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Abstract

Current underwater acoustic channel estimation techniques generally apply linear
MMSE estimation. This approach is optimal in a mean square error sense under the
assumption that the impulse response fluctuations are well characterized by Gaussian
statistics, leading to a Rayleigh distributed envelope. However, the envelope statistics
of the underwater acoustic communication channel are often better modeled by the
K-distribution. In this thesis, by presenting and analyzing field data to support this
claim, I demonstrate the need to investigate channel estimation algorithms that ex-
ploit K-distributed fading statistics. The impact that environmental conditions and
system parameters have on the resulting distribution are analyzed. In doing so, the
shape parameter of the K-distribution is found to be correlated with the source-to-
receiver distance, bandwidth, and wave height. Next, simulations of the scattering
behavior are carried out in order to gain insight into the physical mechanism that
cause these statistics to arise. Finally, MAP and MMSE based algorithms are derived
assuming K-distributed fading models. The implementation of these estimation algo-
rithms on simulated data demonstrates an improvement in performance over linear
MMSE estimation.
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Chapter 1

Introduction

Since electromagnetic waves experience high levels of attenuation in the ocean, elec-

tromagnetic communication systems have had very limited applicability to the un-

derwater environment. Instead, acoustic systems have become the dominant means

by which wireless signals are transmitted in the ocean. However, designing efficient

underwater acoustic communication systems is a challenging task due to the inherent

nature of sound wave propagation and the unforgiving ocean environment.

There are many aspects of the ocean that hinder the development of efficient un-

derwater acoustic communication systems. Scattering from the sea surface results in

multi-path and, along with the motion of the source and receiver, causes the channel

to have a large Doppler spread. Furthermore, the rapidly varying dynamics of the

ocean surface decrease the channel’s coherence time. Another fundamental property

that differentiates the underwater acoustic channel from typical electromagnetic com-

munication channels is its propagation speed. Since sound propagates in the ocean

at a speed of approximately 1500 m/s (compared to the 300,000,000 m/s speed of

propagation for electromagnetic waves), the channel’s state may fluctuate faster than

it can be updated and recognized by the receiver. The performance of an underwa-

ter acoustic communication system relies on the ability of the receiver to estimate

the channel’s time-varying impulse response. For this reason, the effect of scattering
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from the ocean surface presents one of the biggest challenges to underwater acoustic

communication [11].

1.1 Motivation

The underwater acoustic channel impulse response is often assumed to exhibit Rayleigh

or Rician fading behavior. This corresponds to the complex valued channel taps fol-

lowing a complex normal distribution. A common justification for such an assumption

is that each resolvable ”arrival” in the impulse response is comprised of a sufficient

number of independently scattered signals for the central limit theorem to hold. How-

ever, it has been shown in the case of sonar, that non-Rayleigh reverberation can occur

when the central limit theorem is violated. This typically results in probability dis-

tributions for the envelope of the channel impulse response that are characterized

by heavier tails. One such distribution, the K- distribution, is widely used to model

radar clutter and has also proven accurate in analysis of sonar reverberation [1].

It can be shown that the K-distribution provides a more accurate statistical de-

scription of fading in certain underwater channels. The goal of this thesis is to explore

the benefits of utilizing this description in underwater acoustic communication appli-

cations and to discover connections it may have with the environmental conditions.

1.2 Review of the Literature

The K-distribution has probability density function

f(x; ν,α) =
2

αΓ(ν + 1)

�
x

2α

�ν+1
Kν

�
x

α

�
, (1.1)

which has shape parameter, ν, and scale parameter, α. This distribution first garnered

attention in the 1970’s as a statistical model for scattering in radar applications after

the advent of high resolution radar [8]. After widespread success in this field, it was
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also adopted as a statistical scattering model by the sonar community [1]. More

recently, interest in the K-distribution has resurfaced in the context of mobile and

underwater acoustic communication systems.

