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Abstract 

Performance of elite athletes depends on their technical, physiological and psychological abilities. Different sports 

require various levels of aerobic, anaerobic, speed, power, agility, and strength capacities. Elite athletes and athletes 

who aim to become elite usually train year-round with carefully designed training programs. The close monitoring of 

physical capacities during the entire training period is essential for elite athletes to investigate the effect of the training 

program and determine if the recovery is sufficient. This study summarized the changes in aerobic and anaerobic 

capacity in different training periods in athletes of various sports. In addition to fitness tests, testosterone-to-cortisol 

ratio may be a useful indicator for the balance between anabolic and catabolic states. Testosterone-to-cortisol ratio may 

be measured in different training periods to estimate the degree of recovery. 
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Introduction 

Performance of elite athletes depends on their technical, 

physiological and psychological abilities. Different sports 

require various levels of aerobic, anaerobic, speed, power, 

agility, and strength capacities. Elite athletes and athletes who 

aim to become elite usually train year-round with carefully 

designed training programs. Competition naturally provides 

the best test for athletes. However, it is difficult to isolate 

various components of performance during competitions. In 

addition, the modification of training program may be required 

prior to the competitions according to athletes’ current physical 

status in order to reach the best performance in the upcoming 

competition. Furthermore, the long-term high-intensity 

training may result in insufficient recovery, which may lead to 

chronic fatigue, staleness of performance, and even 

overtraining. Therefore, the close monitoring of physical 

capacities during the entire training period is essential for elite 

athletes for the following reasons [1]: 

1.To study the effect of a training program. 

2.To motivate the athletes to train more. 

3.To give an athlete objective feedback. 

4.To make an athlete more aware of the aims of the 

training. 

5.To evaluate whether an athlete is ready to compete. 

6.To determine the performance level of an athletes during  
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  a rehabilitation period. 

7.To plan short-and long-term training programs. 

8.To identify the weakness of an athlete. 

9.To determine if the recovery is sufficient. 

To obtain useful information from a test, it is essential that the 

test is relevant and resembles the conditions of the sport. 

Changes in aerobic fitness in different training 

periods 

It has been well-documented that in untrained or 

recreationally-trained subjects, aerobic training programs with 

sufficient intensity, duration, and length will increase VO2max 

by approximately 10-20% [2-5].  

However, athletes with adequately developed aerobic 

capacities generally showed no change in VO2max after 

training programs or competitive seasons. Research in athletes 

in ‘technical’ sports in which performance is principally 

determined by skill, have suggested either reduced or 

unchanged aerobic fitness following training and competition 

seasons. VO2max was significantly lower after the competitive 

season in international-level male alpine skiers [6] and epee 

fencers [7]. Collegiate male ice hockey players showed no 

change in VO2max before and after the season which involved 

2 games and 2 practice per week [8]. Similarly, collegiate 

female volleyball players did not show significant change in 

VO2max after a 21-week competitive season [9]. Elite players 

of the ball-game bandy showed no change in VO2max after a 

competitive season [10]. Elite junior female and male speed 

skaters also showed similar VO2max levels before, during, and 
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after a competitive season [11]. These athletes had undergone 

intensive training for a long period of time and developed 

relative high levels of aerobic fitness that are suitable for their 

respective sports. It is possible that these athletes may have 

already reached their genetic potential in aerobic fitness. In 

addition, these athletes in ‘technical’ sports may spend 

considerable training time and effort on specialized techniques, 

thus reduce the amount of training on cardiovascular capacity. 

Therefore, they may maintain rather than change their aerobic 

fitness over year-round training and competition. 

On the other hand, elite athletes participating in 

physically demanding sports have demonstrated different 

trends with unchanged or increased levels of VO2max have 

been reported during and after competitive seasons. Relative 

VO2max in International-level male middle and long distance 

runners showed progressive increase during the season and a 

reduction during the off-season [12]. Approximately 20% 

increase in VO2max was reported in Olympic oarsmen during 

in-season compared to off-season [13]. Elite road cyclists 

showed significant increase in VO2max after 3 months of 

pre-Olympic training [14]. VO2max was also significantly 

increased after a 5-month competitive season in elite varsity 

wrestlers [15]. On the contrary, elite professional cyclists 

showed no change in VO2max after 5 months of intensive 

training with more than 15000 km of training and competition 

despite significant increase in muscle oxidative enzyme 

activities [16]. These elite athletes had relatively high levels of 

aerobic capacity before entering their specialized training 

program. Therefore, it is possible that properly designed 

training program can still improve aerobic capacity even in 

elite endurance athletes. 

