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ABSTRACT 

 Larval supply is an important process linking reproductive output to recruitment 

of benthic marine invertebrates. Few species-specific studies of bivalve larvae have been 

performed due to the lack of suitable methods for species identification. This thesis 

focused on applying a method to identify larvae from field samples from Waquoit Bay, 

MA using shell birefringence patterns. This method was then used to address variability 

in larval supply for three bivalve species on weekly, tidal, and hourly scales.   

 Sampling weekly for six months during two years showed large variability in 

larval concentrations on this time scale. Abundances of most species were related to bay 

temperature, and species distributions among sampling sites were indicative of transport 

potential and population coherence. Greater growth of larvae in 2009 compared to 2007 

was attributed to more wind-induced mixing and better food availability in 2009. 

 Integrative samples over each tidal event for a 14-day period demonstrated that 

larvae were mostly constrained by water masses. During a period when there were sharp 

tidal signals in temperature and salinity, larval concentrations were higher in bay water 

compared to coastal waters on incoming tides. After a storm event, water mass properties 

were less distinct between tidal events and a semidiurnal signal in larval concentrations 

was no longer apparent. The timing of periods of high larval concentrations did not 

always coincide with periods of highest water mass flux reducing net export in some 

cases. On an hourly scale, the vertical distribution of larvae affected by water column 

stratification and strength of tidal flow. Strong currents and a fresh upper layer both 

prevented larvae from concentrating at the surface. There was little evidence of peaks in 

larval concentrations associated with a given tidal period.   

 Species-specific data can provide new perspectives on larval transport. For the 

three species studied, Anomia simplex, Guekensia demissa, and Mercenaria mercenaria, 

different source areas, patterns for growth, and potential for export were observed. 

Applying species-specific identification methods to future studies of bivalve larval 

transport has the potential to relate larval abundance to settlement patterns, an important 

component of larval ecology and shellfish management.       

       

Thesis Supervisor: Scott M. Gallager  

      Associate Scientist, Woods Hole Oceanographic Institution       
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 Estuaries are excellent environments to study how biological and physical 

processes influence larval supply. Larval supply is defined here as the rate of delivery of 

larvae to a settlement site (Gaines and Bertness 1993). Estuaries provide important 

nursery grounds and adult habitats for many marine species with pelagic larval stages, so 

it is crucial for larvae originating from an estuary to find a suitable estuary for settlement. 

The enclosed nature of estuaries and predictable nature of tidal flows make it relatively 

easy to measure physical processes and larval distributions. Commercial interests in 

many marine species make it important to consider larval supply in light of climate 

change, water quality deterioration, and habitat decline. This thesis investigates larval 

supply of three species of estuarine bivalves on three timescales in order to determine the 

processes most influential to supply, how these patterns change with time, and the 

importance of species-specific behaviors influencing transport.    

1.1 BIVALVE LARVAL ECOLOGY 

Marine bivalves have evolved reproductive strategies ranging from complete 

viviparity where adults brood their offspring for their full developmental period, to 

spawning pelagic larvae offering no parental protection, to a combination of the two. The 

dispersal potential for these developmental modes increases as the time spent in the 

plankton increases (Thorson 1950). Most coastal bivalves in New England spawn 

planktonic larvae during spring and summer, and larvae develop over one to two weeks. 

Larval bivalves have four main developmental stages (Fig. 1.1). The first trochophore 

stage is ephemeral, lasting up to a day. The second stage occurs after the larva first 

develops a shell, which begins as a straight-hinged veliger larva. With the aid of a ciliated 
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appendage called a velum, the larva is capable of swimming vertically and feeds on 

phytoplankton at the surface. As the larva grows, the shell thickens and becomes more 

rounded, and the larva develops into an umbonate veliger. During these stages, larvae are 

most susceptible to transport by currents as their swimming speeds cannot overcome 

horizontal currents (Chia et al. 1984). When the larva becomes competent to settle, it 

becomes a pedi-veliger and develops an appendage called a foot which allows it to seek 

out settlement substrate and spend more time in the benthos. When a larva finds a 

suitable settlement site, it will settle and metamorphose into a juvenile. If it can escape 

post-settlement pressures on survival, the juvenile eventually develops into an adult.      

During the planktonic period, larvae are subject to many pressures on survival. 

Predation, starvation, and physiological stress are some of the most important factors 

causing mortality. Larvae may also be transported to unsuitable environments and 

eventually die (Morgan 2001). Some species of bivalves can delay metamorphosis during 

periods of low growth and/or before they encounter a suitable settlement substrate 

(Scheltema 1986, Davis and Calabrese 1994). The timing of larval release can influence 

the ability of larvae to be retained (Sponaugle et al. 2002). However, even with these 

adaptations, only a very small percentage of larvae released end up surviving to settle 

(Thorson 1950).     

From an evolutionary standpoint, there are several advantages associated with larval 

dispersal. Given high mortality rates, releasing many larvae increases the odds of 

survival. Having a pelagic stage allows populations to spread to other locations and to 

contribute to gene flow across populations (Thorson 1950, Strathman 1985, Gaines et al. 
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2007). It also makes populations resilient to local disturbances by supplementing larvae 

from other areas (Palmer et al. 1996). However, recent information from modeling, 

environmental signatures, and genetic studies suggests that many populations are capable 

of being retained near their parental sources (Paris and Cowen 2004, Jones et al. 2005, 

Hedgecock et al. 2007). The discrete nature of estuarine environments and the predictable 

nature of estuarine flows make them suitable environments for retention (Sponaugle et al. 

2002).  

1.2 SUPPLY-SIDE ECOLOGY 

Larval supply has been established as a strong structuring force for benthic 

communities in marine environments. The term supply-side ecology first emerged in a 

seminal paper by Lewin (1986) but had been well established for years in fisheries 

ecology (Cushing and Harris 1973). The principle states that the variation in the supply of 

propagules arriving at a given habitat can predict the density of assemblages in space and 

time (Grosberg and Levitan 1992). Larval supply broadly encompasses (1) dispersal, 

which refers to where larvae go, (2) transport, the physical and behavioral processes they 

use to get there, and (3) settlement, where and when they find a suitable habitat to 

metamorphose (Pineda et al. 2007). Recruitment is defined as survival after an arbitrary 

period of time post-settlement when the individual is considered to have entered the adult 

population (Connell 1985, Todd 1998). Linking larval supply with recruitment involves 

integrating many processes (Underwood and Keough 2001), and it is still debated 

whether the most influential processes occur pre or post-settlement.      
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Relationships between larval supply and subsequent recruitment have been 

demonstrated in coastal upwelling systems for barnacles (Roughgarden et al. 1988) and 

bivalves (Ma 2005), and barnacle larvae in bays and estuarine systems (Gaines and 

Bertness 1993). In these examples, the main factors responsible for regulating the supply 

of larvae were physical processes. Studying larval supply is challenging as one must 

integrate reproduction, larval mortality, physical processes, and larval behavior in order 

to understand how each process influences population structure in space and time.  

For coastal bivalve species, supply-side ecology can be relevant in a management 

context. By understanding processes that influence larval supply, populations of 

commercial species can be managed more effectively. Over-harvesting, eutrophication, 

habitat loss, and harmful algal blooms have all affected populations of coastal marine 

bivalves (Ambrose et al. 1992, Valiela et al. 1992). This has necessitated population 

management through artificial seeding of commercial species on an annual basis 

(Kassner and Malouf 1982, Peterson and Summerson 1992). In some cases, it might be 

enough to simply transplant individuals to locations that maximize survival (e.g. Peterson 

et al. 1995, Doall et al. 2008), but if population sustainability is a goal then these efforts 

must also consider larval dispersal and retention capabilities to encourage self-

recruitment (e.g. Peterson et al. 1996). Population decline has led to recruitment 

limitation, where populations can no longer be sustained by a weakened supply of larvae 

(Peterson and Summerson 1992). Knowledge of larval dispersal and supply of individual 

species would make restoration efforts more successful by knowing when and where the 

best times for settlement occur.   
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1.3 BIO-PHYSICAL INTERACTIONS AND TRANSPORT IN ESTUARIES 

Much of the variability in larval distributions is controlled by oceanographic 

processes operating on a variety of spatial and temporal scales (Fig. 1.2). On the smallest 

scale, molecular diffusion and turbulent mixing can distribute plankton on the order of 

centimeters to meters (Yamazaki et al. 2002), but oceanic gyres can transport larvae 

across ocean basins (Scheltema 1986, Pineda et al. 2007). When larval behavior acts in 

concert with physical processes, larvae can either enhance or reduce transport from 

passive distribution by currents. To investigate these processes, one must assume either a 

Eulerian or Lagrangian reference frame. In a Eulerian reference frame, a particle is 

advected past a fixed point in space and patterns are recorded as temporal fluctuations. 

However, a Lagrangian reference frame assumes the point-of-view of the drifter and 

transport pathways and interactions of the organism with its environment can be realized 

(Boicurt 1988, Gawarkiewicz et al. 2007). In the case of most observational studies, a 

Eulerian reference frame is held, and Lagrangian trajectories are inferred from those data.  

 Transport capabilities of estuaries are difficult to generalize because they can vary 

by topography, tidal forcing, stratification, and flushing. Basin shape, tidal circulation, 

freshwater runoff, wind-driven flow, and residence time can all influence the ability for 

larvae to be retained in the system (Boicourt 1988, Wiseman et al. 1988, Janzen and 

Wong 1998, Sponaugle 2002). In many estuaries, a net seaward flow and two-layer 

density-driven currents can allow plankton to choose a vertical layer to reside in and 

affect their net horizontal transport. The specific characteristics of an estuary may 
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contribute to its ability to be a source or a sink for larvae, and even a single estuarine 

system may contain micro-environments more suitable for larval retention.  

In estuarine systems, physical phenomena operating over various spatial and 

temporal scales can control larval transport and retention. On seasonal timescales, 

temperature can induce adult spawning and affect larval developmental time (Loosanoff 

1951, Keck et al. 1975). Phytoplankton blooms occur in seasonal patterns (Tomasky-

Holmes 2008) and if timed appropriately to seasonal spawning, can offer a food source to 

enhance larval growth and survival (Townsend and Cammen 1988). Seasonal patterns in 

freshwater runoff can affect net flow and lead to fluctuations in residence time (Gaines 

and Bertness 1993).  On daily to weekly timescales, fluctuations in tidal amplitude and 

strength with the lunar cycle (Herter and Eckert 2008), wind-driven transport (Boicourt 

1988, Eggleston and Armstrong 1995), frontal formations (Mann 1988, Clancy and 

Epifanio 1989) and internal waves (Pineda 1991) can control the strength of larval flux to 

an estuarine system. Short-term phytoplankton variability in estuaries on daily or diel 

periods (Litaker et al. 1987) may also affect larval feeding and vertical position (Raby et 

al. 1994). Finally, on the timescale of hours to days, tidal mixing, current velocities, and 

diffusive processes can re-suspend larvae or enable larvae to exhibit behavioral responses 

to control their vertical positions and thus affect transport (Alldredge and Hamner 1980, 

Levin 1986, Janzen and Wong 1988). 

The roles of larval behavior in active vs. passive transport have been debated in 

many field studies of larval dispersal (Andrews  et al. 1983, Siegel et al. 2003), and 

retention mechanisms have been proposed based on currents and mixing alone (Pringle 
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and Franks 2001). Larvae that are strong swimmers have shown convincing evidence of 

vertical distribution enhancing  transport by operating with a tidal periodicity. Such is the 

case for many species of brachyuran zoea larvae that can respond to both salinity and 

turbulent kinetic energy cues to swim upward on a flood tide and cause shelf-ward 

transport (Welch 1999). These behaviors change with developmental stage as the 

megalopae larvae must migrate back to estuarine environments. A nocturnal rhythm can 

be superimposed on these behaviors, resulting in surface swimming in nighttime hours to 

avoid predation (DeVries et al. 1994, Forward and Tankersley 2001).     

For bivalve larvae, these behaviors are less obvious and involve tradeoffs between a 

negatively buoyant shell and the need to feed at the surface. It has been demonstrated that 

bivalve larvae go through an early surface-seeking phase involving a smaller shell, 

buoyant lipid reserves and continuous beating of cilia. The following feeding/transport 

phase is where the larvae alternately swim upward and then sink, aided by a denser shell, 

pausing of ciliary beating, and retracting into the shell, all of which increase sinking 

potential. The final stage of the larval cycle is a substrate- seeking phase in which sinking 

behavior outweighs swimming behavior (Cragg 1980, Chia et al. 1984). Although 

laboratory studies have shown bivalve larval responses to a variety of stimuli, less 

convincing responses have been observed in the field. Salinity avoidance, changes in 

behaviors with ontogeny, and diel vertical migration have been observed in some cases 

(Carriker 1951, Mann 1988, Raby et al. 1994, Gallager et al. 1996). Different behaviors 

have even been shown to exist in different populations of the same species based on the 

hydrographic regime of the source population (Manuel et al. 1996). In general, the ability 
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for a bivalve larva to regulate its vertical distribution is highly dependent on local current 

strength (Roegner 2000, Tremblay and Sinclair 1990).  

1.4 LIMITATIONS OF FIELD STUDIES 

1.4.1   Sampling Limitations. To estimate larval transport in the field, it is 

necessary to sample at the spatial and temporal resolution of the physical mechanisms 

involved. Sampling larval distributions repeatedly over time can give insight into the 

processes involved in larval transport (Roegner 2000, Nantunewicz and Epifanio 2001). 

There are often tradeoffs to be made involving site replication versus sample replication 

(Gaines and Bertness 1993), and sample replication versus sample error (Kjerfva and 

Wolaver 1988). Even in enclosed basins, samples must be replicated in time to avoid 

extrapolation of patterns from “snapshot data.” In general, higher frequency physical 

processes require a higher frequency of sampling. Sampling at hourly or daily 

frequencies often requires long-term use of boat and sampling equipment and generates 

large volumes of samples. In addition, the patchiness of plankton distributions can make 

it more difficult to observe these processes. Larval abundances can vary by orders of 

magnitude over several hours (Seliger et al. 1982, Levin 1986) and many of the processes 

that supply larvae are episodic (i.e. wind events, spawning), so not every study may 

observe them (Pineda et al. 2007).  

Modeling has emerged as a tool to investigate the effects of physical processes on 

transport for larger spatial and temporal scales and compare them to observations (e.g. 

Chen et al. 1997, Paris et al. 2005). The effects of vertical behavior on transport and 

retention has been modeled for bivalves in estuarine systems (North et al. 2008). 
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However, many models are limited by their ability to resolve small-scale physical and 

behavioral responses, such as vertical and horizontal gradients in velocity (Largier 2003), 

which often operate over small spatial scales in estuaries (Seabergh 1988). 

Automated sampling systems have proven useful for generating high frequency 

samples (Garland 2000), but they are most useful when combined with automated 

methods for analysis. Optical sampling techniques have greatly benefited the plankton 

community by enabling identification and enumeration of both zooplankton and 

phytoplankton taxa, often in real-time (Benfield et al. 2007). However, identification of 

bivalve larvae using these methods has proven challenging (Hendricks et al. 2005).     

1.4.2.   Identification limitations. Before one can generalize about processes 

affecting larval distributions, it is necessary to make comparisons among species (Gregg 

2002). Different species of bivalves have different salinity tolerances, growth rates, 

habitat requirements, and behaviors that might affect their transport potential within 

estuarine systems. Bivalve larvae are difficult to identify at the earliest stages due to lack 

of distinguishing morphological features, and studies attempting morphological 

identification are risky due to high rates of misidentifications (Perino et al. 2008). Studies 

attempting species identification by electron microscopy (Lutz et al. 1982), DNA-based 

methods (Bell and Grassle 1998, Hare et al. 2000, Larsen et al. 2005), or immunological 

based methods (Garland 2000), are often expensive and time-consuming and thus are 

difficultly performed on the large numbers of samples required to assess spatial and 

temporal variability. This has resulted in relatively few field studies of bivalve larvae 

(Garland and Zimmer 2002, Vadopalas et al. 2006).   
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Molecular methods are useful for achieving taxnomoic resolution for difficult-to-

identify plankton. A recent method for larval identification of bivalves using 

Fluroescence In-Situ Hybridization and Cell Sorting (FISH-CS) shows promise not only 

for identification of species, but the ability to sort them from a sample would enable 

follow-up analysis (Henzler et al. 2010). However, this method still requires a significant 

start-up period to develop species-specific probes and comes with a steep price-tag. 

Although classification accuracy for optical systems is somewhat lower than what could 

be achieved by manual sorting or molecular identification, it can be applied with high 

accuracy to larval bivalves by using color patterns of the larval shell under polarized light 

(Tiwari and Gallager 2003a, b). This method differs from traditional image identification 

methods of using shape and texture features of black and white images (Hendricks et al. 

2005), and instead uses species-specific color patterns reflecting the optical orientation of 

calcium carbonate crystals forming the larval shell. Application of this method to field 

studies of bivalve larvae would prove extremely useful to generate species-specific 

information on larval distribution, behavior, and transport in different systems, and it is 

ultimately less expensive and time-consuming than most molecular approaches.          

1.5   THESIS RESEARCH 

1.5.1   Study Site – Waquoit Bay. Waquoit Bay is a shallow embayment (average 

depth 1.5 m) on the south shore of Cape Cod, MA. It covers an area of 16 km
2
 

exchanging waters tidally with Nantucket Sound through two inlets. This two inlet 

system allows for greater tidal exchange and flow (Orson and Howes 1992). Waquoit 

Bay contains many sub-embayments exchanging water with the main basin of Waquoit 
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Bay via tidal rivers. These areas have more estuarine characteristics with large areas of 

salt marshes and tidal flats and large salinity fluctuations, while the main bay has 

characteristics of open waters with fringing salt marshes, stable salinity gradients, and a 

large basin volume relative to the tidal prism. The tide propagates through these sub-

embayments with relatively little attenuation creating well-flushed conditions throughout 

(Howes 1992).  

The primary freshwater source to Waquoit Bay is through groundwater flow, 

although surface freshwater flows contribute to some sub-embayments (Howes 1992). In 

these areas with freshwater flow, stratification is less sensitive to flushing events but 

highly dependent on wind events (Geyer 1997). During periods of onshore winds (as is 

the predominant wind direction in the summer), freshwater piles up in these channels 

creating stratified waters with limited exchange, increasing residence time. Offshore wind 

events, although sporadic in summer, can cause rapid flushing of freshwater, more 

exchange within Waquoit Bay waters, and shorter residence times. In recent years, 

nutrient-related water quality issues have appeared as a result of increased urbanization 

and septic-system flow of nitrogen into the groundwater. Increased nitrogen loading of 

the systems have threatened habitat quality for shellfish in many of the enclosed basins of 

Wauqoit Bay (Valiela et al. 1992). In particular, a loss of eelgrass habitat essential for 

bay scallops has led to a marked decline in the bay scallop fishery within the bay (Bowen 

and Valiela 2001). Currently, the only populations of bay scallops are subsidized using 

hatchery seed. Waquoit Bay is an important commercial and recreational fishery for the 
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Cape Cod towns that border it, it is a site of much recreational boating and camping, and 

it is a significant wetland habitat for many coastal species.  

The Waquoit Bay National Estuarine Research Reserve (WBNERR) is part of a 

national system of estuaries devoted to research and water quality monitoring. Water 

quality data generated from the SeaWater Monitoring Program (or SWMP) from three 

locations in the bay proved essential for this study. In addition, the long history of 

research at this site provided necessary background for historical issues of water quality, 

habitat decline, and management practices within Waquoit Bay.   

1.5.2   Study Species. In this research, I focused on three abundant bivalve 

species in the plankton that have both commercial and ecological relevance: Mercenaria 

mercenaria (quahog), Geukensia demissa (ribbed mussel), and Anomia simplex (jingle 

clam). Although much is known about these species in relation to reproductive cycles and 

larval development, most of these studies are specific to a given locale and do not contain 

information relating adult reproductive cycles to presence of larvae in the field.  

M. mercenaria is the most abundant commercial species in Waquoit Bay and 

chief commercial clam of the east coast (Abbot and Morris 1995), with both natural and 

artificially seeded populations. Adults inhabit sandy bottom habitats in shallow water and 

can tolerate salinities above 15 PSU (Chanley and Andrews 1971). M. mercenaria are 

relatively long-lived clams with adult lifespans greater than five years. Gonad studies in 

Delaware Bay indicated that spawning first appears in May-June and continues through 

September. Spawning times are specific to geographical location and water depth. Initial 

spawning depends on water temperature with spawning temperatures decreasing 
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northward into its range (Keck et al. 1975). M. mercenaria has been documented to 

spawn in Virginia waters from May through October (Chanley and Andrews 1971). 

Laboratory studies have demonstrated that M. mercenaria can develop over 10-12 days at 

22ºC, reaching setting size between 175-235 μm (Loosanoff et al. 1951, Chanley and 

Andrews 1971). Larval growth for M. mercenaria is highest between temperatures of 20-

30º C and salinities between 25-30 PSU (Davis and Calabrese 1964).      

Guekensia demissa (ribbed mussel) is abundant along the banks of the sub-inlets 

and tidal marshes, and it plays an important ecological role in the bay removing excess 

nutrients by filtering particles (Jordan and Valiela 1982). Adults can live for five or more 

years, they can tolerate the lowest salinities of these three species (above 5 PSU), and 

they are also tolerant of partially polluted waters (Chanley and Andrews 1971, Abbot and 

Morris 1995). A Connecticut population showed spawning activity continuously 

occurring between June and August demonstrating a narrower spawning window for a 

more northern population, with G. demissa larvae being present from June through 

September in Virginia (Brousseau 1982, Chanley and Andrews 1971). Little 

documentation of studies on larval growth and behavior exists, but it has been 

demonstrated that G. demissa larvae reach settling size between 200-300 μm (Chanley 

and Andrews 1971).   

The third species, Anomia simplex (jingle clam), is a common fouling organism, 

often attaching to exposed rocks and shells and is abundant in both coastal and estuarine 

environments with salinities greater than 10 PSU (Chanley and Andrews 1971, Eckman 

1987). These species have a much shorter lifespan, lasting only 1-2 years (Andrews 
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1953). Little documentation exists for adult spawning, but larval presence in Virginia 

waters indicate spawning between June and September (Chanley and Andrews 1971). 

Laboratory studies on growth and tolerances for A. simplex larvae are generally absent 

from the literature. A. simplex has the smallest larvae of the three species, starting at 60 

μm.  The larval period is estimated to be 12-33 days at 22ºC with metamorphosis 

occurring between 180 and 215 μm (Chanely and Andrews 1971, Loosanoff 1961).     

For all these of these species, limited information is available on spawning on 

Cape Cod. Spawning windows presented for the more southern locations may be 

narrower for the cooler waters of Cape Cod, but this remains to be documented. In 

addition, each of these species has been documented to delay metamorphosis on some 

level (Loosanoff et al. 1951, Loosanoff 1961, Baker and Mann 1997). If these post-larvae 

remain planktonic, this ability could result in a larger dispersal potential during these 

stages than might be expected based on observed size distributions and growth.     

1.5.3   Goals and Objectives of Thesis Work. This thesis was a three-part study 

to investigate the role that estuarine processes play in transporting bivalve larvae in 

Waquoit Bay and how this affects larval supply. By applying a state-of-the-art method for 

identifying bivalve larvae, I was able to successfully employ a species-specific analysis 

to compare patterns of transport for three species. Two of the locations sampled in this 

study allowed for the installation of an automated sampling system that allowed for 

longer-term, integrative sampling. Combining this sampling method with high-frequency 

point samples, I was able to generate a more detailed depiction of transport processes 

during the period of highest larval abundance in Wauqoit Bay in 2009. 
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Chapter 2 describes the image-analysis method of using color patterns from 

polarized-light images of larval shells to distinguish species. Results of this method were 

compared for hatchery reared larvae and larvae sampled from the field. This method was 

compared with a molecular method for larval identification in order to validate 

identifications of some species as well as compare accuracies using known hatchery 

reared larvae. To apply this method, I identified four species from a time-series of weekly 

field samples and compared it to manually classified images in order to find the optimal 

settings for automated classification of our field image sets.  

In Chapter 3, we used species-specific data from manually classified image sets to 

compare larval abundance and distributions between two years in Waquoit Bay. This 

chapter focused on determining the biological and physical parameters that regulated 

larval abundance on a weekly to monthly scale, and employed a cohort analysis to 

compare species-specific growth between years. Based on what is known about each 

species‟ life histories, it was hypothesized that M. mercenaria would have longest 

spawning window, and that A. simplex would show the greatest variability in growth and 

abundance between years due to its short adult lifespan. The longer larval duration of A. 

simplex might enable it to disperse further than the other species appearing well-mixed 

with respect to location. G. demissa was expected to be most abundant in marsh channels 

and expected to have the most upstream sources due to adult salinity tolerances. As larval 

salinity tolerances were unknown for both A. simplex and G. demissa, I hoped to uncover 

relationships to physical factors for these species. 
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Chapter 4 focuses specifically on transport processes within Waquoit Bay by 

estimating tidal flux through an inlet and sub-embayment over a two week-period 

superimposed with high-frequency studies of larval vertical distribution. By investigating 

larval distributions over tidal and hourly scales, I addressed relationships of larvae with 

water masses and tidal features. The vertical distribution study investigated whether 

passive or active transport was occurring, how larvae respond to stratified conditions, and 

species-specific behaviors that might result in differential transport. It was predicted that 

out of all three species, G. demissa would be most associated with bay water and would 

have to show retention behavior in order settle in the bay. M. mercenaria and A. simplex 

may be less constrained to bay water and could show different transport behaviors.  

The final chapter summarizes the data and conclusions reached for each study and 

proposes a mechanism for transport for each species based on the observations during the 

summer of 2009. Finally, it speculates on the importance of new perspectives gained 

from this study to the future of bivalve larvae research and suggests future directions for 

work in Waquoit Bay and beyond. 
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Figure 1.1   Life cycle diagram of a bivalve scallop. (1) Adults spawn by releasing 

gametes into the water column where they fertilize. (2) First developmental stage consists 

of a ciliated trochophore lasting up to 24 hours. (3) The larval shell forms, and the larva 

persists as a ciliated veliger for a few days. (4) During the pelagic larval period, larvae 

are subjected to transport and dispersal by currents. (5) By the pedi-veliger stage, the 

shell takes on a more rounded, umbonate form and the larva develops an appendage 

called a foot. (6) Settlement occurs when pedi-veligers encounter suitable substrate and 

metamorphose. (7) In the case of scallops, adult settlement occurs when juveniles detach 

from eelgrass blades. (8) Adult scallops live for a few years and reproduce the following 

spring/summer. (Diagram by Jack Cook, Woods Hole Oceanographic Institution) 
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Figure 1.2   Spatial and temporal diagram of physical processes affecting biological 

processes. Circles represent physical processes, and the size of each circle corresponds to 

the space and time scales on which they act. Figure adapted from Dickey 2003.  
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ABSTRACT 

Machine learning methods for identifying planktonic organisms are becoming 

well-established in marine science. Although similar morphologies among species make 

traditional image identification methods difficult for larval bivalves, species-specific shell 

birefringence patterns allow color and texture-based features to distinguish species. This 

approach uses Gabor and color angle feature-selection algorithms on polarized images of 

bivalve larvae, and image classifications are made using Support Vector Machine 

software. We adapted this method which was established on hatchery-reared larvae to 

identify bivalve larvae from a series of field samples from a Cape Cod estuary in 2009. 

This method showed up to 99% overall accuracy on four hatchery reared species. We 

used a multiplex-PCR method to confirm field identifications and to compare accuracies 

to the software classifications. Field classified larvae had lower accuracies with the 

identification software due to error in classifying unknown larvae and variability in larval 

images from the field. Our six-species field training set had the best correspondence to 

our manual classifications with 75% overall agreement and individual species agreements 

from 63-88%. The biggest issue with our field identification accuracies was the large 

occurrence of false-positive identifications from species not represented in our training 

sets. This error was improved as much as 30% by adding correction methods. Overall, 

this approach represents a less expensive and less time-consuming alternative to 

molecular-based identifications that can produce sufficient results to address long-term 

abundance and transport-based questions on a species-specific level, a rarity in studies of 

bivalve larvae. 
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2.1   INTRODUCTION 

The larvae of many coastal benthic invertebrates have complex life cycles that 

begin with a pelagic larval stage lasting from a few days to weeks. During development, 

larvae are passively transported by ocean currents (Thorson 1950, Scheltema 1986). 

Studies of invertebrate larval dispersal have been met by challenges associated with small 

sizes of individuals, high mortality, and patchiness over large spatial scales (Boicourt 

1988, Garland 2000, Pineda et al. 2007). Particularly for bivalve larvae, it is difficult to 

achieve species-specific field studies because of an inability to accurately identify early 

stage larvae (Garland 2000, Garland and Zimmer 2002, Gregg 2002). Since larvae can 

exhibit species-specific behaviors in the field (Shanks and Brink 2006), one cannot 

accurately assess transport if species identity is unknown. This is especially important 

when considering populations of commercially important species, as an understanding of 

larval transport is necessary to address management questions concerning species 

productivity and decline, shellfish enhancement through seeding, and habitat restoration 

efforts (Gregg 2002).   

 Once a larval bivalve begins shell mineralization (usually 20 hours post-

fertilization), most species proceed to a straight-hinge (veliger) stage followed by 

transformation to a more rounded, umbonate (pedi-veliger) stage after several days 

(Chanley and Andrews 1971). It is particularly difficult to distinguish species of straight-

hinged larvae by morphological features alone, but as the larva develops, characteristic 

morphological changes can sometimes help distinguish species or genera. Photographs of 

cultured species are limited to those that can be raised in the laboratory and matching 
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photographs to larvae from the field can often result in misidentification (Loosanoff et al. 

1951). Electron-micrographs of the larva‟s hinge structure have historically been the 

standard for larval species identification (Lutz et al. 1982), but the labor required to 

perform these identifications is unrealistic for field studies. The pros and cons of more 

recent species-specific identification methods have been reviewed by Garland and 

Zimmer (2002) and Hendricks et al. (2005). It has been a challenge to develop a reliable 

and cost-effective solution for larval identification that can handle the large volume of 

samples required for many field studies. Current successful methods have involved 

multiplex PCR (Hare et al. 2000, Larsen et al. 2005) and fluorescent in situ hybridization 

with rRNA probes (Henzler et al. 2010), but each method has specific limitations on 

sample volume, specificity, and cost per sample. 

 Recently, advances in imaging technology have allowed for greater spatial and 

temporal resolution of plankton studies through optical sampling methods (Benfield et al. 

2007). In-situ optical sampling instruments such as the Video Plankton Recorder (Davis 

et al. 1992), benchtop equipment such as FLOW-CAM (Sieracki et al. 1998), and 

laboratory-based scanning methods such as ZOOSCAN (Grosjean et al. 2004) have 

created a need for image recognition software to identify plankton based on characteristic 

features the computer reads from each image (Davis et al. 2004). The basic concept of 

computerized image processing is to create a reference set of known or manually sorted 

images that train the computer to recognize boundaries between each category and then 

use the categories made from this “training set” to assign unknown images from a 

sample.   
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There are several requirements for image analysis of plankton. First, acquired 

images must be of sufficient quality to be easily recognized and handled by a computer. 