Jakeman and Pusey [8] first introduced the K-distribution as a computationally

convenient representation of amplitude statistics in their model of the scattered field:

E(r, t) = e
jωt

N�

i=1

ai(r, t)e
jφi(r,t) = A(r, t)ej(Φ(r,t)+ωt) (1.2)

In this model, the random variables ai(r, t) and φi(r, t) are the amplitude and

phase of the radiation from the i
th scatterer at time t and position r. Each element

of {ai} and {φi} is assumed independent of all other elements contained in both sets.

The {φi} are assumed uniformly distributed between 0 and 2π, which inherently

assumes that the position of the scatterers are such that the induced path difference

is larger than the incident radiation wavelength.

The authors noted that if the amplitudes were distributed in such a way that only

a small portion of the total number of scatterers contributed significantly to the field

at any given point, the resulting envelope could be non-Rayleigh, even for large N .

The ”effective” number of scatterers were identified as

Neff = N
E[a2(r)]2

E[a4(r)]
. (1.3)

Jakeman and Pusey suggested modeling the {ai} as K-distributed random vari-

ables, since this led to analytically feasible expressions for the distribution of the

squared envelope and its corresponding moments. While they did not offer a physical

justification for this choice, they eluded to work done by Valenzuela and Laing [14],

claiming that non-Rayleigh sea clutter could be explained by the composite scattering

model. In their model, the return from a single ”patch” on the sea surface could be

represented as the product of two variables: one for small scale roughness, the other for
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large-scale roughness. Jakeman and Pusey suggested that the K-distribution could fit

a model of this form if the energy spectral density of the small-scale roughness were

exponential (corresponding to a Gaussian amplitude) while that of the large-scale

roughness followed the Chi-square distribution.

Equation 1.2 can be interpreted as a two dimensional random walk at its N th step.

That is, the step sizes are represented by independent complex random variables.

Jakeman [8] was able to relate the overall amplitude of this random walk to the K-

distribution. He noted that for constant N , A will be Rayleigh distributed in the

limit of large N as a consequence of the central limit theorem. If the {ai} are each

Rayleigh distributed, the resulting amplitude will also be Rayleigh distributed for any

N. However, if N is a random variable governed by the negative binomial distribution,

the distribution of A will approach the K-distribution as the mean of N gets very

large. Jakeman also states that if the step sizes {ai} are each K-distributed, A will

also be K-distributed for any fixed N . As the number of step sizes is increased, the

shape parameter increases linearly with N [7]. Consequently, as the number of steps

is taken to infinity, the K-distributed amplitude becomes Rayleigh distributed as the

central limit theorem requires.

Ward [16] expanded on the compound scattering theory in his representation of K-

distributed clutter. He claimed that the amplitude of K-distributed clutter could be

modeled as the product of two components with different correlation times. Through

the use of frequency agility, he was able to de-correlate the returns, isolating the

component with a slow correlation time. Experimental data suggested that the slowly

varying component was well fit by a chi distribution [16], and then more generally, its

square root by the gamma distribution [17]. The second component was assumed to

be a result of the changing interference pattern, and it was assumed to be Rayleigh

distributed. Ward et. al. [17] related the gamma distributed component to the local

power, which depends on the current sea state.

Abraham [1] later examined the K-distribution in the context of match-filtered
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Sonar clutter. The envelope of the match-filter output was approximated by a two

dimensional random walk of the same form as (1.2). He was then able to show that

exponentially distributed amplitudes in the random walk also result in K-distributed

envelopes. The use of the exponential distribution was justified, as it is often used to

describe the size distribution of natural objects and could therefore be considered a

valid model for the scatterer size. It was also noted that other amplitude distributions

could yield a K-distributed envelope, such as the Gamma distribution. His model

suggested that the scale parameter of the K-distribution would be proportional to

the number of scatterers, and consequently, the beam-width of the the Sonar’s array.

This prediction was verified experimentally.

