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The abundance of volatile compounds, and particularly CO2, in the upper 18 

oceanic mantle affects the style of volcanic eruptions. At mid-ocean ridges, 19 

eruptions are generally dominated by the gentle effusion of basaltic lavas with a 20 

low volatile content. But, explosive volcanism has been documented at some ocean 21 

spreading centres1-3, indicative of abundant volatile compounds. Estimates of the 22 

initial CO2 concentration of primary magmas can be used to constrain the CO2 23 

content of the upper oceanic mantle, but these estimates vary greatly4,5. Here we 24 

present ion microprobe measurements of the CO2 content of basaltic melt trapped 25 

in plagioclase crystals. The crystals are derived from volcanic ash deposits erupted 26 

explosively at Axial Seamount, Juan de Fuca Ridge, in the northeast Pacific Ocean. 27 

We report unusually high CO2 concentrations of up to 9,160 ppm, which indicate 28 

that the upper oceanic mantle is more enriched in carbon than previously thought. 29 

And we furthermore suggest that CO2 fluxes along mid-ocean ridges4,5 vary 30 

significantly. Our results demonstrate that elevated fluxes of CO2 from the upper 31 

oceanic mantle can drive explosive eruptions at mid-ocean ridges. 32 

Mid-ocean ridges (MOR) are the most active and voluminous volcanic systems on 33 

Earth, forming nearly 60 % of the Earth’s crust. Owing to its large volume, MOR 34 

volcanism is a key contributor to the total CO2 flux from the mantle to the Earth’s 35 

surface. Recent work has documented the widespread existence of volcaniclastic ash 36 

deposits comprising basaltic glass fragments at MOR sites1-3. Although widely 37 

interpreted as primary products of submarine explosive eruptions1,2,6, some researchers 38 

argue for lava-seawater interaction7,8. Due to its low solubility, CO2 is the only 39 

magmatic volatile phase undergoing significant exsolution as basaltic magma ascends to 40 

the seafloor9, hence the only volatile which can drive explosive eruptions at these 41 
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depths. Pyroclastic activity in MOR environments therefore is controlled by the primary 42 

CO2 content of basaltic liquids, and consequently by the carbon budget of the mantle 43 

source. Initial CO2 contents of variously enriched basalts from the Mid-Atlantic Ridge, 44 

including so-called “popping rock”, are inferred to be between 660 and 57,600 ppm, 45 

based on their vesicularity and extent of carbon isotope fractionation5,10. However, such 46 

elevated CO2 levels have never been measured directly. By contrast, dissolved CO2 47 

concentrations in vapour-undersaturated melt inclusions from an East Pacific Rise MOR 48 

basalt (MORB) suite, which are thought to represent the initial MORB volatile contents, 49 

show very low CO2 contents of 44-244 ppm (ref. 4). This large discrepancy poses a 50 

significant problem to our understanding of CO2 abundances in the MORB mantle and 51 

derived magmas.  52 

We analysed the dissolved volatile concentration of 47 melt inclusions entrapped 53 

in plagioclase (An81-91) prior to eruption as well as host glass shards sampled from five 54 

pyroclastic ash sequences on Axial Seamount (Supplementary Tables S1, S2), to assess 55 

the pre-eruptive volatile inventory of the local MORB. The Axial caldera system is part 56 

of the intermediate-rate spreading Juan de Fuca Ridge (JdFR) between 45° 50’ N and 57 

46° N. A present-day magma reservoir is present at 2.5-6 km beneath the volcanic 58 

edifice11. Widespread ash deposits up to 2 m thick on the volcano’s flanks include 59 

angular glass fragments, thin platy glass shards interpreted as bubble walls and termed 60 

limu o Pele (Supplementary Fig. S1), and plagioclase phenocrysts. This volcanic ash is 61 

evidence for explosive activity accompanying effusive lava flows.  62 

The melt inclusions are generally more primitive (7.85 to 10.85 wt % MgO) and 63 

more variable in their trace element composition than the host glass (Supplementary 64 