Second, there must be distinguishing image characteristics (or features) from each class 

of species or organism that the computer can recognize (i.e., shape and edge detection, 

texture analysis, pixel intensity). Thirdly, not every statistical classifier is optimal for 

analysis of a given image set, so there can be a lengthy start up time for optimizing 

image-processing techniques (Grosjean et al. 2004, Lou et al. 2005). Computer image 

analysis is not capable of discriminating images exactly as humans and is generally 

assumed to be less accurate than having a human expert carefully analyze microscope 

samples (Culverhouse et al. 2003). Overall, image identification of plankton samples 

must sacrifice some accuracy for the ability to handle and rapidly process large volumes 

of data. Concerns associated with computer speed and image handling are lessened as the 

technology for more powerful and faster computers becomes available. 

The similar morphologies of veliger larvae make them less amenable to 

traditional identification methods using size features and black-and-white images 

(Hendriks et al. 2005), but color images of larvae under polarized light show distinct 

birefringence patterns (Tiwari and Gallager 2003a,b). Once a larva begins shell 

formation, each species uses a specific protein matrix to control the orientation of the 

aragonite crystals forming the shell. Mineralization continues throughout the larval phase 

as the shell changes shape. The orientation of the crystals creates color patterns under 

polarized light in combination with a full wavelength retardation filter. These color-

patterns are species-specific and can be used as features for machine identification 
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(Tiwari and Gallager 2003a, b). This method can be applied to images of larvae from 

preserved samples as well as larvae optically sampled in the field using polarized light. In 

addition, since only color patterns are used as features, polarization techniques are 

insensitive to shell orientation, size and morphology (Tiwari and Gallager 2003a, b), 

eliminating many of the ambiguities involved in differentiating bivalve larvae. 

Here we present an application of the polarization technology to larval bivalves 

from field-collected samples. Field larvae may grow at different rates and thus appear 

different than larvae from hatcheries and represent a larger number of species than can be 

featured in a reference set of larvae from monocultures. Using a reference set that doesn‟t 

accurately represent the sample composition could create misclassifications, particularly 

false-positives. We first compared classification data from training sets of four hatchery-

reared species using shells with tissue (“raw,” as seen in the field) and bleached shells not 

containing tissue (“clean,” as used for the original classifications, see Tiwari and Gallager 

2003a,b). We then optimized this method for the number of training set images to 

include, thus minimizing computing power and manual sorting time. 

To test the ability of our method to identify field larvae, we applied a few ground-

truthing methods. We employed DNA identification methods using multiplex PCR (Hare 

et al. 2000) and genetic database searches on a subset of control hatchery and wild field 

larvae. This was to ensure identification accuracy as well as compare our method to other 

available methods for bivalve larval identification. Then, from a set of weekly field 

samples taken from Waquoit Bay, MA over a six-month period, common bivalve species 
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were sorted manually using keys (Chanley and Andrews 1971) and used to set up training 

sets based only on field larvae. 

By using training sets specific for larvae from a Cape Cod estuary, we can 

generate species-specific data to better address questions related to larval transport, 

dispersal, and survival (Garland 2000). Because this method allows for training on any 

number of species for which one has known image sets, it can be extremely versatile. The 

polarization techinque is relatively inexpensive (only a computer and a polarization 

microscope are required) and has the potential to be used alongside a real-time optical 

sampling system (Gallager et al., submitted). Automated sampling capabilities complied 

with the polarization technique would allow for even greater spatial and temporal 

sampling than could be accomplished by any published larval identification method to 

date.     

2.2   MATERIALS AND PROCEDURES 

  

The approach for our image processing and sampling technique requires six key 

steps (Fig. 2.1a): (1) sample collection for field and hatchery reference larvae, (2) image 

acquisition using a polarization microscope, (3) image pre-processing to remove 

background image “noise”, (4) image sorting to create “training sets” (reference sets of 

images of known species used to train the software classifier), (5) training set feature 

extraction and cross-validation, (6) classification of unknown images using a support 

vector machine (SVM). For the following sections, a reference to “computer” 

identifications refer to the results of the classification software, and “manual” 

identifications are the identifications from manually sorting images. 
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2.2.1   Sample Collection. Reference larvae were spawned from two Cape Cod 

aquaculture facilities between 2007 and 2010 and preserved in 80% ethanol. Larvae of 

four commercially important species, Argopecten irradians (bay scallop), Crassostrea 

virginica (eastern oyster), Mercenaria mercenaria (quahog), and Mya arenaria (soft-

shell clam), were sampled from cultures every 1-2 days after spawning (Table 2.1). We 

tested classification accuracy between larval stages, as we have observed that 

birefringence patterns change with larval growth. As the original work using this method 

was performed on larvae where the tissue had been bleached from the shell (Tiwari and 

Gallager 2003a), a subset of larvae was soaked in a 10% bleach solution for 24 hours 

followed by rinsing with distilled water to create a reference set of larvae with tissue 

removed.  

 For our field collections, plankton samples were collected from Waquoit Bay, a 

National Estuarine Research Reserve site, on the south shore of Cape Cod, MA. Samples 

were taken at four locations throughout the estuary on a weekly basis from May – 

October 2009. Volumes of 100-200 L were collected in a 53 μm screen and preserved in 

4% buffered formalin. Samples were processed by counting total bivalve larvae using a 

dissecting microscope. A more detailed description of the field sampling protocol is 

described in Chapter 3. 

2.2.2   Image Acquisition. All images were taken using a Moticam 1000 4 

megapixel camera mounted on a Zeiss IM 35 compound microscope fitted with a 

polarization filter and full wave compensation plate to make cross-polarized images (see 

Fig. 2.2 for optical path setup). A 12V 100W halogen bulb was used as light source. We 
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used Motic Images Plus (version 2.0; Motic China Group, Ltd.) to capture images with 

the color and exposure settings for the image capture window set to match the appearance 

of the larvae under the microscope. For the hatchery samples, 100 images of larvae were 

taken from each sample to total over 3000 images representing different larval stages 

(Table 2.1, Fig. 2.1b). For the field samples, 100 images of larvae were taken from each 

sample resulting in a field set of over 7,000 images. All larvae were imaged on a glass 

slide with coverslip in distilled water.  

2.2.3   Image Pre-Processing. Before images could be run through the 

classification software, we had to complete pre-processing steps to segment the larva, or 

region of interest (ROI), from its background. All image analysis routines were run with 

the MATLAB software package (version R2009a; Mathworks, Inc.) and its Image 

Processing Toolbox (version 6.3; Mathworks, Inc.). Pre-processing was done through an 

automated Canny edge routine to detect the shell‟s edges, set them against a black 

background, and crop the image to the area of interest. In a few cases where this routine 

failed (i.e. too much background or overlapping shapes with the larvae), the pre-

processing was performed using a manual ROI masking routine in MATLAB.  

2.2.4   Image Sorting. We set up training sets from both the hatchery (known) 

and field (unknown) images for comparison. We used field identification guides of 

Chanley and Andrews 1971 and Loosanoff et al. 1966 for morphology and size criteria to 

manually sort unknown images from field samples into training sets. Molecular analysis 

for some of these species, as explained later, provided further verification of our 

identifications. We sorted all of the field images into a total of 14 different species 
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categories plus an “other” category. For the six species that were most abundant, we 

created training sets of 250, and 400-500 images per species by randomly selecting 

manually classified larvae. We created a second training set containing 250 images for 

each of nine species. Images from the hatchery were manually sorted to ensure each 

training set had equal representation from all size-classes, and then images were 

randomly sorted into different sized training sets.  

2.2.5   Feature Extraction and Cross-Validation: Training sets. Each image 

from our training sets was run through feature extraction software and classification 

accuracy was evaluated by using a leave-one-out cross-validation method (LOO). 

Training was done with an established set of images representing the groups of interest 

(termed “supervised” learning). In feature extraction, the computer software calculates 

the specific features from an image in a mathematical context and stores each feature in 

an n-dimenstional space, where n corresponds to the number of features extracted.  

We used MATLAB to calculate both Gabor and color-angle features to represent 

the texture and color features of each polarized image. Gabor Fast-Fourier Transform 

data was generated from the spatial domain of Gabor wavelets from a number of scales 

and rotations of the original image using parameters as described in Tiwari and Gallager 

2003b. Rotation and size invariant red, green, and blue Gabor features were calculated 

from the magnitudes of Discrete Fourier Transforms of the Gabor feature matrix. The 

total feature set consisted of 4 scales and 90 orientations for three RGB (Red, Green, 

Blue) color channels to achieve a 1080 dimensional feature space. Color edge and 

distribution angles were calculated from HSV (Hue, Saturation, and Value) components 
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of the image as defined in Tiwari and Gallager 2003b and converted to true angles. Nine 

invariants of the color image matrix were included in the feature space. Extracted feature 

data were represented as Principal Component Analysis (PCA) scores for both the Gabor 

and color statistic matrices for each image. The 25 most significant eigenvectors from the 

PCA on the Gabor features and all the color statistics were used for the classifications.           

Next, a statistical classifier (the SVM) sorted the vectorized feature data and 

mapped it to an n-dimensional space based on the number of features. For training sets, 

each region in this n-dimensional space corresponded to a different taxa based on the 

features, creating a boundary for future decisions. We used an SVM with a Gaussian 

Radial Basis Function (RBF) Kernel of γ = 2 and regularization parameter C = 70. A 

standard LOO cross-validation method using the SVM  output was then run on every 

image in the training set to ensure that it was set up to classify unknown images 

accurately (Fukunaga and Hummels 1989). The LOO method iterates through each image 

in the training set, and trains the SVM classifier with every image except the current 

image, and uses those boundaries to make the decision to classify the left-out image. The 

leave-one-out method assigns an accuracy based on which training images fall into which 

categories and how many fall into an “unknown” category. While this is absolute for the 

hatchery training sets, the accuracy for the manually classified training sets varies 

because of human classification error, and for the purposes of this paper is reported as 

“agreement.” 

2.2.6   Classification: Unknown Images. Once the training set has been created and evaluated 

for accuracy, the next step is to use it to classify unknown images from the sample set. The 
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process works by loading images from samples (so in the case of the field samples, the 

software will load the 100 images in each sample) and extracting the same Gabor texture, 

shape, and color features as the labeled training images.  

The feature sets from each training image are then used to train the SVM 

classifier. We combined an SMO (Sequential Minimal Optimization) training algorithm 

and a DAG-SVM (Directed Acyclic Graph-Support Vector Machine) algorithm to form a 

multi-class neural network for a one-to-one SVM classifier. Only the most influential 

features from the training set vectors were used to train the classifier. The feature vectors 

from each unknown image are then run through the support vector machine to make a 

classification. Each image from the training set is also classified during this process using 

the support vectors created for the classifications to test the accuracy of the particular 

classifier.     

2.3   ASSESSMENT 

 To assess the performance, accuracy, and versatility of our image analysis 

method, we performed three categories of assessment tests: hatchery training sets to 

optimize conditions for training set creation; a PCR-based method to verify 

identifications of field larvae and to compare identification results with our computer 

classifier; and a field application using a manually classified training set to identify 

species from a time series of larval samples. Finally, computer-classified data is 

compared to manually classified data for the field image set.  

2.3.1   Optimizing Training Sets. We performed several iterations of training 

and LOO cross-validation using the hatchery training set as a model for how our method 
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works under ideal conditions. This is because the larval species were known, larvae were 

grown under equal and ideal food and light conditions at both facilities, and the images 

contain equal representation of all age classes and thus morphological features of the 

larvae. 

The original work for this method was performed on cleaned images with tissues 

removed (Tiwari and Gallager 2003a,b). We wanted to compare the accuracy of training 

sets of larvae with tissue present to cleaned images. Since larvae collected from the field 

originally contain tissue, by not bleaching larvae we can eliminate a pre-processing step 

as well as enable in-situ image collection or molecular analysis. We extracted training 

features from 3,256 labeled raw images and 2,993 labeled bleached images from the 

hatchery image sets (Table 2.1) and classified the images using the LOO method. 

Classification data from the LOO method is presented as a confusion matrix (Table 2.2). 

The overall accuracies for both raw and bleached training sets were similar and very high 

(99%), with those of the raw images only being slightly lower than the bleached images. 

Species-specific accuracies varied from 97-99% which confirms that these four species 

are easily distinguished by the classifier. Thus, we determined using uncleaned shells has 

no effect on classification accuracy.  

The second optimization procedure we performed with the hatchery data sets was 

to compare the LOO accuracies using different sized training sets. This was to determine 

the approximate number of images necessary to maximize performance and minimize 

computing power and sorting or acquisition time. We calculated classification accuracy 

from randomly selected hatchery images of all sizes sorted into groups of 100, 200, 300 
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and 500 images for each species (Fig. 2.3a). Accuracies increased slightly overall and for 

each species as training set size increased, but even at the smallest sample size of 100 

images/species, accuracies only decreased by 1-2%. This suggests that this method is 

robust for even small numbers of images for each category, provided that the training 

images are classified without error (as they were for this training set).   

 A third element we tested was classifier performance on different age classes of 

larvae because each training set contains combinations of images representing different 

larval stages. We looked at classification accuracies for larvae that were 2, 5 and 7 days 

old as part of the 500 images per species training set that was evaluated using the LOO 

technique. Accuracies were highest for the seven day old larvae and lowest for the five 

day old larvae, but overall accuracies were high between 97-99% (Fig. 2.3b). Accuracies 

were between 93-100% for individual species at each age group. Thus, the classifier is 

consistent at identifying species throughout their development regardless of shell size.  

 Finally, to test our classification method on “unknown” images, we trained the 

classifier with 250 images from each species category of the 500 image/species training 

set, and used the remaining images as “unknown” larvae to be classified. This method has 

been referred to as the holdout method (Fukunaga and Hummels 1989) and provides the 

most stringent estimate of classifier accuracy. The classification accuracies for these 

“unknown” images ranged from 96.8-100% for each age group (Table 2.3), thus 

demonstrating strong performance of the classifier on known hatchery images.  

2.3.2   Comparison with Molecular Method. In order to achieve higher 

accuracy with our manual identifications of field larvae and to compare our image-
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processing method to an independent method of larval identification, we used a multiplex 

PCR method targeted to identify five species of bivalves from field samples (Hare et al. 

2000). Species targeted were M. mercenaria, A. irradians, M. arenaria, Mulinia lateralis 

(little surf clam), and Spisula solidissima (surf clam). Live (unpreserved) plankton 

samples were collected from Waquoit Bay on three dates in June and July 2008 and five 

dates from May-September 2009. Individual larvae were isolated and placed into separate 

wells in 1.5 mL 24-well glass-bottom plates to culture in the laboratory. A total of 24 

larvae were isolated from three sites in 2008 and four sites in 2009. Every three days 

larvae were fed Isochrysis galbana strain T-ISO at a concentration of 5 x 10
4
 cells/mL 

and imaged live on the polarization microscope. This resulted in a series of images for 

each larva depicting morphological changes over 12 days (our expected time to 

metamorphosis for most species). All larvae that survived were washed into 8 mL vials 

and preserved in 70% ethanol for molecular analysis.  

In the molecular analysis, DNA was extracted from the ethanol-preserved larvae 

and used in multiplex polymerase chain reaction (PCR) assays containing five species-

specific primer pairs mapping to the cytochrome oxidase I (CO1) gene and a universal 

18S-rRNA primer pair as a positive control. Each primer pair amplified a different length 

DNA fragment. Specific details of primer design, larval DNA extraction and PCR assays 

can be found in Hare et al. (2000). Only reactions prepared from a master mix for which 

no amplification products appeared in the negative (no DNA) control reaction were used 

for comparison with images. A total of 31 larvae from 2008 and 50 larvae from 2009 

were analyzed, for a combined total of 81 larvae and 355 images from each larva‟s 
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growth period (Table 2.4). As a control for the multiplex PCR, 20 hatchery larvae of A. 

irradians, M. mercenaria, and M. arenaria were both amplified and imaged. These 

results were later used to compare true accuracies of the PCR and image analysis 

methods. 

About half of the field PCR samples only amplified at the 18S locus, and those 

reactions were re-amplified with only the 18S primers using the same PCR parameters 

from the multiplex reactions. Sequencing this 430 base-pair band provided a way to 

identify field larvae that were not targeted by multiplex CO1 primers, as it can be 

diagnostic for some bivalve families and genera (Bell and Grassle 1998). Successful PCR 

products from the 18S re-amplification were purified using the QIAquick PCR 

Purification kit (Qiagen) and used in one-eighth format sequencing reactions in 96-well 

plates using Big Dye terminators (version 3, Perkin-Elmer). Samples were purified by 

isopropanol precipitation and sequenced bi-directionally on an ABI 3700 Capillary 

Sequencer. Sequences were edited in Sequencher 4.8 (Gene Codes Corporation Inc.) and 

compared to the GenBank universal database for species identification using BLAST 

searches (National Center for Biotechnology Information database). A few sequences that 

did not match with species located in the Cape Cod region were assumed to be from 

species not represented in GenBank and left out of further analysis.    

To verify that our 18S DNA sequence identifications from the BLAST searches 

correctly corresponded to known Cape Cod species, we extracted DNA from five adult 

bivalve species to compare with our larval sequences. Adult DNA from the ribbed mussel 

Geukensia demissa, clams M. mercenaria , M. arenaria, and Spisula solidissima, and 
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oyster C. virginica were extracted from adult muscle tissue using the QIAquick DNeasy 

Blood and Tissue kit (Qiagen) following manufacturers protocols. We amplified the 18S 

region using only the universal 18S primers and same PCR parameters as previously 

described. We aligned the adult and larval sequences using ClustalX v. 1.83, viewed and 

edited them by eye using McClade 4.06 (Maddison and Maddison 2000), and trimmed 

our alignments to a 301 bp region of uniformly high quality data. We used the Kimura 

two parameter (K2P) distance model (Kimura 1980) to calculate nucleotide sequence 

divergences between larval and adult sequences. We then employed a neighbor-joining 

analysis based on sequence divergence in MEGA4 (Tamura et al. 2007) using a 

bootstrap/jackknife procedure of 1000 replicates using C. virginica as the outgroup. We 

found that all larvae that were classified as G. demissa, M. mercenaria, or S. solidissima 

in GenBank also had 0 sequence divergences with the 18S sequence obtained for these 

species. The other two species had 18S sequences that were at least 3% divergent from 

the most similar larval sequences, indicating that these species were not represented 

among the collected larvae. Based on the sequence divergence for different bivalve 

families for this region of the gene (Bell and Grassle 1998), we can conclude that these 

identifications using the 18S rRNA are accurate and any disagreement between the image 

and the sequence identification would thus be a result of human misclassification or error 

in sample preparation.  

In order to estimate an error rate for the PCR multiplex method, we used 60 

control larvae from the hatcheries in the assay (Table 2.5). No false positives (the case of 

a wrong CO1 band amplification) were reported for these assays, but 15-35% of the 
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samples were false negatives (the case of an 18S band, but no CO1 band when it was 

expected). This indicates that the multiplex method itself is not always informative for 

species-specific identifications based on CO1 results, but accurate when it is informative. 

No follow-up 18S data were collected for these samples. We then compared the 

identifications of the PCR and computer image analysis for these control larvae. We ran 

our larval classifier using a training set for A. irradians, M. mercenaria, and M. arenaria 

on the 60 images of larvae on which we performed PCR. Total PCR accuracies were 

between 65-85% (described above) compared to computer accuracies of 80-90% (Table 

2.5). Combining the positive CO1 results to correct image classifications showed a 69-

93% agreement between the two methods.  

Computer accuracies for these images were lower than those previously reported 

for the hatchery larvae probably because we used a different three-species training set of 

hatchery species that only comprised about 60-80 images per species. The higher number 

of errors observed in the PCR method are due to the many false negatives in the PCR 

assays. This was also seen for field samples of both M. mercenaria and S. solidissima. In 

these field samples there was no species-specific CO1 amplification, but the 18S 

sequencing confirmed the identification. Had we not done this extra step, it would have 

been classified as a false-negative. Thus, even a DNA-based classification approach can 

have error, which may be a result of poor quality DNA from preserved field samples 

(Larsen et al. 2005). Our control results indicate that errors of up to 30% could be 

expected when comparing unknown PCR identified larval images to image classification 

results as described below.           
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In order to compare the unknown larvae from the field identified using PCR to the 

computer classification method, we created a new training set featuring species abundant 

in the field image set. G. demissia was added to the training set since we were able to 

create positive image identifications from BLAST matches to larval 18S sequences. To 

ensure adequate representation for the training set, we added 400 manually sorted images 

of G. demissa that were independent of the PCR images. We did not have enough 

representation of field-collected S. solidissima in our molecular data to include these 

images as a training set. Our new hybrid training set included 500 manually sorted G. 

demissa images, 250 hatchery training set images of M. mercenaria and M. arenaria, and 

250 manually sorted and genetically verified field images of those two species. We did 

not classify any images based on PCR results indicating unknown or other species in 

order to minimize error. For G. demissa and M. arenaria, 81% and 84%, respectively, of 

the larval images that had been verified with PCR agreed with the computer 

classifications (Table 2.6). These values are within the range of the errors from the 

control assessment with hatchery larvae. There was only 55% agreement between 

molecular identified and computer classified larvae for M. mercenaria, which was lower 

than what was expected based on the control results. It seemed as if the PCR was 

amplifying a false-positive band with G. demissa larvae, which was later verified on adult 

G. demissa showing amplification of a fragment at the M. mercenaria CO1 size range in 

multiplex PCR. It may be that the M. mercenaria CO1 primers are not species-specific 

with respect to G. demissa, a non-target species never tested in the original method 

development (Hare et al. 2000). Overall, the molecular method enabled us to get positive 
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identifications on field larvae from several species that had corresponding images 

throughout the larval period. This helped us reduce classification error for our manually 

sorted field training sets. 

 2.3.3   Field Application. The final assessment and proof of concept was testing 

classifier performance on an unknown field sample set compared with manually-

classified training sets made from the field images. Our manual training sets consisted of 

species that were most common in the field samples. Of the species in our hatchery 

training set, only M. arenaria and M. mercenaria were present in large quantities in our 

field images, and A. irradians and C. virginica composed only about 2% of the total 

images. Initial classifications of field images using the hatchery training set only 

classified larvae as A. irradians or M. mercenaria. Thus, we determined the hatchery 

training set would not be an accurate representation of the larvae in our samples and 

would lead to a disproportionate amount of false positive results. We expected the 

classification accuracies of the manual training set to be lower than our hatchery training 

set because 1) these images were manually sorted and thus subject to human error and 

bias, 2) the quality and appearance of field-preserved larvae in images is slightly less than 

those from the hatcheries because of fungal and other particulate matter that sometimes 

clouded the image of the shell, and 3) not all growth stages would be equally represented 

due to the higher larval mortalities seen in field conditions.  

To first test our accuracies for manual classification using known hatchery larvae, 

we had an inexperienced assistant sort four groups of 100 images representing random 

assortments of all ages of the four hatchery species. These images were then randomized 
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for each group and renamed with generic filenames to make a double-blind test. Each 

group was then manually re-classified for the four species. Results for the human 

classifications produced accuracies ranging from 85-100% for each species (Table 2.7). 

Culverhouse et al. (2003) showed that human performance in classifying phytoplankton 

images can vary between 67-83%, which alone could introduce substantial variability 

into a manually-classified training set. Sorting accuracies were highest for species like C. 

virginica that have distinct morphologies. Our calculated accuracies represent a minimum 

estimate for human sorting error as we only performed this test on four species.   

 We compared the agreements of the computer classifier on manually sorted 

training sets with field larvae from six and nine species and compared sizes of 500 and 

250 images per species on six species. Identifications were based on the morphological 

and molecular criteria described previously. Any groups we could not identify with 

certainty were left out of the training sets, as these showed poor LOO results in initial 

tests. Agreement of field larvae with manual classifications was lower than the hatchery 

and live field sorted training sets, likely due to the error in human sorting. Sorting field 

images present more challenges as field samples contain mostly smaller, straight-hinged 

veligers. Not only are these more difficult to classify, but they could also bias the 

classifier by overtraining it with smaller larvae.    

For the six-category training set (Table 2.8), agreements were highest for the 500 

images per species training set, being above 60% for all species, with a total agreement of 

74.7%. This demonstrates that manually sorted images are more sensitive to training set 

size than our hatchery training set, with agreements improving by as much as 11% from 
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250 images to 500. The additional three species were not present in quantities greater 

than 250, thus this became our limit for image composition for this training set. For the 

nine-category training set, accuracies were lower compared to the six-category training 

set (Table 2.9). Total accuracy was 66%, but accuracies below 60% were observed for 

four species, including M. arenaria and M. mercenaria. By adding more species to this 

training set, we increased the chances for misclassification into another species category 

by about 10%. In general, classification accuracy increases with increasing number of 

training images, but can decrease as the number of categories increases. This result has 

been demonstrated in other image processing methods (Davis et al. 2004, Grosjean et al. 

2004). Increasing the number of categories in our training sets can make identifications 

more difficult as the decision boundaries between species categories are more likely to 

overlap.           

We used both six and nine species training sets to classify all images from one 

sampling site in the middle of Waquoit Bay. We present results for two species with high 

classification accuracies (Anomia simplex, the jingle clam and G. demissa), and two 

species with lower accuracies (M. arenaria and M. mercenaria) as the number of 

individuals identified for each sample plotted as a time-series (Fig. 2.4). We compared 

our manual classification results to the classification results of the two training sets. The 

time-series for A. simplex and G. demissa show strong correspondence (Fig. 2.4a, b) for 

both training sets, capturing the trends of the time-series. For M. arenaria and M. 

mercenaria, correspondence was less. The nine-species training set underestimated M. 

arenaria abundance in the beginning and end of the time-series, and the six-species 



63 

 

training set overestimated M. arenaria abundance (Fig. 2.4c). For M. mercenaria, the six-

species training set overestimated its abundance for most of the time-series (Fig. 2.4d), 

but the nine-species training set tracked the manual time-series closely despite having a 

lower LOO agreement for M. mercenaria. Evaluating the graphs alone, it appeared that 

the six-category training set fit all species better with the exception of M. mercenaria.   

Although our time-series showed agreement between our manually sorted larvae 

and the computer-classified larvae for the two training sets, the next step was to see how 

many of these images were classified as true positives (images classified correctly by 

both human and computer). For the six and nine category training sets (Tables 2.10, 

2.11), the manually and computer classified images for each species were compared. The 

six-category training set had the best agreement with 74% true positives. The nine-

category training set only had about 50% agreement between manually and computer 

classified images.  

The largest contributions to the differences seen for the six-category training set 

were in the classifications for the “other” category. Only 5% of images that were 

manually classified as “other” species were also classified this way by the computer. 

Instead, the computer classified most of these “other” species into one of the six 

categories, which were mostly those species with LOO agreements below 70%. This was 

particularly true for M. mercenaria and led to an overestimation of abundance by as 

much as 40% (Fig. 2.4c). The nine-category field training set also showed poor 

correspondence between the “other” category, but many differences observed for this 

training set also involved misclassifications between species categories. Thus, despite 
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showing a better fit to the M. mercenaria time series, the nine-category training 

misclassified “other” co-occurring species. Frequent misclassifications between species, 

such as between M. mercenaria and M. arenaria, could also be a result of human error 

that the computer classifications might have corrected. Attempts to morphologically 

identify M. mercenaria from field studies in Long Island showed a 100% disagreement 

with molecularly confirmed larvae, and this was attributed to the presence of many 

similar species (Perino et al. 2008). As size differences between the two species was used 

as a main factor to make manual classifications, different growth rates in the field could 

hinder identifications by size criteria. Thus it is important to recognize that both methods 

are subject to error and agreement cannot be absolute.   

2.3.4   Improving Classifier Performance. Based on the accuracies observed in 

our LOO results, time series plots, and true positive rates, we concluded that the six-

species training set was the best estimate for the field image set. We can view the 

performance of the classifier for both training sets based on the occurrence of false 

positives compared to true positives if we assumed that manually classified larvae 

represent the true positives and negatives for each species, referred to as a receiver 

operating characteristic or ROC (Fawcett 2006). In ROC space, we can confirm that the 

six-species training set had the best classification results overall, despite having higher 

false positive rates.       

 However, the issue of overestimation and misclassification remains for some 

species in the six-species training set. Our manual counts are subject to error and are not 

representative of the perfect standard as necessary to stringently evaluate classifier 
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performance. To allow for better correspondence, we explored methods to improve 

performance of our six category training set. Adding morphological features such as shell 

aspect ratio resulted in worse performance. A bootstrap method on the data also did not 

show better agreement for most species (Solow et al. 2001). Davis et al. 2004 found that 

adding an “Other” category to the training set as well as a manual correction method 

improved classification agreement with manually sorted images. Both of these methods 

greatly improved our time series correspondences (Fig. 2.6). We added 320 images of a 

randomly chosen subset of larvae exclusive of our target species into a new “other” 

category as a seventh category for the training set. Despite only a 25% classifier 

agreement for this category, it eliminated up to 14% of false positive classifications, 

decreasing this percentage by 10% for M. mercenaria with only a slight decrease (1-7%) 

in species classification agreement.  

The greatest improvement was seen by manually removing outliers from the 

original classification results. Since the computer software does not use size or shape as a 

distinguishing feature, many false-positive images have distinct morphologies from the 

target species and can be removed manually. This correction procedure works well 

because morphology (i.e. size, shape of umbo) is a much better criterion for excluding 

non-target species than it is for positively identifying a species (Perino et al. 2008). All 

larvae that were removed manually were not re-sorted into other categories. This method 

correspondence the greatest, by up to 25% for M. mercenaria, with no effect on overall 

classifier performance.  



66 

 

 The Bland-Altman method compares agreement between two methods of 

measurement subject to error (Bland and Altman 1986) by comparing the residuals of 

both estimates as a function of estimate size. We used this method to depict the 

relationship between the improved methods and the manual counts. Plots of residuals 

show the relationship between the mean of both estimates and the difference observed for 

each sample (Figs. 2.8 and 2.9). A perfect correspondence would be equal to zero. Mean 

differences between estimates were decreased from the original training set, and most 

samples fell within 95% confidence limits for estimates. Confidence limits were widest 

for M. arenaria for both correction methods, indicating that this species has the largest 

difference in estimates between the methods. G. demissa had the least improvement with 

both methods, although it already had a strong correspondence with the original training 

set (Fig. 2.6b). Correspondence with M. mercenaria was improved in both methods, but 

overestimations were smallest for the manually corrected method (Fig. 2.6d). Thus, we 

concluded that although the original six-species training set was sufficient to depict 

trends in larval abundance, by adding simple classification improvement methods we 

achieved stronger agreement of classified images with manually sorted images.     