In communications literature, the time-varying nature of the amplitude and phase

of a transmitted signal are referred to as the ”fading statistics”, and have been of

great interest since the introduction of wireless communication systems. Fading is

generally characterized as either slow or fast. Fast fading quickly de-correlates from

pulse to pulse, and is generally associated with multi-path. Slow fading has a longer

correlation time, and is usually attributed to shadowing effects. The K-distribution

also has connections to previous and current research in this field, as it is one example

of a spherically invariant random process (SIRP). It may also be considered a good

approximation to the Rayleigh/lognormal fading model, which is a composite model

consisting of lognormal shadowing and Rayleigh multi-path [13].

1.3 Scope of the Thesis

A discrete-time received signal y(n) can be expressed as the convolution of the channel

taps with the transmitted signal, plus a noise term.

y(n) =
M−1�

i=0

hk(n)d(n− k) + w(n) (1.4)
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The channel taps are denoted hk(n), where k denotes the k
th tap and n represents

the time dependence of the channel impulse response. If hk(n) = hk is time-invariant,

the channels taps can be treated as parameters and estimated accordingly. However,

time-varying channel taps (as in the underwater channel) are generally modeled as

random processes which must be tracked by the receiver. Further complication is

introduced to the system when the parameters of the distributions used to model

the time-varying channel taps also fluctuate in time. A receiver must then jointly

estimate the channel coefficients and the parameters of its fading statistics.

When the complex valued channel taps are modeled as Gaussian random processes,

the estimators take on particularly simple, linear forms that depend solely on the first

and second order statistics. Adaptive algorithms can then be employed to track the

channel fluctuations.

Chapter 2 of this thesis will investigate the fading statistics of a shallow water

acoustic communication channel with source to receiver distances of 80, 250, 500,

and 1000 meters. It will demonstrate that the underwater acoustic channel’s fading

behavior is not always Gaussian, and can often be better characterized by the K-

distribution. The fading parameters will be tested for dependence on environmental

conditions (i.e. wind speed, wave height) and the bandwidth of the system. In

Chapter 3, an empirical study of the scattering model will be done, in an attempt

to better understand the physical mechanisms which cause the channel to exhibit

K-distributed fading.

Finally, in Chapter 4, Bayesian estimation will be applied to simple channel models

in the form of MAP and MMSE estimators. While this work will unrealistically

assume that the channel taps are i.i.d. and of a relatively low order, it will provide

some insight into the benefit of incorporating K-distributed fading models in more

advanced channel estimation algorithms.
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Chapter 2

Statistical Analysis of

Experimental Data

2.1 Introduction

Before pursuing estimation procedures utilizing K-distributed fading statistics, the

need for such estimators must be demonstrated. The first goal of this chapter is to

present an underwater acoustic communication channel which exhibits K-distributed

fading. The second, is to relate the parameters of the fading statistics to the environ-

mental conditions and the physical parameters of the system. This will illustrate the

need to analyze algorithms that can exploit this additional knowledge of the channel

statistics.

2.2 Parameter Estimation

2.2.1 Maximum Likelihood

The maximum likelihood (ML) estimate of a distribution’s parameter θ is the esti-

mate which maximizes the likelihood of the observed data. Given the vector x of
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independent realizations of the variable x, the Likelihood function is given by

L(θ|x) = p(x;θ), (2.1)

The ML estimate of θ is then

θ̂ = argmax
θ

L(θ|x). (2.2)

Often, the function ln(L(θ|x)) is maximized in place of (2.2). Since the natural

logarithm is a monotonically increasing function, this is equivalent to maximizing

L(θ|x), and often leads to computationally simpler maximization problems.