Changes in anaerobic fitness in different training 

periods 

Elite female rowers showed a gradual increase in 

maximal power measured by a 2-min all-out rowing test over a 

9-month pre-Olympic training [17]. Elite male high jumpers 

also showed the highest vertical jump height during the 

competitive seasons compared to other period of the year [18]. 

In addition, male elite sprint cyclists showed increased 

anaerobic index and acceleratory power in repeated interval 

sprints [19]. 

On the other hand, it has been shown that anaerobic 

power and capacity, measured by a 30 sec jumping test and 

maximal vertical jumping heights were decreased during a 

competitive season in female volleyball players, even with 4-5 

weekly sessions for playing drill and competitions and 2-3 

weekly sessions for conditioning [9]. The results of 30-sec 

Wingate test did not change at the before, during, and after a 

competition season in male elite skiers [6] and fencers [7]. 

Lack of seasonal variations in anaerobic power measured by 

vertical jumping and power output on a cycloergometer was 

also reported in male elite road-race cyclists [14]. In-season 

testing also demonstrated significantly lower peak torques for 

both dominant and non-dominant knee extensors compared 

with off-season assessments at all velocities [7]. Furthermore, 

concentric and eccentric quadriceps and hamstring torques 

were decreased after the season in male ice hockey players [8]. 

Influence of taper on the performance in elite athletes 

Taper is defined as ‘a progressive nonlinear reduction of 

the training load during a variable period of time, in an attempt 

to reduce the physiological and psychological stress of daily 

training and optimize sports performance’ [20]. To reach the 

optimal sport performance at the right time, such as major 

competitions, requires the development of a closely controlled 

training program. Intensive training elicits adaptation 

responses that lead to improvement in performance. However, 

intensive training also results in fatigue that may limit the 

performance capacity. The purpose of taper is to maintain the 

physiological gains during the intensive training period while 

completely recover from the negative effects of the training 

[21]. The taper is crucial to athletic performance and the 

results of competitions. The improvements in muscular force 

and power, hormonal levels, neuromuscular functions, and 

psychological status could range from 0.5 to 6.0% after a 

successful taper in well-trained athletes [22]. A 2.2% 

improvement in swimming performance during the final 3 

week of training leading to the Sydney 2000 Olympics was 

observed in all events by athletes from different countries and 

performance levels [23]. 

The marked reduction in training load during the tapering 

period should not be detrimental to training-induced 

adaptations. An insufficient training load during taper could 

result in detraining and therefore the loss of training effect. 

Thus, it is crucial to determine the training intensity, volume, 

and frequency during the tapering period to reduce fatigue and 

maintain training effect for optimal performance. It has been 

shown that high-intensity low-volume taper resulted in 

favorable changes in muscle glycogen, metabolic enzymes, 

hormones, muscle strength, and running time to fatigue in 

highly trained athletes [24-26]. Reductions in training volume 

by 50-90% during the taper have been shown to improve or 

maintain performance in well-trained athletes in swimming 

[27-29], cycling [30], triathlon [31, 32], endurance running [33, 

34], and strength training [35]. It has been revealed that a 

reduction in training frequency by 50% during 2-4 weeks of 

taper could maintain or improve performance in well-trained 

cyclists [30, 36], swimmers [27], and endurance runners [37]. 

However, although training-induced adaptations could be 

maintained during taper at 50% reduction in training frequency, 

the more’technique-dependent’ sports such as swimming may 

require less than 20% reduction in training frequency to 

prevent possible ‘loss of feel’ [23]. The duration of taper 

varied significantly among literatures, ranging from 4-14 days 

in cyclists and triathletes, a week in competitive runners, 10 

days in strength athletes, and 10-35 days in swimmers [22, 38]. 

It appears that training volume and frequency can be reduced 

to a higher extent than training intensity, if detraining is to be 

avoided. It has also been suggested that a fast exponential 

decay of training volume (low-volume) may be the most 

appropriate method in taper [22, 31, 32]. 

Despite plenty of studies on various sports, the optimal 

taper program has not been clearly established, especially in 
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team and strength sports. It is very likely that intensity, volume, 

and frequency of successful taper programs would be specific 

to sports, previous training programs, and initial fitness and 

performance levels of the athletes. Therefore, close monitoring 

of entire training period is essential to establish the optimal 

taper strategy for specific athletes in specific sports. 