Fig. S2a, Supplementary Tables S1, S3). Incompatible trace element compositions 65 
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(Supplementary Fig. S2b) fall within the overall range of JdFR basalts12 indicating some 66 

variations in the mantle source chemistry. The melt inclusions exhibit an extremely 67 

large range of CO2 concentrations, from 262 ppm up to 9,159 ppm (Fig. 1), with ~30 % 68 

of the inclusions >1,000 ppm (“high-CO2” inclusions). Corresponding saturation 69 

pressures range from ~ 60 MPa to 1.2 GPa (using ref. 13). These are the highest CO2 70 

concentrations ever measured in a MORB, and are consistent with previous predictions 71 

of initial, undegassed volatile contents of MORB liquids5,10,14,15. Variations of other 72 

volatile elements are much more restricted. H2O concentrations are 0.12-0.38 wt %, S 73 

825-1,379 ppm , Cl 14 – 144 ppm, and F 74-222 ppm. For comparison, melt inclusions 74 

from similar volcaniclastic deposits at the Gakkel Ridge record lower CO2 75 

concentrations between 170-1,600 ppm16. 76 

Decompression degassing of CO2-rich, H2O-poor magma results in exsolution of 77 

CO2 with restricted H2O partitioning into the vapour phase9. Within CO2-H2O space, the 78 

melt inclusions define a vertical trend (Fig. 1), indicating volatile saturation and 79 

decompression degassing of CO2-rich vapour from mantle to crustal depths (40 km to 2 80 

km, calculated from the range of CO2-H2O saturation pressures, and a crustal density of 81 

2,360 kg m-3, ref. 17). H2O variability exceeds that expected from purely degassing 82 

trends. The excellent positive correlation between H2O and F in the melt inclusions 83 

(Fig. 2a) indicates their similar geochemical behaviour and a constant H2O/F of the 84 

local mantle source of 14.3±0.1. Hence, the H2O variability reflects some heterogeneity 85 

of the mantle source.  86 

The ratio also allows us to assess post-eruptive alteration in MORBs, as hydration 87 

by seawater will cause the ratio to vary as a function of H2O. Moreover, Cl/H2O in the 88 

melt inclusions varies only as a function of Cl (Fig. 2b). Cl is accordingly assimilated 89 
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within the magma reservoir, while H2O is not. Figure 2 reveals that the host glasses 90 

show both hydration and Cl assimilation. Hence Cl/H2O and H2O/F combined can be 91 

used to assess both the degree of pre-eruptive Cl assimilation and post-eruptive 92 

seawater-alteration in MORBs. 93 

During melting, volatiles such as CO2 behave highly incompatibly and partition 94 

strongly into the melt phase, similar to elements such as Nb (ref. 4). The melt inclusion 95 

with the highest CO2 concentration (9,159 ppm) is volatile-oversaturated at any pressure 96 

below 1.2 GPa (calculated using ref. 13). Subsequent evolution of primitive CO2-rich 97 

melts, as they ascend from the upper mantle to the shallow magma reservoir, can be 98 

evaluated in terms of three conceptual CO2 degassing scenarios. First, degassing during 99 

ascent in the mantle without crystallisation would not entrap high-CO2 melts and can be 100 

ruled out. Second, the melt inclusions show no correlation between the degree of 101 

fractionation in terms of their Ca-number or Mg-number and CO2 content 102 

(Supplementary Fig. S3), which would be expected for continuous coeval degassing and 103 

crystallisation of plagioclase or olivine during magma ascent in the mantle. We 104 

therefore propose a third scenario where melt entrapment occurs over shallower mantle 105 

to crustal depths, in agreement with the calcic composition of the plagioclase crystals 106 