2.2.2 Method of Moments

The method of moments is a parameter estimation technique based on sample mo-

ments from a set of observations. The sample moments are equated to the theoretical

expressions for the corresponding moments, producing a set of equations that can be

solved for the distribution parameters. Although this technique has no optimality

properties, it is easy to implement and, given a large enough data set, tends to be

fairly consistent [10]. The kth sample moment of the observation set {x1, x2, ...xN} is

given by

mk =
1

N

N�

i=1

x
k

i
. (2.3)

The sample moments are equated to the calculated moments,

mk = E[xk], (2.4)

where the expectation is taken with respect to p(x;θ). This results in the necessary

equations. For the purpose of this thesis, only the necessary moments required to
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obtain a closed-form solution are used.

2.2.3 Rayleigh Distribution

If many scatterers contribute to the intensity of the arrival at a given delay, the

central limit theorem can be applied. In this case, a single tap of the channel impulse

response, denoted by h, is modeled as a zero-mean complex Gaussian random variable.

The resulting envelope, x = |h|, is Rayleigh distributed with the probability density

function

p(xi; σ) =
x

σ2
e

−x2

2σ2 . (2.5)

The parameter of the Rayleigh distribution, σ2, is half the variance of the complex

Gaussian random variable.

Given a vector x of independent observations, the estimate of σ can be made by

use of the maximum likelihood method.

σ̂ = argmax
σ

p(x; σ) = argmax
σ

ln(p(x; σ)) (2.6)

= argmax
σ




ln
N�

i=1

xe
−x2

2σ2

σ2




 (2.7)

= argmax
σ

�
−2N ln σ +

N�

i=1

ln x− 1

2σ2

N�

i=1

x
2

�
(2.8)

Taking the derivative with respect to σ and setting equal to zero yields

d

dσ
(ln p(x; σ)) =

−2N

σ
+

1

σ3

N�

i=1

x
2 = 0 (2.9)

σ̂ =

��
N

i=1 x
2

2N
(2.10)
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2.2.4 Rician Distribution

When the arrival process has a nonzero mean, the Rayleigh distribution can be gen-

eralized to the Rician distribution. This distribution is commonly observed in fading

channels that consist of a direct line of sight component that is combined with many

weaker signals. The probability distribution function is

p(x;µ, σ) =
x

σ2
e

−(x2+µ2)

2σ2 I0

�
xµ

σ2

�
(2.11)

where I0 is the zeroth order modified Bessel function of the first kind, σ2 is again

half the variance of the complex Gaussian random variable, and µ is the mean of the

complex random variable. Since there is no closed form solution to the maximum

likelihood estimate of the parameters µ and σ, the method of moments was applied.

The k
th moment of the Rician random variable x can be expressed as [12],

E[xk] =

� ∞

0

x
k+1

σ2
e

−(x2+µ2)

2σ2 I0

�
xµ

σ2

�
(2.12)

=
�
2σ2

�k/2
Γ

�
1 +

k

2

�
1F1

�
k

2
; 1;

−µ
2

2σ2

�
(2.13)

where 1F1 is the confluent hypergeometric function. From (2.13) the second moment

is [12]

E[x2] = µ
2 + 2σ2

. (2.14)

Moment estimates can be made using the k
th sample moment as in (2.3), Estimates

of σ can be made by using the 4th moment in conjunction with (2.14)

E[x4] = µ
4 + 8σ2

µ
2 + 8σ4

. (2.15)

However, if observations of the real and imaginary parts of the signal are available, the

method of moments can be applied to them instead. Given real R∼N(µ cos θ, σ2) and
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imaginary Z∼N(µ sin θ, σ2), the magnitude X =
√
R2 + Z2 will be Rician with vari-

ance σ2. An unbiased estimate of σ2 can be made using both the real and imaginary

parts of the signal.

�σ2
R
=

1

N − 1

N�

i=1

(ri −mR)
2 (2.16)

�σ2
Z
=

1

N − 1

N�

i=1

(zi −mZ)
2 (2.17)

Here mR and mZ are sample means of R and Z, respectively. Equations (2.16) and

(2.17) use N − 1 instead of N . Although these values are very similar for large N ,

the former results in an unbiased estimate of the variance. The estimates obtained

by Z and R are then averaged together to form the final estimate.

