Full Length Paper

2	
	Disruption of termite gut-microbiota and its
4	prolonged fitness consequences [†]
	Rebeca B. Rosengaus ^{1*} , Courtney N. Zecher ² , Kelley F. Schultheis ¹ ,
6	Robert M. Brucker ³ , and Seth R. Bordenstein ^{2, 3}
8	¹ Department of Biology, Northeastern University, 134 Mugar Life
	Sciences Building, 360 Huntington Avenue, Boston, MA 02115-5000,
10	USA, e-mail: r.rosengaus@neu.edu, <u>kelleyschul@gmail.com</u>
12	² The Marine Biological Laboratory, The Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, 7 MBL Street, Woods
14	Hole, MA 02543, USA, e-mail: czecher@mbl.edu
16	³ Vanderbilt University, Department of Biological Sciences, Nashville, TN 37235, USA, e-mail: s.bordenstein@vanderbilt.edu; bruckerm@gmail.com
18	
	* Author for correspondence
20	Keywords: colony fitness, gut microbiota, mutualism, oogenesis, social
	insects
22	Running title: Fitness costs in antibiotic-treated termites

[†]Supplemental material for this article may be found at http://

ABSTRACT

26	The disruption of host-symbiont interactions through the use of antibiotics
	can help elucidate microbial functions that go beyond short-term nutritional
28	value. Termite gut symbionts have been studied extensively, but little is
	known about their impact on the termite's reproductive output. Here we
30	describe the effect that the antibiotic rifampin has not only on the gut
	microbial diversity, but also on the longevity, fecundity, and weight of two
32	termite species - Zootermopsis angusticollis and Reticulitermes flavipes.
	We report three key findings: (i) the antibiotic rifampin, when fed to
34	primary reproductives during the incipient stages of colony foundation,
	causes a permanent reduction in the diversity of gut bacteria, and a
36	transitory effect on the density of the protozoan community, (ii) rifampin
	treatment reduces oviposition rates of queens, translating into delayed
38	colony growth and ultimately reduced colony fitness and (iii) the initial
	dosages of rifampin on reproduction and colony fitness had severe long-
40	term fitness effects on Z. angusticollis survivorship and colony size. Taken
	together, our findings demonstrate that the antibiotic-induced perturbation
42	of the microbial community associates with prolonged reductions in
	longevity and fecundity. A causal relationship between these changes in the
44	gut microbial population structures and fitness is suggested by the
	acquisition of opportunistic pathogens and incompetence of the termites to
46	restore a pre-treatment, native microbiota. Our results indicate that
	antibiotic treatment significantly alters the termite's microbiota,

48 reproduction, colony establishment and ultimately, colony growth and development. We discuss the implications for antimicrobials as a new
50 application to the control of termite pest species.

INTRODUCTION

52	The long-standing associations between termites and their
	prokaryotic and eukaryotic microorganisms have been crucial to the
54	evolutionary and ecological success of this social insect group. The
	presence of cellulolytic microorganisms in the hindguts of termites is one
56	of the key events that allowed termites to thrive on nitrogenous deficient
	food resources (49, 63). Fossil records (80) and the similarity in gut flora
58	and other microbial endosymbionts with those of their roach relatives (59)
	support the hypothesis that these associations existed in the termite
60	ancestor (3, 50, 59). Termite gut symbionts reside in the lumen or are
	attached to the wall of the hindgut region and can represent more than 40%
62	of the termite's weight (6). They are horizontally transmitted through
	coprophagy, a common behavior in termites. Indeed, the need for
64	transfaunation of hindgut symbionts has been proposed as one of the main
	factors favoring group-living (44) and specifically, favoring the evolution
66	and maintenance of termite sociality (18). Yet, little is known about the
	impact that termite gut symbionts have beyond their role in cellulose
68	degradation and host nutrition.
	Here we report on the impact that antibiotic treatment has on the
70	reproductive survival and fecundity of the dampwood termite Zootermopsis
	angusticollis and the Eastern subterranean termite Reticulitermes flavipes.

72 Although previous experiments demonstrated that antibiotics compromise and/or eradicate the gut microbiota (protozoa and/or bacteria) of termites

(11, 26, 53), no studies have yet characterized the short- and long-term
fitness costs associated with antibiotics in these social insects, nor their
impact on colony growth and development. Our findings suggest that
rifampin disrupts one or more mutualistic interactions essential for normal
termite reproduction and longevity.

80 MATERIALS AND METHODS

Collection and maintenance of termites. Two mature colonies of *Z*. *angusticollis* were collected from Huddart Park, San Mateo, CA. and maintained as described in Rosengaus (57). Reproductives of *R. flavipes*,
an important structural pest in the USA, were collected from two stock colonies from West Roxbury, Massachusetts.

86

Establishment of incipient colonies. Incipient colonies were bred in the laboratory from virgin alates (winged adult dispersal forms). These fully pigmented individuals were collected, sexed and paired only if their wings could be removed easily when folded anteriorly along the humeral suture (57). These selection criteria guaranteed that only ready to disperse virgin females and males were used in our studies. To prevent mating prior to colony establishment, the de-winged reproductives were housed in same sex/same colony containers (18 x12 x 8 cm) lined with moist paper towels and some nest material. Within seven days of removal from the parental nest, reproductives pairs were placed inside Petri dishes (60 x 15 mm) lined

	with filter paper (Whatman qualitative #1) and approximately 5.0 g of
98	decayed birch wood. Subsequently, the filter paper was moistened with
	either distilled water (controls) or rifampin (Sandoz Inc, Princeton, NJ; 300
100	mg capsules; see below for details). Rifampin is bacteriostatic or
	bactericidal depending on dosage and acts by specifically inhibiting DNA-
102	dependent RNA polymerase activity in Eubacterial cells (27). It is a broad-
	spectrum compound active against a variety of gram-positive and gram-
104	negative organisms (8, 16, 55, 76). The dishes, stacked in covered plastic
	boxes (30 x 23 x 10 cm), were maintained at 22°C.
106	
	Effects of antibiotic ingestion on Z. angusticollis gut microbiota. To
108	determine if rifampin affected the composition of the termite's gut
	microbial community, Z. angusticollis reproductive pairs were established
110	in incipient colonies as described earlier. The diet of four incipient colonies
	was supplemented with 300 μ L of a 0.5% suspension of rifampin on the
112	day of pairing and 14 and 34 days after the initial dose. Three
	corresponding control colonies were similarly established but received
114	distilled water instead. Subsequently, these colonies were left undisturbed
	until day 85 post-pairing when control and rifampin-fed females were
116	surface sterilized with 2% NaClO and then their guts dissected in sterile
	PBS buffer and preserved in 70% molecular grade ethanol. This time frame
118	was chosen because it was approximately at this time that the initial
	differences in oviposition rates became evident. Each sample was then
120	centrifuged at 12,000X G, and the ethanol was decanted. The DNA of the

	guts was extracted using the QUIAGEN DNeasy Blood & Tissue kit per
122	the manufacturer's instructions for "Purification of Total DNA from
	Animal Tissues". All samples were homogenized and treated with
124	proteinase K for 3 hr at 55°C before the column extraction procedure.
	Aliquots of the resulting DNA samples were then pooled and stored at 4°C
126	until PCR, cloning and sequencing (see Supplemental material for detailed
	protocol). Extraction controls of sterile water were treated identically to
128	samples and carried through all subsequent procedures. Negative water
	controls, as expected, showed no PCR amplification and did not yield
130	clones containing an insert.

132 Effects of antibiotic ingestion by Z. angusticollis on abundance of eukaryotic microbes. To assess the effect of rifampin on the abundance of 134 eukaryotic symbionts, we quantified protozoa in the guts of Z. angusticollis nymphs (given the unavailability of reproductives since they are produced 136 only once a year). To control for the possible effect of termite density on gut symbionts and simulate social conditions between the two 138 reproductives, pairs of control (N = 26) and 0.5% rifampin-fed (N = 30) nymphs were established and hindgut protozoa density was estimated on the third, eighth and 14th day post-treatment. These nymphs were first 140 surface sterilized by submersion in 5% hypochlorite solution for 60 142 seconds followed by two consecutive one-minute washes in sterile water. Subsequently, their entire gut was dissected. The gut, placed inside a 1.5 144 mL sterile microcentrifuge tube containing 1000 μ L of U solution (73), was

	homogenized with a sterile pestle. To quantify the protists, 10 μ L of the
146	suspension was immediately transferred to a hemocytometer and the
	number of intact and active protozoa was recorded. These estimates likely
148	represent an underestimate of the total eukaryotic microbial community as
	the possibility of lysis of the anaerobic protozoa existed during this
150	procedure. Given that both the control and experimental animals were
	treated in an identical manner, our quantification allows for a relative
152	measure of the impact that rifampin had on gut protozoa between the
	treatments rather than providing an absolute density of such microbes.
154	
	Survival of Z. angusticollis and R. flavipes reproductives and colony
156	fitness. Incipient colonies were established as described above to examine
	the effect of rifampin on termite survival and fitness. These colonies
158	ensured the monitoring of complete families throughout colony ontogeny
	by performing periodic censuses. The filter paper was initially moistened
160	with either 300 μL of distilled water (controls) or 300 μL of a 0.5%
	rifampin solution (dissolved in sterile water) on the day of pairing and then
162	again on the third (50 μ L of water or rifampin) and seventh day post-
	establishment (100 μ L of distilled water or rifampin). Hence, the filter
164	paper upon which experimental termites fed was impregnated with a total
	of 2.2 mg of rifampin throughout the entire length of the experiment. Z.
166	angusticollis colonies were followed throughout the first 730 days post-
	pairing while the survival and fitness parameters for R. flavipes colonies
168	were monitored for 150 days post-pairing. For Z. angusticollis, a total of 87

