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 125 

Here we present a standard developed by the Genomic Standards Consortium 126 

(GSC) to describe marker gene sequences—the minimum information about a 127 

marker gene sequence (MIMARKS). We also introduce a system for describing the 128 

environment from which a biological sample originates. The “environmental 129 

packages” apply to any sequence whose origin is known and can therefore be used 130 

in combination with MIMARKS or other GSC checklists. Finally, to establish a 131 

unified standard for describing sequence data and to provide a single point of entry 132 

for the scientific community to access and learn about GSC checklists, we establish 133 

the minimum information about any (x) sequence (MIxS). Adoption of MIxS will 134 

enhance our ability to analyze natural genetic diversity across the Tree of Life as it 135 

is currently being documented by massive DNA sequencing efforts from myriad 136 

ecosystems in our ever-changing biosphere. 137 
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 Without specific guidelines, most genomic, metagenomic and marker gene 169 

sequences in databases are sparsely annotated with the information required to guide data 170 

integration, comparative studies and knowledge generation. Even with complex keyword 171 

searches, it is currently impossible to reliably retrieve sequences that have originated 172 

from certain environments or particular locations on Earth-for example, all sequences 173 

from “soil” or “freshwater lakes” in a certain region of the world. Since public databases 174 

of the International Nucleotide Sequence Database Collaboration (INSDC; comprising 175 

DNA Data Bank of Japan (DDBJ), European Nucleotide Archive (EBI-ENA) and 176 

GenBank (http://www.insdc.org)) depend on author-submitted information to enrich the 177 

value of sequence datasets, we argue that the only way to change the current practice is to 178 

establish a standard of reporting that requires contextual data to be deposited at the time 179 

of sequence submission. The adoption of such a standard would elevate the quality, 180 

accessibility, and utility of information that can be collected from INSDC and the eco-181 

system of other biological resources. 182 

The GSC has previously proposed standards for describing genomic sequences, 183 

the “minimum information about a genome sequence” (MIGS), and metagenomic 184 

sequences, the “minimum information about a metagenome sequence” (MIMS)1.. Here 185 

we introduce an extension of these standards for capturing information about marker 186 

genes, MIMARKS. Additionally, we introduce “environmental packages” that 187 

standardize sets of measurements and observations describing particular habitats that are 188 

applicable across all GSC checklists and beyond2. We define “environment” as any 189 

location in which a sample or organism is found, e.g., soil, air, water, human-associated, 190 

plant-associated, or laboratory. The original MIGS/MIMS checklists included contextual 191 

http://www.insdc.org/�
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data about the location from which a sample was isolated and how the sequence data was 192 

produced. However, standard descriptions for a more comprehensive range of 193 

environmental parameters, which would help to better contextualize a sample, were not 194 

included. The environmental packages presented here are relevant to any genome 195 

sequence of known origin, and would usefully be combined with many projects described 196 

by MIGS, MIMS or MIMARKS.   197 

To create a single entry point to all minimum information checklists from the 198 

GSC and to the environmental packages, we propose an overarching framework, the 199 

MIxS standard [AU: ADD URL]. MIxS is a new standard that includes the technology-200 

specific checklists from the previous MIGS and MIMS standards, provides a way of 201 

introducing additional checklists such as MIMARKS, and also allows annotation of 202 

sample data using environmental packages. A schematic overview of MIxS along with 203 

the MIxS environmental packages is shown in Figure 1. 204 

 205 

The development of MIMARKS and the environmental packages 206 

Over the past three decades, the 16S rRNA, 18S rRNA and internal transcribed 207 

spacer gene sequences (ITS) from Bacteria, Archaea, and microbial Eukaryotes have 208 

provided deep insights into the topology of the tree of life3, 4 and the composition of 209 

communities of organisms that live in diverse environments, which range from deep sea 210 

hydrothermal vents to ice sheets in the Arctic5-16. Numerous other phylogenetic marker 211 

genes have also proven useful, including RNA polymerase subunits (rpoB), DNA gyrases 212 

(gyrB), DNA recombination and repair proteins (recA) and heat shock proteins (HSP70)3. 213 

