carlo
(MCMC) methods to a univariate mixture model problem.
Histogram (A) shows data sampled from two populations.
Black arrows indicate true population means; the dashed lines
indicate the posterior distribution estimated by the mean and
standard deviation obtained at the first MCMC iteration; solid
lines indicate the posterior distributions derived from full
MCMC procedure. The progression of the Markov chain is
shown for (B) the initial portion of the chain and (C) the entire
chain. The initial ‘‘burn-in’’ portion of the chain shown in panel
(C) is discarded, and the remainder forms the posterior
distributions (solid lines) depicted in panel (A).
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in which /k¼ 0 for all but one population. In such cases

the Gibbs sampler ceases to mix and produces the

uninteresting and often incorrect result that X is drawn

from a single source. An alternative approach is to use a

Metropolis-Hastings sampler to estimate U indepen-

dently, an approach that we outline in the Appendix. A

Metropolis-Hastings sampler works by generating a

candidate value for a parameter, then using a probabi-

listic rule (based on the likelihood of the data given that

parameter value) to determine whether or not the

candidate value is chosen as the next step in the Markov

chain. Like the Gibbs sampler it produces draws from

the desired posterior distribution, but it is slower and

less efficient than Gibbs and is used when full

conditional distributions are unavailable or unwieldy.

The proper assumptions to make regarding the

covariances, S, (Step 1) are an area of some debate.

Generating random samples of covariance matrices is

complicated by the requirement that they be positive

definite (Zhang et al. 2004). The criteria defining positive

definiteness require an understanding of matrix algebra,

but this constraint is analogous to the requirement that a

univariate variance be a positive real number (Horn and

Johnson 1985). Generating acceptable matrices becomes

easier if one assumes that the covariances of each source

population are equal (e.g., Pella and Masuda 2005) or

have some structural features in common (e.g., a

common dominant eigenvector; Zhang et al. 2004).

However, it may be desirable to assume that different

sources have completely different covariance matrices,

so we describe a technique in the Appendix that permits

this assumption.

The sampler repeats Steps 1–4 M times. The initial

values in the chain tend to explore parameter space and

are discarded as the ‘‘burn-in’’ (Fig. 1B), but the chain

eventually converges on a stable distribution (Fig. 1C).

For sufficiently large burn-in, b, and thinning interval, c,

the values (S(b), P(b), Z(b), U(b)), (S(bþc), P(bþc), Z(bþc),

U(bþc)), (S(bþ2c), P(bþ2c), Z(bþ2c), U(bþ2c)), and so on, will

be independent samples from the stable distribution of

(P, S, Z, U) and the expected values of that distribution

can be estimated as the mean of those independent

samples (Fig. 1A). From the stable distribution of P one

can calculate the mean element concentrations or

isotope ratios for each population; from the distribution

of Z one can generate an n3Kmatrix,Q, containing the

probability of each individual being assigned to each

source.

We should note that MCMC is an asymptotic

technique: the Markov chain is only certain to describe

the posterior distribution p if both it and the burn-in are

of nearly infinite length. In other words, there is always

concern that the Markov chain has not actually

converged on the intended distribution. In recent years,

there has been discussion of ‘‘perfect’’ MCMC samplers,

which avoid this difficulty (Casella et al. 2001), but this

technique is computationally infeasible (at present) for

data sets of the size and dimensionality common in

otolith geochemistry. A less elegant but more practical

(and more widely used) approach is twofold: (1) monitor

the output of a chain to determine when it convergences

on a stable distribution of values for each parameter and

(2) run multiple, independent chains with different initial

values to confirm that they converge on the same

posterior distribution. For the data sets used here, we

found that burn-in of 5000 iterations followed by an

additional 10 000 iterations was generally sufficient to

attain convergence (we also found that a thinning

interval of c ¼ 1 was adequate). Running longer chains

is usually desirable, but this dramatically increases the

computational time required for the relabeling step

(described in the Appendix) so, for our examples, we

used the shortest possible chains.

As with any Markov chain of this type, all permuta-

tions of Z have equal likelihood; that is, the labeling of

the mixture components (i.e., the sources) is arbitrary.