Detraining effect 

Detraining, a period of insufficient or terminated stimulus, 

can lead to significant loss of adaptations obtained from 

previous training. Reactive hyperemic blood flow, a substantial 

increase in blood flow in response to relief of ischemia or an 

exercise stimulus, in arm and leg artery decreased after several 

weeks of bed rest and limb immobilization [39, 40]. Reactive 

hyperemic blood flow is a marker for the vasodilator capacity 

of the resistance vascular bed and can be used to evaluate 

structural changes in the circulation [41]. Nitric oxide (NO) is 

a crucial factor of endothelium function and responsible for 

flow-mediated vasodilation during exercise. Surprisingly, 

flow-mediated dilation was enhanced after several weeks of 

inactivity. It is possible that the chronically increased levels of 

basal shear stress in deconditioned vessels may lead to an 

upregulation of endothelial nitric oxide synthase (eNOS) 

expression and activity [42]. Thus, NO production and 

responsiveness to a stimulus was increased. Three months of 

endurance training could increase femoral artery diameter by 

approximately 10%, while endurance athletes showed 

approximately 30% increase, compared to sedentary controls. 

On the other hand, 1 week of immobilization resulted in 

approximately 10% decrease, while 52 days of complete bed 

rest resulted in approximately 20% decrease in femoral artery 

diameter, compared to sedentary controls [41]. In sedentary 

healthy subjects, inactivity within 3-8 weeks could result in a 

significant loss of vascular dimension and increase in 

flow-mediated vasodilation [41]. 

In well-trained athletes, short term detraining of less than 

4 weeks could result in a rapid decline in VO2max and blood 

volume. Stroke volume and maximal cardiac output were also 

reduced while the increased heart rate at the same work load 

could not compensate for the losses. The loss ranging between 

4-14% in VO2max has been reported in highly trained athletes 

with excellent aerobic power [43-45]. In recently-trained 

subjects, a reduction of 3.6-6% in VO2max has been shown 

after 2-4 weeks of cessation of training [46, 47]. The loss in 

blood volume was the most important factor responsible for 

the decline in VO2max after short term detraining. Total blood 

and plasma volume have been shown to reduce by 5-12% in 

endurance athletes after 1-4 weeks of detraining [43, 48]. 

Decline in plasma volume in the first 2 days of inactivity was 

also reported [49]. Approximately 5-10% increase in exercise 

heart rate at submaximal and maximal intensities has been 

revealed after short term detraining [43, 48, 50]. Reductions of 

10-17% in stroke volume and 8% in cardiac output have been 

reported after short term training cessation [44, 51]. These 

losses in cardiovascular functions caused detrimental effects 

on endurance performance in highly trained athletes. 

Reductions of 4-25% of time to exhaustion in endurance 

athletes have also been revealed [43, 48, 52]. 

An increased respiratory exchange ratio at submaximal 

[50, 51] and maximal [43] exercise intensities have been 

shown after short term detraining, indicating a shift towards 

higher reliance on carbohydrate as energy source during 

exercise. Detraining resulted in a decrease in insulin-mediated 

glucose uptake, possibly due to a reduction of 17-33% in 

muscle GLUT-4 protein level [53, 54]. Muscle glycogen 

content decreased by approximately 20% even after 1week of 

detraining [54], partially resulted from 42% decrease in 

glycogen synthase activity [55]. Oxidative enzyme activities 

and oxidative capacity were decreased [50, 56], while 

glycolytic enzyme activities were increased [56] in skeletal 

muscle after short term detraining. 

Loss in muscular force and power in strength-trained 

athletes was less significant. Muscular strength measured by 

free weight did not change, while EMG activity and isokinetic 

eccentric knee extension force were decreased in power 

athletes after 2 weeks of training cessation [57]. Trained 

swimmers maintained muscular strength but showed a 13.6% 

decrease in swim power after 4 weeks of detraining [58]. 

Cortisol and growth hormone level did not change after 5 

days of detraining in endurance athletes [59]. However, 

strength athletes showed an anabolic trend of hormonal change 

as growth hormone, testosterone, and testosterone/cortisol ratio 

were increased after 14 days of detraining [57]. 

Exercise-induced changes in hormones 

Testosterone has been viewed as anabolic indicator as it 

can stimulate glycogen storage and muscular protein synthesis. 

On the other hand, cotisol has been used as an indicator of 

catabolic state for its role in gluconeogenesis via the 

proteolytic pathway [60-62]. An equilibrium between anabolic 

and catabolic states in athletes is often represented by the ratio 

of these two hormones, the testosterone-to-cortisol ratio (T/C) 

[63-66]. T/C has been suggested as a potential marker for 

insufficient recovery and overtraining syndrome in athletes as 

it was decreased after intensive endurance exercise [67, 68] 

and chronic high volumes of endurance training [65, 69-71]. 