Marker genes can also reveal key metabolic functions rather than phylogeny; examples 214 
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include nitrogen cycling (amoA, nifH, ntcA)17, 18, sulfate reduction (dsrAB)19 or 215 

phosphorus metabolism (phnA, phnI, phnJ)20, 21. In this paper we collectively define all of 216 

these different phylogenetic and functional genes (or gene fragments) as “marker genes” 217 

as they are used to profile natural genetic diversity across the Tree of Life, and argue that 218 

a small amount of additional effort invested in describing them with specific guidelines in 219 

our public databases will revolutionize the study types that can be performed with these 220 

large data resources. This effort is timely, given the need to determine how climate 221 

change and various other anthropogenic perturbations of our biosphere are affecting 222 

biodiversity, and how marked changes in our cultural traditions and lifestyles are 223 

affecting human microbial ecology, and, ultimately, human health.  224 

MIMARKS (Table 1) complements the MIGS/MIMS checklists for genomes and 225 

metagenomes by adding two new checklists, a MIMARKS-survey, for uncultured 226 

diversity marker gene surveys, and a MIMARKS-specimen, for marker gene sequences 227 

obtained from any material identifiable via specimens. The MIMARKS extension adopts 228 

and incorporates the standards being developed by the Consortium for the Barcode of 229 

Life (CBOL) 230 

(http://www.barcodeoflife.org/sites/default/files/legacy/pdf/DWG_data_standards-231 

Final.pdf). Therefore, the checklist can be universally applied to any marker gene, from 232 

SSU rRNA to COI, to all taxa, and to studies ranging from single individuals to complex 233 

communities.  234 

 Both MIMARKS and the environmental packages were developed by collating 235 

information from several sources and evaluating it in the framework of the existing 236 

MIGS/MIMS checklists. These include four independent community-led surveys, 237 

http://www.barcodeoflife.org/sites/default/files/legacy/pdf/DWG_data_standards-Final.pdf�
http://www.barcodeoflife.org/sites/default/files/legacy/pdf/DWG_data_standards-Final.pdf�
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examination of the parameters reported in published studies, and examination of 238 

compliance with optional features in INSDC documents. The overall goal of these 239 

activities was to design the backbone of the MIMARKS checklist, which describes the 240 

most important aspects of marker gene contextual data. 241 

Results of community-led surveys 242 

To date, four online surveys about descriptors for marker genes have been conducted to 243 

determine researcher preferences for core descriptors. The Department of Energy Joint 244 

Genome Institute and SILVA22 surveys focused on general descriptor contextual data for 245 

a marker gene, whereas the Ribosomal Database Project (RDP)23 focused on prevalent 246 

habitats for rRNA gene surveys, and the Terragenome Consortium24 focused on soil 247 

metagenome project contextual data (supplementary information 1). The above 248 

recommendations were joined by an extensive set of contextual data items suggested by 249 

an International Census of Marine Microbes (ICoMM) working group that met in 2005. 250 

These collective resources provided valuable insights into community requests for 251 

contextual data items to be included in the MIMARKS checklist and the main habitats 252 

constituting the environmental packages. 253 

Survey of published parameters 254 

We reviewed published rRNA gene studies, retrieved via SILVA and the ICoMM 255 

database MICROBIS (The Microbial Oceanic Biogeographic Information System) 256 

(http://icomm.mbl.edu/microbis) to further supplement contextual data items that are 257 

included in the respective environmental packages. In total, 39 publications from SILVA 258 

and >40 ICoMM projects were scanned for contextual data items to constitute the core of 259 

the environmental package sub-tables (supplementary information 1).  260 

http://icomm.mbl.edu/microbis�
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Survey of INSDC source feature qualifiers 261 

In a final analysis step, we surveyed usage statistics of INSDC source feature key 262 

qualifier values of rRNA gene sequences contained in SILVA (supplementary 263 

information 1). Notably, less than 10% of the 1.2 million 16S rRNA gene sequences 264 