(Supplementary Table S4),which is commonly associated with crystallisation at lower 107 

pressures18,19. Following the model in ref. 19, melt is entrapped as magma rises through 108 

a calcic plagioclase-rich zone within the magma plumbing system. This implies that 109 

significant volatile exsolution is delayed during the ascent of melt batches from the 110 

deeper mantle, introducing strong degrees of supersaturation. The CO2 bubble 111 

nucleation rate depends on the extent of supersaturation, with the degree of 112 

supersaturation necessary for bubble nucleation increasing at lower pressures as magma 113 
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rises20. As the supersaturated magma arrives and stagnates at constant pressures within 114 

the magma reservoir system at ~6 km depth, it will then experience strong CO2 115 

exsolution. In a similar fashion, strong degrees of supersaturation are achieved during 116 

the ascent of magma from the reservoir to the seafloor, as clearly demonstrated by our 117 

CO2 data from the host glasses (Fig. 1b) and previous studies5,9.  118 

Our documentation of high CO2 levels in primitive MORB liquid has far-reaching 119 

implications. The data provide insights into the physical evolution of the magma as it 120 

passes through the mantle into the shallow reservoir and is then erupted. At saturation 121 

pressures of ~60 MPa corresponding to a crustal depth of 2 km (using ref. 17), at least 122 

8800 ppm CO2 have been exsolved from a magma initially containing 9,160 ppm CO2, 123 

translating to a vesicularity of ~10 % of free vapour. At the ocean floor this increases to 124 

~32-34 % vesicularity. Under these conditions, expanding bubbles rising within the 125 

conduit can coalesce and drive strombolian explosions. For conditions similar to Axial 126 

Seamount, ref. 21 models a maximum magma rise velocity of 0.5-2.0 m s-1 and a vent 127 

width of 0.3-0.6 m for bubble coalescence to be achieved. Alternatively, bubbles could 128 

accumulate against the reservoir roof of the magma reservoir as a foam layer22. When a 129 

critical thickness of foam is reached, an eruption is triggered by foam collapse at the top 130 

of the reservoir, and gas slugs rise through the conduit causing bubble bursts. We 131 

compute a minimum gas flux of ~10-1 kg s-1 for the foam to reach the critical height 132 

using a gas fraction in the foam of 0.76 and a bubble radius of 0.3 mm (see 133 

supplementary information for calculations). The two models are not mutually 134 

exclusive. If an eruption is triggered before the critical foam thickness is reached, the 135 

accumulated foam will enhance bubble coalescence within the conduit, resulting in 136 

strombolian activity according to the first model. In both scenarios, erupting gas pockets 137 
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are separated by low vesicularity melt, as syn-eruptive degassing adds less than 4 % to 138 

the total vesicularity. Our key conclusion is that the very high CO2 in the mantle and 139 

derived magmas gives rise to large amounts of CO2-rich gas bubbles at shallow crustal 140 

levels, which in turn drive explosive submarine eruptions.  141 

Adopting a CO2/Nb of ~4,000 from the least degassed melt inclusion, a similar 142 

geochemical behaviour of both elements during melting4 and a Nb abundance of the 143 

mean upper depleted mantle of 0.3 ppm (ref. 23), we calculate a minimum CO2 content 144 

of 1200 ppm for the mantle source beneath Axial Seamount (corresponding to 330 ppm 145 

of elemental carbon). For the 100 km spreading segment supplied by Axial Seamount 146 

we find a carbon mantle flux of 23 × 108 mol yr-1, using a magma production rate 147 

constrained by the thickness of the local crust24 of 6-8 km and a spreading rate of 6 mm 148 

yr-1. Likewise, using a global oceanic crust production rate of 20±3 km3 yr-1 (ref. 25) 149 

and a mean N-MORB Nb content of 3.5±1.9 ppm (ref. 23), we estimate a carbon mantle 150 

flux of 19±10 × 1012 mol yr-1 at mid-ocean ridges. This flux agrees with previous high 151 

estimates of 15 × 1012 mol yr-1 (ref. 10) and exceeds the lower range of estimates by 152 

nearly an order of magnitude5,16.  153 

CO2 and Nb data from a number of studies from the last ten years4,5,26,27 suggest 154 

variable CO2/Nb in parts of the upper mantle rather than a constant value (Fig. 3). If 155 

both elements behave identically during mantle processes4, their ratio should remain 156 

constant and independent from the elemental concentrations. However, CO2 and Nb 157 

contents from various locations reveal a strong tendency towards lower CO2/Nb as CO2 158 

decreases (Fig. 3). Hence, the CO2 variability is much greater than Nb, suggesting either 159 

degassing of volatile-saturated magma, or a heterogeneous carbon distribution in the 160 

mantle that is decoupled from non-volatile incompatible elements such as Nb. While the 161 
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CO2-H2O data from Axial suggest strong decompression degassing, results for 162 