For example, in a two-element mixture of individuals

from sources A and B, individuals from A will tend to be

assigned to the same group (i.e., share the same value of

z) but the identity of this group will change as the

Markov chain progresses; at one point individuals in A

will have z ¼ 1 and individuals from B will have z ¼ 2,

but if at any point enough individuals from A happen to

be assigned z¼ 2 (recall that each iteration of the Gibbs

sampler involves a random draw from the conditional

distribution of z), a label switch might occur, such that

individuals from A begin to be assigned z¼ 2, and those

from B are assigned z¼ 1. This so-called label-switching

problem makes it impossible to estimate source means

and individual assignments from the raw MCMC

output, because over the course of the Markov chain,

each individual may have been assigned every possible

value of z, even if it is associated with a well-defined

cluster of observations. To counter this problem,

Stephens (2000) proposed a post-hoc relabeling algo-

rithm (see Appendix for details) which we use in all

examples presented here.

Estimating j

The accuracy of the output from the Gibbs sampler

described above is contingent upon the number of

clusters, K, being equal to the actual number of sources,

j, contributing to the sample. Of course, j is rarely

known with certainty; if it were, we could sample each of

the j sources to obtain a training data set and then use

DFA or MLE techniques to assign individuals of

unknown origin. The MCMC approach is more useful

in cases of unknown j, and the problem of determining

j is usually solved in one of two ways. Richardson and

Green (1997) used reversible-jump MCMC that permit-

ted sources to combine (reducing K) or split (increasing

K) in the middle of the Markov chain. This method is

problematic in the multivariate normal case because of

the difficulty in generating new covariance matrices that

are positive definite, requiring the eigenvectors of S to be

kept constant among populations (Zhang et al. 2004).
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The use of a mixture parameter (U in the algorithm we

have described) is somewhat similar to reversible-jump

MCMC in that sources are allowed to have a zero

probability of contributing to the mixture, effectively

reducing K. Thus some inference on j can be made from

the posterior distribution of U. An alternative strategy is

to take a model selection approach for comparing

MCMC output using different values of K. The deviance

information criterion (DIC; Spiegelhalter et al. 2002,

Celeux et al. 2006), which is simple to calculate from

MCMC output, is emerging as the MCMC equivalent of

the Akaike Information Criterion (AIC; Burnham and

Anderson 1998), and produces values that can be

interpreted in a similar manner. Like AIC, DIC

penalizes the adequacy of a model (how well it fits the

data) by the number of parameters. In this case,

adequacy is measured by Bayesian deviance, D, which

is �2 times the log-likelihood: D ¼�2log Pr(data j pa-
rameters). DIC is calculated as the mean deviance at

each step in the Markov chain, DðZ;P; SÞ, minus the

effective number of parameters in the model, Pd. This

latter value is estimated as the difference between the

mean deviance and the deviance of the mean values of

each parameter: Pd¼DðZ;P; SÞ � D(Z̄, P̄, S̄). The value
of K associated with the lowest DIC is preferred

(Spiegelhalter et al. 2002).

There is some controversy regarding the use of DIC in

mixture models (see discussions accompanying Spiegel-

halter et al. 2002, Celeux et al. 2006), and WinBUGS

will not allow it (Spiegelhalter et al. 2004). The same

problem of symmetrical, nonidentifiable modes that

necessitates the relabeling algorithm (Stephens 2000;

also see Appendix) also tends to cause Pd to take on

illegal, negative values (Celeux et al. 2006). If a

relabeling algorithm is not used, the mean parameter

values Z̄, P̄, and S̄ are not meaningful because they

represent means taken across multiple modes of the

mixture. This causes D(Z̄, P̄, S̄) to be larger than it

should be, producing improperly small or negative

values of Pd. Celeux et al. (2006) have proposed a

number of alternative formulations for DIC in an

attempt to resolve this issue. By applying a relabeling

algorithm one can recover appropriate values of Z̄, P̄,
and S̄, and for the simulations presented here we found

that the original DIC formulation performed well and

produced sensible values of Pd, provided the relabeling

algorithm had converged to a solution. However, our

experience with other data sets suggests that the

alternative DIC3 metric developed by Celeux et al.