	(N = 49 control and 38 experimental replicates) and $132 (N = 65 control)$
170	and 67 experimental replicates) nestmate pairs were initially established
	from each of the two stock colonies, BDTK19 and BDTK17, respectively.
172	In addition, 29 incipient colonies were established by pairing non-nestmate
	male and female reproductives from these same two stock colonies (i.e.
174	non-sibling pairs, $N = 14$ control and 15 experimental replicates). For <i>R</i> .
	<i>flavipes</i> , control ($N = 49$) and experimental nestmate pairs ($N = 49$) were
176	treated in an identical manner as the Z. angusticollis incipient colonies.
	Incipient colonies of Z. angusticollis and R. flavipes underwent
178	censuses every third day for the first 50 days post-pairing. During these
	frequent initial censuses, when the incipient colonies were housed in Petri
180	dishes (Fig. 1), we recorded survival of the reproductives, the time elapsed
	till first oviposition and first hatching. Subsequently, colonies were
182	censused approximately on day 150 following initial pairing for both
	termite species. For Z. angusticollis, the entire colony was then transferred
184	to a larger covered plastic container (15 x 10 x 6 cm) lined with moist
	paper towels and decayed birch (~12 x 6 x 6 cm wood block) to allow
186	colony expansion. They were left undisturbed until the 465 and 730 day
	census except for the addition of wood and water when needed (Fig. 1).
188	
	Effect of antibiotic ingestion on termite mass. To test if rifampin
190	supplementation during the initial stages of Z. angusticollis colony
	foundation negatively impacted the reproductive's nutritional health and
192	thus, their survival and fitness, we recorded on day 50 and 465 post-

	establishment the mass of each surviving reproductive as an indirect
194	measure of nutritional status. For R. flavipes, the mass of the surviving
	reproductives was determined immediately after the 150 day census. No
196	differences in the rates of wood and filter paper consumption were
	observed between control and antibiotic-fed reproductives for either
198	species.
200	RESULTS
200	RESULTS Effects of antibiotic ingestion on <i>Z. angusticollis</i> gut microbiota. Diets
200 202	RESULTS Effects of antibiotic ingestion on <i>Z</i> . <i>angusticollis</i> gut microbiota. Diets of <i>Z</i> . <i>angusticollis</i> reproductives were supplemented with a low dose of
200 202	RESULTS Effects of antibiotic ingestion on Z. <i>angusticollis</i> gut microbiota. Diets of <i>Z. angusticollis</i> reproductives were supplemented with a low dose of rifampin antibiotic suspension (0.005 grams of rifampin in 1ml of sterile
200 202 204	RESULTS Effects of antibiotic ingestion on <i>Z. angusticollis</i> gut microbiota. Diets of <i>Z. angusticollis</i> reproductives were supplemented with a low dose of rifampin antibiotic suspension (0.005 grams of rifampin in 1 ml of sterile deionized water) on days 0, 14, and 34 after pairing. Sampling of the gut
200 202 204	RESULTS Effects of antibiotic ingestion on <i>Z. angusticollis</i> gut microbiota. Diets of <i>Z. angusticollis</i> reproductives were supplemented with a low dose of rifampin antibiotic suspension (0.005 grams of rifampin in 1 ml of sterile deionized water) on days 0, 14, and 34 after pairing. Sampling of the gut bacterial diversity by cloning and sequencing of 16S rRNA gene amplicons

population structures between the control and rifampin-treated termites of Z. angusticollis (P = 0.01, UniFrac; Table 1). As expected, rifampin treatment reduced the 16S rRNA gene bacterial diversity (Table 1). Of the 87 clones sequenced from the control termite 16S rRNA gene library, 17

210 87 clones sequenced from the control termite 16S rRNA gene library, 17 operational taxanomic units (OTUs) were represented based on a 97%
212 identity cutoff (mean Chao1 = 23 ± 6 OTUs, mean ACE = 21). However, among the 85 clone sequences in the rifampin- treated termites, only six
214 OTUs were represented (mean Chao1 = 6 ± 1 OTUs, mean ACE = 6), amounting to a 64% reduction in bacterial diversity. The rarefaction

- 216 analyses of the two libraries also showed that despite similar sequencing efforts in each treatment, the control termite library was less exhaustively 218 sampled than the antibiotic-treated termites (Fig. S1 Supplemental Material), indicating a greater diversity in the untreated termites. The species richness 220 and diversity indices confirmed that there was an unequal distribution of the bacterial OTUs in both treatments (reciprocal Simpson's evenness = 6, control; 3, rifampin). 222 Of the six OTUs in the rifampin-treated guts, three were shared 224 with the control group and two of these were maintained at the same relative proportion among the treatments (Table 1). These three bacteria 226 include a *Treponema* sp.; the endomicrobia termite symbiont, Termite Group 1; and a *Desulfovibrio* sp. These bacteria are known inhabitants of 228 termite guts (35, 40, 48). The other three OTUs in the treated group were unique and included *Serratia*, an uncultred *Enterococcus*, and an
- uncultured Epsilonproteobacterium that was the dominant bacteria in the rifampin-treated guts (Table 1). Given that resistance to rifampicin is easily
 attained by single random mutations of the bacterial RNA polymerase (16), it was necessary to establish whether the recorded alterations in gut
 microbial communities were influenced by a build-up of antibiotic-resistant
- species. After cross referencing our microbial diversity data with the
 expected species that contain these resistance mutations (Table S1
 Supplemental Material), we found that the frequency of strains with
 rifampin resistance was low and equivalent between pre- and post-

treatments ($P = 0.6$, Fisher's exact test). Thus, we conclude that the
antibiotic treatment did not select for rifampin resistance.

	Ingestion of rifampin also had a significant short-term negative
242	impact on the number of gut protozoa per gram of termite. In a separate
	experiment, nymphs fed rifampin for three days had a significantly lower
244	median number of protozoa (\pm interquartile range) in their gut relative to
	the controls (median rifampin = 9.7 x $10^6 \pm 3.4 \text{ x } 10^6 \text{ vs.}$ median control = 2
246	x $10^7 \pm 9.4$ x 10^6 , $P = 0.01$; medians are reported given that the frequency
	with which gut protozoa were recorded was not normally distributed).
248	However, in subsequent dissections on days eight and 14 post-feeding, the
	number of protozoa per gram of termite did not differ significantly between
250	the two treatments (median control = $1.2 \times 10^7 + 9.3 \times 10^6$ vs. median
	rifampin = $8.7 \times 10^6 + 7.6 \times 10^6$, $P = 0.5$ on day eight; median control = $9.8 \times 10^6 \times 10^6$
252	$10^6 \pm 1 \ge 10^7$ vs. median rifampin = 7 $\ge 10^6 \pm 9.3 \ge 10^6$; $P = 0.5$ on day 14).
	Thus, although rifampin temporarily affected the number of protozoa in
254	termite guts, it did not destroy them completely. Collectively, our results
	indicate that rifampin has only a moderate and transitory effect on the
256	density of the culturable, protozoa gut community, and a prolonged effect
	on the diversity of bacteria in termite guts.
259	

Survival of Z. angusticollis reproductives and colony fitness. The effects
 of the antibiotic on survival was evaluated throughout the first two years of
 colony life. A Cox proportional regression model with the variables
 "colony of origin" (either BDTK17 or BDTK19), "gender", "sibship"

	(nestmate or non-nestmate pairs) and "treatment" (controls or antibiotic-
264	fed) revealed that colony of origin (WS = 7.3, d.f. = 1, $P = 0.007$) and
	treatment (WS = 25.1, d.f. = 1, $P < 0.0001$) had significant effects. First,
266	reproductives from colony BDTK17 had 1.3 times the hazard ratio of death
	in comparison to reproductives from colony BDTK19, after controlling for
268	the effect of treatment (Table 2). Second, rifampin-fed reproductives after
	two years post-pairing were 1.7 times as likely to suffer premature
270	mortality compared to untreated individuals, even after controlling for the
	effect of colony of origin (Fig. 2; Table 2).
272	The time course of survival for the reproductives did not differ
	significantly between the rifampin and control treatments (Breslow X^2 =
274	2.8, d.f. = 1, $P = 0.09$ for BDTK17 and Breslow $X^2 = 0.1$, d.f. = 1, $P = 0.7$
	for BDTK19; Fig. 2), until after day 150 (Fig. 2). By 465 days, the survival
276	distributions and percent survival were significantly different between the
	control and antibiotic treatments for each of the stock colonies (Fig. 3).
278	These differences were pronounced by 730 days. At this time, 50% of the
	original control reproductives had died. In contrast, the rifampin-fed
280	reproductives reached 50% mortality by the 465 day census (Fig. 2; Table
	2). Thus, on average, the control termites lived approximately 265
282	additional days before reaching the 50% mortality mark (LT_{50} estimate,
	Table 2). These findings indicate that the effects of rifampin treatment
284	significantly affect survivorship of reproductives from both stock colonies,
	with mortality differences being most prominent between 465 and 730 days
286	(Fig. 2; Table 2).