Siqueiros4 and the North Atlantic ridge5 (14 °N and 34 °N) are thought to represent 163 

undegassed CO2 contents. Only data for the North Atlantic ridge at 14 °N show constant 164 

CO2/Nb. All other localities appear to be affected by CO2 degassing, heterogeneous 165 

mantle carbon distributions, or both. 166 

Our data provide evidence of extremely high dissolved CO2 concentrations in 167 

primitive, volatile saturated MORB magmas at depths of 35-40 km. The high CO2 168 

content of mantle-derived MORB magmas at Axial Seamount establishes a direct link 169 

with explosive eruptions and widespread pyroclastic deposits at MOR spreading 170 

centres. We propose that CO2 is decoupled from other incompatible elements in parts of 171 

the upper mantle, and CO2 fluxes can vary significantly along mid-ocean ridges.  172 

 173 

Methods  174 

Volatile (H2O, CO2, S, F, and Cl) analysis was carried out at Woods Hole 175 

Oceanographic Institution (WHOI) utilising high mass resolution secondary ion mass 176 

spectrometry (CAMECA IMS 1280). Selection of melt inclusions was done carefully 177 

through observations under transmitted and reflected light avoiding cracks or shrinkage 178 

bubbles within inclusions. Plagioclase grains with exposed inclusions were mounted 179 

into indium metal, and a 0.3 µm alumina oxide suspension was used for final polish. 180 

Prior to gold-coating, the mounts were dried in a vacuum oven at 110° C and 10-3 torr 181 

for ~12 h and were stored under vacuum at 10-7 torr for ~24 h. They were further 182 

allowed to outgas in the machine airlock at 3 × 10-9 torr. Sample chamber pressures 183 

during analysis were <5 × 10-9 torr. The principal analytical procedure followed the 184 

method as described in ref. 28. The detected secondary ions (12C, 16O1H, 19F, 30Si, 32S, 185 
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and 35Cl) were produced by a primary 133Cs+ beam of 1.2-1.5 nA current and 15 µm 186 

diameter. An electron beam was employed to compensate for positive charging of the 187 

sample surface. The primary beam was rastered over a 30 × 30 µm area, and a 188 

mechanical aperture was placed at the secondary ion image plane, such that the central 189 

15 × 15um area was analyzed after 3 min of pre-sputtering. Counting times of 10 s were 190 

used for 12C and 16O1H, and 5 s for 19F, 30Si (reference mass), 32S and 35Cl. Data were 191 

acquired over 10 blocks. Magnet positions were calibrated for every spot and mass 192 

resolving power was set to > 6,700 to resolve interferences of 17O from 16O1H and 193 

29Si1H from 30Si. Nine standard glasses, of basaltic and basaltic andesite compositions, 194 

were used to establish calibration curves for 12C/30Si, 16O1H/30Si, 19F/30Si, 32S/30Si, and 195 

35Cl/30Si versus the respective volatile component. CO2 content of all standard glasses 196 

was determined by Fourier transform infrared (FTIR) spectroscopy after the method of 197 

ref. 29. The standard error on the slope of the calibration curves is 2.4 % for CO2 and 198 

4.8 % or better for H2O, F, S, and Cl. The 1σ stability of the 12C/30Si signal during 199 

analyses was better than 10 %, except for sample PlgM1_3-1 (12.2 %) and PlgM2_7-1 200 

(14.1 %). The 1σ reproducibility of the in-run standard glass P1326-2, a JdFR basalt, 201 

was 5.3 % or better for CO2, F, S and Cl, and 7.8 % for H2O. Details on standards and 202 

quality of analyses are given in Supplementary Tables S5 and S6, and Supplementary 203 