Our previous study has also shown that T/C ratio was 

decreased after a triathlon [72]. Most studies showed 1.5- to 

5-fold of increase in cortisol after intensive endurance exercise, 

resulting in significantly lower T/C [73-76]. It appeared that 

T/C ratio decreased only after relatively intensive endurance 

exercise, as 2 hours of rowing at approximately 75% of 

anaerobic threshold did not result in significant change in 

serum T/C ratio [62]. The mechanisms of the decreased 

testosterone levels may include decreased 

gonadotropin-releasing hormone secretion by hypothalamus 

[77], enhanced prolactin and inhibited luteinizing hormone 

(LH) releases by pituitary [78], and/or direct inhibition by 

cortisol [79]. Recently, it has been suggested that 

dehydroepiandrosterone (DHEA)-to-cortisol ratio (DHEA/C) 

may also serve as a marker for the anabolism and catabolism 

balance [80, 81]. 

Previous researches have been inconsistent with the acute 

response of testosterone after intensive endurance exercise. It 
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has been shown that testosterone increased after a marathon 

[73, 75], possibly due to the increased 

gonadotropin-independent testicular production [82] or 

reduced rate of clearance from plasma [83]. Other 

investigators have reported no change [74, 84] or decrease [76, 

85] immediately after intensive endurance exercise. 

Similar to testosterone, a single bout of endurance 

exercise resulted an increase in DHEA and DHEAS in both 

men and women. Surprisingly, DHEAS levels could remain 

elevated for hours or even days after an intensive bout of 

endurance exercise [86, 87]. Therefore, some investigators 

suggested that DHEAS concentrations could be an indicator of 

stress level, similar to cortisol [80]. 

Acute resistance exercise with sufficient intensity and 

volume has been shown to produce substantial elevations in 

testosterone levels [88]. The magnitude of increase depends on 

the exercise intensity and numbers of sets and repetitions 

[89-92]. 

Changes in resting testosterone concentrations during 

long-term resistance training have been inconsistent or 

non-existent in men and women [88]. Some studies have 

reported increases in resting testosterone concentrations during 

or after long-term resistance training [93, 94], while others 

have shown no change [95, 96] or even decrease [97]. It 

appears that the resting testosterone levels are influenced by 

the current state of training. Substantial changes in training 

volume and intensity may elicit transient changes in resting 

testosterone levels. These values may return to baseline when 

the individuals return to their normal training [88]. 

Most studies showed 1.5- to 5-fold of increase in cortisol 

after intensive endurance exercise [73-76]. It has also been 

revealed that cortisol levels increased substantially after an 

acute bout of resistance exercise [93, 97, 98]. Significant 

positive correlations between blood lactate and cortisol levels 

have been reported after resistance exercise [99, 100]. The 

protocols high in volume with moderate to high intensity with 

short rest periods have elicited the greatest acute lactate and 

cortisol response [101, 102]. 

Resting cortisol levels generally reflect a long-term 

training stress. Results on resting cortisol levels during chronic 

resistance training have been equivocal, as no change [97, 103], 

reductions [96, 104], and elevations [105] have been reported. 

It has been demonstrated that salivary testosterone and 

cortisol was a better measure of the biologically active 

fractions of these hormones than those obtained from serum 

[106]. In addition, salivary testosterone revealed the decline in 

testicular function associated with aging [107, 108]. Only the 

free fraction of these hormones in plasma can move across cell 

membranes and elicit biological responses. More than 95% of 

the testosterone in plasma is bound to sex-hormone binding 

globulin and albumin [109], while approximately 80% of the 

plasma cortisol is bound to corticosteroid binding globulin and 

albumin [110]. Furthermore, saliva collection is fast, 

noninvasive, and may reduce the stress response of cortisol 

during the sampling process. Thus, monitoring changes in 

saliva has been successfully used in investigating the responses 

of testosterone and cortisol during various competition and 

training periods [60, 73, 111, 112]. 

Conclusion 

The suitable physiological and biochemical tests of 

various training periods are necessary to ensure the progress of 

the training plan for elite athletes. It is essential to establish the 

personal profile of the test results for each athlete as large 

individual variation is expected. In addition to the fitness tests 

that most coaches are familiar with, the hormone analyses, 

especially testosterone and cortisol, in different training 

periods can provide valuable information on the physiological 

response and stress in the athletes. 
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