288	Rifampin- fed reproductives originating from both colonies had
	consistently fewer offspring than their corresponding untreated controls.
290	Because none of the reproductive output metrics differed significantly
	between BDTK17 and BDTK19 (Mann-Whitney U tests), statistical
292	analyses were carried out by combining all colonies within a treatment.
	Given the longitudinal nature of this study, we present a detailed
294	description of the effects of antibiotic treatment on colony fitness at each of
	the census dates.
296	150 days post-pairing census. The addition of low dosages of
	rifampin during the initial stages of colony foundation in Z. angusticollis
298	resulted in a significant reduction in fecundity. Fig. 3 shows a significant
	disparity between the frequency distribution of offspring number between
300	surviving control and rifampin-treated colonies. The percentage of
	surviving control colonies with eggs, larvae and soldiers on day 150 post-
302	establishment was higher than that of rifampin-treated colonies;
	furthermore, a higher percentage of control colonies produced the highest
304	number of eggs, larvae and soldiers (Fig. 3). One hundred fifty days post-
	pairing, surviving control colonies also had a significantly higher median
306	number of eggs, larvae and soldiers than their rifampin counterparts (Fig.
	4). Furthermore, the effect of the antibiotic on Z. angusticollis reproductive
308	output appeared to be immediate, since it significantly delayed first
	oviposition by approximately 47 days (MW = 870, $z = -5.5$, $P < 0.0001$;

- 310 Fig. 5a) and had a tendency to delay first hatching by roughly 33 days (MW = 1220, z = -1.8, P = 0.06; Fig. 5b) relative to controls.
- 312 465 days post-pairing census. The antibiotic continued to have a long-term negative effect on colony reproduction. All fitness parameters of
 314 surviving rifampin-fed reproductives were significantly reduced relative to controls (Fig. 5).
- 316 730 days post-pairing census. Two years post-pairing, the negative effect of rifampin on colony fitness persisted despite the antibiotic 318 treatment being provided only during the initial stages of colony foundation (Fig. 4). After controlling for the effects of mass (see below), sibship and 320 colony of origin, treatment significantly influenced colony fitness (t = -2.9, P = 0.004 for eggs, t = -3.8, P < 0.0001 for larvae and t = -4.1, P < 0.0001322 for soldiers; by multivariate linear regression (SPSS, 57). By the last census, 69.8% of the 128 originally established control colonies had 324 oviposited at least one egg while only 38.6% of the 120 original rifampintreated colonies had done so (Pearson's $X^2 = 24.0$, d.f. = 1, P < 0.0001). 326 Moreover, 63.5% of the original control colonies produced at least one larva whereas only 28.6% of the original rifampin-treated colonies did (Pearson's $X^2 = 30.0$, d.f. = 1, P < 0.0001). 328
- 330 Survival of *Reticulitermes. flavipes* primary reproductives and
 colony fitness. *R. flavipes* reproductives treated with antibiotic had a
 332 comparable survival rate to the controls for the first 5 months of colony
 life. A Cox proportional regression indicated that neither colony of origin,

334	sibship, gender nor treatment were significant and independent predictors
	of termite survival (Wald Statistic (WS) = 0.2, 1.5, 0.002 and 0.07, $d.f. = 1$,
336	P > 0.2, respectively). In regards to fecundity, after 5 months of colony
	formation 69.4% of the original control established colonies oviposited at
338	least one egg relative to 53.3% of the original rifampin-treated colonies
	(Pearson's $X^2 = 2.5$, d.f.= 1, $P > 0.05$). Approximately 45% and 44% of
340	the original control and rifampin-treated colonies hatched at least one larva,
	respectively (Pearson's $X^2 = 0.002$, d.f.= 1, $P > 0.05$). After 150 days post-
342	establishment, no soldiers had differentiated. Although these proportions
	were not statistically significant, several additional reproductive parameters
344	of the rifampin-treated reproductives were negatively impacted relative to
	controls. Rifampin-fed R. flavipes reproductives had fewer maximum
346	number of eggs (MW = 242.5, $z = -2.7$, $P = 0.007$), fewer maximum
	number of larvae (MW = 159.0, $z = -2.8$, $P = 0.005$) as well as fewer
348	number of larvae on day 150 post-pairing (Mann Whitney U test (MW) =
	112.0, $z = -3.5$, $P < 0.0001$; Fig. 6). Although some additional reproductive
350	parameters were reduced for rifampin-fed reproductives, they were not
	statistically different. Larger sample sizes and longer surveys past the first
352	150 days post-establishment are needed to elucidate if rifampin has similar
	long-term effects on R. flavipes reproduction as it had in Z. angusticollis.
354	Taken together, these results indicate that small amounts of
	rifampin provided during the incipient stages of colony foundation alter the

356 reproductive output of both termite species for the long term.

358	Termite mass. The mass of each surviving Z. angusticollis reproductive
	was recorded on day 50 and 465 post-establishment (Table 2). Our results
360	show that by day 50, control reproductives were no more than 0.005 grams
	heavier than their rifampin-fed counterparts. These differences, although
362	small, were significant (Table 2). On day 465 post-pairing, the differences
	in mass of the surviving reproductives were reversed and now rifampin-fed
364	reproductives were heavier than their respective controls (Table 2). The
	reversal in the weight differences from day 50 to day 465 was apparently
366	due to accelerated weight loss in the controls for both BDTK17 (0.060 g vs.
	0.052 g, $t = 6.0$, d.f. = 180, $P < 0.001$) and BDTK19 (0.063 g vs. 0.057 g, t
368	= 4.1, d.f. = 164, $P < 0.0001$), rather than significant weight gain in the
	antibiotically-treated termites of BDTK17 (0.055 g vs. 0.053 g, $t = 0.96$,
370	d.f. = 131, <i>P</i> = 0.3) and BDTK19 (0.058 g vs. 0.060 g, <i>t</i> = -1.6, d.f. = 113,
	P = 0.1). The significant weight loss of controls could be due to a higher
372	investment of their energetic reserves in reproduction than that of the
	antibiotic treated reproductives, which consistently had lower reproductive
374	output.
	On day 150 post-pairing, the mass of control and rifampin-treated
376	R. flavipes male and female reproductives were not significantly different
	(males: average \pm S.D.= 0.0042 \pm 0.0007 vs. 0.0038 \pm 0.0006 respectively,
378	t = 1.9, d.f. = 39, $P > 0.05$; females: 0.0046 ± 0.0007 vs. 0.0042 ± 0.0007
	respectively, $t = 1.7$, d.f. = 39, $P > 0.05$) and therefore, we conclude that
380	the addition of rifamp in to the diet of R. flavipes reproductives did not

cause malnutrition, starvation or higher mortality relative to controls.

DISCUSSION

384	This investigation demonstrates that the addition of the antibiotic
	rifampin to the diet of Z. angusticollis and R. flavipes during colony
386	establishment reduces bacterial diversity in the reproductive's guts, as well
	as colony fitness. Relative to controls, rifampin-treated Z. angusticollis
388	reproductives had reduced survival and lower reproductive success. They
	exhibited a delayed first oviposition and significantly lower production of
390	eggs, larvae and soldiers throughout the 730 days of colony life (Figs. 4, 5).
	Similarly, rifampin treatment in R. flavipes showed a reduction in the total
392	number of eggs and larvae during the first 150 days of colony foundation
	(Fig. 6). How does rifampin treatment mediate the fitness costs on
394	reproduction in these termite species? We propose two possible
	explanations.
396	First, the antibiotic could influence reproductive success of
	reproductives indirectly by compromising the nutritional health of the royal
398	pair, causing reduced weight gain and reproductive output. Rifampin could
	have caused defaunation of the eukaryotic hindgut microbes resulting in
400	malnutrition and/or starvation. The elimination of wood-digesting
	protozoan symbionts through the use of antibiotics has previously been
402	demonstrated (11, 26, 53). However, in this study, rifampin-treated termites
	had numerous protozoa (median number = 7 x $10^6 \pm 9.3 x 10^6$ protozoa per
404	gram of termite) 14 days post-treatment, and it is the gut protozoa that are

	primarily responsible for cellulase activity in the digestive tract of primitive
406	"lower" termites (13, 37). Rifampin does not have a prolonged negative
	effect on the cellulolytic gut protozoa of Z. angusticollis, most likely
408	because this antibiotic specifically inhibits the bacterial RNA polymerase
	(32). Moreover, the most abundant bacteria in the termite's hindgut, the
410	spirochetes, play an important role in the digestion process and are highly
	resistant to rifampin (12). Hence, the facts that (i) rifampin did not
412	eradicate protozoan symbionts of Z. angusticollis, (ii) body mass of Z.
	angusticollis reproductives was transiently affected (Table 2) and was
414	unaffected in R. flavipes and (iii) the experimental replicates survived up to
	the 465 and 730 day (for Zootermopsis) and 50 day (for Reticulitermes)
416	census while continuing to show a reproductive output biased against
	rifampin treatment, do not support antibiotic toxicity, malnutrition and/or
418	starvation as factors reducing fitness. Furthermore, endogenous production
	of cellulases has been reported in this insect order and hence, termite
420	nutrition may not be completely dependent on their protozoa communities
	(7, 25, 71, 72, 77).
422	Similar studies using antibiotics in the phylogenetically-related
	roach Periplaneta americana resulted in poor growth and reduced
424	reproductive output (54). These effects were attributed to the elimination of
	Blattabacterium which mobilizes nitrogen from urate waste deposits within
426	the fat tissue. They also provide vitamins, proteins and essential amino
	acids to the roach (3, 4, 54, 59). Although Z. angusticollis lacks an
428	association with Blattabacterium (59), other bacteria, including the