(2006) is an excellent choice if the original DIC formula

yields consistently negative Pd values even after success-

ful relabeling.

EMPIRICAL EXAMPLES

To demonstrate the strengths and limitations of the

MCMC approach, we applied it to simulated data

generated from known distributions and to actual

otolith data taken from fish of known origin. In both

cases, the actual natal source assignment of each

individual was known, so the method can be judged by

its ability to pick the correct number of populations and

to assign individuals correctly. Because the value of K in

a particular simulation will not always equal the actual

number of source contributing to the mixture, it

becomes convenient to refer to the latter as ‘‘sources’’

and to use the term ‘‘cluster’’ to refer to the groups

identified by MCMC.

Simulated data

We examined the ability of an MCMC algorithm to

correctly assign natal origin, estimate source parameters,

and select the correct K using 11 simulated data sets

spanning a range of mixture scenarios (Table 2). Each

individual in a data set (a ‘‘recruit’’) represented an

independent draw from a multivariate normal distribu-

tion corresponding to the signature of one of j natal

TABLE 2. Results of Markov Chain Monte Carlo (MCMC) analysis of simulated ‘‘unknown’’ data sets.

Data set j ni Dl r

DDIC for K ¼ 1

1 2 3 4 5

Zero covariance, two elements 2 20 1 0 0 29� 40 51 61
2 20 2 0 0 15� 21 31 19
2 20 3 0 16 0� 9 25 31

Zero covariance, four elements 2 20 1 0 0 11� 14 23 16
2 20 2 0 17 14� 0 11 24
2 20 3 0 59 0� 8 18 26

Nonzero covariance, two elements 2 20 3 0.25 12 0� 1 8 21
2 20 3 0.75 3 0� 5 6 16

Three populations 3 15, 15, 15 3 0 76 10 0� 7 15
3 20, 20,5 3 0 41 0 12� 25 30
3 35, 5, 5 3 0 79 22 0� 40 43

Notes: Each data set consisted of n individuals drawn from j populations (each contributing ni individuals) with a multivariate
normal distribution of elemental signature means (l) with variance 1 and correlation r. The difference between population means
for each variable is given by Dl. MCMC analysis was used to assign individuals to clusters assuming j was unknown; MCMC runs
were performed using K¼ 1, 2, . . . 5. The DDIC model selection criterion is given for each value of K; zeros indicate the number of
clusters identified by deviance information criterion (DIC) as the best model, while daggers (�) indicate the model corresponding to
the correct number of sources (K¼j). The DDIC model selection criterion is the difference between the DIC for MCMC algorithm
runs for each value of K and the lowest observed DIC. The most parsimonious model has DDIC¼ 0.
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sources. We measured assignment accuracy by compar-

ing cluster assignments to actual source identity (the

actual MCMC cluster assignments [z ¼ 1, z ¼ 2, and so
on] were arbitrary, but it was straightforward to match

clusters to sources based on the similarity of signature

means) . We considered individuals to be assigned to a
cluster if the assignment probability for that cluster was

greater than the arbitrary threshold of 0.5.

The results from the first group of data sets in Table 2,
with two sources and increasing difference between

population means, show that source means must be

separated by some minimum difference in order to be
resolved into distinct clusters by MCMC. The second

group of data sets show that this clustering can be

improved by including additional independent variables;
for example, increasing the number of elements from

two to four improved assignment accuracy from 50% to

88% when source means differed by only two standard
deviations. This group of data sets also illustrates a

quirk of this procedure: DIC sometimes selected models

with too many clusters (K . j), but the additional
clusters generally had few or no individuals assigned to

them. The presence of such empty clusters appears to

improve the mixing of the Markov chain. The third
group of data sets shows that strong covariance among

the variables does not greatly impede the efficacy of the
technique, and the fourth group of data sets in Table 2

illustrates the performance of MCMC clustering with

multiple sources mixed in unequal proportions. The
results were mixed: MCMC was able to resolve and

accurately classify individuals from three evenly mixed

sources (15:15:15 individuals) or from two minor
contributors mixed with a single high-contribution

source (35:5:5 individuals), but in the case of one small

group mixed with two larger groups (20:20:5), individ-

uals from the smaller group were misclassified as

belonging to one of the larger groups.