(SILVA release 100) were associated with even basic information such as 265 

latitude/longitude, collection date or PCR primers. 266 

The MIMARKS checklist 267 

The MIMARKS checklist provides users with an “electronic laboratory notebook” 268 

containing core contextual data items required for consistent reporting of marker gene 269 

investigations. MIMARKS uses the MIGS/MIMS checklists with respect to the nucleic 270 

acid sequence source and sequencing contextual data, but extends them with further 271 

experimental contextual data such as PCR primers and conditions, or target gene name. 272 

For clarity and ease of use, all items within the MIMARKS checklist are presented with a 273 

value syntax description, as well as a clear definition of the item. Whenever terms from a 274 

specific ontology are required as the value of an item, these terms can be readily found in 275 

the respective ontology browsers linked by URLs in the item definition. Although this 276 

version of the MIMARKS checklist does not contain unit specifications, we recommend 277 

all units to be chosen from and follow the International System of Units (SI) 278 

recommendations. In addition, we strongly urge the community to provide feedback 279 

regarding the best unit recommendations for given parameters. To facilitate comparative 280 

studies, unit standardization across data sets will be vital in future. An Excel® version of 281 

the MIMARKS checklist is provided to the community on the GSC web site at: 282 

http://gensc.org/gc_wiki/index.php/MIMARKS.  283 

http://gensc.org/gc_wiki/index.php/MIENS�


 14 

The MIxS environmental packages 284 

Fourteen environmental packages provide a wealth of environmental and epidemiological 285 

contextual data fields for a complete description of sampling environments. Furthermore, 286 

the environmental packages can be combined with any of the GSC checklists (figure 1 287 

and supplementary information 2). Researchers within The Human Microbiome Project25 288 

contributed the host-associated and all human packages. The Terragenome Consortium 289 

contributed sediment and soil packages. Finally, ICoMM, Microbial Inventory Research 290 

Across Diverse Aquatic Long Term Ecological Research Sites (MIRADA-LTERs), and 291 

the Max Planck Institute for Marine Microbiology contributed the water package. The 292 

MIMARKS working group developed the remaining packages (air, microbial 293 

mat/biofilm, miscellaneous natural or artificial environment, plant-associated, and 294 

wastewater/sludge). The package names describe high-level habitat terms in order to be 295 

exhaustive. The miscellaneous natural or artificial environment package contains a 296 

generic set of parameters, and is included for any other habitat that does not fall into the 297 

other thirteen categories. Whenever needed, multiple packages may be used for the 298 

description of the environment. 299 

Examples of MIMARKS-compliant datasets 300 

Several MIMARKS-compliant reports are included in Supplementary Information 3. 301 

These include a 16S rRNA gene survey from samples obtained in the North Atlantic, a 302 

18S pyrosequencing tag study of anaerobic protists in a permanently anoxic basin of the 303 

North Sea, a pmoA survey from Negev Desert soils, a dsrAB survey of Gulf of Mexico 304 

sediments, and a 16S pyrosequencing tag study of bacterial diversity in the Western 305 

English Channel (accessible via SRA study accession number SRP001108).  306 
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Adoption by major database and informatics resources 307 

Support for adoption of MIMARKS and the MIxS standard has spread rapidly. Authors 308 

of this paper include representatives from genome sequencing centers, maintainers of 309 

major resources, principal investigators of large- and small-scale sequencing projects, and 310 

individual investigators who have provided compliant datasets, showing the breadth of 311 

support for the standard within the community. 312 

In the past, the INSDC has issued a reserved “BARCODE” keyword for the 313 

CBOL26. Following this model, the INSDC has recently recognized the GSC as an 314 

authority for the MIxS standard and issued it with official keywords within INSDC 315 

nucleotide sequence records27. This greatly facilitates automatic validation of the 316 

submitted contextual data and provides support for datasets compliant with previous 317 

versions by including the checklist version as a keyword. 318 

 GenBank accepts MIxS metadata in tabular format using the sequin and tbl2asn 319 

submission tools, validates MIxS compliance, and reports the fields in the structured 320 

comment block. The EBI-ENA Webin submission system provides prepared web forms 321 

for the submission of MIxS compliant data; it presents all of the appropriate fields with 322 