2.4   DISCUSSION  

 The goal of this work was to develop an image-processing technique using shell 

birefringence patterns to distinguish species of bivalve larvae into a reproducible method 

that can be applied to field studies. The true strength of this method lies in its ability to 

inexpensively handle large amounts of samples in a short amount of time and with high 

accuracy. This method works best when known or genetically-verified larvae are used to 
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create the training sets because any error associated with human misclassification is 

eliminated and true classifier performance for these species ranges from 97-100%. Our 

assessment tests confirmed that our classifier performs well on training sets as small as 

100 images per species and is consistent at indentifying larvae of all ages and 

morphologies. Using training sets created from sorted field images introduces more error 

associated with human classification and quality of field images, but this step may be 

necessary to achieve the best results for field studies. We showed that a few simple 

correction methods can achieve results consistent with human sorting of larval images, 

but with less overall effort.      

When compared to the accuracies of other methods of automated plankton 

identification, these results fall in the middle. For our hatchery training sets, our 

accuracies fall under the high end of image analysis capabilities (with up to 100% 

accuracy for the 500 images per species training sets), but for our field training sets our 

accuracies are lower, but still acceptable (62-88% for the 400-500 images per species 

field training set). The Video Plankton Recorder group found that their plankton 

classification method had higher accuracies for more abundant taxa and lower accuracies 

for rare taxa, with an overall accuracy range of 45-91% (Davis et al. 2004), which was 

later improved with a dual-classification method (Hu and Davis 2006). Plankton 

recognition software for the SIPPER II underwater camera was improved from 77% to 

90% by adding an active-learning approach for training a multiple-class SVM (Lou et al. 

2005). The scanning approached used for the ZOOSCAN system found that accuracy was 

highest for a simplified approach using eight groups and a random-forest classification 
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method (83.9%), and when the training sets were grouped into 29 categories, accuracy 

declined to 73.4%. They were able to improve total accuracy to between 80-85% after 

manually reclassifying “suspect” images identified by the computer (Grosjean et al. 

2004). Phytoplankton are traditionally difficult to identify, but automated classification 

for the in-situ imaging flow cytometer, FlowCytobot, achieved between 68-99% accuracy 

among 22 categories (Sosik and Olson 2007). The DiCANN machine-learning system for 

dinoflagellates categorized six species with accuracies ranging between 41-100% 

(Culverhouse et al. 2003). Our system has a more limited set of reference images 

available as compared to these methods, as each image had to be manually captured on 

the microscope. In the future, automation of this process may allow for collection of a 

greater number of images and the ability to further increase accuracy through active 

learning and error correction.   

 We compared our image analysis system to a multiplex PCR method. Molecular 

methods are commonly used to identify species for which distinguishing morphological 

features are absent. Because this method is based on DNA, it gave us a higher level of 

certainty for many of our field identifications. However, this method was more time 

consuming and expensive than the image analysis method which limited the number of 

larvae we could test. This illustrates the major drawback of PCR methods with individual 

larvae. Sequencing adult DNA and measuring sequence divergences confirmed our 

identifications of four species, but for some rarer species that are not in GenBank, false 

positive BLAST searches can occur. Although the PCR based method may be more 

accurate, it can only be readily used on small subsets of samples and still has suspected 
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problems with accuracy unless results can be verified by 18S sequencing. Our 7,000 field 

image set was only a subsample of the total field larvae collected, and performing PCR 

on this quantity of larvae would be daunting. Although this method was useful for 

confirming image identifications when sorting field larvae into training sets, it is difficult 

to scale to large numbers of samples.  

 Our proof of concept application involved a series of weekly plankton samples 

taken from Waquoit Bay, MA in the summer of 2009 (Chapter 3). Although these data 

are represented as counts from a standardized subsample of 100 individuals and are not 

representative of true concentrations, we can observe species-specific trends in the 

composition of samples. Further applications for this method could involve relating larval 

supply to juvenile and adult recruitment, re-visiting information from archived samples, 

identifying larvae for genetic analysis for gene frequency patterns, and testing transport 

models with information on species-specific distributions.   

 The polarization method can be easily adapted for use in other geographical areas, 

requiring only a polarization microscope with digital camera, computer with at least 2 GB 

of RAM, and software package for MATLAB. Many molecular-based methods require 

significant start-up for including a new species. Primer or antibody design both require 

significant knowledge, data collection, cost, and time to perform. Ideally, our image-

analysis method involves imaging a collection of hatchery reared larvae, but if this is not 

possible, a field-identified training set can suffice, albeit with lower classification 

accuracies. This method could potentially be applied to bivalve larval samples from any 

location where they could be imaged using polarization. Although we have not tested this 
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method on bivalve larvae from areas outside of Cape Cod, the characteristics of shell 

mineralization for all bivalves are species-specific (Gallager et al. 1988), and thus the 

method should be adaptable. We have yet to analyze birefringence patterns for closely 

related species (i.e. the same genus), but previous comparison of the bay scallop, A. 

irradians, and sea scallop, Placopecten magellanicus showed distinctive shell 

birefringence patterns (Tiwari and Gallager 2003a). 

Overall, we conclude that a minor sacrifice to accuracy biased by human sorting 

is worth the ability to handle a large amount of field samples. Automation of image 

collection is currently being established and will enable even larger spatial and temporal 

coverage. By focusing on species the computer can classify most accurately, better results 

and information on species-specific abundances can be estimated. Machine learning has 

the potential to revolutionize plankton sampling by eliminating time-consuming sample 

processing. Currently, few species-specific field studies of bivalve larvae exist, which 

limits our understanding of their larval ecology compared to other larval groups. The 

ability to estimate species-specific abundance from studies with large spatial and 

temporal coverages in relatively short time periods will greatly increase our 

understanding of bivalve larvae abundance, distribution and transport, and how species 

might be responding to climate change. This will have lasting implications in the fields of 

larval ecology, biological-physical processes, and shellfish restoration and management.     

2.5   COMMENTS AND RECOMMENDATIONS 

Our state-of-the-art method presents a good and cost-effective alternative for 

bivalve larval species identification. Our image processing technique compares well with 
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other methods for bivalve larval identification and other image analysis techniques for 

plankton. The next step for this method is to integrate it into an automated image 

collection and analysis routine. The Larval Identification and Hydrographic Data 

Telemetry system (or LIHDAT) has been developed and implemented in two laboratory 

settings for analysis of bivalve larvae from plankton samples (Gallager et al. 2005, 

submitted). The ultimate goal of this system is to make it continuous and field-

operational. This machine would make this method more comparable to the other 

automated image processing methods. In addition, it would enable us to create more 

accurate training sets from larger sets of field images as well as standardize 

identifications with known images we can run through the system. 

 We found two main drawbacks to our image processing method. First it is 

unknown how much variability is present in shell polarization patterns. Microscope 

settings may affect these patterns which could affect the performance of the classifier if 

they are not kept standard. Because our image collections spanned several months to 

years, we suspect that slight variations of the microscope settings over time may affect 

polarization patterns. Our trials showed that training sets of images cannot be used to 

classify images taken at different microscope settings unless those images are also 

represented in a training set. It is also unknown how variable polarization patterns are 

between and among species. Furthermore, laboratory studies of ocean acidification on 

larval bivalves have shown an effect on shell formation in larval scallops (D. McCorkle, 

pers. comm.), and as increased CO2 lowers the pH in coastal waters, this could affect 
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shell birefringence patterns, although this has not been shown to impact aragonite crystal 

rotation (see Gallager et al 1988). 

The second issue with this method is that training sets must accurately represent 

the species composition of the sample set, or many false-positive classifications will 

occur. Based on our results, training sets should be composed of more abundant species 

that together represent at least 50% of the entire sample composition. Samples that 

contain large numbers of different species may be difficult to use due to the reduced 

classifier performance on many categories. If species composition of the field samples is 

not known a priori, it may be difficult to set up a training set using known, hatchery-

reared species. Because field larvae can be difficult to sort due to multiple species with 

similar morphologies, this can add more error to human classification which is then 

reflected in classifier performance. 

Although one cannot entirely eradicate human error when manually sorting, we 

recommend that further applications of this method take careful examination of species 

composition of each sample to create a training set that accurately represents the sample. 

If keys or cultured individuals are not available, genetic information can provide a decent 

background for some species identifications. If a known training set cannot be established 

to accurately represent field larvae, we recommend the following protocol when creating 

a field-training set: 

(1) Classify 1,000 randomly selected images to the most accurate number of species 

categories (based on genetics and key information, or preferably cultured 

individuals). 
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(2) Evaluate which species are most abundant based on these categories (at least 50% 

of the entire sample). 

(3) From the rest of the images (leaving out the ones that were classified), create 

training sets starting at 100 images per category representing different sizes and 

morphologies of the species. 

(4) Evaluate accuracy using these training sets to classify the manually sorted images. 

Compare to the manual sorted images and adjust species categories and/or 

number of images per category until the best agreement is reached. 

(5) Once the training set it optimized, use it to classify all images from the sample 

set. 

For our field image classifications, we found it was necessary to employ error 

correction techniques to achieve better correspondence with our manual counts. We 

recommend this if initial agreement of both methods shows many false-positives with 

unlabeled images, although this may increase manual-processing efforts. More 

sophisticated methods of dual-classification (Hu and Davis 2006) or active-learning 

approaches for classifiers (Lou et al. 2005) may help with misclassifications between 

species categories, but we did not employ these methods here. We found that our 

correction methods provided sufficient agreement to our manual counts when considering 

the error present in both methods.  

 This method has been applied to a field transport study of bivalve larvae on Cape 

Cod (Chapter 4), but it is ready to be applied to studies in other environments. Our image 

analysis method can be applied from both manually extracted images (as in this study) or 
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from optically sampled images from LIHDAT (future studies). The only requirements for 

expanding this method to other environments are a polarization microscope, computer 

and software package, and ability to create a representative training set. 
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Table 2.1   Details of larvae collected from Cape Cod, MA hatcheries for use in creating 

image training sets. Information on hatchery location, age representation, dates collected, 

and total images is presented for each species.  

 

Raw Larvae         

Species Hatchery Location Ages (days) Dates Collected Total Images 

Argopecten 
irradians 

Aquaculture Research 
Corporation, Dennis, MA 2,3,5,7,9 6/21/07 - 6/29/07 500 

Crassostrea 
virginica Eastham, MA 1-5,7,8,10 5/21/07 – 5/30/07 754 
Mercenaria 
mercenaria 

Aquaculture Research 
Corporation, Dennis, MA 1-7 2/8/08 – 2/14/08 685 

Mya arenaria Eastham, MA 2-14 6/25/07 – 7/8/07 1300 

     Clean Larvae         

Species Hatchery Location Ages (days) Dates Collected Total Images 

Argopecten 
irradians 

Aquaculture Research 
Corporation, Dennis, MA 2,3,5,7,9 6/21/07 - 6/29/07 499 

Crassostrea 
virginica Eastham, MA 1-5,7,8 5/21/07 – 5/30/07 699 
Mercenaria 
mercenaria 

Aquaculture Research 
Corporation, Dennis, MA 1-7 2/5/10 – 2/11/10 685 

Mya arenaria Eastham, MA 2,4-10,12-14 6/25/07 – 7/8/07 1095 
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Table 2.2   Confusion matrix and classification accuracies for raw and cleaned shells 

using the leave-one-out (LOO) method. The confusion matrix presents known larvae in 

the rows and computer classified larvae in the columns. Numbers in bold are 

classifications that agreed with the results. Total = total hatchery larvae used in the 

training sets, FP (false positives) = the number of incorrectly identified larvae in the LOO 

method, used to compute the accuracy (percent true positive: 1-FP/Total) in the final 

column. Overall accuracies for the training sets are listed in the last column.  (AI = A. 

irradians, CV = C. virginica, MA = M. arenaria, MM = M. mercenaria, OT = other) 

 

 
Raw Larvae computer classified larvae       

kn
o

w
n

 la
rv

ae
 

 
AI CV MA MM OT Total FP Accuracy 

AI 486 0 12 0 0 499 13 97.39% 
CV 1 746 6 0 0 753 7 99.07% 
MA 3 7 1288 0 1 1299 11 99.15% 
MM 0 1 0 684 0 685 1 99.85% 

      
LOO accuracy: 99.01% 

 
Clean Larvae computer classified larvae       

kn
o

w
n

 la
rv

ae
 

 
AI CV MA MM OT Total FP Accuracy 

AI 491 0 7 0 0 498 7 98.59% 
CV 1 693 4 0 0 698 5 99.28% 

MA 2 1 1091 0 1 1095 4 99.63% 
MM 0 0 0 700 0 700 0 100.00% 

      
LOO accuracy: 99.47% 
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Table 2.3   Classification results for 250 images of each hatchery species. Classifier was 

trained with 250 independent images for each species. Total hatchery larvae sum up in 

the rows, computer classification results sum in the columns. See Table 2 for detailed 

description of confusion matrix. (FP = false positive, Accuracy = 1- FP/Total, AI = A. 

irradians, CV = C. virginica, MA = M. arenaria, MM = M. mercenaria, OT = other) 

 

h
at

ch
er

y 
la

rv
ae

 

 
computer identifications 

  
 

AI CV MA MM OT Total FP Accuracy 

AI 243 2 1 0 3 250 6 97.60% 

CV 0 242 7 0 1 250 8 96.80% 
MA 3 3 242 1 1 250 8 96.80% 

MM 0 0 0 250 0 250 0 100.00% 

 
Total 246 247 250 251 5 1000 22 97.80% 

 

 

Table 2.4   Multiplex PCR and 18S sequencing identifications for larvae from live field 

samples of 2008 and 2009. Eighty-one larvae were used in this analysis, corresponding to 

360 images. About half of the samples were re-amplified for 18S sequencing. Total 

identified from the multiplex and sequencing are shown in the bottom rows. 

 

  Samples Images Samples Images 

 
2008 2009 2008 2009 Totals Totals 

Guekensia demissa 4 22 19 92 26 111 
Macoma balthica 1 0 5 0 1 5 

Mercenaria mercenaria 22 1 87 5 23 92 
Mya arenaria 3 23 14 114 26 128 
Petricola pholadiformis 0 1 0 5 1 5 
Spisula solidissima 0 4 0 20 4 20 

CO1 Multiplex 20 23 82 113 43 195 

18S Sequencing 11 27 43 122 38 165 

Total amplified 31 50 125 235 81 360 
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Table 2.5   Molecular and computer identification results for known hatchery larvae used 

to calculate error rate for the two methods. Confusion matrix is shown for known larvae 

identified using the multiplex PCR method and then for those same images subject to 

SVM classification. PCR and computer results are summed up in the columns, known 

results sum up in the rows, and bold numbers indicate agreement between the methods. 

(N = no information, FP = false positive, Accuracy = (1- FP or N)/Total, AI = A. 

irradians, CV = C. virginica, MA = M. arenaria, MM = M. mercenaria, OT = other) 

 
  PCR identifications     

h
at

ch
er

y 
la

rv
ae

 

 
AI MA MM OT N Total Accuracy 

AI 13 0 0 7 7 20 65.00% 

MA 0 17 0 3 3 20 85.00% 

MM 0 0 14 6 6 20 70.00% 

Total PCR 13 17 14 16 16 60 73.33% 

 
  Computer identifications     

h
at

ch
er

y 
la

rv
ae

 

 
AI MA MM OT FP Total Accuracy 

AI 16 0 4 0 4 20 80.00% 
MA 4 16 0 0 4 20 80.00% 
MM 2 0 18 0 2 20 90.00% 

Total Comp 22 16 22 0 10 60 83.33% 
 

Table 2.6   Confusion matrix for the images that were positively identified using the 

molecular methods and then classified using the SVM. See Table 2.5 caption for 

description of confusion matrix. Agreement for each species was calculated by the 

number of image classifications that equaled the PCR identifications divided by the total 

number of PCR-identified images for that species category. (GD = G. demissa, MA = M. 

arenaria, MM = M. mercenaria, OT = other)  

 
computer results 

  

m
u

lt
ip

le
x 

 r
es

u
lt

s 

 
GD MA MM OT Total Agreement 

GD 90 5 15 1 111 81.08% 
MA 12 108 8 0 128 84.38% 
MM 41 0 51 0 92 55.43% 

Total 143 113 74 1 331 
 Total Agreement:     75.23% 
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Table 2.7   Manual classification error for the four hatchery species. Table shows 

combined results from 4 trials of up to 100 unlabled images that were sorted from the 

hatchery image sets and classified manually. Total hatchery larvae sum up in the rows, 

total human-classified larvae sum up in the columns. (FP = false positive, Accuracy = 1- 

FP/Total, AI = A. irradians, CV = C. virginica, MA = M. arenaria, MM = M. 

mercenaria, OT = other) 

 

h
at

ch
er

y 
la

rv
ae

 

 
manual identifications 

   

 
AI CV MA MM OT Total FP Accuracy 

AI 73 1 4 0 0 78 5 93.59% 
CV 0 124 0 0 0 124 0 100.00% 
MA 0 0 91 16 0 107 16 85.05% 
MM 0 0 8 81 0 89 8 91.01% 

 
Total 73 125 103 97 0 398 29 92.71% 

 

 

Table 2.8   Leave-one-out cross validation accuracies for the six-species training set of 

manually classified field images. LOO results are shown for a six-category training set of 

250 and 400-500 images per species category. The number of false images classified (FP) 

and the percent agreement are shown (1 – FP/Total).   

 

Species FP Agreement 

No. images/category 250 500 250 500 

Anadara ovalis 54 112 78.40% 73.71% 
Anomia simplex 44 58 82.40% 88.40% 
Geukensia demissa 45 79 82.00% 84.20% 
Mya arenaira 89 153 64.40% 69.40% 
Macoma balthica 90 152 64.00% 69.60% 
Mercenaria mercenaria 116 186 53.60% 62.80% 

Total 438 740 70.80% 74.71% 
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Table 2.9   Leave-one-out cross validation accuracies for the nine-species training set of 

manually classified field images. LOO results are shown for a nine-category training set 

of 250 images per species category. The numbers of false images classified (FP) and the 

percent agreement are shown (1 – FP/Total).   

Species FP Agreement 

Anadara sp. 79 68.40% 
Anomia simplex 53 78.80% 
Ensis directus* 88 64.80% 
Geukensia demissa 59 76.40% 
Mya arenaira 111 55.60% 

Macoma balthica 104 58.40% 
Mercenaria mercenaria 117 53.20% 
Spisula solidissima 130 48.00% 
Unknown A* 33 86.80% 

Total 774 65.60% 

   Table 2.10   Confusion matrix comparing manual and computer classifications for the 6-

category field training set. Results of the manually classified species are summed up in 

the rows, while results of the computer identifications are summed up in the columns. 

Bold numbers indicate agreement. PA = percent agreement or percentage of how many 

larvae were classified the same by both methods (true positives). Difference = the percent 

difference between computer classified and manually classified larvae. (AO = Anadara 

sp., AS = Anomia simplex, GD = Geukensia demissa, MA = Mya arenaria, MB = 

Macoma balthica,  MM = M. mercenaria, OT = other)  

  
computer classifications 

    

  
AO AS GD MA MB MM OT 

Total 
Man. PA DF 

m
an

u
al

 
cl

as
si

fi
ca

ti
o

n
s 

AO 75 7 27 3 8 5 4 129 58.14% -6.20% 
AS 0 179 0 23 6 6 2 216 82.87% 24.54% 
GD 9 3 113 0 3 4 5 137 82.48% 38.69% 
MA 0 6 0 278 10 82 3 379 73.35% 39.31% 
MB 0 2 4 19 123 55 9 212 58.02% 17.30% 

MM 0 1 1 26 6 202 1 237 85.23% 140.93% 
OT 37 71 45 179 122 217 38 709 5.36% -91.26% 

 

Total 
Comp. 121 269 190 528 278 571 62 

   
 

Total Agreement of Species:          74.05%   

 
Total Agreement including 'Other' Category:   49.93%   
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Table 2.11   Confusion matrix comparing manual and computer classifications for the 9-

category field training set. Description of matrix can be seen in caption to Table 2.10. PA 

= percent agreement or how many larvae were classified the same by both methods (true 

positives), PD = the percent difference between computer classified and manually 

classified larvae. (AO = Anadara sp., AS = A. simplex, ED= E. directus, GD = G. 

demissa, MA = M. arenaria, MB = M. balthica,  MM = M. mercenaria, SS = S. 

solidissima, UA = Unknown A, OT = other)  

 

 
AO AS ED GD MA MB MM SS UA OT 

Total 
Man. PA PD 

AO 63 4 0 32 3 4 3 6 0 14 129 48.84% -20.93% 

AS 1 144 35 0 13 4 1 6 1 11 216 66.67% -6.02% 

ED 0 0 87 0 1 0 1 0 7 1 97 89.69% 346.39% 

GD 10 2 3 98 0 8 0 0 3 13 137 71.53% 20.44% 

MA 0 5 137 0 119 6 48 2 23 39 379 31.40% -40.37% 

MB 1 4 17 8 15 96 36 3 10 22 212 45.28% -14.62% 

MM 0 0 31 0 22 5 113 2 47 17 237 47.68% -0.84% 

SS 10 16 18 7 6 28 13 56 4 21 179 31.28% -43.02% 

UA 0 0 2 1 0 0 1 1 59 4 68 86.76% 154.41% 

OT 17 28 103 19 47 30 19 26 19 57 365 15.62% -45.48% 

Total 
Comp. 102 203 433 165 226 181 235 102 173 199 

   Total Agreement of Species:                50.48%   

Total Agreement including 'Other' Category:       44.18%   
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a. 

 

 

b. 

 

 

Figure 2.1   Image processing technique and training set images. (a) Diagram of image 

processing technique from sample collection to classification of unknown images. (b) 

Sample images from the hatchery training set. Polarization images of larvae from four 

species throughout larval development with varying color patterns. Images are not to 

scale.  
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Figure 2.2   Diagram of optical path for microscope cross polarization setup for image 

acquisition. Black arrow represent path of light. 
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Figure 2.3   Accuracy test for hatchery training set with (a) size of species categories and 

(b) age of larvae. (a) Percent accuracy with varied number of images per species category 

for the hatchery training set as from the LOO method. (b) Accuracies from LOO cross-

validation on the 500 images/species hatchery training set of 2, 5, and 7 day old larvae. 

Accuracies are shown for individual species as combined for the full training set. AI = A. 

irradians, CV = C. virginica, MA = M. arenaria, MM = M. mercenaria 
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Figure 2.4   Manual sorting and computer classifier results for four species using the two 

field training sets. SVM classification results for two training sets (solid lines) are shown 

alongside manually sorted results (dashed line) for (a) Anomia simplex (AS), (b) 

Geukensia demissa (GD), (c) Mya arenaria (MA) and (d) Mercenaria mercenaria (MM). 

The six-species training set contained 400-500 images for each species, and the nine-

species training set contained 250 images of each species. Results are shown as the 

number of classified images per sample of 100 larval bivalve images or less and plotted 

as a time series with the date the samples were taken. Samples were taken weekly from 

the middle of Waquoit Bay from May-October 2009.  
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Figure 2.5   Receiver Operating Characteristic (ROC) plot for the two classifiers. False 

positive and true positive rate is shown for each species classified by the six-species 

training set (blue marker) and nine-species training set (green marker). True positive rate 

is defined by the total number of computer classified larvae that agreed with manual 

classifications (true positives) divided by the total number of manually classified larvae 

for that species. The false positive rate is defined by the total number of classified larvae 

of each species that did not agree with manual classifications divided by the total number 

of larvae that were not classified as that species. The dashed line shows 1:1 agreement 

representing a random performance of the classifier. Any point above this line represents 

good classification results. A perfect classifier would lie at (0,1) representing 100% 

correct classifications and zero false positives. 
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Figure 2.6   Improved classification results for the 6 species category training set. Time-

series of manually classified and computer classified larvae are shown with the results of 

two improvement methods. (a) Anomia simplex (AS), (b) Geukensia demissa (GD), (c) 

Mya arenaria (MA) and (d) Mercenaria mercenaria (MM). Results from the addition of 

a seventh “other” category (Plus OT) and a manual correction (Manual Fix) method are 

depicted for each species. Data are shown as the number of classified images per sample 

of 100 larval bivalve images or less plotted as a time series with sample date. 
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Figure 2.7   Bland-Altman plot of residuals for six-species classifier agreement after 

addition of a seventh “other” category. The difference between the number of computer 

classified and manually classified larvae of each species are plotted against the mean 

value of both estimates for (a) A. simplex (AS), (b) G. demissa (GD), (c) M. arenaria 

(MA) and (d) M. mercenaria (MM). Mean difference (dark line) and 95% confidence 

intervals for estimates with zero mean difference (light lines) are shown for each species. 

A perfect correspondence would have all points on the y = 0 line.  
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Figure 2.8   Bland-Altman plot of residuals for six-species classifier agreement with 

manual correction. The difference between the number of computer classified and 

manually classified larvae of each species are plotted against the mean value of both 

estimates for (a) A. simplex (AS), (b) G. demissa (GD), (c) M. arenaria (MA) and (d) M. 

mercenaria (MM). Mean difference (dark line) and 95% confidence intervals for 

estimates (light lines) are shown for each species. A perfect correspondence would have 

all points on the y = 0 line.   
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ABSTRACT 
 

 Physical and biological conditions impact recruitment and adult population 

structure of marine invertebrates by affecting early life history processes from spawning 

to post-settlement. We investigated how temperature, salinity and phytoplankton 

influenced larval abundance and growth for three species of bivalves over two non-

consecutive years in Waquoit Bay, MA. Abundance and mean shell length of Mercenaria 

mercenaria (quahog), Anomia simplex (jingle clam), and Geukensia demissa (ribbed 

mussel) were compared between locations in the bay and with environmental conditions. 

Shell birefringence patterns using polarized light microscopy were used to identify 

species. Abundances for all three species were lower in 2007 than in 2009 and were 

positively correlated with temperature. Differences in abundance and size structure 

between bay sites were attributed to salinity tolerances and potential source locations. We 

used size-frequency distributions to identify larval cohorts and estimate species‟ growth 

rates for both years. Higher growth in 2009 was likely due to high temperatures and 

greater food availability for the peak months of July and August compared to 2007. 

Knowing the optimal periods and locations for larval abundance and growth can be 

useful for isolating species-specific patterns in larval dispersal and to aid resource 

managers in enhancing or restoring depleted populations. 
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3.1   INTRODUCTION 

 The dispersal and supply of planktonic invertebrate larvae has important 

consequences for benthic adult population structure (Roughgarden 1988). The strength of 

larval flux to a given habitat or area can vary from year to year because of environmental 

conditions (Thorson 1950, Shirley and Shirley 1989, Gaines and Bertness 1992). Larval 

supply can be influenced by many factors including the timing of larval release or 

spawning, local hydrographic effects, larval behavior, and quality of larvae (Scheltema 

1986, Todd 1998). Particularly for areas where commercial adult populations are 

managed, larval supply can be a link in the relationship between reproductive output and 

population growth (Botsford et al. 1998).    

 Understanding bivalve larval supply is essential to understanding the relationship 

between larval abundance and the population structure at later stages. Many bivalve 

species are harvested commercially, and natural population stocks are typically managed 

by studying adult survivorship and fecundity without accounting for the larval period 

(Orensanz et al. 1991). When measurements of adult reproductive effort do not support 

their subsequent recruitment, it could be due to larval success which is rarely measured. It 

is difficult to study pelagic larvae because of their microscopic size, short larval period 

compared to the adult lifespan, high mortality, and ability to disperse long distances 

(Levin 2006). A need for more in-depth studies of bivalve larvae has been expressed for 

years (Carriker 1988, Mann 1988), but progress has lagged behind that of other 

invertebrate larvae because of a lack of usable techniques to identify bivalve larvae at the 

species level (Garland and Zimmer 2002).  



96 

 

 Many of the biological and physical controls on larval abundance are subject to 

seasonal and annual variation that can affect yearly recruitment dynamics (Botsford et al. 

1994). Wind speed and direction can affect estuarine retention time (Geyer 1997), leading 

to fluctuations in larval import and export from an estuary (Boicurt 1988, Gaines and 

Bertness 1992, Belgrano et al. 1995). Adult spawning can be affected by water 

temperature and adult fecundity (Keck et al. 1975, Kassner and Malouf 1982), which can 

affect larval survival, growth and recruitment (Loosanoff et al. 1951, Davis and 

Calabrese 1964, Brousseau 1977, Gallager et al. 1986, Pechenikee et al. 1990, 

Dekshenieks et al. 1993). Areas of low salinity can be intolerable to certain species of 

bivalves (Loosanoff and Davis 1963). Furthermore, environmental factors such as food 

availability and water temperature will determine the length of larval development which 

can affect survival and dispersal distance (Loosanoff et al. 1951, Jorgensen 1981, Raby et 

al. 1994). Timing of phytoplankton blooms have been shown to affect abundances of fish 

(Townsend and Cammen 1988) and crab larvae (Shirley and Shirely 1989), but under 

estuarine conditions typical bloom patterns do not always occur (Litaker et al. 1987, 

Tomasky-Holmes 2008). These factors can vary spatially with certain areas being more 

favorable for growth or retention than others. Although it is challenging to isolate the 

effects of one particular environmental variable on larval abundance and growth in the 

field, by concentrating on a few environmental variables over a long time series we may 

be able to discern which factors have a greater effect on larval abundance on a seasonal 

and bay-wide scale.   
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 A majority of studies on larval bivalve growth and feeding have been performed 

in laboratories (e.g. Loosanoff and Davis 1963), demonstrating growth responses to 

temperature, salinity, and food availability (Loosanoff et al. 1951, Davis and Calabrese 

1964, Gallager et al. 1986, Dekshenieks et al. 1993). Effects of these factors on larval 

growth rates in the field is not well documented due to challenges with larval sampling, 

as well as confounding factors such as advection and mortality due to predation. A few 

studies have attempted to follow growth of larval cohorts from estimates of their size 

frequency distributions (Jorgensen 1981, Chicharo and Chicaro 2001, Rigal et al. 2010), 

but this is most applicable for closed systems with high retention.  

 The purpose of our study was to investigate the biological and physical factors 

affecting larval abundance and growth of three species for 2007 and 2009 in Waquoit 

Bay, an embayment on Cape Cod, MA. Mercenaria mercenaria (quahog), is a 

commercially important shellfish resource for the bay and is found in open waters with 

sandy bottoms; Guekensia demissa (ribbed mussel) grows along the banks in marsh 

channels and is an important filter of nitrogen for these systems (Jordan and Valiela 

1982); and Anomia simplex is a widespread fouling organism around Cape Cod often 

found attached to rocks and shells (Eckman 1987). We compared time-series of 

abundance and size of these three species of bivalve larvae from four sites in Waquoit 

Bay from May through mid-October (when water temperatures exceeded 15ºC) and 

applied a state-of-the-art image-analysis method using shell birefringence patterns to 

distinguish larval species (Twiari and Gallager 2003a,b, Chapter 2). Environmental 

conditions prevailing during two non-consecutive years of data collection allowed us to 
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compare a warm, dry year (2007) to an initially cooler, wet year (2009). We hypothesized 

that better food quality in 2009 would result in more growth of larvae. We addressed the 

following questions: (1) Do abundance and mean larval size differ among sites and 

between years? (2) How does variation in environmental variables at each site and 

between years influence larval supply? and (3) On a bay-wide scale, how do cohorts of 

larvae grow with time, and how might this explain recruitment over both years? This 

study presents a novel effort to address species-specific questions in larval supply in 

Waquoit Bay and relate them to population dynamics and management issues.  