For comparison, we also applied two traditional

statistical techniques to each data set. First, we
calculated the jackknife reclassification success statistics

for a DFA in which the number and parameters of the
actual sources were known, mimicking the best-case

scenario of classifying post-dispersal juveniles after

exhaustive baseline sampling of pre-dispersal individu-
als. In all cases, DFA performed the same or better than

MCMC at assigning individuals to sources (Table 3).

The disparity was especially great in cases where there
was little separation between the source means and

MCMC was unable to resolve the correct number of

clusters. We also applied a k-means cluster analysis to
each data set. This technique can be used in an

exploratory fashion to discover how well a mixture can

be partitioned into a variable number of clusters
(Steinley 2006). Following the standard technique, we

selected the most parsimonious number of clusters using

the Schwarz criterion (an information criterion concep-
tually similar to AIC and DIC; Pelleg and Moore 2000).

In all of the two-source scenarios, the k-means analysis

identified the correct number of clusters and had an
assignment accuracy that matched or exceeded that of

MCMC. As with DFA, the k-means analysis tended to
outperform MCMC when there was little difference

among the sources in multivariate space. In part this

may be because k-means analysis cannot run a K ¼ 1
scenario; it is constrained to always find at least two

clusters. However, in all of the three-source scenarios,

including one with evenly mixed sources, the k-means
analysis consistently identified only two clusters, result-

ing in much lower assignment accuracy than MCMC.

Thus in some cases MCMC appears to be superior to the

TABLE 3. Comparison between MCMC and traditional multivariate statistical methods for analysis of the data sets described in
Table 2.

Data set j ni Dl r

Estimated K Assignment accuracy

MCMC
(best DIC) k-means

MCMC
(best DIC)

MCMC
(K ¼ j) k-means DFA�

Zero covariance, two elements 2 20 1 0 1 2 0.50 0.60 0.83 0.75
2 20 2 0 1 2 0.50 0.80 0.90 0.90
2 20 3 0 2 2 1.00 1.00� 1.00 1.00

Zero covariance, four elements 2 20 1 0 1 2 0.50 0.50 0.75 0.73
2 20 2 0 3 2 0.88 0.50 0.93 0.93
2 20 3 0 2 2 1.00 1.00� 1.00 1.00

Nonzero covariance, two elements 2 20 3 0.25 2 2 1.00 1.00� 0.90 0.95
2 20 3 0.75 2 2 1.00 1.00� 1.00 1.00

Three populations 3 15, 15, 15 3 0 3 2 1.00 1.00� 0.67 1.00
3 20, 20,5 3 0 2 2 0.89 0.96 0.50 0.98
3 35, 5, 5 3 0 3 2 1.00 1.00� 0.88 1.00

Notes: Each data set consisted of n individuals drawn from j populations (each contributing ni individuals) with a multivariate
normal distribution of elemental signature means (l) with variance 1 and correlation r. The difference between population means
for each variable is given by Dl. We compared MCMC and k-means clustering based on their estimates of K (K¼ j is the correct
result) and compared MCMC to discriminant function analysis (DFA) and k-means clustering based on the accuracy with which
individuals were assigned to sources. The assignment accuracy for MCMC is given for the value of K selected by DIC and the
correct model for which K ¼ j. For DFA, we report the jackknife reclassification success assuming j is known; for k-means
clustering we give the classification success for the value of K identified by the Schwarz criterion.

� All reclassifications were significantly better than random at a¼ 0.05 (White and Ruttenberg 2007).
� The model with K ¼ j was also identified as the best model by DIC.
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k-means approach for identifying the correct number of
clusters, especially when there are multiple small mixture

components. We also note that k-means clustering

generally assumes that the various clusters have equal
covariance matrices (McGarigal et al. 2000), which is

not a constraint for the MCMC approach.