descriptions, explanations, and examples, and validates the data entered. One tool that 323 

can aid submitting contextual data is MetaBar28, a spreadsheet and web-based software, 324 

designed to assist users in the consistent acquisition, electronic storage and submission of 325 

contextual data associated with their samples in compliance with the MIxS standard. The 326 

online tool CDinFusion (http://www.megx.net/cdinfusion) was created to facilitate the 327 

combination of contextual data with sequence data, and generation of submission-ready 328 

files.  329 

http://www.megx.net/cdinfusion�
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 The next-generation Sequence Read Archive (SRA) collects and displays MIxS-330 

compliant metadata in sample and experiment objects. There are several tools that are 331 

already available or under development to assist users in SRA submissions. The myRDP 332 

SRA PrepKit allows users to prepare and edit their submissions of reads generated from 333 

ultra-high-throughput sequencing technologies. A set of suggested attributes in the data 334 

forms assist researchers in providing metadata conforming to checklists such as 335 

MIMARKS. The Quantitative Insights Into Microbial Ecology ("QIIME") web 336 

application (http://www.microbio.me/qiime) allows users to generate and validate 337 

MIMARKS-compliant templates. These templates can be viewed and completed in the 338 

users' spreadsheet editor of choice (e.g. Microsoft Excel®). The QIIME web-platform also 339 

offers an ontology lookup and geo-referencing tool to aid users when completing the 340 

MIMARKS templates. The Investigation/Study/Assay (ISA) is a software suite that 341 

assists in the curation, reporting, and local management of experimental metadata from 342 

studies employing one or a combination of technologies, including high-throughput 343 

sequencing29. Specific ISA configurations (available from http://isa-tools.org/tools.html) 344 

have been developed to ensure MIxS compliance by providing templates and validation 345 

capability. Another tool, ISAconverter, produces SRA.xml documents, facilitating 346 

submission to the SRA repository. 347 

Further detailed guidance for submission processes can be found under the 348 

respective wiki pages (http://gensc.org/gc_wiki/index.php/MIGS/MIMS/MIMARKS) of 349 

the standard. 350 

Maintenance of the MIxS standard 351 

To allow further developments, extensions, and enhancements of MIxS, we set up a 352 

http://www.microbio.me/qiime�


 17 

public issue tracking system to track changes and accomplish feature requests 353 

(http://mixs.gensc.org/). New versions will be released annually. Technically, the MIxS 354 

standard, including MIMARKS and the environmental packages, is maintained in a 355 

relational database system at the Max Planck Institute for Marine Microbiology Bremen 356 

on behalf of the GSC. This provides a secure and stable mechanism for updating the 357 

checklist suite and versioning. In future, we plan to develop programmatic access to this 358 

database in order to allow automatic retrieval of the latest version of each checklist for 359 

INSDC databases and for GSC community resources. Moreover, the Genomic Contextual 360 

Data Markup Language (GCDML) is a reference implementation of the GSC checklists 361 

by the GSC and now implements the full range of MIxS standards. It is based on XML 362 

Schema technology and thus serves as an interoperable data exchange format for Web 363 

Service based infrastructures30. 364 

 365 

Conclusions and call for action 366 

The GSC is an international body with a stated mission of working towards richer 367 

descriptions of the complete collection of genomes and metagenomes through the MIxS 368 

standard. The present report extends the scope of GSC guidelines to marker gene 369 

sequences and environmental packages and establishes a single portal where 370 

experimentalists can gain access to and learn how to use GSC guidelines. The GSC is an 371 

open initiative that welcomes the participation of the wider community. This includes an 372 

open call to contribute to refinements of the MIxS standards and their implementations.  373 

The adoption of the GSC standards by major data providers and organizations, as well as 374 

the INSDC, underlines and seconds the efforts to contextually enrich our sequence data 375 

http://mixs.gensc.org/�
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collection, and complements the recent efforts to enrich other (meta) omics data. The 376 

MIxS standard, including MIMARKS, has been developed to the point that it is ready for 377 

use in the publication of sequences. A defined procedure for requesting new features and 378 

stable release cycles will facilitate implementation of the standard across the community. 379 