3.2   METHODS 

3.2.1   Study Site and Sampling Locations. Waquoit Bay is a 16 km
2
 estuary on 

the south shore of Cape Cod, Massachusetts. The average depth in the bay is 2.5 m with 

an average tidal range of about 0.5 m (Howes et al. 2004). Waquoit Bay exchanges water 

with outer Nantucket Sound through two inlets with a residence time of 2-3 days and is 

subject to occasional enhancement or reduction of exchange via wind forcing (Geyer 

1997). The main freshwater input to Waquoit Bay is through groundwater, but several 

sub-embayments exchange water with the main bay and vary with freshwater and nutrient 

inputs (Howes et al. 2004). Residence times in the sub-embayments are higher than the 

main bay on the order of a several days to weeks (Howes et al. 2004, Tomasky-Holmes 

2008). We sampled at four sites representing different areas of the bay (Fig. 3.1). The 

Menauhant site (MN) is the western inlet to the bay, Little River (LR) is a well-mixed 

sub-embayment on the eastern side, Waquoit Bay – Metoxit Point site (WB) is located in 

the middle of the bay proper, and the Childs River site (CR) is a sub-embayment 
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upstream of the western inlet and has the lowest salinities and highest nutrient 

concentrations. In 2007 weekly samples were taken from 23 May – 26 October and in 

2009 samples were taken weekly from 7 May – 14 October. These periods correspond to 

temperatures exceeding 15ºC, which favor spawning of most local bivalves. Samples 

collected in 2008 were inadequate for analysis for the purposes of this study.    

3.2.2   Larval Sampling Procedure.  On each sampling date, all four sites were 

sampled within 3-5 hours. Plankton samples were taken either from a small boat or a 

dock using a bilge pump (West Marine BilgePro 2200) attached to a hose and powered 

either from the boat console or a portable 12V battery at 18-24 L/min. Samples were 

taken by slowly moving the pump through the surface to 20 cm above the bottom in order 

to get a depth-integrated sample of 100-200 L. Water was filtered through a 53 μm nylon 

mesh PVC screen with a pre-screen of 333 μm mesh. All filtered samples were 

immediately preserved in 4% buffered formalin.  

3.2.3   Sample Processing and Larval Identification.  Plankton samples were 

first counted in full or by volumetric sub-sampling for denser samples (to ensure at least 

300 individuals were counted per sample) under a dissection microscope. Volumes were 

standardized to one cubic meter. One-hundred larvae were then subsampled from the 

total sample (or the total sample was used if it contained fewer than 100 individuals) and 

individually imaged using a Zeiss IM35 microscope fitted with a 4 Megapixel digital 

camera (Moticam 1000), polarization filter, and full wave compensation plate. Motic 

Images Plus (version 2.0; Motic China Group, Ltd.) was used to capture each polarized 

image (see Chapter 2 for details on optical setup).  
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Several criteria for identification were used to ensure accuracy. Field 

identification guides of Chanley and Andrews (1971) and Loosanoff et al. (1966) were 

used for morphology and size criteria. A polarized image library of confirmed hatchery 

reared and molecularly identified field collected larvae was used to confirm birefringence 

patterns for each species. These patterns have been shown to be species-specific and can 

aid in larval identification (Tiwari and Gallager 2003). Based on these criteria, we sorted 

images into fourteen species categories. Only the larval images that were identified as A. 

simplex, G. demissa, or M. mercenaria, composing about one-third of the images, were 

used in further analysis as identifications of these species were molecularly confirmed.  

Measurements of each larval shell were made by masking each larval image from 

its background and cropping it to only the region of the larval shell. An edge-detection 

image analysis routine in MATLAB (version R2009a; Mathworks, Inc.) was used to 

obtain major and minor axes in pixels, which were converted to microns by calibration 

with a stage micrometer.  

3.2.4   Phytoplankton Counts. Alongside each larval sample, 100 mL of 

unfiltered water was sampled from the water column. Phytoplankton were identified and 

counted microscopically on a hemacytometer slide for each untreated sample within a 

few hours after collection. Subsamples of 10
-3 

to 10
-1 

ml were counted depending on 

phytoplankton density. The larger volumes were examined by counting multiple 

chambers per sample.  

3.2.5   Environmental Data. Measurements of temperature, salinity, pressure 

(depth), chlorophyll a, and other parameters were recorded in 15 minute intervals from 
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moored units (YSI 6600 sonde, YSI Inc.) at each sampling location (Fig. 3.1). Three sites 

(MN, WB, and CR) were maintained by the Waquoit Bay National Estuarine Research 

Reserve‟s (WBNERR) seawater quality monitoring program (SWMP), and the Little 

River instrument was maintained by the Mashpee Shellfish Constable. Wind speed and 

direction were recorded from a weather station at the WBNERR facility on the north end 

of Waquoit Bay. Data from these instruments were averaged daily during the sampling 

period. 

 A handheld instrument (YSI 650 MDS, YSI Inc.) recorded instantaneous 

temperature, salinity, and occasionally dissolved oxygen at the time of plankton 

collection. Measurements were taken at the surface, middle, and bottom of the water 

column. We noted if the water column was stratified based on if salinity and temperature 

differed between the surface and bottom and then averaged the values for each sample.    

3.2.6   Time-Series Analysis. Autocorrelation analysis on time series of each 

species‟ concentration and mean size at each site was performed to determine the scale of 

independence for the samples and if there was periodicity. Series means were initially 

subtracted from each value. Only autocorrelations at lags of 1-2 weeks were considered 

meaningful based on the total length of our time series (less than 20%, Emery and 

Thomson 1997). To determine if larval abundance and size structure were coherent 

between sites, cross-correlation analyses were performed between pairs of sites for 

species concentrations and mean sizes. Data were lagged in both directions by weekly 

time steps. In the few cases of missing data points due to a lost sample or instrument 

failure (no more than two per series), the missing data point was interpolated using a 
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quadratic spline to ensure continuity of the time series for analysis. The time scale for 

independent samples for each time series was determined by the time point where the 

autocorrelation was no longer significantly different from zero (alpha = 0.05). Degrees of 

freedom were calculated by dividing the total length of the time series by the time scale 

for independent realizations. Although this is a less conservative approach than using 

decorrelation times (the time point when the autocorrelation function crosses the x-axis), 

we chose this method because the time series was only 24 points and most of the series 

had no autocorrelation. 

 We explored possible associations between larval concentrations and physical 

measurements of temperature, salinity and chlorophyll using the autocorrelation and 

cross-correlation methods described above. For these cross-correlations, the log of larval 

concentration was used to normalize the variance of larval time series with respect to the 

physical variables. We also performed simple correlation analyses on independent 

samples from each site for periods only when larvae were present. Temperature and 

salinity values were recorded simultaneously with each larval sample, and chlorophyll 

values from the continuous records were averaged for the tidal period when the sample 

was taken. All statistical tests were performed using MATLAB and SYSTAT (version 

12.0; SPSS, Inc) software.    

3.2.7   Cohort Analysis. In order to estimate growth rates for each species, we 

performed a species-specific size-class separation analysis to distinguish different cohorts 

of larvae based on larval shell length. This allowed us to estimate time periods of the 

major spawning events for each species, and to follow the growth of these spawns 
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through time. Cohort analysis is often performed to assess growth in cases where 

individuals cannot be aged. Cohorts are determined by extracting component groups from 

polymodal size frequency samples, with each mode corresponding to a different cohort 

(Cassie 1954, Jones 1990). We define new cohorts in this study as a pool of larvae 

spawned between two consecutive samples. Growth rates of larvae from A. simplex, G. 

demissa, and M. mercenaria ranged from 2 to 5 μm per day as estimated from individual 

laboratory cultures (methods for rearing in Chapter 2). Thus, we would expect the mean 

size of our different cohorts to range from about 10 to 50 μm based on the amount of time 

between the samples (5 to 10 days) and conditions for larval growth. In some cases, more 

than one new cohort could be detected between samples if growth rates were fast enough 

to form two distinct size classes. In this analysis, we assumed all larvae were from the 

same population and there was no net import or export, only mortality. We pooled larvae 

from all of our sites for each species to cover a greater potential spawning and dispersal 

area and to increase the sample size. 

 When ten or more total larvae for a species were present for a given sampling day, 

we used histograms of larval sizes to estimate the number of cohorts present in the 

sample. This method assumes that individual sizes within a cohort follow a Gaussian 

distribution, and multiple cohorts can be detected using maximum likelihood criteria to 

split size data into specific age-groups (Bohning et al. 1992). This method represents a 

computerized alternative to the manual separation method using probability paper (Cassie 

1951, Brousseau 1977). Each histogram was evaluated by eye to determine the number of 

Gaussian distributions present, and the size data were run in an expectation-maximization 
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(EM) algorithm in MATLAB. The EM algorithm worked by diving the range of the shell 

length data into equal parts based on a specified number of size groups and used 

maximum-likelihood criteria to estimate Gaussian parameters (mean, standard deviation) 

that best fit the data (Appendix B, Fig. B.1). The appropriate number of size groups 

estimated from the histograms was determined by the estimated mean and standard 

deviation for each group as calculated from the program. We then connected cohorts 

through time based on mean size, standard deviation, and growth estimates mentioned 

above. We used this time series of age group sizes to calculate a growth rate for each 

cohort. Not all distributions were matched to a cohort; occasionally spawning events did 

not show subsequent growth. This maximum likelihood method for Gaussian separation 

has been applied to adult shellfish populations as a measure of recruitment (Weisberger 

and Grassle 2003) and has also been applied successfully to larval gastropods (Rigal et al. 

2010) and bivalves (Chiracho and Chiracho 2001).   

3.3   RESULTS 

3.3.1   Environmental Data. Records from the water quality monitoring 

instruments from the main bay site (WB) indicate that bay conditions in 2007 were 

warmer and had lower chlorophyll concentrations than 2009 (Fig. 3.2a, c), with the 

exception of a period in late August where temperatures in 2009 surpassed those of 2007. 

Temperature for both years ranged between 10-26º C. Salinities were similar between the 

two years, with values oscillating around 27-32 PSU, with slightly fresher bay water in 

2009 (Fig. 3.2b). Data from the other three sites are shown in Appendix A.  
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We grouped phytoplankton into flagellates (flagellates plus dinoflagellates) and 

diatoms (including centric, pennate, Chaetocerous sp., Thalassiosira sp., Skeletonema 

sp., and Nitzschia sp.) to represent available food sources for larvae (Fig. 3.3). Flagellates 

represent the background available food source for larvae in the bay, and diatoms 

represent a more nutritious source when available. Food was extremely low in Little 

River, Menauhant, and the main bay (Fig. 3.3a,b,d) for May and June in 2007. The higher 

chlorophyll observed in 2009 was a result of diatom blooms from August through 

September.   

 The typical summer prevalent southwest wind pattern for southern Cape Cod was 

observed for both years (Fig. 3.4), with average onshore wind speeds around 0.5-1 m/s. 

This would lead to increased freshwater buildup and stratification within the bay (Geyer 

1997). In spring and fall of 2009 there were sporadic storm events changing wind speed 

and direction, leading to more mixing and flushing of bay water during these periods. 

3.3.2   Larval Abundance and Size. Though higher concentrations of total 

bivalve larvae were observed in May and June 2007 compared to 2009, after July 

concentrations in 2008 surpassed those of 2007 (Fig. 3.5). For both years, peak 

abundance occurred in July and August. Correlations were performed as a way to assess 

the consistency, or coherence, of larval abundance and size with space and time.  

 There was no significant autocorrelation beyond a one week lag for either year for 

both the abundance and mean size time series for all species with the exception of G. 

demissa abundance at Childs River in 2009, which was correlated for three weeks. We 
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subtracted degrees of freedom by two or three for the autocorrelated time series in the 

cross-correlations. 

For A. simplex, larvae were present from June through August in 2007 and from 

June through September with a few individuals into October in 2009 (Fig. 3.6a,b). Higher 

abundances of A. simplex were observed in 2009. A. simplex was observed first in the 

inlet site (MN) in 2007, but in 2009 the inner bay sites, Waquoit Bay and Little River, 

had the highest concentrations. In 2007, cross-correlations had both Menauhant and 

Waquoit bay concentrations lagging behind Little River (Table 3.1), and mean sizes were 

all correlated for these sites. Few A. simplex were observed at Childs River. In 2009, 

Little River and Waquoit Bay were significantly cross-correlated for A. simplex 

abundance, as were Menauhant and Childs River (Table 3.2), and there was a 1-2 week 

lag in cross-correlations between the two sides. Time-series of mean larval size for this 

species showed steady growth for most sites from June through August (Fig. 3.6c,d). Size 

structure was coherent between all sites in 2009 with the exception of Childs River. 

 Larvae of the ribbed mussel, G. demissa, were mostly observed July through 

October both years (Fig. 3.7a,b). The highest concentrations were observed in July and 

August both years, but 2007 was more variable. In 2007, abundances at Waquoit Bay 

were correlated with both Little River and Menauhant (Table 3.1), and Menauhant was 

correlated to Childs River. Significant one-week lags for Waquoit Bay and Little River 

were observed with respect to Menauhant and Childs River. In 2009, G. demissa larvae 

were first observed from the Menauhant inlet site, farthest from the upper marsh regions 

where adults are more abundant. Positive and significant correlations were observed 
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between Little River, Waquoit Bay, and Menauhant and between Childs River and 

Waquoit Bay in 2009 (Table 3.2). Little River lagged to concentrations at Childs River by 

one week, and Menauhant was weakly correlated to Childs River at both positive and 

negative weekly lags. Mean sizes for both years stayed low (Fig. 3.7c,d), with a few 

peaks in 2009 early and later in the series. Only Menauhant and Childs River had 

correlations with sizes in 2007, and all were lagged to Little River. All mean sizes were 

strongly correlated in 2009 indicating strong coherence in population structure 

throughout the bay.  

M. mercenaria larvae show a bell-shaped abundance pattern for 2007 and 2009 

time series with modes in July and August (Fig. 3.8a,b). Distributions between sites were 

similar for both years. In 2007, abundances at Menauhant and Waquoit Bay had a 

significant correlation and Little River abundances lagged all other sites by 1-2 weeks 

(Table 3.1). All sites lagged Childs River. In 2009, Little River abundances and sizes 

were significantly correlated with the Menauhant and Waquoit Bay sites (Table 3.2), and 

Childs River lagged Little River by one week. Peaks of larger-sized individuals were 

prominent early on in 2009 (Fig. 3.8d), suggesting a successful early spawn. The entire 

size time series for both years was indicative of short, quick growth cycles. Similarly to 

the other species, the M. mercenaria time series at Childs River were not significant with 

many other sites. 

3.3.3   Relationship to Environmental Factors. We compared the abundance 

and distributions of each species in relation to temperature and salinity by plotting larval 

concentration (on a log scale) as a function of temperature and salinity (Figs. 3.9; 
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Temperature-Salinity-Plankton diagram or T-S-P plot; Gallager et al. 1996). Bivalve 

larvae were commonly found in samples taken during high temperature and salinity 

conditions. Temperature and salinity trends were similar for both years, though 2009 had 

a wider range of salinities, due to lower Childs River salinities (squares). Little River 

(circles) had the highest ranges of observed temperatures in 2007, and Little River and 

Menauhant (triangles) had the highest ranges of temperatures in 2009. Results from both 

years show that larval concentrations peak above 20°C indicating that these three species 

are warm-water spawners.  

Cross-correlations were made between temperature, salinity and chlorophyll time 

series for both years accounting for autocorrelation of each time series, as well as 

standard correlations comparing these factors in samples only when larvae were present. 

Many significant correlations with samples and temperature were observed for both years 

(Tables 3.3 and 3.4). Cross-correlations were significant between temperature and A. 

simplex and G. demissa abundance both years with the exception of A. simplex at Childs 

River in 2007. M. mercenaria was less consistent with temperature correlations between 

sites and between years. Salinity ranges were broader for G. demissa with abundant 

samples through mid-salinity ranges, but A. simplex and M. mercenaria favored higher 

salinities. Few significant relationships with salinity were seen, however. There was a 

negative correlation with salinity time series and A. simplex time series and for M. 

mercenaria larval samples and salinity for Menauhant in 2007. We only regarded 

correlations with salinities at no time lags to be relevant, as the salinity time series 



109 

 

oscillates predominately at a tidal frequency, much shorter than our weekly sampling 

interval.  

There were significant relationships to chlorophyll, but these relationships were 

not consistent and differed whether time-series or direct correlations were made (Table 

3.3 and 3.4). Waquoit Bay chlorophyll was negatively cross-correlated with G. demissa 

larvae at Waquoit Bay, and positively cross-correlated with A. simplex. Stronger 

correlations were seen with G. demissa samples- a negative relationship with Childs 

River and positive with Waquoit Bay. The only significant relationship seen in 2009 was 

negative between M. mercenaria and Little River time series.  

3.3.4   Larval Cohorts and Growth. Our method of cohort analysis by 

estimation maximization and Gaussian separation was able to identify groups of cohorts 

for all of our species in both years. Cohorts were identified if there was evidence of 

growth between samples. Figs. 3.10-3.12 show the frequency of different sizes in the 

samples over time, and sizes of  individual cohorts are plotted below. 

 For A. simplex, we identified four cohorts in 2007 and eight cohorts in 2009 (Fig. 

3.10). In 2007, no cohorts reached the appropriate settling size (Fig. 3.10b), estimated to 

be around 180 µm or greater in laboratory cultures (Chanely and Andrews 1971). 

However, in 2009, cohort growth was higher with cohorts AS5-AS7 reaching appropriate 

settling length in August. This period also corresponded to the period of the highest 

temperatures in the bay (Fig. 3.2a). 

For G. demissa and M. mercenaria, settlement size occurs around 200 µm 

(Chanley and Andrews 1971). G. demissa had only five cohorts in 2007 and three cohorts 
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in 2009 (Fig. 3.11). A few cohorts reached sizes close to settlement size, but the evidence 

was not strong that many of these cohorts would make it to settle in the bay in either year. 

For M. mercenaria, we found three cohorts in 2007 that failed to reach appropriate 

settlement size (Fig. 3.12a,c), but in 2009 we identified eight cohorts with MM1, MM3 

and MM4 likely to have settled (Fig. 3.12 b,d). Peak growth time for 2009 was in July 

and August, which correspond to the highest temperatures and food concentrations for 

both years. An early appearance of large M. mercenaria individuals appeared in early 

2009, during lower temperatures and food availability. M. mercenaria were also present 

in May in 2007 but at concentrations that were too low to be analyzed. 

  We compared weekly growth rates of each cohort to growth rates of larvae reared 

in the laboratory. We averaged the growth rates for each cohort in 2007 (Table 3.5) and 

2009 (Table 3.6). A. simplex growth rates were higher for cohorts in 2009, with growth 

rates on par with those observed in the laboratory. G. demissa had similar growth rates 

for both years, mostly lower than the laboratory growth rates. M. mercenaria had greater 

growth in 2009 than 2007, but both years were mostly below what was observed in the 

laboratory. 

3.4   DISCUSSION  

 The purpose of this study was to investigate environmental factors that might 

have influenced observed larval abundances on a weekly scale. We were able to 

document two very different years in terms of biological and physical characteristics, and 

we suggest this had a pronounced affect on larval concentrations and growth. We used 

cross-correlation analyses to determine whether such characteristics had a relationship 
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with larval abundance, however these results are not absolute. There could be many other 

mechanisms leading to the observed patterns in larval abundance and growth that were 

not investigated in this study, such as transport from other areas and environmental 

conditions and spawning rates from nearby populations. This study suggests water 

temperature and food availability fluctuations can lead to yearly fluctuations in larval 

abundance and growth. These differences can affect potential settling of adults, 

emphasizing the importance of recognizing larval stages in management applications. 

Because enhancement efforts can rely heavily on spat collection to assess recruitment, 

knowing when and where to place collectors would be extremely valuable to maximize 

returns.    

3.4.1   Relationships with Environmental Conditions. We looked at larval 

abundance over two years when environmental conditions within the bay differed with 

respect to temperature, chlorophyll and food quality. If we use the number of cohorts as a 

proxy for spawning activity, spawning was less in 2007 despite higher temperatures. In 

2009, bivalve larval concentrations for the Waquoit Bay site and Little River reached up 

to 9 x 10
4
/m

3 
(90/L) which are extremely high concentrations, even for an estuary. 

Typical reported peaks range from a few hundred to thousand bivalves per m
3 

(Wood and 

Hargis 1971, Andrews 1983, Garland 2000), suggesting that Waquoit Bay is an abundant 

pool of bivalve larvae when conditions are right.  

Relationships between environmental conditions and individual species suggested 

that temperature was most influential at predicting larval abundance for each species on a 

temporal scale, and salinity was more important on a spatial scale. Abundances of each 
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species indicated that 20ºC and above are optimal temperatures for larval abundance, 

most likely due to peak spawning. Correlations with temperature were seen at all sites 

both years. M. mercenaria was the only species found to be consistently present below 

20ºC. In contrast, salinity did not vary much temporally, but showed variations between 

sites. Site-specific differences in salinities highlight potential larval tolerances for each 

species, with G. demissa being most abundant during low salinity periods in Childs 

River, and A. simplex being the least tolerant to low salinity conditions. However, this 

relationship could also be explained by proximity to sources or different patterns in 

dispersal between species.     

Negative correlations with A. simplex and G. demissa abundances and salinity at 

Menauhant in 2007 suggest that there could have been tidal effect on with more larvae 

present on outgoing tides, but this pattern could easily be causation and merits further 

investigation on a tidal scale (see Chapter 4). Although we did see some significant 

relationships to chlorophyll at Little River and Waquoit Bay, for Little River these were 

negative and suggest that larvae are not necessarily associated with areas of high 

chlorophyll. It is possible that the extremely high concentrations of larvae associated with 

these samples were effective at grazing the phytoplankton down to the lower levels 

observed, particularly for 2009. In 2007, G. demissa had a negative relationship with 

chlorophyll at Childs River which could be due to blooms of large dinoflagellates which 

created a lot of turbidity and could be a deterrent to larvae. Overall, relationships to 

chlorophyll were inconsistent, and other field studies of bivalve larvae have also failed to 

find associations with chlorophyll (Tremblay and Sinclair 1990, Raby et al. 1994). 



113 

 

 3.4.2   Food Quality. We compared the abundance of diatoms, a quality larval 

food source, and flagellates, a mediocre food source, for both years. There was very little 

available phytoplankton that would be suitable for larval ingestion and growth in May 

and June of 2007. Diatom blooms coinciding with higher temperatures in July and 

August 2009 could have lead to the observed higher growth for this year.  

Bivalve larvae typically consume food particles in the pico- to nano- plankton size 

range of 0.5–12 μm, occasionally ingesting large particles up to 30 μm if abundant 

(Baldwin and Newell 1995). However, it is well documented that bivalve larvae are 

capable of ingesting bacteria (Douillet 1993, Gallager et al. 1994, Tomaru et al. 2000), 

although it mostly only supplements growth on a phytoplankton-based diet (Baldwin and 

Newell 1991). It has been shown that larvae can grow in estuarine conditions with low 

natural phytoplankton abundances, although growth patterns are species-specific (Crisp et 

al. 1985), and diets are likely supplemented with bacteria or detritus (Fritz et al. 1984). 

Under ideal conditions, growth rates should be between 2-7 μm/day, but larvae can 

continue shell growth without food by depleting tissue for energy (Crisp et al. 1985). 

Growth rates for 2009 were mostly in this range, but for 2007 our growth rates were 

lower suggesting that low food quality may have limited growth. In Waquoit Bay, 

concentrations of nanoplankton are usually highest in the summer, but picoplankton are 

generally rare (Tomasky-Holmes 2008). Nutrients may have been limiting to growth in 

2007, but the increased nutrient loading via freshwater induced by the spring rains in 

2009 enabled phytoplankton to flourish and provide a stable food source for larvae. 
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More predation could explain the observed low growth of larvae in 2007 if food 

was not limiting. Although predation may be relatively low for larvae overall, certain 

predators, if abundant, are capable of reducing a bivalve larval population by upwards of 

80% (Johnson and Shanks 2003). In 2007 the ctenophore Mnemiopsis leidyi was more 

abundant than in 2009 (C.M. Thompson, WHOI, pers. obs.) and could have reduced 

larval abundance through top-down control. 

 3.4.3   Site-Specific Abundance. Patterns in species abundances with time at 

different sites can allow us to make predications based on dispersal. Larval abundance at 

most sites was autocorrelated for a maximum of two weeks, which is on the order of 

water residence times and the larval development period. Comparing locations, there 

were significant correlations in abundance between the sites on the eastern sides of the 

bay (Little River and Waquoit Bay site) and the western channels (Menauhant inlet and 

Childs River), though these relationships were not consistent for all species or for both 

years. This suggests that there are both periods of limited dispersal and homogeneity 

throughout a spawning season for different species. Childs River often showed distinct 

abundance patterns from the other sites, which could be a result of its lower salinities, 

higher nutrients, and longer retention times (Tomasky-Holmes 2008).  

All sites were separated by only 1-2 km, emphasizing the patchiness within the 

system. Flow dynamics through an inlet are different than flow through estuarine 

channels and open water. In Waquoit Bay, the inlets have the strongest flows and 

exchange water rapidly with the main bay. Flows through sub-embayments vary, 

exchanging waters over 1-3 days with the bay proper, but have much longer residence 
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times within the whole bay system due to marsh storage areas (Howes et al. 2004). In 

addition, sporadic wind forcing from the north can disrupt stratification and lead to 

increased flushing of the bay (Geyer 1997), which may be responsible for occasional 

decreases in concentration, such as the decrease in larval concentrations in late June 2009 

(Figs. 3.4b and 3.5b). Increased wind speeds in 2009 could have led to increased mixing 

and transport in the bay and could account for the larger presence of larvae, particularly 

A. simplex, upstream at Childs River. 

 3.4.4   Species-Specific Abundance and Growth. By studying different species, 

we were able to capture year-to-year differences in larval abundance and growth, which 

is rare for studies of bivalve larvae. Despite its commercial importance to the area, there 

have been few studies documenting M. mercenaria spawning for Cape Cod. Spawning of 

M. mercenaria has been documented for areas south of Long Island from June – 

November (Loosanoff et al. 1951, Keck et al. 1975). Our study showed that M. 

mercenaria larvae were present as early as mid-May in both 2007 and 2009. As M. 

mercenaria has adapted to a wide range of conditions in its geographic range, it would 

not be surprising if populations off New England spawned earlier when waters initially 

reach 15⁰C, especially in estuaries.  

 M. mercenaria had a coherent population structure within Waquoit Bay in 2009 

as both abundance and sizes were correlated between sites indicating the population was 

well-dispersed and uniform throughout the bay. There was less coherence in 2007. 

Results indicated that Little River and Waquoit Bay could be source or spawning 

locations as larvae were more abundant and initially appeared there. However, it is 
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possible Little River was not a large M. mercenaria source in 2007 which would explain 

the observed lower abundances and lags behind other sites. The highest growth for M. 

mercenaria was in August 2009 when cohorts were able to reach a setting size of 200 μm 

(Carriker 1961). M. mercenaria cohorts later into the season did get as large, though it is 

possible for M. mercenaria larvae to develop at smaller sizes when conditions are not as 

favorable (Davis and Calabrese 1964). Reduced growth could also be attributed to 

cooling temperatures, predation or low dissolved oxygen. A high number of M. 

mercenaria recruits in 2010 (R.H. York, pers. obs.) can now be traced to the favorable 

conditions and high larval supply in mid-summer 2009.         

 For the jingle clam, A. simplex, different conclusions can be made. Abundance 

and population structure were separated between sides of the bay, and no relationships 

between sites were observed in 2007 when overall abundances were low. Little River was 

a likely source population, and early 2007 data indicated a possible source of A. simplex 

larvae from the inlet. There was some evidence for this species to be found in bay waters 

on ebbing tides, supporting an estuarine source for A. simplex. The low salinities 

observed in Childs River in 2007 may explain the low concentrations observed at that site 

compared to 2009.  More upstream transport from the inlet may have caused A. simplex 

abundance in Childs River to be correlated with Menauhant in 2009. As the adult lifespan 

for A. simplex is only 1-2 years (Chanley and Andrews 1971), year-to-year differences in 

larval abundance would depend on the previous year‟s recruitment and might explain the 

patchiness and inconsistencies observed between years. Since our multitude of cohorts of 

A. simplex seems to suggest it is a pulse spawner, our data suggest these spawns may 
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come from different locations. Larval periods of 3-4 weeks are typical for this species 

(Chanely and Andrews 1971), so retention could also be an issue.  

 Despite both M. mercenaria and A. simplex achieving growth that would lead to 

settlement in Waquoit Bay, G. demissa larvae showed little growth in 2009 despite 

maintaining a stable population in the bay. It is likely that marsh areas in the bay, and 

channels like Little River, were sources of larvae for G. demissa, though some larvae 

were found in the inlet site early on in 2009. It remains uncertain why G. demissa had 

reduced growth compared to the other species when all were present concurrently. Rigal 

et al. 2010 found that tidal efflux resulted in a lack of settlement-stage gastropod larvae in 

an embayment. Since G. demissa had the lowest growth rates in the laboratory, it is 

possible that a longer development time and transport processes would lead to more G. 

demissa flushed out of the bay. For instance, larvae spawned in marsh channels on an 

outgoing tide could be instantly flushed out of the bay and not retained as well as M. 

mercenaria larvae spawned in the middle of the bay and caught in a gyre or transported 

to a channel with higher retention times.       

 3.4.5   Cohort Analysis. In this study, we used cohorts as determined from size-

frequency distributions to estimate species-specific growth rates. Since individuals could 

not be aged, this method can be very subjective for determining the number of cohorts 

present and grouping them temporally. Sporadic wind events leading to flushing, or 

overall net export, would have violated our assumption of no exchange. Furthermore, our 

observed site-specific differences may have invalidated the assumption of bay-wide 

homogeneity we made to pool the samples. This assumption is investigated in Appendix 
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C which shows that sites contain different pools of larval sizes. If there were areas with 

lower sizes compared to others, this may bias our growth rate calculations to 

underestimate growth rates for periods when larger larvae are more abundant. It is likely 

that the number of spawns we found were overestimated due to larvae that did not grow 

from a previous cohort. Also, we cannot assume that site homogeneity is consistent 

between years. Higher growth rates observed for A. simplex in 2009 may be the result of 

having higher abundances at Little River and Waqouit Bay, but growth rates remained 

low and comparable to 2007 for Childs River and Menauhant. Still, we argue that cohort 

separation is a useful tool for separating larger size groups from a distribution, and it 

enabled us to estimate growth rates we could not have otherwise calculated. 