The accuracy of MCMC estimation of source

parameters can be examined by comparing the actual
sample means and variances for each population in the

simulated data sets to the MCMC estimates of those

parameters for the corresponding clusters in the DIC-
selected model. The 95% confidence intervals (CI) for

the MCMC-estimated mean overlapped the value of the

sample mean in all cases (Fig. 2A). However, the
MCMC algorithm consistently overestimated sample

variance (Fig. 2B). This discrepancy likely resulted from

the occasional misassignment of individuals during the

MCMC iterations that inflated the estimates of sample
variance used to simulate the covariance matrices at

each step.

Weakfish data

To illustrate the merit of the MCMC approach using

real otolith data, we chose a data set for which we

already possessed reliable estimates of source assign-

ments; that is, the ‘‘unknown’’ data were not completely

unknown. The weakfish, Cynoscion regalis, presents an

ideal case study. Weakfish spawn in estuaries and

coastal embayments along the east coast of North

America each spring; after remaining in natal estuaries

for several months, young-of-the-year (YOY) juveniles

join the adult population in the annual autumnal

migration to southern overwintering grounds. Thorrold

et al. (1998) showed that natal estuaries produce

distinctive geochemical signatures in the otoliths of

pre-dispersal YOY juvenile weakfish; based on this

signature, juveniles could be assigned to their natal

estuary with an average accuracy of 93% using an

artificial neural network (ANN) method. A later study

(Thorrold et al. 2001) used signatures in the natal region

of otoliths collected from spawning adults to assign

adults to their natal estuary. The authors concluded that

weakfish had a relatively high degree (60–81%) of natal

homing.

Weakfish have proven to be a useful study species

because YOY juveniles are easily collected prior to

dispersal, permitting the characterization of natal

signatures. In addition, because collection of juveniles

and adults span most of the geographical range of the

species, the contribution of unknown sources is mini-

mized. We reanalyzed the same juvenile and adult data

sets using MCMC as if these advantages were not

present: we assumed that the juvenile collection sites

were unknown, and we did not use juvenile data as a

training data set for assignment of adults.

Two hundred sixty juvenile and 414 adult weakfish

were collected at five estuaries: Peconic Bay, New York

(NY), Delaware Bay (DE), Chesapeake Bay (CB),

Pamlico Sound, North Carolina (PS), and coastal

Georgia (GA). Each otolith had a geochemical signature

consisting of six variables (see Thorrold et al. 1998, 2001

for details); we did not transform the data prior to

analysis.

We performed MCMC analysis independently for the

juvenile and adult weakfish data with K ¼ 1–6. For the

juvenile data, DIC selected a best-fit model with K ¼ 4.

For this model, all but six individuals were assigned to a

cluster with .80% probability, and the clusters largely

matched the actual geography of the natal sites (Fig. 3,

4A).

For the adult data, DIC selected K¼ 6. One of these

clusters had an ,22% assignment probability for all fish

and a second had only 10 fish assigned to it; we restrict

our discussion to the remaining four clusters. In

analyzing this data set, Thorrold et al. (2001) concen-

trated on calculating the proportion of adults collected

in each estuary that were assigned to that same estuary

as their natal site (this was their estimate for site fidelity).

We performed a similar analysis to make our results

comparable: for each of the four ‘‘natal’’ clusters

produced by MCMC, we determined the proportion of

adults that had been collected in each of the estuarine

FIG. 2. Comparison of MCMC-estimated population pa-
rameters and (A) actual sample means 6 SD and (B) standard
deviations for all multivariate normal simulated data sets in
Table 2. MCMC estimates are taken from the DIC-selected
(deviance information criterion) best model.
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spawning locations (Fig. 4B). Adults assigned to natal

clusters 1 and 2 were predominantly collected in GA and
PS, respectively. Natal cluster 4 consisted primarily of

fish collected in NY and DE, while adults assigned to
natal cluster 3 had been collected in PS, CB, and DE.