Compliance among authors, adoption by journals and use by informatics resources will 380 

vastly improve our collective ability to mine and integrate invaluable sequence data 381 

collections for knowledge- and application-driven research. In particular, the ability to 382 

combine microbial community samples collected from any source, using the universal 383 

Tree of Life as a measure to compare even the most diverse communities, should provide 384 

new insights into the dynamic spatiotemporal distribution of microbial life on our planet 385 

and in/on the human body. 386 

387 
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Figure Legend 388 

Figure 1: Schematic overview about the GSC MIxS standard (brown), including 389 

combination with specific environmental packages (blue). Shared descriptors apply to all 390 

MIxS checklists, however each checklist has its own specific descriptors as well. 391 

Environmental packages can be applied to any of the checklists. (EU: Eukarya, BA: 392 

Bacteria/Archaea, PL: Plasmid, VI: Virus, ORG: Organelle). 393 
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MIGS MIMS MIMARKS New
checklists

EU BA PL ORGVI metagenomes survey specimen e.g. pan-genomes

Speci�ication
projects

Checklists

Shared
descriptors

Checklist
speci�ic

descriptors

Air
Host-associated

Human-associated
Human-oral
Human-gut
Human-skin

Human-vaginal

Applicable
environmental

packages
(measurements

and
observations)

Microbial mat/bio�ilm
Miscellaneous natural or arti�icial environment

Plant-associated
Sediment

Soil
Wastewater/sludge

Water

target gene

collection date, environmental package, environment (biome),
environment (feature), environment (material),

geographic location (country and/or sea, region),
geographic location (latitude and longitude), investigation type,

project name, sequencing method, submitted to INSDC

assembly, estimated size,
�inishing strategy,

isolation and growth condition,
number of replicons, ploidy,

propagation,
reference for biomaterial



 
Report type 

MIMARKS-
survey 

MIMARKS
-specimen 

Investigation 

Submitted to INSDC [boolean] 

 

Depending on the study (large-scale e.g. done 
with next generation sequencing technology, or 
small-scale) sequences have to be submitted to 
SRA (Sequence Read Archives), DRA (DDBJ 
Sequence Read Archive) or via the classical 
Webin/Sequin systems to Genbank, ENA and 
DDBJ 

M M 

Investigation type [mimarks-survey or 

mimarks-specimen] 

 

Nucleic Acid Sequence Report is the root 
element of all MIMARKS compliant reports as 
standardized by Genomic Standards 
Consortium (GSC). This field is either 
MIMARKS survey or MIMARKS specimen 

M M 

Project name Name of the project within which the 
sequencing was organized M M 

Environment 

Geographic location (latitude 
and longitude [float, point, transect and 

region]) 

The geographical origin of the sample as 
defined by latitude and longitude. The values 
should be reported in decimal degrees and in 
WGS84 system 

M M 

Geographic location (depth 
[integer, point, interval, unit]) 

Please refer to the definitions of depth in the 
environmental packages E E 

Geographic location (elevation 
of site [integer, unit]; altitude of 
sample [integer, unit]) 

Please refer to the definitions of either altitude 
or elevation in the environmental packages E E 

Geographic location (country 
and/or sea [INSDC or GAZ]; region 
[GAZ]) 

The geographical origin of the sample as 
defined by the country or sea name. Country, 
sea, or region names should be chosen from the 
INSDC list (http://insdc.org/country.html), or 
the GAZ (Gazetteer, v1.446) ontology 
(http://bioportal.bioontology.org/visualize/406
51) 

M M 

Collection date  [ISO8601] 

The time of sampling, either as an instance 
(single point in time) or interval. In case no 
exact time is available, the date/time can be 
right truncated i.e. all of these are valid times: 
2008-01-23T19:23:10+00:00; 2008-01-
23T19:23:10; 2008-01-23; 2008-01; 2008; 
Except: 2008-01; 2008 all are ISO6801 
compliant 

M M 



Environment (biome [EnvO]) 
 