	rifampin-eliminated Bacteroidetes and Treponema, are similarly involved
430	in nitrogen fixation (11, 13, 36, 46) and/or the production of NH_3 from uric
	acid (52, 59, 66). The absence of these taxonomic groups may have
432	irreversibly restricted nitrogen availability in female reproductives. Given
	that dietary nitrogen supplementation is known to significantly increase
434	ovariole number and fecundity in Z. angusticollis neotenics and other
	insects (5, 10), the loss of the Bacteroidetes and Mollicutes may have
436	compromised nitrogen reserves and/or the essential amino acids required
	for oogenesis. However, some Epsilon- and Gammaproteobacteria, two
438	classes that were overly-represented in the treated guts, may perform
	ammonification, denitrification and nitrogen fixation (38, 46). Thus, further
440	work is required to associate the fitness cost in treated termites with a shift
	in the ability to use nitrogen.
442	A second possible explanation for the long-term fitness costs
	associated with antibiotic treatment is that rifampin disrupted one or more
444	mutualistic bacterial partnerships within the termite hosts. Specifically, a
	partnership(s) that goes beyond the breakdown of cellulose. Given the long
446	co-evolutionary history between the gut symbionts and termites, it is likely
	that these social insects accrue additional benefits from their micobiota that
448	are unrelated to cellulolytic activity. Microbes can play other important
	roles within their termite hosts including detoxification (17), mediation of
450	disease resistance and immune function (15, 23, 31, 51, 58, 60, Schultheis
	et al., in preparation), production of volatile compounds that are co-opted
452	to function as aggregation or kin recognition pheromones and defensive

	secretions (2, 24, 28, 39, 45, 47), as well as performing atmospheric
454	nitrogen fixation (5, 11, 36). Results from this work suggest that the
	microbial communities of Z. angusticollis and R. flavipes may also
456	contribute to the fecundity of reproductives and ultimately, to the
	successful establishment of colonies. One such candidate for affecting
458	reproduction is Wolbachia pipientis, a widespread intracellular bacterium
	known to infect Z. angusticollis (9). However, based on PCR surveys of the
460	Wolbachia wsp gene from antibiotic-treated and untreated reproductives,
	Wolbachia was not involved in influencing colony fitness since all
462	reproductives, nymphs and eggs from both the experimental and control
	colonies harbored Wolbachia regardless of treatment and colony of origin.
464	The bacteria identified in our control animals have previously been
	associated with termite guts, either as normal symbionts (34, 35, 40, 48, 70)
466	or as opportunistic pathogens (75; Table 1). The long-term fitness costs
	likely resulted from perturbations in the termite gut symbionts in treated
468	termites. Rifampin is a bactericidal antibiotic that preferentially targets
	gram-positive bacteria (78, 81). The consequence of employing this
470	antibiotic is that it shifted the gut microbial community largely towards
	gram-negative microorganisms including known termite symbionts;
472	Termite group 1, Desulfovibrio sp., and Trepanema sp. (Table 1).
	The most striking change was the abundance of an
474	Epsilonproteobacterium that was not represented in the control termite
	library. This bacterium's 16S sequence is 98% similar to a rare symbiont of
476	the termite luminal lining (35) and appears to have increased its

	proportional representation in the gut microbiota. At least two potential
478	reasons for this shift in the dominant bacteria exist. First, the decline in
	gram-positive bacteria may have allowed rare members of the community
480	such as the gram-negative Epsilonproteobacterium to exploit the new,
	unoccupied niche space of the gut. Members of the rare biosphere
482	potentially offer an unlimited source of microbial diversity that flourishes
	upon ecological perturbations (64). By altering the normal microbiota of
484	the gut with antibiotics, rare but relatively fast growing microaerophilic
	species (i.e. some proteobacteria and Serratia) not susceptible to the
486	antibiotic may now exploit the host niche as well as the levels of available
	oxygen, ultimately overgrowing and becoming dominant in the gut (14, 27,
488	41, 58, 79 and references therein). Second, the appearance of rare or non-
	native bacterial members in the rifampin-treated guts may be impacted by
490	interactions with other bacteria. For example, the Serratia marcescens 16S
	rRNA gene sequence identified in our study is 99.9% identical to an
492	opportunistic pathogen of termites that has been hypothesized to induce
	replication of normal termite gut bacteria by suppressing the host
494	immunity, changing available oxygen, and producing bacterial growth
	promoting enzymes like carboxymethylcellulase (1, 19, 68, 75). A
496	Serratia-induced proliferation of the symbiotic community could cause
	septicemia that can result in early termite mortality (75). S. marcescens is
498	present in the rifampin gut library, but not in the control termite gut library.
	Thus, its appearance in the treated termites may have directly or indirectly
500	led to the proliferation of the rare Epsilonproteobacterium symbiont of the

	luminal lining (48). Yet, it is important to keep in mind that not all
502	associations with Serratia are necessarily pathogenic. Serratia grimesii, for
	example, has been implicated as a source of folate compounds important to
504	the maintenance of a functional hindgut microbiota of Z. angusticollis (29).
	The shift in gut bacterial population structure is strikingly prolonged since
506	termites were not fed antibiotics for \sim 50 days prior to dissections. The
	inability to return to a pre-treatment microbial homeostasis (70), coupled
508	with the acquisition of putative, opportunistic pathogens and the slow
	growth rates of many of these termite gut micoorganisms (27, 30, 41, 42,
510	62), may help explain the prolonged effects that the antibiotic had on
	longevity and fecundity.
512	This study provides the first report of the long-term fitness
	consequences of disrupting the normal gut microbiota of termites. The long
514	coevolutionary history of termites and their associated microbiota, coupled
	with the environmentally stable conditions inside their nests, lends itself to
516	study the nature and dynamics of symbiotic interactions (33). The
	mutualistic gut partnerships of social insects may impact not only the
518	fitness of individuals but also have significant repercussions at the colony
	level. Symbionts, whether parasitic, commensal or mutualistic, pose
520	important selective pressures on their hosts. These host-microbial
	interactions likely influence the evolution of multiple host life history traits
522	including longevity, behavior, reproductive biology, immunity and the
	evolution and maintenance of sociality (20, 33, 56, 61, 69,74 and
524	references therein). Furthermore, the use of rifampin and/or other

antibiotics has potential applicability for biological control of social insect 526 pests. By disrupting the mutualistic interaction between termite hosts and their symbionts, better management practices of these social insect pests 528 may be achieved without the environmental and ecological drawbacks typically associated with the use of other toxic chemicals.

ACKNOWLEDGMENTS

534	
	We thank the administrators of Huddart Park for allowing collection
536	of termite colonies as well as Jessica Dumas, Larissa Gokool, Zea Schultz,
	Patrick Henrick, Brian Lejeune and Troy Kieran for help performing
538	census and establishing colonies. We also appreciate the helpful comments
	and suggestions of two anonymous reviewers
540	This research was funded by the Louis Stokes Minority Program which
	supported Jessica Dumas, NSF CAREER award DEB 0447316 to
542	Rosengaus RB, and NSF IOS-0852344 and NAI NNA04CC04A to
	Bordenstein SR.

REFERENCES

	1.	Adams, L., and R. Boopathy. 2005. Isolation and characterization of
546		enteric bacteria from the hindgut of Formosan termite. Bioresource
		Technol. 96(14):1592-1598.
548	2.	Arnaud, L., G.Lognay, M. Verscheure, L. Leenaers, C. Gaspar,
		and F. Haubruge. 2002. Is dimethyldecanal a common aggregation
550		pheromone of <i>Tribolium</i> flour beetles? Chem. Ecol. 28:523-532.
	3.	Bandi, C., and L. Sacchi. 2000. Intracellular Symbiosis in termites, p.
552		261-273. In: T. Abe, D.E. Bignell, and M. Higashi M (eds.), Termites:
		Evolution, Sociality, Symbiosis, Ecology. Kluwer Academic
554		Publishers, Dordrecht.
	4.	Bell, W.J., C.A. Nalepa, and L.M. Roth. 2007. Cockroaches: Ecology,
556		Behavior, and Natural History. Johns Hopkins University Press,
		Baltimore, MD.
558	5.	Ben-Yosef, M., Y. Aharon, E. Jurkevitch, and Y. Boaz. 2010. Give
		us the tools and we will do the job: symbiotic bacteria affect olive fly
560		fitness in a diet-dependent fashion. Proc. Roy. Soc. B. 277:1545-1552.