�σ2 =
�σ2
R
+ �σ2

Z

2
(2.18)

The value of µ is then estimated using the second sample moment of x, via (2.14).

µ̂ =

�
m2 − 2 �σ2 (2.19)

Due to the square root operation, the estimator in (2.19) can produce an imaginary

result that falls outside the range of admissible values for µ. In this case, the absolute

value of the estimate will be taken. Should a more accurate estimate be needed, a

method for numerically finding the maximum likelihood estimator is discussed in [12].

2.2.5 K-Distribution

Repeated from (1.1), the K-distribution is

p(x; ν,α) =
2

αΓ(ν + 1)

�
x

2α

�ν+1
Kν

�
x

α

�
. (2.20)
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No closed form solution exists for the maximum likelihood estimate of ν and α, thus

the method of moments can be applied once again. The kth moment of a K-distributed

random variable is

mk =
Γ
�
k

2 + 1
�
Γ
�
ν + 1 + k

2

�
(2α)k

Γ (ν + 1)
(2.21)

The simplest parameter estimates can be obtained from the second and fourth mo-

ments, which lead to closed form expressions.

m4

(m2)2
=

2(ν + 2)

ν + 1
= m (2.22)

ν̂ =
m− 4

2−m
(2.23)

α̂ =

�
m2

4(1 + ν)
(2.24)

Alternatively, as higher order moments tend to have a higher variance, a better

estimate might be expected using the first and second moments. However, there is

no closed form solution in this case. Even better performance could be obtained by

numerically evaluating the maximum-likelihood solution [9].

2.3 Experimental Procedure

2.3.1 Experimental Setup

The data analyzed in this thesis were collected in 2002 as part of the SPACE02

(Surface Processes and Acoustic Communication Experiment 2002) conducted by

the Woods Hole Oceanographic Institution. During this experiment, an acoustic

transmitter was placed off the coast of Edgartown, Massachusetts in the vicinity of

the Marthas Vineyard Coastal Observatory (MVCO). Vertical receiver arrays were

placed southwest of the transmitter at distances of 80, 250, 500, and 1000 meters.

Another receiver comprised of both a vertical and horizontal array was placed 80

meters southeast of the transmitter.
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The experiment was conducted in a shallow water environment (16 meters), with

the source located 6.25 meters above the sea floor. The receivers were located at dis-

tances of 80, 250, 500, and 1000 meters from the source, positioned 3.3 meters above

the sea floor. Assuming perfect reflectance from both the ocean bottom and sea sur-

face, the arrival times of the scattered signals can be estimated using the ”method of

images”. In this method, the sound reflected from the boundary is assumed to origi-

nate in a location that corresponds to the mirror image of the source. Trigonometry

Figure 2-1: Channel geometry: the method of images

gives us the distance of each propagation path, and the arrival time is determined by

dividing this by the sound speed, c=1450 m/s.
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τd =

�
L2 + (6.25− 3.3)2

c
(2.25)

τs =

�
L2 + (16− 6.25 + 16− 3.3)2

c
(2.26)

τb =

�
L2 + (6.25 + 3.3)2)

c
(2.27)

τbs =

�
L2 + (16− 3.3 + 16 + 6.25)2

c
(2.28)

τsb =

�
L2 + (16 + 3.3 + 16− 6.25)2

c
(2.29)

Table 2.1 summarizes the relative arrival times. That is, the direct arrival (τd) has

been subtracted from each arrival as calculated above.