DISCUSSION

The examples we provided here illustrate the advan-

tages of the MCMC approach: with no prior informa-
tion, the algorithm correctly identified the number of

sources contributing to mixed samples and assigned
individuals to their source populations with a high
degree of accuracy. This method is thus an excellent

addition to the analytical toolbox of otolith geochem-
istry investigators. Even in the absence of reliable

information on the number or identity of source
populations, the number of chemically unique sources

contributing to a sample of fish can be identified. The
ability of MCMC methods to generate this sort of
estimate does not involve any statistical sleight of hand:

MCMC is simply a tool for evaluating the multidimen-
sional integral in Bayes’ theorem (Eq. 1; Lele et al.

2007).
The MCMC approach is similar in philosophy to that

proposed years ago by Smouse et al. (1990) for
identifying genetically distinct salmon stocks, but its

applicability to multivariate normal data sets in marine
systems has been noted only recently (Pella and Masuda
2005). We have described the use of this technique in an

otolith geochemistry context, but it could be applied
easily to other types of multivariate data used to assign

individuals to stocks, such as otolith or scale morphology
or profiles of fatty acid composition (Cadrin et al. 2005).

While the weakfish case study addressed a case of spatial,

not temporal, variability in natal signatures, MCMC

could also be used with a sample consisting of multiple
recruit cohorts. In such cases, the age data carried in the

annuli of each otolith could be used to determine
whether clusters resolve spatial or temporal variability
(or both). It also may be possible to use MCMC to assign

independent samples of fish taken at different times or
locations to their respective stocks using aggregate life

history parameters calculated for each sample, such as
age and size distribution or von Bertalanffy growth

parameters (Begg 2005). In such cases, each sample of
multiple fish (rather than each individual organism)
would be treated as an independent observation by

MCMC. Finally, while we have repeatedly referred to
otolith geochemistry for simplicity, the techniques

outlined here apply equally well to geochemical data
collected from mollusk shells, gastropod statoliths, and

the hard (or perhaps even soft) parts of other inverte-
brates (Zacherl 2005, Becker et al. 2007, Carson et al.
2008). The key steps to successful MCMC implementa-

tion are determining how the data are distributed and
then choosing appropriate conditional probability distri-

butions regardless of the source of the data.
This method is not without limitations, which were

highlighted by the results for several of the simulated
data sets. First, population means must be sufficiently

different for MCMC to resolve natal sources into
separate clusters. This limitation is unavoidable and
shared by any multivariate classification technique: two

statistical populations must be far enough apart in
multivariate space, with little overlap in their distribu-

tions, to be distinguishable. Second, parsimony-based
DIC selection will sometimes select a model with fewer

than the correct number of clusters if some sources make

FIG. 3. Assignment probabilities for pre-dispersal juvenile weakfish otoliths. Individuals are grouped along the horizontal axis
by the estuary in which they were spawned; estuaries are ordered from north to south as indicated by the arrow. Vertical bars
indicate the probability of membership in each of the four clusters in the best-fit model, each indicated by a different color. Each
vertical bar along the horizontal axis corresponds to one individual, and the total probability for each individual sums to unity.
Estuaries are NY, Peconic Bay, New York; DE, Delaware Bay; CB, Chesapeake Bay; PS, Pamlico Sound, North Carolina; and
GA, coastal Georgia.
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only very small contributions to the mixture. In a sense,

this is a problem common to traditional forms of data

analysis: does an outlying value represent measurement

error, process error (i.e., extreme natural variation), or

the presence of an additional source? This is a

potentially serious problem, because identifying minor

contributions from small or distant sources is essential

to understanding gene flow (Palumbi 2004) and charac-

terizing the tails of dispersal kernels (Kot et al. 1996).

Unfortunately there is no ready statistical solution to

this dilemma, but prior knowledge regarding oceanog-

raphy (Gawarkiewicz et al. 2007) or the distribution of

nursery habitats (Beck et al. 2001) could be used to

guide inference. Furthermore, if one had access to actual

source signatures one might be able to determine

whether or not a questionable cluster corresponded to

a real natal source. The problem of detecting sources

with minor contributions will continue to plague

investigators, but it is worth noting that MCMC offers

better performance in identifying the correct number of

low-contribution sources than the traditional k-means

clustering method.