	6. Bignell, D.E. 2000. Introduction to symbiosis, p.189-208. In: T. Abe,
562	D.E. Bignell, and M. Higashi (eds.), Termites: Evolution, Sociality,
	Symbiosis, Ecology. Kluwer Academic Publisher: Dordrecht.
564	7. Bignell, D.E. 2006. Termite as soil engineers and soil processors, p.
	183-220. In: H. König, and A.Varma (eds.), Intestinal Microorganisms
566	of Termites and other Invertebrates. Springer-Verlag, Heidelberg.
	8. Blum, R.A., and K.A. Rodvold. 1987. Recognition and importance of
568	Staphylococcus epidermidis infections. Clin. Pharm. 6(6):464-75.
	9. Bordenstein, S., and R.B. Rosengaus. 2005. Wolbachia taxonomy:
570	Discovery of supergroup J in Isoptera. Curr. Microbiol. 51:1-7.
	10 Pront C.S. and I.F.A. Traniallo 2002 Effect of anhanced distance
	10. Drent, C.S., and J.F.A. Traineno. 2002. Effect of enhanced dietary
572	nitrogen on reproductive maturation of the termite Zootermopsis
	angusticollis (Isoptera: Termopsidae). Environ. Entom. 31(2):313-318.
574	11 Breznak I & W I Brill I W Mertins and H C Connel 1973
571	Nitrogen fination in termitee. Nature 244:577 590
	Millogen fixation in termites. Mature 244:577-580.
576	12. Breznak, J.A. 2002. Phylogenetic diversity and physiology of termite
	gut spirochetes. Integ. Comp. Biol. 42(2):313-318.

578	13. Brune, A. 2006. Symbiotic Associations between Termites and		
	Prokaryotes, p. 439-474. In: M. Dworkin, S. Falkow, E. Rosenberg,, K.		
580	Schleifer, and E. Stackebrandt (eds.), The Prokaryotes: Symbiotic		
	associations, Biotechnology, Applied Microbiology Vol. 1. Springer:		
582	New York, NY.		
	14. Brune, A., D. Emerson, and J.A. Breznak. 1995. The termite gut		
584	microflora as an oxygen sink: microelectrode determination of oxygen		
	and pH gradients in guts of lower and higher termites. Appl. Environ.		

586 Microbiol. 61(7):2681-7.

15. Bulmer, M.S., I. Bachelet, R. Raman, R.B. Rosengaus, and R.

588 Sasisekharan. 2009. Targeting an antimicrobial effector function in insect immunity as a pest control strategy. Proc. Natl. Acad. Sci. USA
590 106(31):12652-12657.

16. Campbell, E.A., N. Korzheva, A. Mustaev, K. Murakami, S. Nair, A. Goldfarb, S.A. Darst. 2001. Structural mechanism for rifampicin inhibition of bacterial RNA polymerase. Cell 104: 901-912.

594 17. Cardoza, Y.J., K.F. Klepzig, and K.D. Raffa. 2006. Bacteria in oral secretions of an endophytic insect inhibit antagonistic fungi. Ecol.
 596 Entomol. 31:636–645.

	18. Cleveland, L.R., S.R. Hall, E.P. Sanders, and J. Collier. 1934. The
598	wood-feeding roach Cryptocercus, its protozoa and the symbiosis
	between protozoa and the roach. Mem. Amer. Acad. Arts Sci.
600	17:185-342.
	19. Connick, W.J., W.L.A.Osbrink, M.S. Wright, K.S. Williams, D.J.
602	Daigle, D.L. Boykin, and A.R. Lax. 2001. Increased mortality of
	Coptotermes formosanus (Isoptera:Rhinotermitidae) exposed to
604	eicosanoid biosynthesis inhibitors and Serratia marcescens
	(Eubacteriales:Enterobacteriaceae). Environ. Entomol. 30(2):449-455.
606	20. Cremer, S., and M. Sixt. 2009. Analogies in the evolution of individual and social immunity. Phil.Trans. R. Soc. B 364:129–142.
608	21. Devi, K.K., and D. Kothamasi. 2009. Pseudomonas fluorescens CHA0
	can kill subterranean termite Odontotermes obesus by inhibiting
610	cytochrome c oxidase of the termite respiratory chain. FEMS
	Microbiol. Lett. 300(2):195-200.
612	22. Dharne, M., M. Patole, and Y.S. Shouche. 2006. Microbiology of the
	insect gut: tales from mosquitoes and bees. J. Biosci. 31(3):293-295.

614	23. Dillon, R.J., and A.K. Charnley. 1988. Inhibition of Metarhizium		
	anisopliae by the gut bacterial flora of the desert locust-characterization		
616	of antifungal toxins. Can. J. Microbiol 34:1075–82.		

24. Dillon, R.J., C.T. Vennard, and A.K. Charnley. 2002. Gut bacteria
 produce components of a locust cohesion pheromone. J. App.
 Microbiol. 92:759-763.

620 25. Eggleton, P. 2006. The termite gut habitat: its evolution and coevolution, p. 373-404. In: H. König, and A.Varma (eds.), Intestinal
622 Microorganisms of Termites and Other Invertebrates. Springer-Verlag:Heidelberg.

624 26. Eutick, M.L., P.C. Veivers, R.W. O'Brien, and M. Slaytor. 1978.
Dependence of the higher termite, *Nasutitermes exitiosus* and the lower
626 termite, *Coptotermes lacteus* on their gut flora. J Insect Phys. 24:363-368.

628 27. Geissinger, O., D.P.R Herlemann, E. Mörschel, U.G. Maier, and A. Brune. 2009. The ultramicrobacterium "*Elusimicrobium minutum*"
630 gen. nov., sp. nov., the first cultivated representative of the termite group 1 Phylum. Appl. Environm. Microbiol. 75(9): 2831-2840.

632	28 Genta, F.A., R.J. Dillon, W.R. Terra, and C. Ferreira. 2006.
	Potential role for gut microbiota in cell wall digestion and glucoside
634	detoxification in Tenebrio molitor larvae. J. Insect Phys. 52:593-601.
	29. Graber, R., and J.A. Breznak. 2005. Folate cross-feeding supports
636	symbiotic homoacetogenic spirochetes. Appl. Environ. Microbiol.
	71(4): 1883–1889.
638	
	30. Graber, J.R., J.R. Leadbetter, and J. A. Breznak. 2004. Description
640	of Treponema azotonutricium sp. nov. and Treponema primitia sp.
	nov., the first spirochetes isolated from termite guts. Appl. Environ.
642	Microbiol. 70(3): 1315–1320
	31. Haine, E.R. 2008. Symbiont-mediated protection. Proc. Roy. Soc. Biol.
644	Sci. 275(1633):353–361.
	32. Hartmann, G.R., P. Heinrich, M.C. Kollenda, B. Skrobranek, M.
646	Tropschug, and W. Weiß 1985. Molecular mechanism of action of the
	antibiotic rifampicin. Angew. Chem. Int. 24(12):1009-1014.
648	33. Hughes, D.P., N.E. Pierce, and J.J. Boomsma. 2008. Social insect
	symbionts: evolution in homeostatic fortresses. Trends Ecol. Evol.
650	23(12):672-677.

34. Hongoh, Y., P. Deevong, T. Inoue, S. Moriya, S. Trakulnaleamsai,

652	M. Ohkuma, C. Vongkaluang, N. Noparatnaraporn, and T. Kudo.
	2005. Intra- and interspecific comparisons of bacterial diversity and
654	community structure support coevolution of gut microbiota and termite
	host. Appl. Environ. Microbiol. 71(11):6590-6599.
656	35. Hongoh, Y., M. Ohkuma, and T. Kudo. 2003. Molecular analysis of
	bacterial microbiota in the gut of the termite Reticulitermes speratus
658	(Isoptera; Rhinotermitidae). FEMS Microbiol. Ecol. 44 (2):231-242.
	36. Hongoh, Y., V.K. Sharma, T. Prakash, S. Noda, H. Toh,
660	T.D.Taylor, T. Kudo, Y.Sakaki, A.Toyoda, M. Hattori, and M.
	Ohkuma. 2008. Genome of an endosymbiont coupling N2 fixation to
662	cellulolysis within protist cells in termite gut. Science 322:1108-1109.
	37. Honigberg, B.M. 1970. Protozoa associated with termites and their
664	role in digestion, p. 1-36. In: K. Krishna, and F.M. Weesner (eds.),
	Biology of Termites Academic Press: New York, NY.
666	38. Kern, M., and J. Simon. 2009. Electron transport chains and
	bioenergetics of respiratory nitrogen metabolism in Wolinella
668	succinogenes and other Epsilonproteobacteria. Biochim. Biophys. Acta
	1787(6):646-656.

670	39. Kirchner, W.H., and N. Minkely. 2003. Nestmate discrimination in
	the harvester termite Hodotermes mossambicus. Insectes Soc. 50:222-
672	225.
	40. Kudo, T. 2009. Termite-microbe symbiotic system and its efficient
674	degradation of lignocellulose. Biosci. Biotechnol. Biochem.
	73(12):2561-2567.
676	41. Leadbetter, J.R. 2003. Cultivation of recalcitrant microbes: cells are
	alive, well and revealing their secrets in the 21st century laboratory.
678	Curr. Opin. Microbiol. 6:274–281.
	42. Leadbetter, J.R., and J. A. Breznak. 1996. Physiological Ecology of
680	Methanobrevibacter cuticularis sp. nov.and Methanobrevibacter
	curvatus sp. nov., isolated from the hindgut of the termite
682	Reticulitermes flavipes. Appl. Environ. Microbiol. 62(10): 3620-3631.
	43. Lilburn, T.G., K.S. Kim, N.E. Ostrom, K.R. Byzek, J.R.
684	Leadbetter, and J. Breznak. 2001. Nitrogen fixation by symbiotic and
	free-living Spirochetes. Science 292(5526):2495-2498.
686	44. Lombardo, M. 2008. Access to mutualistic endosymbiotic microbes:
	an underappreciated benefit of group living. Behav. Ecol. Sociobiol.
688	62(4):479-497.