Table 2.1: Relative arrival times

L (m) τ̃b (ms) τ̃s (ms) τ̃sb (ms) τ̃bs (ms)
80 0.354 2.09 3.49 4.99
250 0.114 0.682 1.15 1.66
500 0.0569 0.341 0.576 0.835
1000 0.0284 0.171 0.288 0.418

Environmental conditions were monitored by the MVCO. The significant wave

height, dominant wave period, wind speed, and wind direction were recorded through-

out the course of the experiment. The experiment spanned the length of a passing

storm, creating a broad range of environmental conditions. The wind and wave data

are summarized in Figure 2-2, where vertical green lines mark the epochs chosen for

the analysis in this thesis. Epoch will be labeled by its Julian Day number.

2.3.2 Data Processing

At the start of each epoch, pulses were sent out over a carrier frequency of fc = 14kHz

in seven segments. In each segment, there were 1307 pulses, with a pulse transmitted
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Figure 2-2: Environmental conditions: wind and wave data

every 0.04 seconds. The received signals were sampled at a rate of fs = 5× 106/112

kHz. The discrete-time received signals, ri(n), were shifted to baseband and then

passed through discrete moving-average filters with filter lengths of 4, 8, 16, 32, 64,

128, and 256 samples. The low pass filter of length L is defined as

g(n) =






1
L

0 ≤ n ≤ L− 1

0 otherwise

(2.30)

and has discrete-time Fourier transform

G(jω) =
sin(ωL/2)

sin(ω/2)
e
−jω(L−1)/2

. (2.31)

The 3dB bandwidth of the filter in Hz is approximately

B ≈ fs

L
(2.32)
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The baseband, low-pass filtered, complex-valued received signal for the i
th pulse is

denoted r̃i(n) and is given by the equation

r̃i(n) = g(n) ∗ (ri(n)ej2πnfc/fs), (2.33)

and its real-valued envelope, xi(n), is defined as

xi(n) = |r̃i(n)|. (2.34)

High intensity spikes spanning the length of the pulse were present in the majority

of the data. These anomalies were most likely due to noise associated with equipment

motion, such as the rattling of chains. To analyze the channel statistics accurately,

the majority of these spikes needed to be culled from the data. For each segment, the

normalized difference in magnitude for the i
th pulse was calculated as

∆xi(n) =
xi+1(n)− xi(n)

maxj,k(xj(k))
(2.35)

The i
th pulse was then flagged as abnormal and removed from the data set if

∆xi(n) > 0.3 and ∆xi+1(n) < −0.3. (2.36)

To determine the characteristics of the channel statistics, histograms and moments

were calculated at each time in delay, using the retained ”good” pulses. Figure 2-3

displays a plot of the average and maximum intensity values at each time in delay.

The histograms and statistics were averaged over a 0.2016 millisecond window in delay

about the designated single surface bounce arrival time (the local peak in average

intensity). This window is marked by vertical green lines in the figure.

From this, parameter estimates were made either using maximum likelihood esti-

mation or the method of moments. Finally, a Matlab algorithm was run to find the

”best fit” distribution. This algorithm was initialized with the parameter estimates
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Figure 2-3: Maximum (blue dotted line) and average (red solid line) intensity, epoch
3330000

and then refined them by conducting a local 11x11 grid search to minimize total

absolute error between the histogram and the estimated distribution. When trying

to match a given histogram, hist(x), to a distribution parametrized by s and g, the

algorithm is as follows:

Grid Search Algorithm

• Initialize ∆s = 0.1

• While ∆s > 0.001 Do:

� s(k) = sopt ± ksopt∆s, for k = ±1, 2, ...5

g(i) = gopt ± igopt∆s, i = ±1, 2, ...5

� (kopt, iopt) = argmink,i

�
x
|hist(x)− p(x; sk, gi)|

� if 5-|kopt| ≤ 2 and 5-|iopt| ≤ 2 then ∆s := ∆s

2

� sopt := s(kopt), gopt = g(iopt)
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The Matlab code implementing the procedure outlined in this section can be found

in Appendix A.