In some cases, DIC can select models with greater

than the correct number of clusters, although this

appears to be a less serious problem than selecting too

few clusters because the ‘‘extra’’ clusters generally have

few or no individuals assigned to them. This occurs

because the mean Bayesian deviance is minimized when

extreme observations are placed in separate clusters,

permitting the covariance estimates for the higher-

occupancy clusters to shrink. The creation of empty

clusters may also be a byproduct of the relabeling

procedure: as the initial Markov chain progresses, one

cluster is always empty, but the identity of the empty

cluster is constantly changing as the chain mixes and the

support for each component of the mixture moves from

cluster to cluster (this is the essence of the label-

switching problem). The existence of an empty cluster

may facilitate the mixing of the chain, resulting in lower

deviance values and selection of that model. The

relabeling algorithm then returns a Markov chain with

a single empty cluster. This effect may explain the empty

cluster observed in the best-fit model for the simulated

data set with four variables and Dl¼ 2. However, there

is the potential for improper inference regarding

spurious low-membership clusters: these may lead to

errors in estimating long-distance connectivity if the

clusters are assumed to represent contributions from

distant sources. Here again, ecological knowledge and

baseline sampling of sources could be applied to

determine whether a particular cluster corresponds to

an actual source population or not. In any case, model

selection with DIC seems to produce sensible results for

the majority of individuals despite the occasional empty

or low-membership cluster.

Fortunately, the MCMC approach also produces

accurate estimates of source means which could be used

to identify the actual natal sources corresponding to

each cluster. Such links must be drawn with care,

however. The clusters generated by MCMC may be well

defined in multivariate space but not in geography. The

pre-dispersal weakfish data provide an excellent illus-

tration of this distinction: MCMC did identify a distinct

cluster corresponding to Pamlico Sound, but some fish

from that estuary were also assigned to the cluster

containing fish from Georgia. Inspection of canonical

variate plots of these data in the original publication

(Thorrold et al. 1998) reveals that the PS and GA data

are quite close in multivariate space, explaining the

MCMC results. In our simulations, MCMC consistently

overestimated sample variances, so that parameter may

FIG. 4. Proportions of weakfish otoliths collected in each
estuarine spawning location that were assigned to each of four
clusters by MCMC. (A) Juveniles were collected pre-dispersal,
so assignment success reflects accuracy of MCMC clustering.
(B) Adults were collected post-dispersal, so assignment
probabilities are an estimate of natal homing (cf. Fig. 3 in
Thorrold et al. [2001]). Proportions are indicated by the area of
the bubble and sum to 1 vertically; values . 0.20 are labeled.
Estuaries are as identified in Fig. 3.
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be less useful than the mean in relating cluster

assignments to actual sources.

MCMC analysis of the weakfish data produced results

that were similar, but not identical, to those obtained

with traditional methods. For the pre-dispersal juvenile

fish, we found a strong geographical pattern of distinct

natal signatures. The two geographically extreme

estuaries (NY and GA) and the central estuary (CB)

were distinct from each other, and fish from the two

remaining estuaries were placed in clusters correspond-

ing to their neighbors in multivariate (and geographic)

space. For the adults, we found estimates of natal site

fidelity similar to those of Thorrold et al. (2001) in the

extreme populations (NY and GA). As with the juvenile

data, fish collected in CB and DE were not distinguished

from each other, and fish collected in PS were assigned

to two clusters, although one of the clusters was almost

completely restricted to PS fish. While these discrepan-

cies may seem jarring, the advantage of the MCMC

approach lies in its non-reliance on prior information.

Weakfish spawn at discrete sites and early life stages

remain at those sites for months. Imagine instead that

we were only able to sample juveniles after they

dispersed, when information about sources is unobtain-

able and MLE analysis is therefore not possible. With an

MCMC approach, the sample of 260 juveniles would be

resolved into four clusters corresponding to NY/DE,

DE/CB, PS, and PS/GA. Similarly, if natal site

information were unavailable, adult collections from

each spawning site could still be analyzed with MCMC.