In environmental biome level are the major 
classes of ecologically similar communities of 
plants, animals, and other organisms. Biomes 
are defined based on factors such as plant 
structures, leaf types, plant spacing, and other 
factors like climate. Examples include: desert, 
taiga, deciduous woodland, or coral reef. 
Environment Ontology (EnvO) (v1.53) terms 
listed under environmental biome can be found 
from the link: 
http://bioportal.bioontology.org/visualize/4440
5/?conceptid=ENVO%3A00000428 

M M 

Environment (feature [EnvO]) 

Environmental feature level includes 
geographic environmental features. Examples 
include: harbor, cliff, or lake. EnvO (v1.53) 
terms listed under environmental feature can be 
found from the link: 
http://bioportal.bioontology.org/visualize/4440
5/?conceptid=ENVO%3A00002297 

M M 

Environment (material [EnvO]) 

The environmental material level refers to the 
matter that was displaced by the sample, prior 
to the sampling event. Environmental matter 
terms are generally mass nouns. Examples 
include: air, soil, or water. EnvO (v1.53) terms 
listed under environmental matter can be found 
from the link: 
http://bioportal.bioontology.org/visualize/4440
5/?conceptid=ENVO%3A00010483 

M M 

MIGS/MIMS/MIMARKS Extension 

Environmental package [air, host-

associated, human-associated, human-skin, 

human-oral, human-gut, human-vaginal, 

microbial mat/biofilm, miscellaneous natural or 

artificial environment, plant-associated, 

sediment, soil, wastewater/sludge, water] 

MIGS/MIMS/MIMARKS extension for 
reporting of measurements and observations 
obtained from one or more of the environments 
where the sample was obtained. All 
environmental packages listed here are further 
defined in separate subtables. By giving the 
name of the environmental package, a selection 
of fields can be made from the subtables and 
can be reported 

M M 

Nucleic acid sequence source 

Isolation and growth conditions 
[PMID, DOI, or URL] 

Publication reference in the form of pubmed ID 
(PMID), digital object identifier (DOI), or 
URL for Isolation and growth condition 
specifications of the organism/material 

- M 

Sequencing 
Target gene or locus (e.g. 16S 
rRNA, 18S rRNA, nif, amoA, 
rpo) 

Targeted gene or locus name for marker gene 
study M M 

Sequencing method (e.g. 
dideoxysequencing, 
pyrosequencing, polony) 

Sequencing method used; e.g. Sanger, 
pyrosequencing, ABI-solid.  M M 

 

 



Table 1. Items for the MIMARKS specification and their mandatory (M), conditionally 

mandatory (C) (the item is mandatory only when applicable to the study) or recommended (X) 

status for both MIMARKS-survey and MIMARKS-specimen checklists. Furthermore, “-” 

denotes that an item is not applicable for a given checklist. “E” denotes that a field has 

environment-specific requirements. For example, while “depth” is mandatory for environments 

water, sediment or soil; it is optional for human-associated environments. MIMARKS-survey 

is applicable to contextual data for marker gene sequences, obtained directly from the 

environment, without culturing or identification of the organisms. MIMARKS-specimen, on 

the other hand, applies to the contextual data for marker gene sequences from cultured or 

voucher-identifiable specimens. Both MIMARKS-survey and specimen checklists can be used 

for any type of marker gene sequence data, ranging from 16S, 18S, 23S, 28S rRNA to COI, 

hence the checklists are universal for all three domains of life.  

Item names are followed by a short description of the value of the item in parentheses and/or 

value type in brackets as a superscript. Whenever applicable, value types are chosen from a 

controlled vocabulary (CV), or an ontology from the Open Biological and Biomedical 

Ontologies (OBO) foundry (http://www.obofoundry.org). This table only presents the very core 

of MIMARKS checklists, i.e. only mandatory items for each checklist. Supplementary 

information 2 in spreadsheet format contains all MIMARKS items, the tables for environmental 

packages in the MIGS/MIMS/MIMARKS extension, and GenBank structured comment name 

that should be used for submitting MIMARKS data to GenBank. In case of submitting to 

EBI/ENA the full names can be used. 
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