2.4 Results

2.4.1 80 Meter Data Analysis

The data obtained from the receiver positioned 80 meters from the source are par-

ticularly interesting because the reflected signal paths portrayed in Figure 2-1 can

each be individually identified. The channel impulse response from epoch 3310000,

3331600, 3340200, and 3341200 are shown in Figure 2-4. Epoch 3310000 corresponds

to a particularly calm day, while epoch 3340200 represents a day with both high

waves and strong wind activity. Epochs 3331600 and 3341200 correspond to days of

moderate wind with high waves and high wind with moderate waves, respectively. A

change in environmental conditions is evident in the nature of the scattering behavior.

Higher wind and wave activity has a ”smearing” effect on the delay spread, causing

scattered arrivals to be less distinct and spread further in delay. It is common in

acoustic modeling to express the acoustic surface loss as a function of wave height. A

rougher sea state will increase the scattering effect that the surface has on the inci-

dent wave, thereby causing the coherent received signal to have a smaller amplitude

[4]. An arrival at a specific time in delay will, on average, experience a reduction in

amplitude during high wind and wave activity. However, large peaks in amplitude

may be present, due to wave focusing.

Envelope probability distribution functions for the arrivals with a single sur-

face interaction are plotted in Figure 2-5. The parameters of the envelope distri-

butions for the 12 epochs are summarized in Tables 2.4(a) and 2.5. For all filter

lengths, the largest value of ν was consistently observed at epoch 3310000, under

the calmest weather conditions. Conversely, the minimum values were obtained at

either epoch 3340200, 3331600, or 3341400, all epochs of high wind and/or wave
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(a) Low wind and wave activity

(b) High wind and wave activity (c) High waves and moderate wind activity

(d) High wind and moderate wave activity

Figure 2-4: Channel impulse response: 80 meters

activity.Qualitatively, this is expected because of the ”smearing” effect discussed ear-

lier. These results suggest that the size of the shape parameter is correlated with the
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surface conditions.

Further evidence for this correlation can be obtained by observing the sample

partial correlation coefficients between ν and the significant wave height. Partial

correlation coefficients were evaluated in place of ordinary correlation coefficients in

order to isolate the dependence on wind speed, wave height, and wave period. Note

that the partial correlation falls between -0.8 and -0.9 for small filter lengths in the

first column of Table 2.6(a). This implies that the shape parameter decreases as wave

activity increases. Abraham showed that the shape parameter was directly propor-

tional to the number of scatterers. [1]. This observation is therefore in agreement

with the physical description of the channel.

The dependence on wave height seems to diminish as the filter length increases.

The value of the shape parameter (and consequently the number of scatterers) also

increases on average with increasing filter length. There is a similar correlation be-

tween wave height and the value of σ in the Rician/Rayleigh distributions. Addi-

tionally, the error caused by assuming Rayleigh/Rician fading increases with wave

height, while the error obtained using a K-distribution remains relatively constant.

This is shown in Figure 2-6(a), along with the associated sample partial correlation

coefficients. Conversely, the average distribution errors associated with Rayleigh and

Rician assumptions decrease with increasing filter length as seen in Figure 2-6(b).

All of these observations indicate that the channel is becoming more Rayleigh-like as

the filter length increases, and therefore the bandwidth decreases. Essentially, this

corresponds to a larger ”patch” on the surface, and consequently more scatterers,

contributing to each resolvable arrival.

2.4.2 250, 500, and 1000 Meter Data Analysis

Receivers were also placed at source-to-receiver distances of 250, 500, and 1000 me-

ters. The channel impulse response for each of these scenarios during epoch 3310000

and 3340200 is displayed in Figure 2-7 and Figure 2-8, respectively. As the receiver is
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Table 2.2: Envelope distribution parameters for varying filter length: 80 meters
(a) K-distribution paramters