Here we considered larval supply in terms of estimates of larval abundance and 

growth rates and proposed a relationship to recruitment based on these factors alone. We 

did not consider larval settlement, another factor that can regulate larval recruitment. In 

some cases, post-settlement survival ultimately regulates juvenile and adult population 

structure (Roegner and Mann 1995). Furthermore, by sampling at a weekly scale, the 

temporal resolution in our study was not adequate to fully assess larval transport and 

retention at these sites, and larval export may have contributed to our observed low 

concentrations of larger individuals. This will be explored further in Chapter 4. 

3.4.6   Summary. By performing a species-specific study using a new method to 

identify bivalve larvae, we were able to depict spatial and temporal trends and uncover 

environmental factors that may regulate larval supply for each species. We observed 

general patterns affecting larval abundance, such as seasonal temperature and site-
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specific salinity differences. Species-specific patterns suggested that for a commercial 

species like M. mercenaria, higher recruitment based on larval supply alone would likely 

be achieved in a year with high temperatures and abundant quality food. For an 

ecologically important species like G. demissa, our study suggests that recruitment was 

low, and that larval supply may be subsidized from other marsh areas or limited to the 

few individuals that get retained in high-retention areas of the bay. Because Waquoit Bay 

has abundant shellfish resources for both recreational and commercial fisheries and such 

a high abundance of larvae, a study such as ours is necessary to understand the factors 

regulating these valuable resources and to managing future populations and biodiversity.     
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Table 3.1   Matrix of cross-correlation coefficients (r) for concentration and shell length 

data between sites for each species in 2007. All reported correlation coefficients were 

significant (p < 0.05) and adjusted for autocorrelation of the lowest frequency. Bold 

values were significant for the decorrelation time of the series. Integers represent if there 

was a significant lag between the sites in the columns and the rows. A positive lag means 

the sites in the columns lagged the sites in the rows by the factor, and a negative lag 

means the sites in the rows lagged behind the sites in the columns.  

 
Little River Menauhant Childs River 

 
Conc. Size Conc. Size Conc. Size 

Anomia simplex 
     Menauhant -2 (0.727) -2 (0.734)         

  
-1 (0.671)         

  
0 (0.612)         

Childs River - - - -     

Waquoit Bay -1 (0.517) -3 (0.651) -1 (0.580) -1 (0.633) - - 

  
-2 (0.906) 

 
0 (0.692) 

  

  
-1 (0.781) 

    

  
0 (0.579) 

    Geukensia demissa 
     Menauhant 1 (0.714) -3 (0.582)         

Childs River 1 (0.508) -1 (0.681) -1 (0.530) 0 (0.651)     

   
0 (0.761) 

 
    

Waquoit Bay 0 (0.616) -1 (0.626) -1 (0.677) - - - 

   
0 (0.727) 

   Mercenaria mercenaria 
     Menauhant 1 (0.536) -         

Childs River 2 (0.662) - 1 (0.807) -     

Waquoit Bay 1 (0.731) - 0 (0.689) - -1 (0.825) - 
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Table 3.2   Matrix of cross-correlation coefficients (r) for concentration and shell length 

data between sites for each species in 2009. All reported correlation coefficients were 

significant (p < 0.05) and adjusted for autocorrelation of the lowest frequency. Bold 

values were significant for the decorrelation time of the series. Integers represent if there 

was a significant lag between the sites in the columns and the rows. See Table 3.1 caption 

for description of lags. 

 
Little River Menauhant Childs River 

 
Conc. Size Conc. Size Conc. Size 

Anomia simplex 
     Menauhant -2 (0.836) -1 (0.645)         

  
0 (0.811)         

  
1 (0.750)         

  
2 (0.536)         

Childs River -2 (0.826) - 0 (0.658) 0 (0.592)     

   
1 (0.673) 

 
    

Waquoit Bay 0 (0.790) -1 (0.669) 1 (0.666) -2 (0.669) 1 (0.554) - 

  
0 (0.877) 2 (0.839) -1 (0.849) 2 (0.891) 

 

  
1 (0.627) 

 
0 (0.875) 

  

    
1 (0.726) 

  Geukensia demissa 
     Menauhant -1 (0.788) 0 (0.588)         

 
0 (0.751) 1 (0.607)         

Childs River 1 (0.560) 0 (0.672) -1 (0.469) 0 (0.711)     

  
1 (0.714) 1 (0.449) 1 (0.544)     

Waquoit Bay -1 (0.728) 0 (0.661) 0 (0.737) -1 (0.574) -2 (0.615) 0 (0.713) 

 
0 (0.943) 1 (0.639) 1 (0.798) 0 (0.795) 0 (0.575) 1 (0.689) 

 
1 (0.598) 2 (0.679) 

 
1 (0.810) 

  

    
2 (0.610) 

  Mercenaria mercenaria 
     Menauhant -2 (0.666) 0 (0.518)         

 
-1 (0.794) 1 (0.488)         

 
0 (0.714) 

 
        

Childs River -1 (0.628) - - -     

Waquoit Bay -1 (0.608) 0 (0.791) 1 (0.866) -1 (0.413) - - 

 
0 (0.764) 

 
2 (0.847) 0 (0.557) 

  

 
1 (0.848) 
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Table 3.3   Significant Pearson correlation coefficients (r) from cross-correlations of 

larval concentrations to temperature, salinity and chlorophyll time series for each species 

in 2007. Correlations were performed between full time series as well as independent 

samples only when larvae were present. All reported correlations were significant at p < 

0.05. Numbers in front of cross-correlations represent the lag of the larval time series 

with respect to the physical series (i.e., a lag of -1 would mean larval concentration 

lagged the physical time series by one week). No correlations were significant when 

accounting for full decorrelation time of each time series.  

  Anomia simplex Geukenisa demissa Mercenaria mercenaria 

 
Time-series Samples Time-series Samples Time-series Samples 

Temperature 
 

      
  Little River 0 (0.575)   0 (0.764)   -1 (0.477)   

 
    1 (0.600)   0 (0.575)   

 
    2 (0.602)       

Menauhant 0 (0.717) 0.832 0 (0.647)   0 (0.621) 0.655 

Childs River     0 (0.782) 0.645     

Waquoit Bay -1 (0.633)   -1 (0.584) 0.661     

 
0 (0.645)   0 (0.774)       

Salinity 
 

      
  Menauhant 0 (-0.615)         -0.537 

Chlorophyll 
 

      
  Childs River 0 (0.470)     -0.691     

Waquoit Bay     0 (-0.444) 0.859     
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Table 3.4   Significant Pearson correlation coefficients (r) from cross-correlations of 

larval concentrations to temperature and chlorophyll for each species in 2009. No 

significant correlations were observed with salinity. Correlations were performed 

between full time series as well as independent samples only when larvae were present. 

All reported correlations were significant at p < 0.05. See table 3.3 for description of lags. 

Time-series were adjusted for autocorrelation of the lowest frequency for both time-

series. Bold values indicate significant correlations accounting for full decorrelation time.  

  Anomia simplex Geukenisa demissa Mercenaria mercenaria 

 
Time-series Samples Time-series Samples Time-series Samples 

Temperature 
 

      
  Little River 0 (0.663) 0.581 -2 (0.540) 0.738   0.616 

 
    -1 (0.720)       

 
    0 (0.831)       

 
    1 (0.792)       

 
    2 (0.617)       

Menauhant 0 (0.605)   -1 (0.733) 0.749 0 (0.601) 0.719 

 
1 (0.641)   0 (0.832)   1 (0.617)   

 
2 (0.681)   1 (0.800)       

 
3 (0.688)   2 (0.640)       

 
4 (0.633)           

Childs River 0 (0.551) 0.665 -2 (0.565)   -3 (0.554) 0.745 

 
    -1 (0.740)   -2 (0.544)   

 
    0 (0.846)   -1  (0.567)   

 
    1 (0.765)   0 (0.653)   

 
    2 (0.614)   1 (0.540)   

Waquoit Bay 0 (0.684)   -2 (0.576)   0 (0.607) 0.703 

 
1 (0.714)   -1 (0.725)   1 (0.592)   

 
2 (0.726)   0 (0.844)       

 
3 (0.690)   1 (0.826)       

 
    2 (0.728)       

Chlorophyll 
 

      
  Little River         1 (-0.663) -0.728 

Childs River         -2 (-0.436)   

 
        -1 (-0.511)   
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Table 3.5   Mean growth rate (GR) and period present for all cohorts of each species in 

2007. Lab growth rates were averaged for individuals that were grown under constant and 

ideal food and temperature conditions in the laboratory. SD = standard deviation; AS = 

Anomia simplex; GD = Guekensia demissa; MM = Mercenaria mercenaria  

Cohort Dates 
Mean GR  ±  
SD (μm d-1) 

Mean Lab GR 
± SD  (μm d-1) 

AS1 23 Jun - 27 Jun 0.56 3.85 ± 2.68 

AS2 11 Jul - 2 Aug 2.01 ± 0.79   

AS3 25 Jul - 7 Aug 4.81 ± 1.75   

AS4 2 Aug - 7 Aug 5.44   

GD1 27 Jun - 11 Jul 1.82 ± 0.07 2.71 ± 2.38 

GD2 5 Jul - 18 Jul 1.53 ± 0.21   

GD3 11 Jul - 2 Aug 0.91 ± 0.52   

GD4 2 Aug - 7 Aug 3.47   

GD5 14 Aug - 28 Aug 2.52 ± 3.44   

MM1 7 Aug - 22 Aug 1.42 ± 1.32 4.83 ± 2.80 

MM2 22 Aug - 28 Aug 5.12   

MM3 28 Aug - 4 Sep 0.88   
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Table 3.6   Mean growth rate (GR) and period present for all cohorts of each species in 

2009. Lab growth rates were averaged for individuals that were grown under constant and 

ideal food and temperature conditions in the laboratory. SD = standard deviation; AS = 

Anomia simplex; GD = Guekensia demissa; MM = Mercenaria mercenaria 

Cohort Dates 
Mean GR     ± 
SD (μm d-1) 

Mean Lab GR 
± SD  (μm d-1) 

AS1 16 Jun - 24 Jun 2.37 3.85 ± 2.68 

AS2 29 Jun - 16 Jul 4.60 ± 1.2    

AS3 8 Jul - 21 Jul 4.15 ± 0.80   

AS4 16 Jul - 30 Jul 4.95 ± 2.62   

AS5 21 Jul - 4 Aug 11.54 ± 13.33   

AS6 30 Jul - 19 Aug 5.46 ± 2.38   

AS7 4 Aug - 26 Aug 5.53 ± 5.95   

AS8 19 Aug - 2 Sep 2.14 ± 1.18   

GD1 8 Jul - 16 Jul 1.42 2.71 ± 2.38 

GD2 12 Aug - 19 Aug 2.75   

GD3 19 Aug - 15 Sep 1.48 ± 0.51   

MM1 7 May - 13 May 6.00 4.83 ± 2.80 

MM2 8 Jul - 16 Jul 1.96   

MM3 16 Jul - 4 Aug 3.47 ± 1.29   

MM4 30 Jul - 19 Aug 2.60 ± 1.54   

MM5 12 Aug - 26 Aug 2.84 ± 3.37   

MM6 26 Aug - 2 Sep 4.46   

MM7 2 Sep - 15 Sep 2.36 ± 1.30   

MM8 15 Sep - 29 Sep 1.46 ± 0.37   
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Figure 3.1   Reserve boundary map of Waquoit Bay showing the four larval sampling 

sites (stars). Figure courtesy of the Waquoit Bay National Estuarine Research Reserve. 
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Figure 3.2   Daily averaged (a) temperature (b) salinity and (c) chlorophyll a for Waquoit 

Bay – Metoxit Point. Water temperature and cholorphyll a readings were averaged daily 

from moored loggers for the sampling periods of May through October in 2007 and 2009.  
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Figure 3.3   Phytoplankton counts for all sites in 2007 (black) and 2009 (gray).  Total 

counts of flagellates (solid line) and diatoms (dashed lines) from water samples on each 

sampling date are plotted for each site. Flagellates included counts for flagellates and 

dinoflagellates and diatoms consisted of centric, pennate, Chaetoceros sp., Skeletonema 

sp., Thalassiora sp., and Nitzchia sp. Note the different axis scale for (c) and outlier value 

for (d). Site abbreviations: LR = Little River; CR = Childs River; MN = Menauhant; WB 

= Waquoit Bay – Metoxit Point.  
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Figure 3.4   Time-series of wind vectors for Waquoit Bay for (a) 2007 and (b) 2009. 

Wind speed (m/s) and direction were averaged daily from May through October for both 

years. The weather station was located at the north tip of the bay at the Waquoit Bay 

National Estuarine Research Reserve.  
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Figure 3.5   Total bivalve larvae for all sites in 2007 and 2009. (a,b) Concentrations of 

larvae (bivalves/m
3
) are shown from counts of 100L samples taken weekly during from 

May - October from each site in 2007 and 2009. (c) Monthly mean and standard errors 

for all larvae in 2007 (solid lines) and 2009 (dashed lines) for comparison. 

Concentrations are shown on a log scale to capture the high variability during this period. 

LR = Little River; CR = Childs River; MN = Menauhant; WB = Waquoit Bay – Metoxit 

Point  
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Figure 3.6   Time series of (a-b) concentration and (c-d) mean size of Anomia simplex 

larvae from the four sampling sites in 2007 (a-c) and 2009 (b-d). (a-b) Concentration 

(bivalves/m
3
) was calculated from percentage of A. simplex larvae in each subsample 

multiplied by total bivalve concentration and plotted on a log scale. (c-d) Mean size was 

estimated from the shell length of each A. simplex image. Error bars are standard errors. 

Site abbreviations: LR = Little River; CR = Childs River; MN = Menauhant; WB = 

Waquoit Bay – Metoxit Point.  
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Figure 3.7   Time series of (a-b) concentration and (c-d) mean size of Geukensia demissa 

larvae from the four sampling sites in 2007 (a-c) and 2009 (b-d). (a-b) Concentration 

(bivalves/m
3
) was calculated from percentage of G. demissa larvae in each subsample 

multiplied by total bivalve concentration and plotted on a log scale. (c-d) Mean size was 

estimated from the shell length of each G. demissa image. Error bars are standard errors. 

Site abbreviations: LR = Little River; CR = Childs River; MN = Menauhant; WB = 

Waquoit Bay – Metoxit Point. 
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 Figure 3.8   Time series of (a-b) concentration and (c-d) mean size of Mercenaria 

mercenaria larvae from the four sampling sites in 2007 (a-c) and 2009 (b-d). (a-b) 

Concentration (bivalves/m
3
) was calculated from percentage of M. mercenaria larvae in 

each subsample multiplied by total bivalve concentration and plotted on a log scale. (c-d) 

Mean size was estimated from the shell length of each M. mercenaria image. Error bars 

are standard errors. Site abbreviations: LR = Little River; CR = Childs River; MN = 

Menauhant; WB = Waquoit Bay – Metoxit Point.  
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Figure 3.9   Temperature-salinity-plankton plots of three species of bivalve larvae at all 

four sites in 2007 (a,c,e) and 2009 (b,d,f). The location of each data point represents the 

temperature and salinity as recorded during each sample. The color of each point 

represents the concentration of each species as determined from the percentage observed 

in each subsample and total concentration. Numbers at the top of each figure are the 

range of concentrations for each species that correspond to the colorbar. Concentrations 

are on a log scale. Each site is depicted with its own symbol. Unfilled symbols represent 

zero larvae. Black lines represent constant density at one sigma-t unit. Species 

abbreviations: AS = A. simplex; GD = G. demissa; MM = M. mercenaria. Site 

abbreviations: LR = Little River; CR = Childs River; MN = Menauhant; WB = Waquoit 

Bay – Metoxit Point.   
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Figure 3.10   Cohort graphs for Anomia simplex. (a-b) Frequency distributions of larvae 

sizes as interpolated from probability density functions (pdfs) for larvae pooled from all 

sites in (a) 2007 and (b) 2009. Colored bands represent frequency of different size 

classes. (c-d) Time series of mean cohort sizes as identified from Gaussian separation of 

the pdfs are shown for (c) 2007 and (d) 2009. Error bars represent standard deviations of 

the estimates.     
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Figure 3.11   Cohort graphs for Geukensia demissa. (a-b) Frequency distributions of 

larvae sizes as interpolated from probability density functions (pdfs) for larvae pooled 

from all sites in (a) 2007 and (b) 2009. Colored bands represent frequency of different 

size classes. (c-d) Time series of mean cohort sizes as identified from Gaussian 

separation of the pdfs are shown for (c) 2007 and (d) 2009. Error bars represent standard 

deviations of the estimates.     
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Figure 3.12   Cohort graphs for Mercenaria merecenaria. (a-b) Frequency distributions of 

larvae sizes as interpolated from probability density functions (pdfs) for larvae pooled 

from all sites in (a) 2007 and (b) 2009. Colored bands represent frequency of different 

size classes. (c-d) Time series of mean cohort sizes as identified from Gaussian 

separation of the pdfs are shown for (c) 2007 and (d) 2009. Error bars represent standard 

deviations of the estimates.     
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Flux and Vertical Distribution of Three Species of Bivalve 

Larvae During Transport Through an Estuarine System 
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ABSTRACT 

It is challenging to study bivalve larval supply in estuarine systems due to 

complex estuarine environments, the difficulty of achieving adequate spatial and 

temporal coverage to assess patchiness, and obstacles with methods of larval 

identification. We studied flux and vertical distribution of bivalve larvae in Waquoit Bay, 

MA to assess biological and physical factors that were most influential to larval transport. 

By using both integrated and high-frequency sampling methods we captured variability in 

larval supply for three bivalve species on spring and neap tides around a two-week period 

in the height of the spawning season. We found that flux of larvae through an estuarine 

channel was greater on ebb tides when temperature and salinity showed a semidiurnal 

signal. Flux through an inlet indicated Waquoit Bay often exports large pulses of larvae, 

but is equally capable of importing larvae from outside areas. The magnitude of flux 

varied between species due to timing of pulses with tidal strength. Larvae did not show 

any clear vertical distribution patterns that would lead to retention within the estuary. 

Larvae appeared well-mixed with respect to depth in a site with higher flows and vertical 

mixing. Low salinities appeared to influence larval distribution in the surface at the 

stratified site. We also concluded that the strength of tidal flow may affect the ability of 

larvae to regulate vertical position, with strong flows inhibiting upward swimming at the 

well-mixed site, but facilitating mixing and reducing salinity structure at the stratified site 

enabling larvae to swim to the surface. Each species showed different patterns of vertical 

distribution and flux. This type of information is essential for understanding factors that 

regulating larval supply in estuarine systems.  
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4.1   INTRODUCTION 

 The transport of marine larvae is a key process regulating the supply and 

recruitment of benthic invertebrate populations. It has been well established that species 

with pelagic larval stages rely on the supply, or flux, of larvae to adult habitats in order 

for population persistence and dispersal over wide spatial ranges (Scheltema 1986, 

Roughgarden et al. 1988, Palmer et al. 1996, Largier 2003). However, recent progress in 

larval ecology has shown that larvae may not always disperse as much as expected based 

on passive drifter studies (Arnold et al. 2005), and that local self-recruitment is possible 

and common for many species (Todd 1998, Levin 2006). Estuaries provide discrete 

environments with physical and biological characteristics distinct from coastal waters. 

For invertebrate species indigenous to estuaries, self-recruitment is often necessary to 

sustain adult populations. Physical retention mechanisms coupled with larval behavior 

enable self-recruitment in estuaries (Sponaugle et al. 2002, Swearer et al. 2002).       

 Physical processes regulating water flows provide a link between larval and 

juvenile or adult populations. Where and when a larva ultimately settles depends on 

interactions between hydrodynamics, larval developmental period, and behavior. In 

estuarine systems, exchange of larvae can occur with tidal advection, but non-tidal events 

such as gravitational and density-driven currents, wind forcing, and strength of river 

discharge can influence the flux of larvae at various frequencies (Janzen and Wong 1998, 

Wiseman et al. 1988). Estuarine residence time is important for determining how likely 

larvae are to stay within the system (Sponaugle et al. 2002). Not all areas in an estuary 

have uniform retention times. Smaller-scale dispersion as a result of vertical mixing can 
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lead to dispersal to areas of higher retention (Alldredge and Hamner 1980). Tidal 

asymmetries can also result in net flux in or out of a system (Chant et al. 2000, Chant and 

Stoner 2001), and larval swimming behavior, if operating at appropriate frequencies, can 

further enhance retention (Chen et al. 1997 for example). This has been shown 

convincingly in studies of estuarine brachyurans (e.g. Epifanio et al 1984, DeVries et al. 

1994, Dibacco et al. 2001). 

 For bivalve larvae, it remains uncertain as to whether they are passively 

distributed or capable of actively maintaining a vertical position in the water column to 

affect transport. Wood and Hargis (1971) found bivalve larval were transported 

differently than passive coal particles. In laboratory studies in still water, bivalve larvae 

have shown swimming responses to gravity (Bayne 1964), light (Gallager et al. 1996), 

pressure (Cragg 1980, Mann and Wolf 1983), salinity and temperature (Feeny 1983, 

Mann et al. 1991, Hidu and Haskin 1978), and flow (Jonsson et al. 1991). In field studies, 

responses have varied and are dependent on the environment and species being studied. 

However, general patterns have been observed.  Smaller bivalve larvae show positive 

geotaxis and swim to the surface, while larger larvae are generally found towards the 

bottom (negative geotaxis- Andrews 1983, Baker and Mann 2003). Low salinity 

avoidance has been shown (Carriker 1951, Mann 1988) and there is some evidence of 

diel vertical migration (Raby et al. 1994, Rawlinson et al. 2004). As bivalve larvae are 

weak swimmers, their capabilities of being able to actively regulate depth are strongly 

dependent on current strength and mixing. In areas of higher flow and turbulence, larval 
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distributions are more likely to be well mixed as larvae are unable to overcome vertical 

mixing (Roegner 2000, Tremblay and Sinclair 1990).   

 It is difficult to study larval transport due to the large number of observations 

necessary to understand physical transport processes and the scales on which they act 

(Dickey 2003). Estuarine environments facilitate larval transport studies by providing 

geographically constrained environments often with variable conditions useful for 

comparisons in larval studies (Boicourt 1988). Yet since many estuarine environments 

are unique, it is difficult to generalize distribution patterns. Larval patchiness necessitates 

high-frequency observations over the time scale of interest in order to see patterns in 

distribution, and often tradeoffs must be made between sampling effort and sample error 

(Kjerfva and Wolaver 1988). Automated analysis and continuous monitoring are ideal 

solutions to increase sampling effort and decrease sample processing time (Carriker 1988, 

Garland 2000). Integrating samples can provide better estimates of flux as they are more 

likely to capture patchiness and pulses (Gaines and Bertness 1993), but may not be able 

to fully resolve transport direction (Pineda et al. 2010). Discrete samples are necessary to 

describe particular behavioral responses that might vary over time.     

 The greatest limitation to bivalve larval research is the inability to accurately 

identify species, especially individuals of the smallest stages. Many field studies are 

restricted to species that can be easily identified (i.e. oysters) or to late stage larvae (i.e. 

Andrews 1983, Baker and Mann 2003). However, species-specific patterns are crucial for 

understanding larval transport. Studies of brachyuran crab larvae have demonstrated 

species-specific differences on various scales (Epifanio et al. 1988, DeVries et al. 1994, 
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Steppe and Epifanio 2006). Species-specific patterns in bivalve vertical distribution have 

been observed in upwelling systems (Shanks and Brink 2005, Ma et al. 2006), but little 

has been documented in estuarine systems where larval concentrations and species 

richness are high. Baker (2003) showed species-specific vertical distributions with two 

species of oyster larvae, and model results of North et al. (2008) suggest that species-

specific vertical distributions can influence population dynamics for two oyster species.  

 In this study, we investigated larval transport in an estuarine system on Cape Cod, 

MA and combined state-of-the-art methods for sampling and sample processing. By 

estimating larval flux at two sites, we were able to determine the net supply of larvae to 

the estuary as well as determine net flux through a sub-embayment to a shellfish habitat 

area for a two-week period. By using an automated and integrated sampling method over 

consecutive semidiurnal tidal cycles, we investigated whether larvae showed increased 

abundance on a flood or ebb event, and if increased concentrations were associated with 

water mass features such as temperature and salinity, or tidal features such as tidal 

amplitude. Previous sampling studies at the inlet to Waquoit Bay showed a tendency for 

larvae to be found in high concentrations on high amplitude, outgoing tides (C.M. 

Thompson, WHOI, unpub. data). By evaluating flux of larvae over a spring and neap 

period we were also able to determine how flow patterns at each site contributed to net 

flux in or out of a system. Here we hypothesized that if there was a local source of larvae 

in the main bay, we would see a net efflux of larvae from Waquoit Bay, but a net influx 

of larvae to the upper marsh due to high retention times and storage capacities of upper 

marsh areas (Howes et al. 2004).   
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 We also studied larval transport on a shorter time scale by comparing larval 

vertical position in a well-mixed and stratified site for three tidal periods on a spring and 

neap tide by taking discrete hourly samples. Based on results of previous hourly sampling 

studies (CM Thompson, WHOI, unpub. data), we tested two main hypotheses. First, in a 

shallow, well-mixed channel, larvae would also appear well-mixed, but in a stratified 

environment, freshwater avoidance would cause larvae to concentrate in the pycnocline 

(Carriker 1951). Second, periods of reduced turbulence caused by low velocity would 

enable larvae to swim to the surface at the well-mixed site. In this study, we defined 

larval behavior as any distribution that might differ from what might be observed under 

random mixing. Furthermore, water mass associations were noted by relationships of 

larvae to salinity or temperature and tidal direction. 

 A state-of-the-art image identification method was employed to identify three 

species of bivalve larvae using shell birefringence patterns. We expected to see behaviors 

associations with tides specific to species and potential sources. We studied three species 

of bivalves with different habitat requirements: Mercenaria mercenaria, or quahog, is an 

important shellfish resource for the bay and is found in open waters with sandy bottoms; 

larvae from this species would be most abundant in the main bay. Guekensia demissa, or 

the ribbed mussel, is a prevalent species in tidal flats and grows along the banks in marsh 

channels and successful larvae would be retained in the upper bay. Anomia simplex is a 

widespread fouling organism prevalent in both estuarine and coastal environments around 

Cape Cod and thus would not need to remain in Waquoit Bay. Demonstrating species-

specific larval transport patterns is important for understanding scales of dispersal and 
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population connectivity for individual species, which can be useful for conservation and 

management efforts.        

4.2   METHODS 

4.2.1   Study Site. Waquoit Bay National Estuarine Research Reserve 

(WBNERR) is a shallow 16 km
2 

embayment on the south shore of Cape Cod, 

Massachusetts (Fig. 4.1). Water is tidally exchanged with Nantucket Sound through two 

inlets with a residence time of 2-3 days. Wind forcing during summer months is 

predominantly South/South-West and can enhance exchange on incoming tides (Geyer 

1997). Within the bay, several sub-embayments exchange water with the main bay, and 

these estuaries vary in salinity and nutrient concentrations based on the level of 

groundwater input and urbanization (Valiela et al. 1992, Howes et al. 2004).   

 We chose three sites within Waquoit Bay to perform the field studies. For the 

tidal flux study, we sampled at the western inlet (Menauhant site, Fig 4.1) and the Little 

River sub-embayment (Little River, Fig. 4.1). The Menauhant (MN) site is characterized 

by high currents and has the deepest channel in the bay (up to 6 m). In contrast, Little 

River (LR) has lower currents and is shallower (up to 2 m). Little River exchanges water 

between the bay proper and Hamblin Pond. Average residence time between Hamblin 

Pond and the bay is estimated at 1.7 days and around 22 days between Hamblin Pond and 

the entire Waquoit Bay system (Howes et al. 2004). Little River and Hamblin Pond are 

important shellfish habitats.     

 The third site, Childs River (CR), was sampled only in the vertical distribution 

study. Childs River has a similar depth range to Little River, but has weaker currents, 
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higher nutrients, and few shellfish beds. Freshwater input from the upper estuary stratifies 

Childs River in the upper .3-.5 meters. Water residence time for this sub-estuary is 

around 3-7 days with Waquoit Bay and around 130 days for the entire system (Howes et 

al. 2004, Tomasky-Holmes 2008).   

4.2.2   Environmental Data. Depth, salinity, and temperature measurements 

were recorded in 15 minute intervals from moored units (YSI 6600 sonde, YSI Inc.) in 

the middle of the watercolumn at each sampling location. The WBNERR seawater 

quality monitoring program maintained the instruments at Menauhant and Childs River, 

and the Little River instrument was maintained by the Town of Mashpee Shellfish 

Constable. Wind speed and direction was recorded from a weather station at the 

WBNERR headquarters (Fig. 4.1).  

 To measure current velocity, we used SeaHorse Tilt current meters (V. Sheremet, 

URI) that consisted of a 0.5 or 1 m one-inch PVC pipe attached to a lead base by rubber 

tubing. When moored in the channel, the current meter would tilt in the direction of the 

current and a data logger attached to the top of the PVC pipe would record the angle. The 

angle of tilt was then transformed into a velocity measurement integrated over the length 

of the pipe corresponding to the velocity at the bottom meter to 0.5 meter. Current 

readings were calibrated with still water deployments and with acoustic current meters. 

Only along channel velocities were significant, with flood tide velocities recorded as 

positive. Velocities were logged every 7.5 minutes.  

4.2.3   Flux Study. We calculated larval flux at our two sites using an automated 

sampling system programmed to pump continuous water samples during each flood and 
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ebb tide event. The study was carried out from 16 July 2009 to 31 July 2009 to 

encompass the variability in tidal flow that occurs between summer neap and spring tides 

for an Msf lunar solar period (14 days).    

 Our automated sampling system consisted of four valves programmed to sample 

over each tidal event. A relay board wired to a computer was programmed to open and 

close each valve based on a tidal program corresponding to tidal height at Waquoit Bay 

(Massachusetts Marine Trades Association, www.boatma.com). The program was set to 

close each valve for an hour starting thirty minutes before slack tide to eliminate 

sampling residual water from a previous tide. A submersible pump (PondMaster Model 2, 

250 gal/hr) was connected to the valve system with plastic tubing. A PVC pre-filter 

screen of of 333 μm mesh and a collection screen of 53 μm mesh were placed beneath 

each valve. Each sample would result from about four hours of pumping at a flow rate of 

1-2 L/min. Four samples were collected daily and preserved in 4% buffered formalin.  

 At Little River, the pump was placed off of a floating dock about 20 cm below the 

surface, and samples were pumped to the valve system on shore, a distance of about 15 

meters. The current meter was located directly beneath the pump. At the Menauhant site, 

the pump was placed off a dock about a meter away from the sampling system, but 

located slightly west of the main channel area. Our current meter was placed in an area of 

greater flow just east of the channel midpoint. For our flux calculations, we assumed 

uniform larval concentrations and velocity along and across the channel. 