Figs S4–S6. Special care was taken to verify high CO2 contents in melt inclusions: first, 204 

nine high-CO2 melt inclusions were re-analyzed after removing gold with 0.3 µm Al2O3 205 

suspension. Potential surface contamination was reduced by sputter-cleaning melt 206 

inclusions with a stronger ion beam (5 nA) for 5 minutes, instead of a regular cleaning 207 

procedure with a 1.5-nA beam. Duplicate analyses confirmed the high CO2 208 

concentrations initially obtained. The data reported here are the duplicate values. 209 
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Second, secondary ion images of 12C were observed for each melt inclusion, and a 210 

homogeneous distribution of 12C was confirmed for melt inclusions. No enrichment of 211 

CO2 in cracks or edges of melt inclusions was observed. Third, 12C intensity during 212 

analysis did not display any sign of surface contamination (Supplementary Fig. S5). 213 

Fourth, the CO2 concentration in host plagioclase adjacent to melt inclusions was much 214 

less than 30 ppm. This is considered to represent the CO2 background. 215 

Subsequent to the volatile analysis, trace element compositions were determined 216 

for the melt inclusions using a CAMECA IMS 3f secondary ion mass spectrometer at 217 

WHOI30. Calibration was carried out using the KL2-G glass standard. Trace element 218 

concentrations of the in-run standard P1326-2 were reproducible at a 1σ < 8 %, except 219 

for Ba (11 %) (Supplementary Table S6). Major element compositions for the melt 220 

inclusions and the host glasses were analysed by electron microprobe (JEOL 8900) at 221 

McGill University, using a beam current of 1.5 nA, 15 kV, and defocused beam of 5 µm 222 

diameter for the melt inclusions and 10 µm for the host glasses.  223 

 224 

 225 
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 326 

Figure 1 Dissolved CO2 and H2O contents in melt inclusions and host glasses, 327 

measured by SIMS. Isobars calculated using ref. 13. 1σ error bars are shown for 328 

representative values. a, Melt inclusions exhibit an extremely wide range in CO2 329 

contents. The vertical trend indicates decompression degassing from a volatile-330 

saturated melt. b, Zoom of the region below 1,000 ppm CO2. The host glasses are 331 

volatile-oversaturated for an eruption pressure of 14 MPa (grey isobar). Host glasses 332 

are equilibrated at crustal depths between 0.3 and 2 km. The continuity in CO2 333 

concentrations from melt inclusions to host glasses indicates limited syn-eruptive 334 

degassing. 335 
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Figure 2 H2O, F, and Cl contents of the melt inclusions and host glasses. a, The 336 

excellent correlation between H2O and F in the melt inclusions indicates similar 337 

geochemical behaviour and suggests H2O/F in the mantle of 14.3±0.2 (2σ). The host 338 

glasses display increasing H2O at roughly constant F, indicating hydration and 339 

alteration of the erupted basalt. b, Cl/H2O in the melt inclusions is controlled solely by 340 

the amount of Cl assimilated within the magma reservoir. By contrast post-eruptive 341 

alteration of the host glasses increases both Cl and H2O, causing Cl/H2O to remain 342 

roughly constant. 1σ error bars are shown. 343 

Figure 3 Bilogarithmic plot of CO2/Nb versus CO2. The wide range of observed CO2/Nb 344 

is striking, generally decreasing with lower CO2. This trend can be explained by either 345 

degassing of CO2 from volatile-saturated magmas, or in cases where degassing can be 346 

ruled out, by CO2 distribution in the mantle which is decoupled from Nb. Decoupling of 347 

these two elements would result in a range of initial CO2/Nb. Axial: degassed, 348 

measured dissolved volatile content in melt inclusions; Siqueiros 4: undegassed, 349 

measured dissolved volatile content in melt inclusions; North Atlantic ridge 5 14° N and 350 

34° N and Loihi 27: reconstructed undegassed volatile contents. 351 
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