	45. Matsuura, K. 2001. Nestmate recognition mediated by intestinal
690	bacteria in a termite, <i>Reticulitermes speratus</i> . Oikos 92:20-26.
	46. Mehta, M.P., D.A. Butterfield, and J.A. Baross. 2003. Phylogenetic
692	Diversity of Nitrogenase (nifH) Genes in Deep-Sea and Hydrothermal
	Vent Environments of the Juan de Fuca Ridge. Appl. Environ.
694	Microbiol. 69(2):960–970.
	47. Minkely, N., A. Fujita, A. Brune, and W.H. Kirchner. 2006. Nest
696	specificity of the bacterial community in termite guts (Hodotermes
	mossambicus). Insectes Soc. 53:339-344.
698	48. Nakajima, H., Y. Hongoh, R. Usami, T. Kudo, and M. Ohkuma.
	2005. Spatial distribution of bacterial phylotypes in the gut of the
700	termite Reticulitermes speratus and the bacterial community colonizing
	the gut epithelium. Fems Microbiol. Ecol. 54 (2):247-255.
702	49. Nalepa, C.A. 1984. Colony composition, protozoan transfer and some
	life history characteristics of the woodroach Cryptocercus punctulatus
704	Scudder (Dictyoptera: Cryptocercidae). Behav. Ecol. Sociobiol.
	14:273-279.
706	50. Ohkuma, M., S. Noda, Y. Hongoh, C.A. Nalepa, and T. Inoue. 2009.
	Inheritance and diversifiation of symbiotic trichonymphid flagellates

708	from a common ancestor of termite and the cockroach <i>Cryptocercus</i> .
	Proc. R. Soc. Lond. B 276:239-245.

710	51. Oliver, K.M., N.A. Moran, and M.S. Hunter. 2005. Variation in
	resistance to parasitism in aphids is due to symbionts not host genotype.
712	Proc. Natl. Acad. Sci. USA 100:1803–1807.

52. Potrikus, C.J., and J.A. Breznak. 1981. Gut bacteria recycle uric acid
nitrogen in termites: A strategy for nutrient conservation. Proc. Natl.
Acad. Sci. USA 78:4601–4605.

716	53. Raina, A.K., Y.I. Park, and A. Lax. 2004. Defaunation leads to
	cannibalism in primary reproductives of the Formosan subterranean
718	termite, Coptotermes formosanus (Isoptera: Rhinotermitidae). Ann.
	Entomol. Soc. Am. 97(4):753-756.

54. Richards, A.G., and M.A. Brooks.1958. Internal Symbiosis in Insects.Ann. Rev. Entomol. 3:37-56.

722 55. Rohani, M.Y., A.F. Ahmad, M.A. Amir, A.K. Muhd, H. Sahura, A. Fairuz, A. Norazah, A.R. Monalisa, A.W.Tay, M. Azizah, Z.
724 Norzarila, and K.E. Victor Lim. 2007. Serogroups and antibiotic susceptibility patterns of *Neisseria meningitidis* isolated from army
726 recruits in a training camp. Malays. J. Pathol. 29(2):91-94.

	56. Rosengaus, R.B., and J.F.A. Traniello. 1993. Disease risk as a cost of
728	outbreeding in the termite Zootermopsis angusticollis. Proc. Natl. Acad
	Sci. USA 90:6641-6645.

- 730 57. Rosengaus, R.B., M.L. Lefebvre, D.M. Carlock, and J.F.A.
 Traniello. 2000. Socially transmitted disease in adult reproductive
 732 pairs of the dampwood termite *Zootermopsis angusticollis*. Ethol. Ecol.
 Evol. 12:419-433.
- 58. Ryu, J.H., S.H. Kim, H.Y. Lee, J.Y. Bai, Y.D. Nam, J.W. Bae, D.G.
 Lee, S.C. Shin, E.M. Ha, and W.J. Lee. 2008. Innate immune
 homeostasis by the homeobox gene caudal and commensal-gut
 mutualism in *Drosophila*. Science 319:777-782.
- 59. Sacchi, L., C.A. Nalepa, and M. Lenz. 2000. Transovarial transmission of symbiotic bacteria in *Mastotermes darwiniensis*(Isoptera:Mastotermitidae): Ultrastructural aspects and phylogenetic implications. Ann. Entomol. Soc. Am. 93(6):1308-1313.
- 60. Scarborough, C.L., J. Ferrari, and H.C.J. Godfray. 2005. Aphid protected from pathogen by endosymbiont. Science 310:3781.
- 61. Schmid-Hempel, P. 1998. Parasites in Social Insects. UniversityPress: Princeton, NJ, USA.

746	62. Schultz, J. E. and J.A. Breznak. 1978. Heterotrophic bacteria present
	in the hindguts of wood eating termites [Reticulitermes flavipes
748	(Kollar)]. Appl. Environ. Microbiol. 35(5): 930-936.
	63. Slaytor, M., and D.J. Chappell. 1994. Nitrogen metabolism in
750	termites. Comp. Biochem. Physiol. 107B:1-10.
	64. Sogin, M.L., H.G. Morrison, J.A. Huber, D.M. Welch, S.M Huse,
752	P.R. Neal, J.M. Arrieta, and G.J. Herndl. 2006. Microbial diversity
	in the deep sea and the underexplored "rare biosphere". Proc. Natl.
754	Acad. Sci. USA 103(32):12115-20.
	65. SPSS. 1990. SPSS/PC+ 4.0 Advanced Statistics Manual. McGraw-Hill,
756	Chicago, IL
	66. Stingl, U., A. Maass, R. Radek, and A. Brune . 2004. Symbionts of
758	the gut flagellate Staurojoenina sp. from Neotermes cubanus represent
	a novel, termite-associated lineage of Bacteroidales: description of
760	'Candidatus Vestibaculum illigatum'. Microbiol. 150:2229-2235.
	67. Suzuki, M.T., and S.J. Giovannoni. 1996. Bias caused by template
762	annealing in the amplification of mixtures of 16S rRNA genes by PCR.
	Appl. Environ. Microbiol. 62(2):625-30.
764	

	68. Thayer, D.W. 1978. Carboxymethylcellulase produced by facultative
766	bacteria from hind-gut of termite Reticulitermes-hesperus. J General
	Microbiol. 106:13-18.
768	69. Thomas, F., S. Adamo, and J. Moore. 2005. Parasitic manipulation:
	where are we and where should we go? Behav. Processes 68(3):185-
770	199.
	70. Thongaram, T., Y. Hongoh, S. Kosono, M. Ohkuma, S.
772	Trakulnaleamsai, N. Noparatnaraporn, and T. Kudo. 2005.
	Comparison of bacterial communities in the alkaline gut segment
774	among various species of higher termites. Extremophiles 9(3):229-238.
	71. Tokuda, G., N. Lo, H. Watanabe, M. Slaytor, and T. Matsumoto.
776	1999. Metazoan cellulase genes from termites: intron/exon structures
	and sites of expression. Biochim. Biophys. Acta 1447:146-159.
778	72. Tokuda, G., H. Watanabe, and N. Lo. 2007. Does correlation of
	cellulase gene expression and cellulolytic activity in the gut of termite
780	suggest synergistic collaboration of cellulases? Gene 401:131-134.
	73. Trager, W. 1934. The cultivation of a cellulose-digesting flagellate,
782	Trichomonas termopsids, and of certain other termite protozoa. Biol.
	Bull. 66(2):182-190.

784	74. Traniello, J.F.A., R.B. Rosengaus, and K. Savoie. 2002. The
	development of immunity in a social insect: Evidence for the group
786	facilitation of disease resistance. Proc. Natl. Acad. Sci. USA
	99(10):6838-6842.
788	75. Veivers. P.C., R.W. Obrien, and M. Slaytor. 1982. Role of bacteria
	in maintaining the redox potential in the hindgut of termites and
790	preventing entry of foreign bacteria. J. Insect Physiol. 28(11):947-951.
	76. Wang, H.Y., W.Z. Li, G.Y. Ye, L.C. Yu, and M.Q. Shi. 1991. The
792	susceptibility testing of 13 strains of Mycobacterium leprae to
	rifampicin and the determination of minimal effective dosage. Lepr.
794	Rev. 62(3):276-279.
	77. Watanabe, H., H. Noda, G. Tokuda, and N. Lo. 1998. A cellulase
796	gene of termite origin. Nature 394:330-331.
	78. Wehrli, W. 1983. Rifampin: mechanisms of actions and resistance.
798	Rev. Infect. Dis. 5:S407-S411.
	79. WertzJ.T., and J. A. Breznak. 2007. Stenoxybacter acetivorans gen.
800	nov., sp. nov., an acetate-oxidizing obligate microaerophile among
	diverse O ₂ -consuming bacteria from termite guts. Appl. Environ.
802	Microbiol. 73(21):6819–6828.