 In order to calculate a relative flux of larvae for each tidal event, we first had to 

calculate the volume of water that passed through a cross-section of the water column. To 

http://www.boatma.com/
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calculate channel area, across-channel transects were made and depth measurements were 

taken every meter across the Little River channel and every two meters across the 

narrowest part of the Menauhant channel at a high and low tide. These measurements 

allowed us to interpolate channel area for a given tidal height. We calculated a water 

volume flux (Q m
3
/s) by integrating over the tidal period:  

     Q = ∫ V x A dt   (1) 

Where V is current velocity (m/s) and  is the channel area (m
2
) as interpolated from 

depth readings at the beginning and end of each interval. To calculate larval flux (N, we 

then multiplied the concentration of larvae in each sample, C (# larvae/m
3
) by Q: 

N = C x Q   (2) 

an estimate of the total number of larvae that passed through each channel for a tidal 

sampling period. By summing over consecutive tidal periods we were able to estimate net 

larval flux for each site.   

4.2.4   Vertical Distribution Study. High-frequency sampling was performed 

over a spring and a neap tide period during the tidal study. Over a 36 hour period, 

samples were taken every two hours from the Little River and Childs River sites. The 

spring tide samples were taken from 6:00 on 22 July 2009 to 16:00 on 23 July 2009. The 

neap tide samples were taken from 6:00 on 28 July 2009 to 16:00 on 29 July 2009.  

 For each sample, 100 L were taken from 25 cm below the surface of the water 

column, 20 cm above the bottom, and at the midpoint of the water column at each site. 

Temperature and salinity were recorded for each depth by a handheld instrument (YSI 

650 MDS, YSI Inc.). Samples were taken from a dock at both sites using a bilge pump 
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(West Marine BilgePro 2200) attached to a hose and powered from a portable 12 V 

battery at 20 L/min. Water flowed into a 53 μm PVC screen with a 333 μm filter. All 

samples were preserved immediately in a 4% buffered formalin solution.         

4.2.5   Sample Processing and Larval Identification. Plankton samples from 

both studies were first enumerated using a dissecting microscope. For dense samples, 

volumetric subsampling was used to count at least 300 bivalves per sample. All volumes 

were standardized to one cubic meter. Subsamples of 100 individuals were then imaged 

on a Zeiss IM35 microscope fitted with a 4 Megapixel digital camera (Moticam 1000), 

polarization filter, and full wave-retardation plate (Chapter 2). If the sample was less than 

100 larval bivalves, the full sample was imaged. 

 After all images were acquired, we used an image analysis routine to distinguish 

species of larval bivalves (Chapter 2). First, all images were cropped from their original 

background which was masked to be all black. Next, we chose 10 random samples (1000 

images) from each study to be manually sorted into species categories. Criteria for 

manually identifying larvae consisted of morphological, size, and color/texture criteria as 

based on an image library of field collected larvae confirmed using molecular techniques. 

From the four species of bivalves that represented the majority in the samples, we created 

image “training sets” by sorting the leftover images into categories of 200-300 images of 

each species. For both studies, these species were Anomia simplex, Geukensia demissia, 

Macoma balthica, and Mercenaria mercenaria. Comparing the automated and manual 

methods, the tidal flux study had 84% overall agreement for training set classification, 

and the vertical distribution study had 86% agreement. As a test for image processing 
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agreement for the entire image set, we compared the automated classification results to 

the manually sorted larvae on the independent 1000 image sets (Fig. 4.2). For these 

classifications, we added an „other‟ category of unlabeled species to reduce false-positive 

classifications (see Chapter 2).        
 

4.2.6   Data Analysis. For the time series of larval concentrations and semidiurnal 

averaged values of temperature, salinity, wind, and velocity (absolute value), we first 

performed autocorrelation analysis to determine if there was periodicity in the series and 

coherence between consecutive samples. We removed the mean from each sample before 

performing autocorrelations. Periodicity was determined by significant autocorrelations 

at each lag (one lag = one tidal event, or period between a slack high or low, 

approximately 0.25 days).  To calculate the relevant time scale for coherence between 

samples, we estimated the decorrelation time as the time when the autocorrelation 

function crosses zero (Emery and Thomson 1997). Cross-correlation analyses were 

performed on time series accounting for autocorrelation. As there were gaps in many of 

the larval time series, cross-correlations were performed for the longest period of 

consecutive samples (from 11-21 samples).  

 A two-way analysis of variance (ANOVA) was performed to test the effect of 

tidal direction and amplitude on larval concentration in the flux samples. Amplitude time 

series was divided into even intervals and performed ANOVAs for the first and second 

halves of the time series. Because the larval data were heteroscedastic, we used log-

transformed concentrations to equalize the variances. ANOVAs were performed 

separately for each site and species.   
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 To compare larval concentrations with depth and tide for the vertical distribution 

study, we ran a two-way ANOVA on log-transformed larval data for each sampling 

period. Each sampling depth was a factor, and tide was determined by the direction and 

strength of the average velocity over the hourly sampling period divided into ebb, flood 

or slack periods. Since previous sampling studies have suggested that larvae can show 

different distributions on slack tides (C. Thompson, WHOI, unpub. data), slack periods 

were included based on the time point that had the weakest average velocity between an 

incoming and outgoing tide. Tukey-Kramer post-hoc multiple comparison tests were used 

to compare significant depths and tides.   

 We also compared larval time series in the vertical distribution study to 

temperature, salinity, and average velocity. These were done by correlation analyses as 

described above for the tidal flux study. Since these time series were much shorter, full 

series were used and missing samples were interpolated by quadratic smoothing up to 

two times per 18 sample series. As these time series were relatively short, to evaluate 

significance of cross-correlations we calculated degrees of freedom based on the point 

when autocorrelations were no longer significant (alpha = 0.05) rather than true 

decorrelation times. Although being less conservative, this method allowed us to test 

more relationships since our analysis was performed for only three full tidal cycles 

(sometimes less due to missing samples). All statistics were performed using MATLAB 

(version R2009a; Mathworks, Inc.) and SYSTAT (version 12.0; SPSS, Inc) software.    
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4.3   RESULTS 

 4.3.1   Physical setting. Physical data time series demonstrated unique 

characteristics for Little River and Menauhant, specifically with respect to salinity and 

velocity. Mean temperature and salinity for Little River was slightly higher and lower, 

respectively, than at Menauhant, reflecting the relative coastal and estuarine influences, 

respectively, at both sites (Table 4.1). Temperature increased throughout the time series 

at both sites (Figs. 4.3b and 4.4b). Temperature series followed a daily cycle with 

occasional tidal fluctuations. Salinities at Little River varied 2-3 PSU during a tidal event, 

while at Menauhant salinities remained mostly constant only decreasing briefly at low 

tides. After 24 July, salinity at Menauhant increased about one unit and stayed high for 

the rest of the sampling period. This salinity jump did not occur at Little River, although 

tidal fluctuations became smaller. 

 For both sites, the difference between semidiurnal tides at the spring period was 

greater than overall spring-neap differences (Figs 4.3c and 4.4c). Velocities at Little 

River were highest on incoming tides, although a weakening often occurred about two-

thirds into the floods (Fig. 4.5a). At Menauhant, velocities were on average twice as high 

as Little River (Table 4.1) and more uniform with only a slight weakening on the flood 

tides (Fig. 4.5b). For a period after 28 July, it was evident that the current velocity 

readings had reversed direction, probably due to movement of the instrument, so these 

data were corrected for proper tidal direction. At Little River, chlorophyll changed from 

being semidiurnally periodic to daily cycles after a slight decrease after 22 July (Fig. 

4.3d). Chlorophyll at Menauhant was very spiked and marked by periods when data were 
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not plotted due to sensor fouling (Fig. 4.4d). Semidiurnal averaged wind throughout the 

period was mostly in the south-west direction, with a south-east change on 20-21 July 

and a storm event producing strong winds on 24 July.    

 4.3.2   Flux Study: Tidal and Water Mass Patterns. Larval concentrations were 

higher at Little River by an average of one order of magnitude compared to Menauhant 

throughout the sampling period (Table 4.1, Fig. 4.3a and 4.4a). At both sites, 

concentrations were an order of magnitude higher at the beginning of the sampling 

period. A few periods of missing samples for the Menauhant series were due to 

instrument failure. At both sites, some species data is missing due to larvae being 

unsuitable for imaging. G. demissa was most abundant at Little River and M. mercenaria 

was most abundant at Menauhant. A. simplex concentrations were low at both sites. 

 We were only able to perform autocorrelations on the full time series of total 

larvae from Little River and a period of 21 consecutive samples at Menauhant (Table 

4.1). Because of the observed differences in water properties between the first and second 

half of the series, we also split the time series and performed autocorrelations for each 

half. The truncated time series of larval concentrations at Menauhant did not show any 

significant periodicity and was decorrelated after 1.25 days. Although the full time series 

of temperature was decorrelated after three days, the time series for the first seven days 

was decorrelated after one day, on the same order as the larval series. For Little River, 

larval samples showed semidurnal periodicity in the full series, but autocorrelations of 

the first and second half of the time series had different periodicities (Fig. 4.6). 

Significant autocorrelations for the first half (Fig. 4.6b) were observed at both 0.5 and 1 
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days corresponding to both the M2 and K1 tidal periods and the decorrelation time of 

temperature for this series which was 0.5 days (Table 4.1, half-series). Larvae for the 

second half were coherent for about 1.5 days (Fig. 4.6c), also on the same decorrelation 

time scale as temperature (two days), indicating a possible relationship of larvae to 

temperature or water mass as well. 

 We performed a two-way ANOVA to test the effects of tidal features on larval 

concentrations (Fig. 4.7). Since we observed different patterns between larval 

concentrations between the two weeks, separate ANOVAs were performed on data before 

and after 24 July. Significant differences were only observed for total larvae at Little 

River for the first week, with greater concentrations on ebb than flood tides (F = 8.53, df 

= 1, p = 0.007) and low amplitudes (F = 4.11, df = 2, p = 0.23). No significant trends 

were observed for the second week. Although increased concentrations were seen on ebb 

tides for the second week at Menauhant, these results were not significant. 

We investigated relationships with water mass, as defined by temperature and 

salinity, further by using temperature-salinity-plankton (TSP) plots for each species. The 

TSP diagram for Little River (Fig. 4.8, first column) shows clustered points with 

temperature and salinity between four degrees and 1.5 PSU, with most larval 

concentrations centered in the middle within one sigma-t unit. This was most prominent 

for A. simplex and G. demissa for the first half (Fig. 4.8c, circles). Temperature and 

salinities for second half of the period (triangles) had a wider temperature but more 

narrow salinity range, and larvae were more abundant at higher salinities and 

temperatures for this portion. A significant correlation with salinity was weak and 
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observed for total larvae only (r = -0.297, df = 51, p < 0.05). The TSP plot for Menauhant 

(Fig. 4.8, second column) reveals a more significant separation of water masses. The 

saltier water in the later time series (triangles) was constrained by a constant density. 

Samples from this period contained lower concentrations of larvae than the first half of 

the series, and more larvae were observed with increasing temperature. There was no 

relationship with water mass properties for the first week (circles). A negative 

relationship with salinity was significant for all larvae in cross-correlations and was 

greatest for total larvae (r = -0.521, df = 55, p < 0.001) and M. mercenaria (r = -0.428, df 

= 44, p < 0.005). 

 No significant correlations with wind speed or absolute value of current velocity 

were observed for larvae at either site. However, cross-correlations indicated negative 

relationships with wind and larval concentration at a lag of one tidal event (data not 

shown). This was significant for M. mercenaria at Little River (for an 11 sample series) 

and for all larvae at Menauhant (for the 21 sample series). This means that a high wind 

event could lead to lower larval concentrations. However, these correlations were weak 

and did not account for the decorrelation time scale of the larval series.  

 4.3.3   Flux study: Flux Patterns. Water volume and larval flux calculations 

showed more water volume flux on incoming tides for Little River, but the highest larval 

fluxes occurred on outgoing tides (Fig. 4.9). This was true for all species, but most 

dramatic for M. mercenaria (Fig. 4.9d), where larval export pulses were highest on tides 

with high ebbing volume fluxes. For G. demissa at Little River, larval concentrations 

were highest on ebb tides, but high export was not synchronous with high concentrations 
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(Figs. 4.9c, 4.3a).  Greater fluxes were observed in the beginning of the time series during 

spring tides. The water volume flux at Menauhant was more similar between ebb and 

flood tides, and high fluxes were observed in both directions for all species. 

 Since there were no consecutive time series for all larvae, a 48-h period of 

consecutive samples was chosen for a spring and a neap tide period to calculate a net flux 

of water volume and larvae. Total water volume fluxes were positive for both sites for 

each period (Table 4.2). Larval fluxes followed the direction of net water mass flux for 

neap tides at Little River and spring tides at Menauhant. There were no species-specific 

differences in flux direction. 

 4.3.4   Vertical Distribution: Depth and Tide Effects. Sampling periods for the 

vertical distribution study are highlighted in Fig. 4.3. For the Little River spring period, 

the peaks in larval abundance occurred during the first flood event and at the end of flood 

tides (Fig. 4.10). These pulses were not likely influenced by daylight, as no similar peak 

occurred the following day. Although the highest concentrations were at the surface, we 

found no significant difference between depths, but A. simplex and G. demissa showed 

significant relationships with tidal phase (Table 4.3). A. simplex concentrations were 

greater on ebbing tides, while G. demissa larvae significantly peaked at slack periods. 

Total larvae, G. demissa and M. mercenaria had high concentrations falling within a 

density range marked by lower temperature and salinity (Fig. 4.11a). Both of these 

species were negatively correlated to salinity for up to two hours at mid and bottom 

depths (Table 4.4). A. simplex showed higher abundance with increased salinity (Fig. 

4.11a). This was significant for middle and bottom depths, where A. simplex larvae 
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lagged salinity increases by two hours (Table 4.4). No significant relationships were 

found at the surface or with temperature. 

 For the Little River neap sampling period, the only significant correlation was 

between A. simplex larvae and bottom salinity (Table 4.4). This period had smaller 

amplitude tides with lower ranges of high temperatures and salinities (Fig. 4.3). The 

greatest pulse of larvae occurred on the last flood tide (Fig. 4.12), with M. mercenaria 

and G. demissa showing similar patterns, and A. simplex being lowest in abundance on 

flooding tides. G. demissa concentrations peaked in the surface and middle depths on low 

tides. Although cross-correlations were not significant, TSP plots indicated that M. 

mercenaria and G. demissa were highest in abundance in less dense, warmer water, 

corresponding to midday and parts of ebb tides (Fig. 4.11b). 

 For the Childs River series, our stratified site, markedly different relationships 

were seen with depth. For both spring and neap tides, there were significant effects of 

depth on concentration (Table 4.3). For the spring series, larval abundance at the surface 

and mid depths was significantly greater than the bottom. G. demissa and M. mercenaria 

had significantly greater concentrations on flood tides, while A. simplex had low 

concentrations throughout (Fig. 4.13). TSP plots reflect these relationships showing 

increased concentrations at mid-salinities, as the bottom samples had the highest salinities 

but lowest larval concentrations (Fig. 4.11c). Total surface larvae were significantly 

correlated with salinity. Relationships with incoming tides were reflected in the negative 

relationships seen with temperature and salinity at lags of 2-6 hours for G. demissa and 

M. mercenaria (Table 2.4). 
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 For the Childs River neap series, concentrations in the middle sampling depth 

were significantly higher than both surface and bottom (Table 4.3). Larval concentration 

at mid-depth was correlated to higher temperatures (Table 4.4, Fig. 4.11d). In this series, 

salinities were lower at the surface and larval abundance at the surface was low for all 

species (Fig. 4.14). Like the spring period, concentrations of G. demissa larvae were 

greatest on incoming tides. Highest concentrations once again fell in the middle of the 

TSP plots (Fig. 4.11d). G. demissa and A. simplex had a significant and negative 

relationship to salinity at four hour lags, once again suggesting a slight tidal effect. 

 4.3.5   Vertical Distribution: Flow. Larval concentrations were also compared 

with tidal velocity (Table 4.4). Many of the significant correlations were oppositely 

correlated at lags of zero and six hours indicating tidal periodicities. This was most 

apparent for bottom concentrations of A. simplex at the Little River spring period and for 

all larvae with the exception of M. mercenaria at the Childs River neap period. Direct 

comparisons between larval concentration and tidal velocity indicated that larval pulses 

frequently corresponded to either high flooding or low velocity events (Fig. 4.15). Often 

the highest velocities had lower concentrations resulting in outliers that would have 

affected the correlation analyses. Periods when larvae were greater in the surface or the 

middle compared to the bottom could be seen at Little River for low to mid flow, 

particularly for M. mercenaria (spring and neap) and G. demissa (neap, Fig. 4.15 a,b). 

For Childs River, greater concentrations in middle and surface seemed to be associated 

with higher velocities (Fig. 4.15c,d). For the neap period, this only applied to the middle 

and was associated with high flood velocities.   
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4.4   DISCUSSION 

 For both the tidal flux study and the higher frequency vertical distribution study, 

bivalve larval concentrations highlighted the extensive variability that exists in planktonic 

larval populations, even on scales of a few hours. These pulses in larval abundance and 

larval transport potential are ultimately what may lead to recruitment variability within a 

spawning season. We chose the two week sampling period for this study to cover a period 

when larval concentrations were highest and to capture the variability that exists between 

spring and neap tides. Changes in water mass properties, likely brought about by a storm 

event on 24 July, resulted in increased mixing and flushing of estuarine water and could 

significantly affect the ability of larvae to respond to temperature and salinity.  

4.4.1   Flux Study: Tidal and Water Mass Patterns. For the tidal flux study, we 

expected to see larvae being exported at Menauhant and imported to Little River. At 

Little River, all three species showed increased concentrations on ebb tides for the first 

half of the series, refuting this hypothesis. We did not see any patterns with concentration 

and tidal direction at Menauhant. Although we did see a significant effect of low 

amplitudes on total bivalve concentrations, this was only observed in Little River for the 

first week. A closer look at tidal and water mass properties may explain these results.  

Although similar tidal heights were observed between the two sites, temperature 

and salinity properties for Menauhant had a more coastal signature with only short pulses 

at the end of the tides indicative of estuarine water. Little River had semidiurnal 

oscillations with temperature and salinity, although the channel was well-mixed 

vertically. Time-series analyses showed that larval concentrations had similar 
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periodicities to temperature which suggests some relationship to water masses. At Little 

River, pulses of both G. demissa and M. mercenaria, possibly spawns, appeared on 

separate ebb tides and oscillated with a semidiurnal frequency. Initial pulses of larvae at 

Menauhant occurred a few hours after Little River, and were composed of a mixture of 

species, with M. mercenaria most abundant. These peaks did not show a systematic 

semidiurnal tidal signal with respect to concentrations, but rather appeared every 3-4 

tides. If the estuarine water signal only appeared at the very end of an ebb tide at 

Menauhant, it is possible our automated, integrated samples did not fully sample this 

water mass on ebb tides. The change to warmer, saltier water that occurred after the 

storm event was associated with lower concentrations of larvae. This could have been a 

result of mixing and flushing of the bay, reflected by the lack of a semidiurnal water mass 

signal for this time period. This pattern was also seen at Little River, except M. 

mercenaria regained a semidiurnal periodicity on ebb tides by the end of the sampling 

period when temperature and salinity resumed semidiurnal fluctuations.     

4.4.2   Flux Study: Flux Patterns. Although net water volume flux was incoming 

at both sites, larvae did not always follow the direction of water mass transport. This 

could be a result of patchiness between water masses or larval behavior that prevented us 

from sampling larvae at the surface. Higher concentrations on ebb tides explain the 

observed export at Little River for the spring period despite net import of water. For the 

neap period, concentrations had less of a tidal periodicity and larval flux followed water 

volume flux. For Menauhant, increased larval patchiness around the spring tide did not 

lead to different transport from water volume flux. Relative fluxes for the neap period at 
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Menauhant suggest associations with ebb tides, but this was not evident from the 

concentration data. Since we had to assume uniform conditions across a channel to make 

these calculations, these fluxes are highly biased to a given area of the channel and are 

only intended to give a snapshot of conditions and are not absolute.      

Timing of larval pulses to strength of tidal events can result in unexpected fluxes 

based on concentration data alone and help can explain discrepancies between the 

direction of larval flux and water volume exchange. The first pulse of G. demissa larvae 

at Little River was mostly exported within a few days. However, this pulse coincided 

with a smaller amplitude tide resulting in less export than might be expected given the 

high concentrations at that time. In contrast, more M. mercenaria larvae were exported on 

the subsequent larger event when concentrations and water volume flux were both high. 

By spawning on the previous tide, the potential for G. demissa export was reduced. In a 

study of invertebrate larval flux within an estuary, Christy and Stancyk (1982) found that 

larval populations can remain aggregated in water masses that maintain integrity over 

several tidal cycles. Although this is likely what was observed at Little River, the 

concentration of larvae observed is not always a good estimate for relative larval flux if 

the strengths of consecutive tides are unequal. This mechanism of tidal “setup” has also 

been used to explain increased retention in periods of smaller ebbs following a large 

flood tide (Roegner 2000). Tidal asymmetries have been shown to affect transport in 

other estuaries with low freshwater flow (DiBacco et al. 2001), and tidal circulation may 

limit or direct dispersal based on the properties of a given estuary (Scheltema 1986, 

Sponaugle et al. 2002). 



167 

 

Overall, we saw a net export of larvae from Little River and net import at 

Menauhant based on relative fluxes. This does not support our initial hypotheses, but 

instead suggests that Little River/Hamblin Pond are sources of larvae to the main bay, 

and Menauhant receives inputs from a coastal pool. Previous studies of bivalve larvae 

found larvae to be concentrated on flooding tides (Wood and Hargis 1971, Andrews 

1983, Roegner 2000, Gregg 2002, Baker and Mann 2003). The mechanism suggested for 

this was that a nearshore pool of larvae supplements larvae that are rapidly exported from 

bay sources (Roegner 2000). Our results may support this mechanism, with the sub-

estuaries contributing significantly to the bay pool which is rapidly exported when 

conditions are right. However, larvae exported from Little River could be transported 

elsewhere in the bay and not necessarily subjected to immediate export from the system.  

  Our results suggest that patterns in the flux study were a result of both biological 

(spawning times, larval origins) and physical factors (tidal strength, water mass flux). 

Spawning events can increase larval concentrations as much as two orders of magnitude 

over only a few hours (Seliger et al. 1982), and the specific tide at which a spawn may 

appear could have a large effect on its export. In fact, many decapod crustacean species 

can time their spawning to a given tidal event (Christy and Stancyk 1982). Semidiurnal 

variations in temperature and salinity could enhance the ability of larvae to be retained if 

they responded by changing vertical distributions to reduce export. The only significant 

relationships seen with tidal direction and amplitude were for total larvae. Patterns of 

total larvae reflect the patterns of the dominant species at the time, and individual species 

may show different patterns based on their local concentrations and behaviors.    
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4.4.3   Vertical Distribution: Depth and Tide Effects. The vertical distribution 

study enabled investigation of larval concentrations within a semidiurnal tidal event that 

could not be resolved from the integrative flux samples. Although we saw patterns that 

might suggest a behavioral response, these patterns were not consistent for all tidal events 

or between sample periods. Many of the larval time-series contained gaps or outliers that 

made correlative relationships difficult to uncover. We present these results as 

speculative, noting that the differences observed between species are likely to result in 

differential transport. 

At Little River, uniform larval concentrations with depth were typical of shallow, 

well-mixed estuaries (DeVries et al. 1994). However, during certain periods, mainly 

daytime, larvae would peak at the surface around slack tides. If this is a behavioral 

response, this would (1) facilitate surface swimming due to less turbulent mixing, (2) 

enable feeding on phytoplankton at the surface, and (3) reduce export due to minimal 

flow. Pedi-veliger G. demissa larvae have shown surface-seeking behavior, but this has 

not been documented for smaller larvae (Baker and Mann 2003).  

Semidiurnal fluctuations with salinity resulted in larval abundances that indicated 

relationships with water masses. Salinities at Little River increased at the end of high 

flood tides, indicating the first part of the flood contains returning ebb water (Chant et al. 

2000). Increases of A. simplex larvae with salinity in the middle and bottom occasionally 

occurred without a corresponding peak in the surface, indicating a behavioral mechanism 

to retain larvae before an ebb event. For G. demissa and M. mercenaria, concentrations of 

larvae indicated the opposite relationship with salinity, and this would suggest that more 
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larvae are associated with estuarine water on outgoing tides and do not necessarily return. 

No relationships with temperature or salinity and G. demissa or M. mercenaria 

abundances were seen for the neap tidal period, likely because of the narrower ranges of 

temperature and salinity observed for this time period. 

At Childs River, larval distributions were strongly related to depth. Although we 

had expected to see larvae aggregated at intermediate depths due to the stratification 

(Carriker 1951m Deksheieks et al. 1996), larvae were abundant at the surface when the 

pycnocline may have been weak enough to facilitate larval swimming. Mann et al. 1991 

found that bivalve larvae can swim through a halocline of up to 5%, but at our site the 

halocline was as much as 15%, and G. demissa was observed above a halocline of 10%. 

Despite having higher salinities, concentrations in the bottom of Childs River were very 

low. In areas of reduced velocity like that of Childs River, larvae can more consistently 

maintain a surface-seeking distribution. There can be unfavorable conditions at depth in 

estuaries that may force larvae to constantly swim upwards (Andrews 1983). Factors we 

did not sample (such as dissolved oxygen) may have been limiting at this depth, or all 

flow and larval transport occurs in the middle depth. 

There was also a relationship with larval concentration and tide at Childs River. 

Both G. demissa and M. mercenaria showed increased concentrations with flood tides, 

indicating a sink for larvae. Upstream of our sampling site, Childs River becomes fresher 

and its muddy benthos is an unsuitable habitat for all of our target species. Despite being 

successfully transported and retained here, settlement is unlikely. Species that do 

successfully settle in Childs River, such as M. arenaria, were not spawning when we had 
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sampled. If M. arenaria is transported in a similar fashion as G. demissa and M. 

mercenaria, then this might explain its distribution in the upper estuary.  

4.4.4   Vertical Distribution: Flow. For Little River, there were periods when 

larvae were higher at the surface than other depths. Although this suggests larval 

behavior, there was weak evidence that larvae were using temperature or salinity as cues 

for swimming. Instead, flow might have contributed to these observed patterns, although 

we were unable to measure flow at the exact depth and time samples were taken, so it had 

to be averaged for a tidal period. For periods of low flow in Little River, larvae often 

appeared higher in the surface and middle compared to the bottom. This would indicate 

that surface swimming behavior may be inhibited by the higher turbulence observed with 

high flows in Little River, supporting our hypothesis. Although there were no consistent 

patterns with flow direction, larvae may have to be more responsive to velocity and 

turbulence when semidiurnal signals with temperature and salinity uniform; this supports 

the observation that concentrations were related to incoming velocities for the neap 

period. 

A DVM study of various larval groups only found significant migration with 

bivalve larvae in calm conditions (Rawlinson et al. 2004), and our sampling location at 

Childs River was in a lower-flow area outside the main channel where the current 

measurements were taken. Larvae at this site demonstrated significant responses to 

velocity, particularly in the middle sampling depth during the neap period when larval 

concentrations peaked on periods of high incoming flow. This was also observed for 

larval concentrations in the surface, particularly for the spring period. Thus, for Little 
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River, high flows may inhibit surface swimming due to increased vertical mixing, but at a 

stratified site like Childs River flows that increase mixing and reduce stratification could 

alternately enable larvae to swim to the surface.  

4.4.3   Comparing Studies. By performing the vertical distribution sampling 

study synchronously with the tidal flux study, we could compare net flux for each period 

at Little River (Table 4.5). Overall concentrations for each integrated sample followed the 

same trends we saw in the hourly samples. However, the net flux was different than what 

might have been expected from concentration data alone. For the spring period, larval 

concentrations of G. demissa and M. mercenaria were higher on outgoing tides, yet there 

were net imports of G. demissa following water volume flux. For the neap period, net 

imports were seen for all species but M. mercenaria. Because velocity at Little River is 

stronger on flood tides, this may compensate for increased concentrations on ebb tides 

resulting in upstream transport and retention in marsh areas. Because our integrated 

sampler was turned off during slack tides, the flux data do not account for slack periods 

when larvae were most concentrated in the surface. This should not affect the flux 

calculations drastically as these larvae would have little to no net transport at slack tides. 

  There are a few caveats to this sampling study that should be noted. Although the 

best sampling method for investigating tidal transport has been shown to be sampling 

hourly from one station in the middle of the channel (Kjerfva and Wolaver 1988), spatial 

variation in flow rates across a channel could become important if concentrations are 

directly related to flow (Gaines and Bertness 1993). Both Menauhant and Little River 

have shown different flow structures in areas across a channel. If larval concentrations 
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vary across the channel, then flux may not be uniform across an inlet. Furthermore, our 

current measurements only estimated a water velocity for the last 0.5-1 meter of the 

bottom. A short study using an ADCP in Little River showed that velocity does vary with 

depth, more noticeably on outgoing tides (data not shown). Thus, a species like A. 

simplex showing increased concentration at depth at the beginning of an ebb tide would 

show reduced outward transport with this behavior. 

Recent studies have emphasized the importance of integrative sampling in larval 

transport and distribution studies (Gaines and Bertness 1993, Dudas et al. 2009, Pineda et 

al. 2010). Integrative and discrete samples are not always correlated, yet our two studies 

showed agreement with general trends. Since estuarine systems are so variable, larvae 

that disperse between estuaries and coastal waters must be adaptable to the variety of 

conditions experienced. Conditions within sites in Waquoit Bay were unique enough to 

distribute larvae differently. It is not likely that there is a one particular element or 

behavioral pattern all bivalve larvae exhibit. Our data suggest that a variety of factors can 

influence larval distribution and transport, most importantly the timing of larval release, 

stratification, and local hydrodynamics. We did not observe the suggested pattern for 

retention of larval bivalves at either site- when larvae swim to the surface at flood tides, 

and sink on ebb tides (Epifanio et al. 1984, Gregg 2002). If larvae are capable of 

exhibiting this behavior, Childs River may be too stratified at times, and Little River and 

Menahuant may be too turbulent. This type of behavior may be more important in deeper 

waters with lower flows (Roegner 2000). The residual water mass flux after a series of 

tidal events at our sites indicated that it was sufficient to retain larvae.    
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This study demonstrated that species-specific patterns can be observed with tidal 

fluxes and that vertical distributions and are important to account for when estimating 

larval dispersal and transport. Recruitment depends on the ability for competent larvae to 

be retained in the estuary and settle. Baker and Mann (2003) noted that late-stage larvae 

do not display the same patterns as their younger counterparts and should be removed 

from behavior studies. Since late-stage larvae were rare in our samples, we did not 

assume their presence would be significant. Appendix D investigates transport and 

behavioral potential for larvae greater than 200 μm that we would determine as 

competent to settle. We can conclude that these larvae are often less abundant in the 

surface than the middle or bottom, and they can have flux in opposite directions than 

smaller larvae. This points out that larval flux may not be the best indicator of larval 

supply if larval supply refers to competent larva (Pineda et al. 2010). However, knowing 

general patterns of larval flux is important for estimating retention.  
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Table 4.1  Properties of bivalve larval and physical time series. Mean values for total 

bivalve larval time series at Little River (LR) and Menauhant (MN) are shown along with 

mean temperature, salinity, wind speed, and tidal velocity for each tidal period and are 

shown separately for each week. Standard deviations for bivalve concentrations were 

similar to the means and are not shown. Only one wind time series was used. Periodicity 

and decorrelation times (DT) from each series‟ autocorrelations are shown. Periodicities 

represent when the autocorrelation was significant (alpha = 0.05) at a given time lag. 