Such analysis would reveal that adults in NY and GA

originated from distinct and unique sources, a third

source contributes exclusively to the PS adult popula-

tion, and that fish from a fourth ‘‘source’’ spawn

exclusively in the mid-Atlantic sites. These inferences

are not as precise as those made using prior information

on natal sources, but would produce similar general

conclusions (e.g., weakfish have a high degree of natal

homing, making their fishery vulnerable to overexploi-

tation; cf. Thorrold et al. 2001). Of course, had MCMC

been used in this way to characterize the adult weakfish

population, the next step in the investigation would be

an attempt to sample estuaries along the coast to

determine which natal source corresponded to which

cluster. Without that level of sampling, simply knowing

the number of natal sources has limited utility.

Indeed, the primary conceptual difficulty involved in

this technique is identifying the biological meaning

corresponding to a ‘‘source’’ or ‘‘cluster.’’ In an otolith

geochemistry context, a statistical source necessarily

describes individuals who are sampling the same water

mass or source of elements and isotopes (Campana et al.

2000), i.e., it does not necessarily have a particular

biological meaning. This statistical source may corre-

spond to any spatial scale, from a single clutch of

benthic eggs to fish occupying tens or hundreds of miles

of coastline (Thorrold and Hare 2002). Thus simply

knowing the number of geochemically unique natal

sources may not be helpful without the proper ecological

context. While successful application of the MCMC

approach does not require exhaustive sampling of every

potential natal source, it does require at least some

baseline sampling to characterize the spatial scale of

variation in natal signatures.

The results from the weakfish case study suggest how

MCMC might be incorporated into the existing suite of

analytical tools for otolith geochemical investigations.

The strength of the approach is that it provides correct

(albeit limited) inferences when direct sampling of all

sources is infeasible. Thus it could be useful as an

exploratory tool to determine the number, geochemical

signatures, and relative contributions of natal sources to

a sample of post-dispersal individuals. This information

could then be used to guide the sampling of pre-dispersal

individuals from potential source locations. The even-

tual goal would be to collect baseline samples of

geochemical signatures from the array of natal sources.

It would then become possible to apply traditional

statistical tools such as DFA, MLE, ANN, or k-means

clustering to future samples of post-dispersal individu-

als, because these tools appear to offer more robust and

reliable assignment than MCMC (and are simpler to

compute) when prior information about the number and

identity of sources is available.

In some cases, the use of MCMC would not be limited

to exploratory work. In many systems there is temporal

variation in natal signatures (Warner et al. 2005,

Standish et al. 2008) so a long-term monitoring program

might involve repeated use of MCMC, especially if it is

difficult to sample pre-dispersal individuals from all

sources in each recruitment season. In this sort of system

it would be useful to perform baseline sampling to

characterize the typical spatial scale of variability in

natal signatures, but once such initial sampling has been

performed, it could possible to estimate the number of

natal sources contributing to subsequent samples of

post-dispersal juveniles without sampling all potential

sources (and then repeatedly resampling them to

account for temporal changes in source signatures;

Warner et al. 2005). This would facilitate the identifica-

tion of sites that consistently receive larval supply from

multiple sources (or a single source). MCMC could also

used as a check on other analytical methods for systems

in which all potential sources are thought to be identified

(as in the weakfish example; Thorrold et al. 2001).

Unlike DFA and MLE methods, MCMC can identify

additional, unsampled sources, and it appears to

outperform k-means clustering at this task.

Regardless of the species or location of interest, the

advantages afforded by MCMC are clear: with some

effort, it can be used to identify and assign individuals to

previously unsampled sources with a high degree of

reliability. If used wisely, it stands to greatly enhance the

analytical capabilities of marine and fisheries scientists.
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APPENDIX A

Details of Markov Chain Monte Carlo methods (Ecological Archives A018-068-A1).

SUPPLEMENT

Matlab code containing the MCMC algorithms used in the example (Ecological Archives A018-068-S1).
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