	80. Wier, A., M. Dolan, and D. Grimaldi. 2002. Spirochete and protist
804	symbionts of a termite (Mastotermes electrodominicus) in Miocene
	amber. Proc. Natl. Acad. Sci. USA 99(3):1410-1413.
806	81. Zchori-Fein, E., O. Faktor, M. Zeidan, Y. Gottlieb, H. Czosnek,
	and D. Rosen. 1995. Parthenogenesis-inducing microorganisms in
808	Aphytis (Hymenoptera: Aphelinidae). Insect Mol. Biol. 4(3):173-178.

810 FIGURE LEGENDS

	FIG. 1. Diagramatic representation of the protocol. Incipient colonies of Z.
812	angusticollis were established by paring dealates inside Petri dishes lined
	with filter paper and wood on day zero. Arrows indicate the days at which
814	rifampin was added to the experimental colonies. Control colonies received
	distilled water only on these same days. In subsequent census, colonies
816	were sprayed with distilled water as needed. Pd indicates that incipient
	colonies were housed in Petri dishes. Q and K denote queen and king,
818	respectively. See text for details.

	FIG. 2. Survival distributions of control (solid line) and rifampin-treated
822	(dashed line) male and female Z. angusticollis reproductives originating
	from colony BDTK17 (a) and BDTK19 (b) during the first two years of
824	colony life. Filled and open circles represent the percent survival of control
	and rifampin-treated individuals at each of the major census dates
826	(indicated by the arrows), respectively. These percentages differed
	significantly on days 465 and 730 post-establishment (Pearson's X^2 , $P <$
828	0.004). * and NS above the arrows represent significant and insignificant
	differences in the median survival time at each of the census dates,
830	respectively (MW test; see text). Additional survival parameters are shown
	in Table 2.

	FIG.3. Percent number of established control (\Box) and rifampin-treated (
834) colonies in relation to the number of eggs (a), larvae (b) and soldiers (c)
	produced 150 days post-establishment. Kolmogorov-Smirnov tests and
836	their associated Z score were used to test for differences in the location and
	shape of the distributions and whether the two treatments had equal
838	distributions. Note that a higher percentage of control colonies produced
	the highest number of eggs, larvae and soldiers.
840	
	FIG. 4. Number of eggs (a), larvae (b) and soldiers (c) produced by control
842	(\Box) and rifampin-treated (\Box) Z. angusticollis reproductives at each of the
	major census days. Each boxplot shows the median value and interquartile
844	range. The outliers, identified by small circles, included cases with values
	between 1.5 and 3 box lengths from the upper edge of the box. The
846	numbers below each of the boxplots represents the number of colonies.
	Reproductive parameters between treatments within each census day were
848	compared by MW test.
850	FIG. 5. Number of days elapsed to first oviposition (a) and first hatching
	(b) for Z. angusticollis colonies headed by untreated (\Box) and rifampin-
852	treated reproductives (\square). Each boxplot shows the median value and
	interquartile range. The outliers, identified by small circles, included cases

with values between 1.5 and 3 box lengths from the upper edge of the box.

Reproductive parameters between treatments were compared using MW856 test.

858	8	FIG. 6. Maximum number of eggs, maximum number of larvae and
		number of larvae recorded on day 150 post-colony establishment produced
860	0	by control (\Box) and rifampin-treated (\boxtimes) <i>R. flavipes</i> reproductives. Each
		boxplot shows the median value and interquartile range. The numbers
862	2	below each of the boxplots represents the number of colonies. Numbers
		below each of the boxplots represents the number of colonies.
864	4	Reproductive parameters between treatments were compared using a non-
		parametric Mann-Whitney U test.
866	б	
868	8	
870	0	
872	2	
874	4	
876	б	
878	8	

		Control	Refampacin	
Class	Bacteria genus	Gut	Gut	References
Endomicrobia	Termight Group 1	19	0	Hongoh et al., (2003); Nakajima et al., (2005); Kudo (2009)
Bacteroidetes	Bacteroides	22	7	Nakajima et al., (2005); Kudo (2009)
Betaproteobacteria	Propionibacter	1	4	
Deferribacteres	Lincoln Park 3'	1	0	Kudo (2009)
Acintobacteria	Treponema	19	0	Kudo (2009)
Verruco microbia	Verrucomicrobia	6	0	Hongoh et al., (2005)
Clostridia	Clostridiales	7	0	Hongoh et al., (2005); Nakajima et al., (2005); Kudo (2009)
Clostridia	Uncult Rumen bacterium (<95%)	2	0	Hongoh et al., (2005); Nakajima et al., (2005); Kudo (2009)
Betaproteobacteria	Uncult Sludge (<95%)	2	0	
Verrucomicrobia	Opitutaceae	1	0	Hongoh et al., (2005); Nakajima et al., (2005); Kudo (2009)
Epsilonproteobacteria	Sulfurospirillum	1	0	Hongoh et al., (2003)
Betaproteobacteria	Uncult Beta-proteo	3	0	
Gammaproteobacteria	Uncult Gamma-proteo (<95%)	1	0	
Deltaproteobacteria	Uncult Desulfovibrionales (<95%)	3	0	Hongoh et al., (2005); Nakajima et al., (2005); Kudo (2009)
Gammaproteobacteria	Pseudomonas	0	13	Veivers et al., (1982); Devi and Kothamasi (2009)
Bacilli	Enterococcus	0	3	Thongaram et al., (2005)
Gammaproteobacteria	Providencia	0	1	Veivers et al., (1982)
Betaproteobacteria	Oxalobacteraceae	0	1	
Alphaproteobacteria	Methylobacterium	0	11	
Alphaproteobacteria	Afipia	0	20	
Acintobacteria	Arthrobacter	0	13	Hongoh et al., (2003); Kudo (2009)
Flavobacteriales	Cytophaga	0	4	
Betaproteobacteria	Ralstonia	0	4	

TABLE 1. Number of 16S rRNA OTUs in *Zootermposis* control and treated guts. Refer to Fig S1 in supplemental material to see corresponding rarefaction curve.

Bacteroidetes	Uncult bacterium (<95%)	3	2	Nakajima et al., (2005); Kudo (2009)
Bacilli	Streptococcus	0	1	Thongaram et al., (2005)
Alphaproteobacteria	Sphingomonas	0	2	
Total number of clones		91	86	

TABLE 2. Survival parameters and mass estimates of control and rifampin-treated Z. angusticollis primary

0	0	
0	0	4

reproductives originating from two parental colonies across the first two years post-establishment.

	BDTK17			BDTK19			
	Control	Rifampin	P^{\dagger}	Control	Rifampin	\pmb{P}^{\dagger}	
LT ₅₀ on	730 ± 31	465 ± 39	P < 0.0001	730 ± 29	465 ± 46	P = 0.008	
day 730			BS = 1 8.6			$\mathbf{BS} = 7.0$	
%							
survival	26.8	4.1		27.3	11.1		
on day							
730							
Hazard			P < 0.0001			P = 0.07	
ratio of	Reference	1.7X	WS = 19.0	Reference	1.4 X	WS = 5.5	
death			d.f. = 1			d.f. = 1	
Mass (in							
grams) on	0.0604 ± 0.01	0.0549 ± 0.009	<i>t</i> = 3.8	0.0626 ± 0.008	0.0577 ± 0.009	<i>t</i> = 3.6	
day 50	(N - 100)	(N - 92)	d.f. = 190	(N - 95)	(N - 74)	d.f. = 167	
post-	(11 - 100)	(11 - 52)	$P^{\$} < 0.0001$	(11 - 55)	(11 - 14)	$P^{\$} < 0.0001$	
pairing							
Mass (in							
grams) on	0.0518 ± 0.008	0.0530 ± 0.01	<i>t</i> = -0.7	0.0567 + 0.009	0.060 + 0.009	t = -2.0	
day 465	(N - 70)	(N - 40)	d.f. = 117	(N-71)	(N - 41)	d.f. = 110	
post-	(N - 79)	(11 - 40)	$P^{\$} = 0.4$	(N - 71)	(1V - 41)	$P^{\$} = 0.04$	
pairing							

[†] indicate differences in the survival distributions between control and rifampin treated 884 reproductives. These distributions are depicted in Figs. 2a,b. BS=Breslow statistic (Survival analysis), WS=Wald Statistic (Cox proportional regression). § denotes differences in the average

mass between control and rifampin treated reproductives within each parental stock colony (t test,

888 SPSS). The numbers in parentheses indicate the number of surviving individuals on which mass averages were based upon.

Fig. 4

Fig. 5.