Decorrelation times represent the period of sample coherence based on how long the time 

series was correlated. A minus sign (-) indicates a negative correlation at that given time-

scale. Due to gaps in the Menauhant time series, only a 21-sample series was used†.   

 
Mean (std) Periodicity (d) DT (d) 

Full Series LR MN LR MN LR MN 

       Bivalves 3.09E+03 960 0.25, 0.5, 1, 1.5 none† 3 1.25† 

(larvae/m3) 
      Temperature 24.4 (1.2) 23.2 (0.7) 0.25-1 0.25 2.25 3 

(C) 
      Salinity 28.6 (0.2) 30.0 (0.7) 0.25, 1 0.25 - 1 1.25 3.25 

(PSU) 
      Wind 1.6 (0.8) 0.25, 2.25 0.5 

(m/s) 
      Velocity 22.4 (7.8) 55.7 (17.4) 0.5 (-), 1, 2 0.5 (-) 0.25 0.5 

(m/s) 
      

       

 
Mean (std) Periodicity (d) DT (d) 

Half-Series Wk1 Wk2 Wk1 Wk2 Wk1 Wk2 

Little River 
      Bivalves 4.62E+04 1.39E+04 0.5 0.25, 0.5 0.5 1.5 

(larvae/m3) 
      Temperature 24.2 (0.9) 24.7 (1.2) 0.25 0.25 0.5 2 

(C) 
      Salinity 28.5 (0.4) 28.6 (0.2) 0.25, 1 0.25 1.25 0.5 

(PSU) 
      

    Menauhant 
      Temperature 22.9 (0.6) 23.6 (0.7) 0.25 0.25 1 1.75 

(C) 
      Salinity 29.5 (0.5) 30.6 (0.1) 0.25, 0.5 0.25 2.5 1.25 

(PSU) 
      

 
† performed on truncated data series (5.25 d) 

  



180 

 

Table 4.2   Flux calculations of water volume (x 10
4
 m

3
)
 
and larvae (x 10

9  
larvae) for 

spring and neap 48 hour periods. Water volume flux for each tidal sampling period was 

compared to the total of larvae transported for four consecutive tidal periods. Positive 

fluxes are indicated in bold.  

 
Spring Period Neap Period 

 
7/18-7/20 7/29-7/31 

 
LR MN LR MN 

Total Vol. Flux 
(x 104 m3) 7.62 62.3 6.21 56.9   

Total Bivalves -25.3 37.3 2.01 -12.9 

A. simplex -1.42 1.83 0.28 -2.16 

G. demissa -9.46 7.89 0.92 -2.50 

M. mercenaria -6.35 12.6 0.05 -3.58 
 
 

  



181 

 

Table 4.3   ANOVA tables of the effects of depth and tide on larval concentrations. 

Results from a two-way ANOVA on log-transformed data are shown for each sampling 

period. Depth was defined by samples at surface, middle, and bottom. Tide was 

determined by the strength and direction of current velocity during each sample resulting 

in three treatments of ebb, flood, and slack. Only surface and middle values were used for 

each species in the Childs River neap series. Significant relationships (alpha < 0.05) are 

shown in bold. DF = degrees of freedom; TOT = total larvae; AS = A. simplex; GD = G. 

demissa, MM = M. mercenaria 

 
  Little River Childs River 

SPRING Source DF F P DF F P 

TOT Depth 2 1.72 0.193 2 9.94 0.0004 

 
Tide 2 0.85 0.435 2 2.16 0.1307 

 
Depth*Tide 4 0.30 0.877 4 0.83 0.5152 

AS Depth 2 1.53 0.229 2 5.24 0.012 

 
Tide 2 6.00 0.006 2 0.12 0.875 

 
Depth*Tide 4 0.65 0.634 4 0.65 0.632 

GD Depth 2 0.13 0.875 2 10.62 0.0004 

 
Tide 2 3.57 0.039 2 4.40 0.024 

 
Depth*Tide 4 0.02 0.999 4 1.46 0.242 

MM Depth 2 0.76 0.476 2 6.60 0.005 

 
Tide 2 1.25 0.300 2 4.35 0.023 

 
Depth*Tide 4 0.34 0.85 4 1.95 0.131 

NEAP Source DF F P DF F P 

TOT Depth 2 0.72 0.49 2 16.27 0 

 
Tide 2 0.94 0.397 2 1.66 0.204 

 
Depth*Tide 4 0.05 0.999 4 3.38 0.018 

AS Depth 2 1.21 0.310 1 5.55 0.025 

 
Tide 2 1.16 0.323 1 0.46 0.501 

 
Depth*Tide 4 0.15 0.963 3 1.40 0.263 

GD Depth 2 0.46 0.636 1 14.6 0.006 

 
Tide 2 1.50 0.235 1 5.44 0.027 

 
Depth*Tide 4 0.33 0.859 3 3.61 0.025 

MM Depth 2 0.38 0.683 1 19.35 0.0001 

 
Tide 2 1.59 0.217 1 1.69 0.204 

 
Depth*Tide 4 0.24 0.915 3 1.57 0.219 
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Table 4.4   Cross-correlations between larval concentration and temperature, salinity and 

velocity for the vertical distribution study. Periods of significant cross-correlations are 

indicated by the hourly time lag with respect to the physical variable (for instance, a +2 

lag to salinity means the larval concentrations led salinity by two hours). Pearson‟s 

correlation coefficient, r, is given in parentheses next to each lag. LR = Little River, CR = 

Childs River     

 
Total Bivalves Anomia simplex 

LR Spring Surface Middle Bottom Surface Middle Bottom 

Salinity   0 (-0.676) 0 (-0.676)   -2 (0.552) -2 (0.667) 

 
  +2 (-0.624) +2 (-0.624)     0 (0.538) 

Velocity       +2(0.556)   -6 (0.621) 

 
          -4 (0.533) 

 
          0 (-0.590) 

 
          +2 (0.668) 

LR Neap 
  

    
 

  

Salinity           0 (0.579) 

CR Spring 
  

    
 

  

Temperature             

 
            

Salinity 0 (0.585)     2 (0.773)     

 
+2 (0.586)           

Velocity -2 (0.652) 2 (0.652)         

 
+4 (-0.585) 6 (-0.610)         

CR Neap 
  

    
 

  

Temperature   -4 (-0.502)   -2 (0.548) 0 (0.611)   

Salinity   -4 (-0.542)     -4 (-0.542)   

Velocity   -6 (-0.519)     -6 (-0.528)   

 
  0 (0.621)     0 (0.548)   

 
  +6 (-0.581)         
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MM = M. mercenaria; LR = Little River, CR = Childs River     

Geukensia Demissa Mercenaria mercenaria 

Surface Middle Bottom Surface Middle Bottom 

  0 (-0.573) 0 (-0.691)     0 (-0.634) 

  +2 (-0.624) +2 (-0.573)     +2 (-0.569) 

            

            

            

            

  
 

  
               

  
 

  
     -2 (-0.687) 0 (-0.723) +4 (-0.540)   0 (-0.594) 

  -4 (-0.740)         

  +4 (-0.646)     -4  (-0.576) 0 (-0.596) 

  +6 (-0.628)         

  +4 (0.585)   -2 (0.502)     

            

  
 

  
     0 (0.502)     0 (0.542)   

  -4 (-0.590)         

  0 (0.616)         
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Table 4.5   Flux calculations for each tidal period for the Little River spring and neap tide 

sampling events. Water volume flux (x10
5
 m

3
) and number of larvae (x10

8
) are shown for 

each of three tidal pairs. Total water volume flux and flux of all larvae are summed in the 

second to last column. The last column contains sums for specified tidal pairs because of 

missing samples. F = flood, E = ebb, AS = A. simplex, GD = G. demissa, MM = M. 

mercenaria. 

 

Spring F1 E1 F2 E2 F3 E3 Total 1 and 3 
Water 
Volume 1.05 -0.69 2.58 -1.79 1.52 -0.85 1.82 1.04 

Total 19.1 -15.6 32.3 -15.0 5.21 -8.44 17.6 0.24 

AS 0.76 -0.63 n/a -2.39 0.78 -1.10 
 

-0.18 

GD 9.18 -4.54 n/a -4.34 1.77 -1.77 
 

4.64 

MM 0.76 -1.56 n/a -2.24 0.89 -1.52 
 

-1.43 

         Neap E1 F1 E2 F2 E3 F3 Total 2 and 3 
Water 
Volume -0.60 1.41 -1.18 0.63 -0.47 1.44 1.24 0.42 

Total -0.10 15.1 -21.7 11.1 -10.8 33.4 27.0 11.9 

AS n/a 1.82 -1.08 1.00 -0.97 4.67 
 

3.61 

GD n/a 6.51 -6.72 4.76 -2.49 8.68 
 

4.22 

MM n/a 1.21 -7.59 1.66 -3.67 7.34 
 

-2.27 
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Figure 4.1   Reserve boundary map of Waquoit Bay showing sampling locations for flux 

and vertical distribution study. Stars depict each site. Menauhant and Little River were 

sites of the tidal flux study, and Childs River and Little River were sites of the vertical 

distribution study. Figure courtesy of the Waquoit Bay National Estuarine Research 

Reserve.  
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Figure 4.2   Classification comparisons by the manual and automated methods. Total 

images classified manually (black bars) and with the automated software (gray bars) are 

shown for our three species of interest for the tidal and vertical distribution studies. 

Classified larvae were summed from 10 random samples (1000 images) we used to test 

each training set.   
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Figure 4.3   (a) Bivalve larval concentrations, (b) temperature/salinity, (c) depth, and (d) 

chlorophyll for Little River during study period. (a) Total bivalve larvae and 

concentrations of the three species were calculated based on the total water volume 

pumped for each sample and the percentage species composition from each imaged 

subsample. Concentrations are plotted on a log scale. (b-c) Physical data were measured 

in 15 minute intervals. Dashed boxes indicate sampling period for high-frequency spring 

(first box) and neap (second box) tide sampling. Total = total bivalve larvae; AS = A. 

simplex, GD = G. demissa, MM = M. mercenaria.  
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Figure 4.4   (a) Bivalve larvae, (b) temperature/salinity, (c) depth, and (d) chlorophyll for 

Menauhant during study period. (a) Total bivalve larvae and concentrations of the three 

species were calculated based on the total water volume pumped for each sample and the 

percentage species composition from each imaged subsample. Concentrations are plotted 

on a log scale. (b-c) Physical data were measured in 15 minute intervals. Missing data for 

chlorophyll time series indicate periods when sensor was fouled. Total = total bivalve 

larvae; AS = A. simplex, GD = G. demissa, MM = M. mercenaria.  
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Figure 4.5   Velocity (a-b) and wind (c) for Little River and Menauhant for the two-week 

study period. Velocities were measured in 7.5 minute intervals with positive velocities 

corresponding to the incoming tide. Wind data was recorded as the maximum wind speed 

in 15 minute intervals from a weather station at the north point of the bay and averaged 

for each tidal period.   
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Figure 4.6   Autocorrelation functions for total bivalves at Little River. Autocorrelation 

shown for (a) 25 time step lags for the full larval time series, (b) 15 lags from 16-24 Jul 

2009, and (c) 15 lags from 24-31 Jul 2009. The length of each bar represents the size of 

the correlation at each lag, equal to one tidal event (approximately 0.25 days). Red lines 

represent 95% confidence intervals. The decorrelation time is indicated by the time point 

where the function crosses the x-axis.  
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Figure 4.7   Relationships of larvae at Little River (a-d) and Menauhant (e-h) to tidal 

features. Mean concentration and standard error of total larvae and for all three species 

grouped by tidal direction (first column) and tidal amplitude (second column) are shown 

for both weeks of the time series. Significant groups are marked by asterisks (*). Total = 

total bivalve larvae; AS = A. simplex, GD = G. demissa, MM = M. mercenaria.  
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Figure 4.8   Temperature-Salinity-Plankton (TSP) plot for total bivalve larvae and larvae 

of three species for Little River (LR) and Menauhant (MN). Larval concentration is 

plotted as a function of temperature and salinity for (a,b) Total larvae (TO), (c,d) A. 

simplex (AS), (e,f) G. demissa (GD) and (h,i) M. mercenaria (MM). Circular symbols 

represent concentrations prior to 24 July; triangle symbols represent conditions after 24 

July. Larval concentrations are scaled to the range of the data shown above each plot on a 

log scale, corresponding to the side color bar. Black lines represent lines of constant 

density at 0.5 sigma-t units.  
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Figure 4.9   Relative flux of larvae and water volume for all species for 16-31 July 2009. 

Larval flux was calculated as the number of larvae transported in or out of the estuary 

during a tidal event for a channel cross-section of Little River (a-d) and Menauhant (e-h). 

Volume flux is total volume flux for each tidal sampling period. Positive fluxes indicate 

transport into the estuary on flood (incoming) tides. (a,e) Total = total bivalves, (b,f) AS 

= Anomia simplex, (c,g) GD = Geukensia demissa, (d,h) MM = Mercenaria mercenaria. 
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Figure 4.10   Larval concentrations with temperature, salinity, and depth for Little River 

spring sampling period (22-23 July 2009). (a) Total water column depth (solid line) and 

middle sample depth (dashed line) over the period. Photoperiod is indicated by boxes on 

the top axis. Surface samples were taken 25 cm below the surface and bottom samples 

were taken 20 cm above the bottom. (b-d) Concentration of each species for surface, 

middle, and bottom (right axis – solid lines) are plotted with temperature and salinity (left 

axes - dashed lines) for each strata. Gaps are due to missing or unimaged samples. Tidal 

periods are marked by vertical gray lines. Temp = temperature; Sal = salinity; AS = A. 

simplex; GD = G. demissa; MM = M. mercenaria  
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Figure 4.11   Temperature-Salinity-Plankton (TSP) plot for total bivalve larvae and larvae 

of three species for each vertical distribution study. Each column contains plots from a 

different sampling event: (a) Little River spring (22-23 Jul 2009), (b) Little River neap 

(28-29 Jul 2009), (c) Childs River spring (22-23 Jul 2009) and (d) Childs River neap (28-

29 Jul 2009). Larval concentration is plotted as a function of temperature and salinity for 

Total larvae (TO – first row), A. simplex (AS – second row), G. demissa (GD – third row) 

and M. mercenaria (MM – fourth row). Each symbol corresponds to the surface (circle), 

middle (triangle) or bottom (square) depths. Empty symbols represent zero larvae for that 

sample. Relative larval concentrations are scaled to the range of the data shown above 

each plot and correspond to the side color bar. Black lines represent lines of constant 

density at 0.5 sigma-t units for Little River and 1 sigma-t unit for Childs River. LR = 

Little River; CR = Childs River.  

  



196 

 

 

Figure 4.12   Larval concentrations with temperature, salinity, and depth for Little River 

neap sampling period (28-29 July 2009). (a) Total water column depth (solid line) and 

middle sample depth (dashed line) over the period. (b-c) Concentration of each species 

for surface, middle, and bottom (right axis – solid lines) are plotted with temperature and 

salinity (left axes - dashed lines) for each strata. See Fig. 4.10 legend for further figure 

explanation. Temp = temperature; Sal = salinity; TO = total bivalves; AS = A. simplex; 

GD = G. demissa; MM = M. mercenaria  
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Figure 4.13   Larval concentrations with temperature, salinity, and depth for Childs River 

spring sampling period (22-23 July 2009). (a) Total water column depth (solid line) and 

middle sample depth (dashed line) over the period. (b-c) Concentration of each species 

for surface, middle, and bottom (right axis – solid lines) are plotted with temperature and 

salinity (left axes - dashed lines) for each strata. See Fig. 4.10 legend for further figure 

explanation. Temp = temperature; Sal = salinity; AS = A. simplex; GD = G. demissa; 

MM = M. mercenaria  
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Figure 4.14   Larval concentrations with temperature, salinity, and depth for Childs River 

neap sampling period (28-29 July 2009). (a) Total water column depth (solid line) and 

middle sample depth (dashed line) over the period. Surface samples were at 25 cm and 

bottom samples were taken 20 cm above the bottom. (b-c) Concentration of each species 

for surface, middle, and bottom (right axis – solid lines) are plotted with temperature and 

salinity (left axes - dashed lines) for each strata. See Fig. 4.10 legend for further figure 

explanation. Temp = temperature; Sal = salinity; AS = A. simplex; GD = G. demissa; 

MM = M. mercenaria  
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4.15   Larval concentration in relation to average tidal velocity for all four sampling 

periods. Larval concentration for total larvae and for each species is plotted against 

hourly averaged velocity for each hour the sample was taken. Positive velocities 

represent flood periods. Symbols correspond to surface (S = circle), middle (M = 

triangle) or bottom (B = square) samples. Columns contain plots for each species for each 

sampling period: (a) Little River (LR) spring period (22-23 Jul 2009); (b) Little River 

neap period (28-29 Jul 2009); (c) Childs River (CR) spring period (28-29 Jul 2009); (d) 

Childs River neap period (28-29 Jul 2009).  Total = total bivalves; AS = A. simplex; GD 

= G. demissa; MM = M. mercenaria. 
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A Summary of Bivalve Larval Transport Patterns in Waquoit 

Bay 
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This dissertation research brings forth and challenges important concepts related 

to larval transport and retention in estuarine systems. In this chapter, the processes that 

influenced spatial and temporal trends in larval abundance are discussed, and 

mechanisms of transport for each species are described. In light of the results from this 

research, I discuss the importance of species-specific studies in larval transport, the role 

of active and passive transport, and the usability of the birefringence classification 

method. Finally, I speculate on the importance of this research for the field of larval 

ecology and suggest future studies that can incorporate results from this research or the 

method for larval identification. 

5.1   SPATIAL AND TEMPORAL VARIABILITY IN BIVALVE LARVAE 

 By sampling for larvae on weekly, tidal, and hourly scales we were able to isolate 

the processes that are most influential to larval abundance and distribution on each scale. 

We sampled weekly for six months during two years and found that overall bivalve larval 

concentrations were highest during periods of high temperatures. With many species 

having a threshold temperature of 15-20ºC to initiate spawning, abundance of larvae is 

highly dependent on bay warming during these months. When comparing abundances 

between 2007 and 2009, higher concentrations in 2009 were likely due to increased food 

availability for both adults and larvae and stronger winds leading to increased mixing 

throughout the time period. Results also showed that larvae are not uniformly distributed 

throughout the bay. The highest concentrations of larvae were observed at the sites in the 

middle of the bay, and the lowest concentrations were observed in the most upstream site 

with the lowest salinities. These distributions are likely a function of proximity to source 
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populations within the bay and loss of larvae during upstream transport. Not all species 

followed the same distribution patterns, suggesting that vertical behavior or salinity 

tolerances might influence dispersal. 

 By sampling on a tidal scale over fourteen days, we investigated if tidal amplitude 

had an effect on larval concentration and flux. Although the highest fluxes of larvae were 

observed on the largest tides, this was not always synchronous with periods of high larval 

abundance, which likely reflected spawning. Instead, larval concentrations seemed to 

track with water mass characteristics which changed halfway through the sampling 

period following a storm. During the first week, larval concentrations at a subinlet had a 

strong semidiurnal signal associated with ebb tides. However, during the second week 

most of the estuarine water had been flushed by a storm, resulting in higher salinities, a 

decreased tidal signal with water masses, and lower concentrations of larvae that 

remained coherent for one or two days. An external larval pool may be intermittently 

important in subsidizing larval supply in the bay, but no consistent patterns between 

higher fluxes on flood or ebb tides were apparent at the inlet.    

 Finally, the vertical distribution sampling on an hourly scale illustrated that larval 

concentrations with depth are sensitive to local velocity and salinity conditions. Markedly 

different distributions with depth between the two sampling sites indicated that transport 

patterns were not uniform throughout the bay, and this may explain some of the observed 

site-specific differences from Chapter 3. There were no significant behaviors with tidal 

phase observed, but larval concentrations varied tenfold both temporally and vertically. 

Whether concentrations peaked on ebb or flood tides were likely due to sources within 
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water masses. Each of the three species studied showed slightly different responses to 

local conditions. These results and the implications for species-specific transport are 

summarized in the following section.     

5.2   SPECIES-SPECIFIC TRANSPORT MECHANISMS 

 

 5.2.1   Anomia simplex (Jingle Clam). Anomia simplex showed the most 

variability in its distribution between years and among sites. Our weekly data showed that 

A. simplex can spawn when temperatures reach 15ºC, but it most abundant in 

temperatures over 20ºC and prefers salinities greater than 25 PSU. In 2009, A. simplex 

was more abundant than in 2007, with concentrations and growth slightly higher and 

appearing earlier at the eastern sites. This observation was consistent with the flux study 

at Little River and Menauhant. A. simplex was often associated with ebbing tides at both 

Little River and Menauhant indicating sources in estuarine waters within the bay. The 

high abundance of docks and rocky outcrops along the channels in the bay as well as 

localized areas of eelgrass may provide more habitat for A. simplex compared to the 

coastline outside the bay.       

 A. simplex was mostly exported during the flux study, with some periods of net 

import. The cohort analysis showed that A. simplex was capable of reaching settling size 

in Waquoit Bay in 2009, particularly at the eastern sites. The vertical distribution study 

indicated that A. simplex is capable of behaviors that could enhance retention. There was 

a positive relationship between A. simplex concentrations and salinity at the bottom. As 

salinity increases at the end of a flood tide, sinking A. simplex larvae would avoid being 

transported out of the channel. Concentrations of A. simplex were well-mixed on ebb 
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tides, and highest in the surface and middle on flood tides, increasing their transport 

ability and chances for upstream retention. Despite large fluxes on ebb tides, if sufficient 

numbers remain on the bottom the larvae would be transported less and possibly retained. 

The supply of larger larvae during the flux study was sporadic. The largest sizes of A. 

simplex in our weekly study were observed in August after the flux and vertical 

distribution studies were performed. The few A. simplex pedi-veligers present during this 

period explain the observed low fluxes. During periods when larvae are more abundant, 

by sinking on ebb tides and swimming up on flood tides they would likely be retained.  

 5.2.1   Guekensia desmissa (Ribbed Mussel). Geukensia demissa was widely 

distributed in Waquoit Bay and had the most coherent larval population and size structure 

of the three species. It had the widest salinity tolerances, being continually abundant in 

Childs River, but abundances were mostly restricted to temperatures above 20ºC. 

However, despite its abundance and wide distribution, cohort growth remained low. Only 

three cohorts were observed in 2009, with only the last cohort achieving a growth rate on 

par with laboratory estimates. With the other species readily reaching settlement size in 

the day, it was hypothesized that G. demissa larvae were not retained in Waquoit Bay.   

 The flux study addressed this problem of retention. On the second day of the 

study there was a spawning event on an outgoing tide in Little River marked by high 

concentrations of straight-hinged G. demissa. The timing of this event with a low-

amplitude ebb tide reduced the potential for export. G. demissa concentrations oscillated 

for about two days before the patch dissipated. Large exports of G. demissa were also 

observed at Menauhant during this period, but they followed similar trends for other 
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species indicating mixing of the spawn with other species. This event alone suggests that 

larvae spawned within the bay oscillate with the tides and are exported over a few days, 

which is less than the development time. The greatest flux of large larvae that might have 

originated from this spawn occurred three days later. A few isolated import events may 

supplement some of this loss, and these results suggest that larvae may grow faster than 

could be observed from weekly samples, although larval duration has not been 

adequately studied (see Ch. 1). After this mass spawning, flux of G. demissa was more 

uniform between the tides perhaps allowing for more retention to occur.     

 G. demissa demonstrated behaviors in the vertical distribution study that could 

lead to retention. G. demissa larvae showed significant surface-seeking behaviors during 

slack periods at Little River. During the spring tide period this behavior occurred at the 

end of flood tides when salinity was highest, and larval concentrations at the middle and 

bottom were significantly lower. During the neap period, this surface-seeking behavior 

occurred after both flood and ebb. If G. demissa larvae respond to high salinity by 

increasing upward swimming, salinity was higher and did not vary enough during the 

neap periods to provide a tidal cue. There could be a combination of both salinity and 

velocity necessary to trigger upward swimming, or simply that lower velocities are 

required to enable larvae to overcome turbulent mixing to reach the surface. At Childs 

River, G. demissa were readily found in the surface on both flood and ebb spring tides 

and presence at the surface seemed to be associated with higher velocities. During the 

neap period, salinities were much lower in the surface and G. demissa concentrations 

were associated with high-velocity incoming tides. These results suggest that G. demissa 
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larvae may constantly swim to the surface, which would be most easily performed during 

slack periods. Tidal signals with salinity may enable this behavior to enhance retention, 

but these signals may not always be different enough to elicit a response, and in the case 

of Childs River, may transport them to an unsuitable habitat. In general, surface 

swimming on slack tides would decrease net import or export given that surface flows are 

lowest during these periods. 

 In conclusion, G. demissa could show retention behavior if surface swimming 

was timed to incoming tides, although this was not always observed. Retention was 

observed based on tidal flux during the distribution study at Little River. If the only 

source for large G. demissa is through local retention of bay populations, as suggested by 

the low import of G. demissa pedi-veligers observed at the inlet, then it may be difficult 

to maintain the local population. Despite high concentrations and possible retention of 

younger larvae, growth and settlement of G. demissa either occurs quickly making pedi-

veligers are hard to sample, or pressures such as starvation or predation contributed to the 

lower abundance of larger larvae.                 

 5.2.3   Mercenaria mercenaria (Quahog). Mercenaria mercenaria was found 

throughout the sampling season suggesting that early and late spawning of this species 

can occur. Concentrations were correlated between all sites except Childs River. The 

greatest concentrations were found in July and August where temperatures were highest. 

In 2009, growth of M. mercenaria was marked by high concentrations of larger larvae 

appearing every two weeks and successful cohort survival in July and August. The 
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weekly data suggest that M. mercenaria are abundant in the bay, grow rapidly, and most 

likely are retained to settle. 

 Results from the flux and vertical distribution study, however, did not support this 

result. Although concentrations were associated with ebb tide and had bay water origins, 

this species had the highest overall export. M. mercenaria had the highest concentrations 

of large larvae, but they were also mostly exported. M. mercenaria did not show clear 

retention behavior in the vertical distribution study. Like G. demissa, peaks of M. 

mercenaria occurred in the surface around slack tide periods. Still, there was no evidence 

of a tidal periodicity to this response, although slightly more larvae were sometimes 

observed on flood tides. However, this conflicts with the net outgoing flux observed for 

M. mercenaria this period that differed from the flux direction of the other two species. 

Concentrations of M. mercenaria were not as high in the surface as G. demissa, and net 

export observed may result in reduced flood tide transport and reduced transport during 

slack periods. Since we did observe some import for M. mercenaria, it cannot be 

assumed that all M. mercenaria are exported. Furthermore, larvae exported from Little 

River would be transported to the main bay, an ideal sandy bottom substrate with large 

densities of quahogs, and possibly retained there.            

5.3   GENERAL CONCLUSIONS 

 

 5.3.1   Total Bivalves vs. Species-Specific Trends. This thesis is a pioneer study 

investigating larval supply to an embayment on three temporal scales for multiple 

species. Total larvae were included in many of the analyses in order to compare patterns 

which were generally observed for all larvae to those that were species-specific. In some 
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cases, relationships were only significant for total bivalves. This was mostly for purely 

physical processes, such as the significant relationship between larval concentrations and 

tidal direction and amplitude for the first part of the flux study at Little River. When 

looking at individual species, significant relationships were found with water mass 

properties and tidal velocities, particularly at higher frequencies. 

 Each species behaved differently with respect to salinity and flow. This enabled 

speculations related to individual species‟ transport and retention, which was expected to 

differ based on observed distributions and growth rates. Isolating periods of spawning 

and following cohorts was only possible with a species-specific analysis. Although all 

three species showed the most growth in late July and August, the timing of spawning 

events was different for each species, and overall distribution depended on source 

locations and tolerances of individual species.  

 5.3.2   Passive vs. Active Transport. Although some field studies of bivalve 

larvae have discounted behavior and argued for passive dispersal, the results from this 

thesis suggest that larvae are not always passive. The comparison between Little River 

and Childs River supports this conclusion. The shell makes a larva negatively buoyant, so 

any presence in the surface or middle is either a result of mixing or swimming. In an area 

of low mixing like Childs River, passive larvae would accumulate below the picnocline at 

Childs River. However, larvae were most abundant at the surface and the middle in 

Childs River and rarely found at the bottom. Therefore, if given the ability to maintain an 

upward swimming velocity, larvae will congregate at the surface (such as during slack 

periods at Little River). The ability for a larva to maintain this behavior, or respond to 
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cues that might initiate this behavior on a tidal frequency, depends on local salinities and 

velocities. However, the high velocities observed through most of the channels in 

Waquoit Bay frequently prevent this from occurring, and the majority of larval transport 

was based on water mass flux. If a vertical distribution study were performed in a tidally 

influenced area away from high channel flows, such as the middle of the bay, one might 

observe more significant behavioral responses.  

 5.3.3   Larval Supply to Waquoit Bay. Larval supply to Waquoit Bay is 

sensitive to timing. On a yearly scale, the timing of temperature increases leading to 

spawning, the availability of food during the season, and the effects of wind mixing 

enhancing transport can affect larval supply. Slower increases in temperature in 2009 led 

to mass spawning in July, rapid growth due to available food, and stronger winds creating 

mixing. On a weekly scale, transport processes were reflected in water mass properties as 

a whole. Storms can cause mixing, reduce transport, and decrease stratification. After a 

storm, the tidal signal in temperature and salinity decreased, leading to more even flux. 

With patterns of transport varying from week to week, it is possible that the patterns of 

decreased retention of M. mercenaria could change as water column properties regained 

a tidal signal.       

 5.3.4   Image Processing as a Tool for Identification. Using shell birefringence 

patterns to identify species presents a promising solution to the problem of bivalve larval 

identification. This work had to overcome a few obstacles before it could be applied, so it 

is our hope that these solutions can be transferred to future studies. For instance, we were 

unable to investigate all species of interest. Less abundant species, such as the bay 
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scallop, Argopecten irradians, resulted in many false-positive misclassifications when 

used in a training set. Furthermore, our hatchery set did not adequately represent the 

composition of species in our field samples, and it resulted in many false classifications 

when used as a training set. I adapted the study by focusing on species that were 

abundant during the study period to solve this problem. It remains to be tested whether a 

known hatchery training set can accurately identify larvae from field samples if 

microscope settings are kept constant. This would be the ultimate test for accuracy and 

usability of this method. 

5.3.5   Cumulative Error. It should be recognized that there are many sources of 

error inherent in these data sets that propagated from sample collection through to data 

analysis. In the course of this study, care was taken to avoid as much error as possible, 

yet some sources of error cannot be avoided. Cumulative error can be difficult to measure 

given its many sources, but here I speculate on the sources of error in this work, and how 

it may affect the results and conclusions.  

Each plankton sample was expected to represent the concentration of larvae at a 

given place and time. There is error that exists from variability in sampling conditions, 

accuracy of sample collection methods, and consistency in methods. Ritual calibration 

methods were employed to reduce or control for some of these errors, however unplanned 

and sometimes unknown changes can occur. One way of addressing field sampling error 

is to take replicate samples in order to calculate a standard error for each sample. 

However, this method can double or triple the number or samples taken each period and 

ultimately may limit the length of sampling possible. For this study, I decided that 
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temporal replication was suitable for analysis, although it does not take into account 

standard error for a given sample. On one occasion two samples were taken 

consecutively, and the percent difference in the counts was less than 10%. 

Similarly, error exists in sample processing, where one must assume that the 

counts accurately reflect the number in the sample (Kuthuhn 1958). For this study, one 

person performed the initial bivalve counts which limited the variability between persons. 

If a sample had to be split to facilitate counting, care was taken to ensure an appropriate 

number of larvae and subsamples were counted. The rate-limiting step for sample 

processing was imaging individual larvae. For each sample over 100 larvae, 100 larvae 

were imaged. In the samples with highest concentration, the subsample represented as 

little as 0.5% of the entire sample. This could lead to underestimates of abundant species 

as well as overestimates of rarer species contained in the subsample. However, in these 

cases the subsamples were often dominated by a few abundant species. By focusing on 

these species for our analysis, I avoided the issues associated with rare species that may 

be absent from a subsample but present in the full sample. 

Finally, there is error in our image processing method. This was discussed 

extensively in Chapter 2, but in Chapters 3 and 4 care was taken to ensure the least 

amount of error propagated through the analyses. In Chapter 3, images were manually 

identified and thus only human error was present. In Chapter 4, human error in training 

set formation as well as computer software error was present. Figure 4.2 shows the 

agreements between manual and automatically classified larvae. The largest error was a 

disagreement of 50 larvae. However, these numbers summed from a total of 1000 larvae, 
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or 10 samples, corresponding to a per sample difference of approximately five larvae per 

sample, or 5% of the subsample. Figure 5.1 shows the total error that could result from 

different levels of disagreements between manual and computer identifications. This 

potential error is lowest in cases of low disagreement or high species abundance. Thus, it 

is important to focus on species with high proportions in the samples in order to minimize 

cumulative error. For this study, focus species had at least 10% abundance in the 

manually sorted samples. At a 5% error rate, this would result in a 50% error as a high-

end estimate for a given sample. Such sporadic errors could explain the difficulties in 

interpreting data from species like M. mercenaria with low agreements. Employing the 

manual correction technique could solve some of these problems.  

Although it may be unrealistic to put a number on sampling error, the tests with 

the image processing method helped estimate the error associated with the identification 

methods. There is still work to be done to minimize this error, and automation of this 

process could reduce or enable some estimation of the counting error as well. For many 

of the studies in this thesis, a 30% error would not drastically change the overall 

conclusions. From an ecological standpoint, presence and absence of species, patchiness, 

and patterns reflected in order of magnitude differences between samples would not be 

greatly affected by these errors. Comparative plots showed similar trends with time (Fig. 

2.6) despite disagreements. In this study we also had to make many assumptions in our 

analyses, such as uniform flow across a channel that could have resulted in significant 

deviations from reality. Perhaps there would have been more significant statistical 

relationships or clear patterns with tide, depth and flow if some of these errors were 
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minimized. But given that this work is a first step in providing a high-resolution study at 

the species level, many of these conclusions are important even if the size of the error 

bars is unknown. This thesis was intended to provide a series of snapshots of larval 

distributions on various spatial and temporal scale, and these results are not absolute. 

Future applications will hopefully improve this method to get closer to the best methods 

for field studies of bivalve larvae.  

5.4   FUTURE DIRECTIONS 

 Although this study addressed many questions specific to transport of bivalves in 

Waquoit Bay, it still left aspects of dispersal unanswered. Modeling growth and resulting 

transport of individual species in Waquoit Bay and between Nantucket Sound could 

explain if some of the transport processes hypothesized for larvae in this study result in 

observed trends with retention abilities, coherence with water masses, and transport into 

upper regions of Waquoit Bay. A model for Waquoit Bay would require a vertical grid 

separation of at least half a meter, preferably 25 cm. This would be necessary as larvae 

can exhibit orders of magnitude differences in vertical distribution at this scale.  

 The relationship of larval supply to settlement was also left unexplored. Fisheries 

data from 2010 showed increased abundance of first-year quahogs compared with 

previous years, which could have been a result of the 2009 observations in this study (R. 

York, Town of Mashpee Shellfish Constable, pers. comm.). This relationship is 

significant for fisheries because it relates larval supply to recruitment. However, the 

influence of post-settlement processes should not be discounted, as there could be other 

factors such as benthic predation and competition that may affect recruitment. 
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 This study suggests that Waquoit Bay is a source of larvae of these three species. 

However, to explain the proliferation of M. mercenaria despite overwhelming evidence 

for export, it may be necessary to assume inputs from other sources. By identifying 

species from larval samples, it could be possible to look at genetic signatures that could 

link to source populations. Until now, the only usable method for larval origins has been 

through trace-element fingerprinting of juveniles (DiBacco and Levin 2000, Becker et al. 

2005) that has led to debatable results (Strasser et al. 2007). Microsatellites are emerging 

as one method of tracing larval origins (Helberg et al. 2002) that could be promising 

when combined with a method for larval identification, although there are still issues with 

molecular methods as seen in Chapter 2. 

 This thesis illustrates the potential to include bivalve larvae in studies of larval 

transport, dispersal, and settlement. Bivalves are important components of marine 

ecosystems and more importantly provide fisheries revenue to many regions. Many of 

these natural fisheries are troubled for a variety of reasons discussed previously, and an 

ability to follow larvae after enhancement or restoration efforts would greatly aid these 

efforts. The ability to determine the success rate of spawner transplants, pilot studies to 

investigate the best times and locations for spat collection, or flux calculations of larvae 

in areas of eelgrass decline are some of the many applications of this research to shellfish 

ecology and management. For Waquoit Bay, this thesis addresses some of the most 

important aspects of larval transport that could be used to explain settlement patterns, 

choose locations for seeding, and determine future studies.      
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Figure 5.1   Sample estimation error as a function of species composition. The 

relationship between total estimation error (y-axis) and percentage species composition 

(x-axis) is shown for four levels of disagreement between manual and computer counts. 

The relationship is a negative exponential that can be expressed as E = D/C where E is 

total error, D is the disagreement, and C is proportion species composition in the sample.    
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APPENDIX A: Supplemental Environmental Data 

 

 

 

 

Figure A.1   Daily averaged (a) temperature, (b) salinity and (c) chlorophyll a for Little 

River. Water temperature and cholorphyll a readings were averaged daily from moored 

loggers for the sampling periods of May through November in 2007 and 2009. A salinity 

probe failure in 2009 prevented the use of these data for comparison purposes.  
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Figure A.2   Daily averaged (a) temperature, (b) salinity and (c) chlorophyll a for 

Menauhant. Water temperature and cholorphyll a readings were averaged daily from 

moored loggers for the sampling periods of May through November in 2007 and 2009.  
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Figure A.3   Daily averaged (a) temperature, (b) salinity and (c) chlorophyll a for Childs 

River. Water temperature and cholorphyll a readings were averaged daily from moored 

loggers for the sampling periods of May through November in 2007 and 2009.  

  



221 

 

APPENDIX B: Gaussian Separation Method Example 

 

 

Figure B.1   Example of Gaussian-separation method for determining larval cohorts. A 

histogram of larval sizes is shown for Mercenaria mercenaria larvae from all samples on 

16 July 2009. It was determined a priori from the histogram that this sample contained 

two normally distribution populations. The two Gaussian curves represent the maximum-

likelihood results from the estimation-maximization function for two Gaussian curves. 

The mean and standard deviation are printed for each resulting cohort. MM = M. 

mercenaria 
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APPENDIX C: Testing Assumption of Homogeneity Between Sites 

 

C.1   INTRODUCTION AND METHODS 

 

 When performing the cohort analysis for Chapter 3, it was necessary to pool data 

from all four sites to maximize the number of larvae used to make the Gaussian 

separation. By doing this, we assumed that abundance and size distributions are 

homogenous between sites. However, results from Chapter 3 (Tables 3.1 and 3.2) suggest 

that this may not be the case. This can be particularly problematic if larvae at different 

sites experience different growth rates and may bias the overall cohort size distributions. 

We investigated the relationships between the sites in forming cohort distributions for 

Anomia simplex and Mercenaria mercenaria in 2009. A. simplex showed correspondence 

between abundance and size distribution between Little River and Waquoit Bay-Metoxit 

Point and between Childs River and Menuhant. M. mercenaria showed correspondence at 

all sites except Childs River. 

 By pooling the larvae into two groups of two sites for A. simplex and one group of 

three sites for M. mercenaria, we hoped to sample sizes large enough to produce 

sufficient Gaussian estimation. We followed the same methods for Gaussian separation 

using the EM algorithm and criteria as described in Chapter 3. These new pools of larvae 

were expected to contain similar populations, and results were compared to the original 

cohort estimations for all sites in Chapter 3 (Figures 3.11 and 3.13).        

C.2   RESULTS AND DISCUSSION 

 Combining data from two site groups produced slightly different cohorts for A. 

simplex than for all of the sites together. Six cohorts were observed for each grouping, 
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but only two of them were synchronous (Fig. C.1). In the pooled data, eight cohorts were 

observed (Fig. 3.11b, d). By pooling all of the sites we were able to see more cohorts, but 

it is likely that some of these results corresponded to size classes or spawns from 

different sites. Comparing the two site groups, Little River and Waquoit Bay had the 

highest growth rates (Table C.1), but Childs River and Menauhant had more persistent 

cohorts with more large larvae present in later months. Since pooling two sites made for 

smaller sample sizes when performing Gaussian separation, observing three component 

groups for a sample distribution was less common than when all sites were combined. 

This resulted in cohorts spanning a shorter time-span, most notable for the Little River 

and Waquoit Bay samples. 

 For the M. mercenaria cohort results, combining data from three out of four sites 

resulted in similar cohort distributions as seen for all four sites (Figs. C.2 and 3.13b, d). 

The only marked contrast was that for these samples, two cohorts were observed in May, 

where only one was observed when all sites were combined. This, however, is more 

likely a consequence of low sample sizes rather than mixing sites. For these samples, 

distributions were split from samples between 10-15 larvae. At such low sample sizes, 

fitting proper distributions is difficult, and by simply removing one or two larvae by 

removing a site could dramatically change the size distributions. Cohorts for the peak 

abundance months corresponded with cohorts from all of the sites, and estimated mean 

growth rates were similar (Tables C.2 and 3.6). 

 These results show that combining samples to estimate component distributions 

for cohort separation can sometimes produce misleading results. Results for A. simplex 
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showed that when we combined all sites, we were linking cohorts from size groups 

present at different sites. In 2007, few sites showed correspondence with each other 

(Table 3.1). Thus, size groups for these samples may be even more segregated between 

sites. However, it could be argued that larval transport capabilities enable populations to 

readily mix between sites in Waquoit Bay, and it could be plausible that a population 

spawned at one site could appear a week later at different site. By pooling larvae from 

multiple sites we also increase the odds of including larvae from cohorts that have 

dispersed, eliminating possible error that could result from export at a given site.  

 There is no way of accurately estimating cohorts of bivalve larvae from this 

sample set. In order to accurately assign cohorts, larval origins would have to be known, 

and this is not currently possible with bivalves from this area. We presented this method 

to demonstrate the type of data that can be gathered using a species-specific analysis. 

Although our groups may be subject to site-specific variation, overall, this cohort analysis 

provided a way to look at size structure and growth for three species of bivalves in 

Waquoit Bay. Simply by observing when groups of older larvae appear and connecting 

those with potential spawns can provide valuable information for larval ecological studies 

and species management.            
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Table C.1   Mean growth rate (GR) and period present for Anomia simplex cohorts from 

grouped sites. Mean growth rate and standard deviation are reported for six cohorts for 

Little River/Waquoit Bay combined sites (LR/WB), and six for Childs River/Menauhant 

combined sites (CR/MN).  

Cohort Dates 
Mean GR     ± 
SD (μm d-1) 

LR/WB     

AS1 16 Jun - 24 Jun 2.09 

AS2 8 Jul - 16 Jul 6.78 

AS3 16 Jul - 21 Jul 8.82 

AS4 21 Jul - 12 Aug 3.30 ± 1.13 

AS5 4 Aug - 26 Aug 3.85 ± 4.50 

AS6 26 Aug - 2 Sep 2.39 

CR/MN     

AS1 16 Jun - 24 Jun 2.92 

AS2 29 Jun - 8 Jul 3.94 

AS3 8 Jul - 30 Jul 3.85 ± 4.03 

AS4 16 Jul - 4 Aug 3.39 ± 2.50 

AS5 4 Aug - 26 Aug 5.37 ± 3.05 

AS6 19 Aug - 26 Aug 3.94 

 

Table C.2   Mean growth rate (GR) and period present for Mercenaria mercenaria 

cohorts from grouped sites. Mean growth rate and standard deviation are reported for 

nine cohorts for combined Little River, Menauhant, and Waquoit Bay sites 

(LR/MN/WB).  

Cohort Dates 
Mean GR     ± 
SD (μm d-1) 

LR/MN/WB     

MM1 7 May - 13 May 11.64 

MM2 13 May - 18 May 8.43 

MM3 8 Jul - 16 Jul 1.53 

MM4 16 Jul - 4 Aug 3.38 ± 1.01 

MM5 30 Jul - 19 Aug 2.99 ± 1.92 

MM6 12 Aug - 26 Aug 3.41 ± 0.79 

MM7 26 Aug - 2 Sep 4.01 

MM8 2 Sep - 9 Sep 2.70 ± 0.85 

MM9 15 Sep - 29 Sep 1.16 ± 0.94 
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Figure C.1   Cohort graphs for Anomia simplex grouped by sites. (a-b) Frequency 

distributions of larval sites for (a) Childs River and Menauhant and (b) Little River and 

Waquoit Bay. Probability density functions (pdfs) were only made when 10 or more 

larvae were present after pooling the two sets of sites. (c-d) Mean size and standard 

deviations are shown for identified cohorts at each group of sites. 
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Figure C.2   Probability density functions (pdfs) and cohort size plot for Mercenaria 

mercenaria combined for Little River, Menauhant, and Waquoit Bay for 2009. Pdfs were 

only made from total counts of 10 or more individuals of M. mercenaria represented after 

pooling the three sites. Spawning peaks of identified cohorts are marked. 
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APPENDIX D: Flux and Vertical Distribution of Competent Larvae in Waquoit 

Bay 

 

D.1   INTRODUCTION AND METHODS 

 

 As a bivalve larva proceeds through ontogenetic changes during its pelagic larval 

phase, it becomes focused on finding a suitable habitat for settlement. A larger, harder 

shell and development of a foot allows a pedi-veliger larva to spend more time searching 

out suitable substrate for settlement and metamorphosis. This bottom-oriented behavior is 

a result of both increased difficulty of swimming with a heavier shell as well as pressure 

to settle (Chia et al. 1984). However, larvae are still pelagic at this point, being 

transported with currents and feeding on phytoplankton. Due to these different life cycle 

characteristics, it has been both proposed and demonstrated that competent larvae have 

different dispersal patterns than younger veligers (Baker and Mann 2003). Furthermore, 

studying flux and behavior of competent larvae provide a more realistic estimate of 

potential recruitment to an estuarine site as these are the individuals most likely to settle 

out during their tenure in the estuary.      

For our species studied, this stage usually occurs when the larva reaches about 

200 μm (Arnold et al. 2005, Chapter 1). By employing an edge-detection algorithm on 

the larval images (see Chapter 3 methods), we were able to calculate larval shell length 

for each image. We estimated competent larvae composed about 3% of the total samples 

and were thus unlikely to affect the behavioral patterns observed in Chapter 4. For these 

larvae, we hypothesized that velocity would be the most important physical factor 

regulating pedi-veliger transport and distribution due to the negative geotaxis observed 

for these larvae. More turbulence from faster currents would cause resuspension of some 
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larvae in sediments, but slower currents would enable these larvae to more easily reach 

the surface to feed or be transported. By performing separate analysis on these 

individuals we hoped to determine if larger larvae were either bottom-distributed or 

showed patterns that might lead to retention. We performed the same statistical tests in 

Chapter 4 (ANOVA and cross-correlation) to assess the significance of these patterns. 

We calculated flux of competent larvae for the same spring and neap events as in Chapter 

4 to estimate potential settlement for each species and investigated whether there were 

certain tidal periods more likely to transport larger larvae.  

D.2   RESULTS AND DISCUSSION 

 

D.2.1   Vertical Distribution and Relationships to Velocity.   In general, our 

results showed some evidence for bottom distribution of pedi-veliger larvae, but nothing 

consistent between tidal cycles and sampling periods. There were many cases where 

concentrations of large larvae differed from results of all larvae, and larger larvae were 

more abundant in the middle or bottom depths compared to the surface. However, in 

many cases pedi-veligers were also found in high concentrations at the surface. 

 For total larvae, a relationship with depth or velocity might suggest that these 

behaviors are consistent for all species. There were many surface peaks of pedi-veliger 

larvae in the Little River spring series which was consistent with all larvae (Fig. D.1a, 

Fig. 4.11), but in the Little River neap period there appeared to be increases of larvae at 

the bottom associated with incoming velocities, although concentrations were uniformly 

high at the surface and bottom. At Childs River, presence of larger larvae was erratic and 

didn‟t follow the trends of being transported on incoming tides as seen for all sizes, 
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although there were significant effects of depth with neap tide concentrations (Table 

D.1). Instead, larger larvae seemed to occur at the end of spring flood events (Fig. D.1b) 

and appeared to be associated with high velocities on the neap tides (Fig. D.1d). 

 For Anomia simplex larvae, we saw stronger evidence for bottom seeking 

behavior. As smaller larvae had often peaked in the surface, larger larvae peaked in the 

middle or bottom depths (Fig. D.2). Larvae were still found in the surface when overall 

concentrations were high, perhaps due to higher velocities (Fig. D.2a,c). At Childs River, 

large A. simplex larvae were rare and only found on three tidal events (Fig. D.2b,d). For 

two of these events, A. simplex were associated with incoming tides at mid-depths. 

 Geukensia demissa larvae showed pulsed peaks of larvae at 2-4 hour intervals at 

Little River (Fig. D.3a,c). For the neap period, this seemed to be associated with periods 

of lower velocity. A significant correlation between surface G. demissa concentration and 

incoming velocity appeared at a two hour lag (data not shown), indicating larvae might 

be sensing higher velocity and surfacing when it lowers. For the spring period, this trend 

was observed with one exception during the first outgoing tide (Fig. D.3a). At Childs 

River, G. demissa were most abundant on the outgoing tides (Fig. D.3b,d), with the 

exception of a big pulse on the second neap flood (Fig. D.3d). Since all G. demissa larvae 

were significantly more abundant on flood versus ebb tides (Table 4.3), more pedi-veliger 

larvae found on ebb tides could indicate an avoidance of an unsuitable habitat.   

 Most of the larger larvae were classified as Mercenaria mercenaria. At Childs 

River, there was a significant effect of depth on pedi-veliger larvae for both periods 

(Table D.1), and concentrations seemed to be associated with incoming tides and 
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velocities (Figs. D.4b,d). Most of the general trends observed for M. mercenaria pedi-

veligers were not drastically different from those of all larvae. For Little River spring 

tides, concentrations peaked in the bottom on outgoing tides, but many were also 

abundant in the surface (Fig. D.4a). During the neap tides, larger M. mercenaria were 

found on the bottom during incoming tides and showed a slight but unsignificant trend 

with velocity (Fig. D.4c). This suggests that there are periods when M. mercenaria larvae 

may concentrate at the bottom, but are more likely associated with velocity rather than 

tidal direction. Carriker (1961) noted late-stage M. mercenaria to be associated with the 

bottom, however our data shows they may be associated with the bottom on some 

periodicity but also readily found at the surface.       

 The low presence of large larvae in our samples made statistical patterns difficult 

to interpret. At Childs River, we saw high correlation coefficients to velocity with 

pediveliger larvae of all species in the bottom, but these were only from 5-6 samples 

(data not shown). However, if high velocities may cause competent larvae to sink as they 

do for gastropod larvae (Fuchs et al. 2004), this might not be random. We included large 

larvae grouped for all species in these results because it gave us more samples to 

evaluate, but no clear patterns emerged. Species-specific patterns seem to be present for 

larvae at this stage. Previous studies have found pediveliger G. demissa in the surface 

compared to the bottom, although we occasionally saw high concentrations of all species 

at the surface (Baker and Mann 2003). Our data do suggest larvae are often more 

abundant at lower depths than at the surface, and it is likely that high velocities may 

enable more of these larvae to be resuspended and found in surface samples. However, 
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our data were unclear in suggesting transport patterns as it seems there is a mix of both 

active and passive behaviors.      

D.2.2   Flux and Transport. This study also demonstrated that presence of pedi-

veliger larvae is erratic and not always consistent with patterns observed for total larvae. 

Our flux data for total, A. simplex, and M. mercenaria larvae at Little River showed 

pulses of pedi-veliger flux at 5-6 day intervals. This could reflect development time of 

different cohorts with either settlement or net export decreasing concentrations in-

between (Figs. D.5a,b,d). Flux of larvae of all sizes did not show these patterns (Fig. 4.10 

a-d). G. demissa did not show this pattern, perhaps being complicated by the large pulse 

observed around 18 Jul (Fig. 4.6a). Export of larger G. demissa larvae, perhaps resulting 

from this spawn, may be seen in the 21 Jul peak (Fig. D.5c).  

Fluxes of all sizes for each species generally followed the same patterns of water 

volume transport (Table 4.2), but for pedi-veligers we saw more species-specific patterns 

and trends that differed from those of total larvae. There was a net import of large larvae 

during the spring period at Little River (Table D.2) while there was a large net export of 

smaller larvae. Most of the larvae present during this period were likely small, but the 

stronger flood tides at Little River may have encouraged import of pedi-veliger larvae. So 

despite a net export of smaller larvae for this period, it may have overall been a favorable 

situation for settlement. No significant relationships were found between tidal features 

and pedi-veliger larvae at Little River (Fig. D.6a-b), however there is a slight trend of 

more pedi-veliger larvae being observed on low-amplitude tides at Little River. One 
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mechanism to explain this would be if larger larvae sink in response to higher turbulence, 

their concentration at the surface, where our pump was located, would be lower.     

 Large larvae at Menauhant had more irregular patterns than Little River, showing 

sporadic pulses of export or import events followed by longer periods of low 

concentrations. For these pulses, mostly export was observed (Fig. D.5d-f). With the high 

flux of currents through the inlet at Menauhant, it is less likely to observe coherent 

cohorts and export events are likely from pulses of patches created by physical features. 

There was no difference between concentrations between ebb and flood events or tidal 

strength (Fig. D.6c-d). Summed tidal fluxes at Menauhant for the spring and neap period 

clarify some trends for the pooled sizes. A large efflux of large G. demissa larvae 

occurred despite a net influx of all G. demissa larvae for the spring period.  For the neap 

period, A. simplex and G. demissa had were transported separate directions, with net 

incoming water volume flux. Flux for M. mercenaria pedi-veligers was large, and often 

had different flux directions than total M. mercenaria larvae. For the neap period, 15% of 

M. mercenaria exported were pedi-veligers. Thus recruitment potential for bivalve larvae 

transported through the Menauhant inlet seems to vary between extreme export of bay 

larvae to smaller periods of net import of larvae from other sources.   

D. 3   SUMMARY 

 This analysis emphasizes the importance of not only evaluating species-specific 

data, but also separating size-classes to determine patterns of larval transport. Our results 

for the vertical distribution study showed that pedi-veliger larvae can exhibit bottom-

oriented distributions that are more characteristic of having a larger shell and seeking 
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settlement substrate. However, these patterns were not consistent between species, 

between sites, nor between times. It is likely that the strong tidal currents found at Little 

River and the stratified conditions at Childs River may prevent large larvae from 

exhibiting consistent patterns. Perhaps had this study been performed in a more stable, 

but tidally influenced area such as the middle of the bay, we would be able to observe 

clear trends.      

 The tidal flux data emphasized that pedi-veliger larvae have different trends than 

total larvae, and thus estimates of tidal flux for total larvae may not be accurate estimates 

of potential settlement or recruitment. Species-specific trends that did not follow water 

volume transport were most evident for pedi-veliger larvae. This suggests that these 

larvae are not only more patchy but also capable of maintaining distributions separate 

from passive transport.   
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Table D.1   ANOVA tables testing the effects of depth and tide on pedi-veliger larval 

concentrations. Results from a two-way ANOVA on log-transformed data are shown for 

each sampling period. Surface, middle and bottom concentrations were tested for all 

periods except Childs River when not enough bottom samples were represented for all 

species. Significant relationships (alpha < 0.05) are shown in bold. DF = degrees of 

freedom; TOT = total larvae; AS = A. simplex; GD = G. demissa, MM = M. mercenaria 

    Little River Childs River 

SPRING Source DF F P DF F P 

TOT Depth 2 1.66 0.103 1 0.01 0.905 

 
Tide 2 0.02 0.985 1 1.84 0.187 

 
Depth*Tide 4 0.42 0.790 3 0.24 0.867 

AS Depth 2 0.2 0.819 1 1.03 0.320 

 
Tide 2 2.49 0.097 1 0.76 0.390 

 
Depth*Tide 4 0.93 0.458 3 0.83 0.491 

GD Depth 2 0.35 0.711 1 1.44 0.242 

 
Tide 2 0.72 0.495 1 0.20 0.660 

 
Depth*Tide 4 1.08 0.379 3 0.90 0.453 

MM Depth 2 0.11 0.899 2 9.14 0.001 

 
Tide 2 2.31 0.112 2 0.49 0.614 

 
Depth*Tide 4 0.64 0.640 4 0.63 0.643 

NEAP Source DF F P DF F P 

TOT Depth 2 0.50 0.613 2 12.72 0.001 

 
Tide 2 1.30 0.284 2 0.58 0.454 

 
Depth*Tide 4 0.18 0.946 4 0.52 0.670 

AS Depth 2 0.35 0.710 1 1.15 0.292 

 
Tide 2 1.26 0.296 1 0.09 0.767 

 
Depth*Tide 4 0.63 0.648 3 1.14 0.349 

GD Depth 2 0.08 0.919 1 2.90 0.099 

 
Tide 2 0.26 0.772 1 0.09 0.768 

 
Depth*Tide 4 0.24 0.916 3 0.07 0.978 

MM Depth 2 0.55 0.581 2 4.75 0.013 

 
Tide 2 0.91 0.410 2 1.50 0.234 

 
Depth*Tide 4 0.96 0.438 4 0.9 0.470 
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Table D.2   Net flux of pedi-veliger larvae (x 10
7
) for spring and neap 48 hour periods. 

Summary of data calculations given in Table 4.2. Positive fluxes are indicated in bold. 

LR = Little River; MN = Menauhant. 

 
Spring Period Neap Period 

 
7/18-7/20 7/29-7/31 

 
LR MN LR MN 

Total Vol. Flux 
(x 104 m3) 7.62 62.3 6.21 56.9   

Total Bivalves 26.5 88.5 -9.75 -92.2 

A. simplex 0 0 3.36 -3.98 

G. demissa 16.2 -31.1 3.25 7.62 

M. mercenaria 9.25 40.5 -6.25 -55.4 
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Figure D.1 Competent larval concentration and velocity time series for all pedi-veliger 

larvae during vertical distribution study. Concentration of larvae as estimated from 

measured larval images at surface, middle, and bottom depths is shown for (a) Little 

River spring tide (22-23 Jul 2009), (b) Little River neap tide (28-29 Jul 2009), (c) Childs 

River spring tide (22-23 Jul 2009) and (d) Childs River neap tide (28-29 Jul 2009). 

Velocity measurements were recorded from current meters at 0.5 m above the bottom 

every 7.5 minutes. Positive velocity corresponds to incoming tides. Solid black line 

represents zero velocity. 

  



238 

 

 
Figure D.2 Competent larval concentration and velocity time series for Anomia simplex 

pedi-veliger larvae during vertical distribution study. Concentration of larvae as 

estimated from measured larval images at surface, middle, and bottom depths is shown 

for (a) Little River spring tide (22-23 Jul 2009), (b) Little River neap tide (28-29 Jul 

2009), (c) Childs River spring tide (22-23 Jul 2009) and (d) Childs River neap tide (28-29 

Jul 2009). Velocity measurements were recorded from current meters at 0.5 m above the 

bottom every 7.5 minutes. Positive velocity corresponds to incoming tides. Solid black 

line represents zero velocity. 
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Figure D.3 Competent larval concentration and velocity time series for Geukensia 

demissa pedi-veliger larvae during vertical distribution study. Concentration of larvae as 

estimated from measured larval images at surface, middle, and bottom depths is shown 

for (a) Little River spring tide (22-23 Jul 2009), (b) Little River neap tide (28-29 Jul 

2009), (c) Childs River spring tide (22-23 Jul 2009) and (d) Childs River neap tide (28-29 

Jul 2009). Velocity measurements were recorded from current meters at 0.5 m above the 

bottom every 7.5 minutes. Positive velocity corresponds to incoming tides. Solid black 

line represents zero velocity. 
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Figure D4 Competent larval concentration and velocity time series for Mercenaria 

mercenaria pedi-veliger larvae during vertical distribution study. Concentration of larvae 

as estimated from measured larval images at surface, middle, and bottom depths is shown 

for (a) Little River spring tide (22-23 Jul 2009), (b) Little River neap tide (28-29 Jul 

2009), (c) Childs River spring tide (22-23 Jul 2009) and (d) Childs River neap tide (28-29 

Jul 2009). Velocity measurements were recorded from current meters at 0.5 m above the 

bottom every 7.5 minutes. Positive velocity corresponds to incoming tides. Solid black 

line represents zero velocity. 
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Figure D.5   Total larval flux and water volume exchange for pedi-veliger larvae for the 

Little River (a-d) and Menauhant (e-h) flux studies. See Figure 4.10 for description of 

data. Positive fluxes indicate larvae on incoming tides. (a,e) Total = Total bivalves, (b,f) 

AS = Anomia simplex, (c,g) GD =  Geukensia demissa, (d,h) MM = Mercenaria 

mercenaria.   
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Figure D.6   Relationships of pedi-veliger larvae at Little River (a-b) and Menauhant (c-

d) to tidal features. Mean concentration and standard error of total larvae and for all three 

species pooled by tidal direction (first column) and tidal amplitude (second column) for 

the period. There were no significant affects. Total = total bivalve larvae; AS = A. 

simplex, GD = G. demissa, MM = M. mercenaria.  

 