Supplemental Material

1028 Disruption of termite gut-microbiota and its prolonged fitness 1030 consequences Rebeca B. Rosengaus^{1*}, Courtney N. Zecher², Kelley F. Schultheis¹, Robert M. 1032 **Brucker³**, and Seth R. Bordenstein^{2, 3} 1034 **METHODS** 1036 **PCR, Cloning, and Sequencing**. To prepare samples for cloning, PCR amplification of the bacterial 16S rRNA gene was performed using 5 µl of the DNA samples as template. 1038 This template was combined into a 50 μ l reaction using 15.8 μ l of H₂O,10 μ l of 5x Buffer (Promega, Madison WI), 5 µl of 2.5 mM DNTP's (Invitrogen, Carlsbad, CA), 6 µl of 25mM MgCl2 (Promega), 0.2 µl GoTaq[®] Flexi (Promega), 4 µl of 5uM forward primer 1040 27F (5'-AGAGTTTGATCMTGGCTCAG-'3, Sigma-Aldrich), and 4 µl of 5uM reverse 1042 primer 1492R (5'-ACGGCTACCTTGTTACGACTT-'3, Sigma-Aldrich; Suzuki and Giovannoni, 1996). The thermalcycling program was set up as follows: 94°C (5 min), 1044 then 35°C repeats of 94°C (1 min) 55°C (45 sec) 72°C (2 min), followed by 72°C (15 min). 5 ul of the resulting amplicon products were run on a 1% agarose gel (Fisher 1046 Scientific), stained with the nucleic acid stain GelRed (Biotium, Hayward, CA), and imaged for the proper band size under UV illumination. The remaining amplicon product 1048 is run on a 1% low melting point agaraose gel (USB Scientific, Cleveland, OH) and similarly stained. A Dark Reader[®] transilluminator (Clare Chemical Research) was used to image the gel and excise bands for purification with the Wizard[®] SV Gel and PCR 1050

Product Purification Kit (Promega). The resulting gel-purified product was the n used for cloning and sequencing. The amplicon product was ligated using the Invitrogen Topo TA cloning Kit for Sequencing (4-TOPO V2, vector) and the resulting vector was used to transform One Shot® Top 10 Chemically Competent transformation cells (Invit rogen), per the manufacture's recommended procedure. Plasmid inserts were undirectionally sequenced at Genewiz® (South Plainfield, NJ) using rolling circle amplification off the TOPO vector with inserted amplicon. For the rifampin and control groups, 94 clones were sequenced.

1060 Clone Library and Sequence Processing. Sequences were trimmed and sorted in Geneious® v4.8. Sequences were then aligned using the GreenGenes online workbench 1062 (http://greengenes.lbl.gov) using a 97% identity cutoff, DeSantis et al., 2006). The resulting alignment was used to remove any chimeric sequences with the Bellerophon Chimera Checker (Ribosomal Database Project v10). Genera and class were assigned to 1064 each sequence using the GreenGenes Comparison algorithm that searches across three 1066 nucleic databases (NCBI, RDB, and Hugenholtz). To compare the two libraries (rifampin and untreated control) in UniFrac, a representative sequence for each genera in each 1068 sample type was aligned using a MUSCLE alignment (500 iterations) with all gaps removed. A PhyML tree was then generated with a Jukes-Cantor substitution model and 1070 branch lengths calculated (Guindon and Gascuel, 2003). In total, 171 high-quality, nonchimeric, bacterial ribosomal sequences were obtained from the two libraries. The control 1072 group had a total of 86 assignable sequences and the rifampin group had a total of 85 sequences, with an average sequence length of 802bp for each library.

1074

Statistics

- 1076 (i) Effects of antibiotic ingestion on termite gut microbiota. Rarefaction analysis on the gut microbiota was conducted using the Analytic Rarefaction v2.0 software distributed 1078 by Hunt Mountain Software. UniFrac was used to test for differences between clone libraries with 100 permutations. To estimate the microbial diversity, species richness and 1080 diversity indices were calculated using Estimates 8.2 (50 runs, randomized with replacement, using the classic Chao1, ACE, and Simpson's reciprocal formulas; Colwell 1082 et al., 2008). To determine if occurrences of shared outstanding taxonomic units (OTUs) were significantly different between the two treatments, a Fisher's exact test was 1084 conducted. The median number of cultured gut bacteria and protozoa between control and experimental animals were analyzed with MW. Because mass of the reproductives was 1086 normally distributed, differences between treatments were analyzed with t-tests.
- 1088 (ii) Survival of reproductives and colony fitness. Because all colonies were not established or did not undergo a census on the same day, results were standardized by 1090 analyzing survival and reproduction data based on the time elapsed between pairing and each of the subsequent censuses. Survival data was analyzed using both a Cox 1092 proportional regression and Survival analyses (SPSS, 1990). While the former analysis helps identify which variables are significant and independent predictors of death, the 1094 latter allows the estimation of several parameters including the number of days elapsed since pairing until 50% of the individuals died (median survival time; LT_{50}), percent 1096 survival at the end of the census period and the time course of survival (or survival distributions). In addition, we calculated the likelihood with which animals in the 1098 experimental treatment died relative to control termites (or relative hazard ratios of death). These hazard functions therefore, characterize the instantaneous rate of death at a 1100 particular time, given that the individual survived up to that point, while controlling for

the effect of other significant variables on survival (Cox regression model; SPSS, 1990; Rosengaus *et al.*, 2000).

	Reproductive output was analyzed by comparing the frequencies of distributions
1104	with which eggs, larvae and soldiers were produced by the control and rifampin treated
	reproductives on day 150 post-pairing [Kolmogorov-Smirnov Z test (KS), SPSS, 1990].
1106	In addition, differences in the number of colonies with eggs, larvae and soldiers as a
	function of treatment two years post-pairing were analyzed with 2x2 Pearson's X^2 tests.
1108	The number of offspring produced by 50% of the colonies in each of the control and
	rifampin treatments (median number of eggs, larvae and soldiers) was compared for each
1110	of the census dates with non parametric Mann-Whitney U tests (MW), as well as
	differences in the number of days elapsed since pairing until 50% of the
1112	colonies/treatment oviposited their first egg and hatched their first larva.

FIGURE LEGEND

1114 Fig. S1 Supplemental . Rarefaction analysis of OTUs from control and rifampin-treated hindguts. The arc of the curve indicates the likelihood of sequencing a new bacterial OTU
1116 if more clones were sampled. The curve is generated based on the occurrences of OTUs within the clone libraries.

Supplemental TABLE 1. 16S rRNA gene homology of Zootermposis gut bacteria to

1100	•	· · 1 1	•	C	• •	• •	•
1148	CHACIAC	with known	mutatione	tor	ritor	nn_{101n}	racictonca
11.00	SUCCIES	WILLINNUWII	mutations	ю	ппа	пост	TESISLAHUE

Bacterial genus in termite gut	Bacterial OTU with known rifampin resistance	NCBI GI	16S % Pairwise id	
Arthrobacter	Arthrobacter sp. FB24	116668568	95.0%	
	Arthrobacter aurescens TC1	119960487	92.7%	
	Arthrobacter arilaitensis Re117	308175814	92.7%	
Cytophaga	Cytophaga hutchinsonii ATCC 33406	110279108	81.4%	
Enterococcus	Enterococcus faecium strain DSM 10663	42560437	96.9%	
Pseudomonas	Pseudomonas fluorescens SBW25	229359445	96.3%	
	Pseudomonas aeruginosa strain MYL-21	321159400	94.5%	
Treponema	Treponema sp. ZAS-1	4235383	97.8%	
-	Treponema phagedenis strain YG3903R	219551879	91.7%	
	Treponema medium strain G7201	310975273	91.4%	
	Treponema socranskii subsp. Socranskii	2653628	90.6%	
	Treponema denticola ATCC 35405	41821838	91.3%	
	Treponema pallidum	176249	90.1%	
Verrucomicrobium	Verrucomicrobium spinosum DSM 4136	219846674	78.3%	

Species with rifampin resistance gene

1140

An analysis was conducted to determine whether the frequency of rifampin-resisant bacteria are

- 1142 more frequent post-treatment vs. pre-treatment, as would be expected if treatment selected for rifampin resistant bacteria. The results indicate that there are relatively few OTUs observed in the
- 1144 termite gut (before or after rifampin treatment) that are closely related to known rifampin resistant bacteria. Further, if we assume that if a strain in our dataset is related to a resistant strain,
- 1146 then they themselves are resistant, we still observe that the frequency of strains with rifampin resistance is low and the same between pre- and post-treatments (P = 0.656, Fisher's exact test).
- 1148 Thus, we have not selected for rifampin resistance by treating the termites with antibiotic. OTU denoted operational taxonomic unit.

1150 REFERENCES

	Colwell, F.S., S. Boyd, M.E. Delwiche, D.W. Reed, T.J. Phelps, and D.T. Newby. 2008.
1152	Estimates of biogenic methane production rates in deep marine sediments at Hydrate
	Ridge, Cascadia margin. Appl. Environm. Microbiol. 74(11):3444-3452.
1154	
	DeSantis, T.Z., P. Hugenholtz, N. Larsen, M. Rojas, E.L. Brodie, K. Keller et al., 2006.
1156	Greengene, a chimera-checked 16S rRNA gene database and workbench compatible with
	ARB. Appl. Environ. Microbiol. 72(7):5069-5072.
1158	
	Guindon, S., and O. Gascuel. 2003. A simple, fast, and accurate algorithm to estimate
1160	large phylogenies by maximum likelihood. Syst. Biol. 52(5):696-704.
1162	Rosengaus, R.B., M.L. Lefebvre, D.M. Carlock, and J.F.A. Traniello. 2000. Socially
	transmitted disease in adult reproductive pairs of the dampwood termite Zootermopsis
1164	angusticollis. Ethol. Ecol. Evol. 12:419-433.
1166	SPSS 1990. SPSS/PC+ 4.0 Advanced Statistics Manual. McGraw-Hill, Chicago, pp A1-
	E6
1168	
1170	
1172	