Filter Maximum Minimum Average
Length ν α ν α ν α

4 6.87 0.00726 -0.427 0.00345 0.665 0.00547
8 137 0.00579 -0.107 0.000715 11.1 0.00401
16 123 0.00229 1.98× 10−13 0.000539 11.6 0.00229
32 123 0.00147 0.924 0.00028 18.2 0.000869
64 133 0.000715 1.06 0.000132 20.1 0.000373
128 136 0.000246 5.09 6.21× 10−5 43.3 0.000145
256 131 0.000131 4.11 1.96× 10−5 47.2 7.42× 10−5

(b) Rician parameters

Filter Maximum Minimum Average
Length µ σ µ σ µ σ

4 0.00303 0.0136 2.33× 10−11 0.00217 0.000826 0.00743
8 0.0103 0.0092 1.44× 10−11 0.0028 0.000984 0.00667
16 0.00803 0.00651 1.14× 10−11 0.00219 0.000677 0.00507
32 0.00391 0.00388 3.71× 10−12 0.0017 0.000301 0.0031
64 0.00199 0.00199 3.28× 10−12 0.000941 0.000153 0.0016
128 0.00125 0.00102 1.87× 10−12 0.000551 0.00019 0.000852
256 0.000601 0.000514 5.13× 10−13 0.000292 8.35× 10−5 0.00043

(c) Rayleigh parameters

Filter Maximum Minimum Average
Length σ σ σ

4 0.0136 0.00226 0.0075
8 0.0119 0.0028 0.00686
16 0.00845 0.00245 0.00507
32 0.00439 0.0017 0.0032
64 0.00216 0.000943 0.00164
128 0.00132 0.000551 0.000905
256 0.000643 0.000292 0.000453

moved further from the transmitter, the scattered arrivals experience higher attenua-

tion levels. The difference between scattered arrivals also becomes less significant, and

at 1000 meters it is no longer possible to individually distinguish each combination

of scatterers.
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Table 2.3: Partial correlation coefficients between environmental conditions and dis-
tribution parameters: 80 meters

(a) K-distribution

Filter Wave Height (m) Wave Period (m) Wind Speed (m/s)
Length ν α ν α ν α

4 -0.880 0.200 0.795 -0.252 -0.464 0.662
8 -0.824 0.595 0.776 -0.533 -0.537 0.726
16 -0.842 0.712 0.785 -0.335 -0.528 0.392
32 -0.843 0.700 0.726 -0.267 -0.332 –0.0507
64 -0.862 0.539 0.809 -0.411 -0.453 -0.0572
128 -0.571 0.389 -0.0535 -0.00508 0.0073 0.315
256 -0.215 0.146 0.0467 0.0696 -0.474 0.504

(b) Rician distribution

Filter Wave Height (m) Wave Period (m) Wind Speed (m/s)
Length µ σ µ σ µ σ

4 0.267 -0.958 -0.53 0.854 0.263 0.702
8 -0.792 -0.961 0.717 0.783 -0.509 0.910
16 -0.798 -0.907 0.767 0.455 -0.589 0.895
32 -0.818 -0.810 0.774 0.327 -0.538 0.874
64 -0.818 -0.749 0.774 0.217 -0.538 0.896
128 -0.499 -0.660 0.222 -0.197 0.0731 0.895
256 -0.516 -0.718 -0.183 0.0882 0.0397 0.861

(c) Rayleigh distribution

Filter Wave Height (m) Wave Period (m) Wind Speed (m/s)
Length σ σ σ

4 -0.963 0.860 0.736
8 -0.966 0.879 0.767
16 -0.954 0.841 0.762
32 -0.928 0.790 0.826
64 -0.919 0.772 0.85
128 -0.724 0.0839 0.727
256 -0.736 0.189 0.68

Interestingly, the first scattered arrival begins to exhibit isolated episodes of Rician

fading behavior at a distance of 250 meters, and then predominantly Rician fading

at 500 meters. At 1000 meters, the channel is well characterized by Rayleigh fading,
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and consequently, also by the K-distribution with a large shape parameter. However,

it should be noted that the ”first” scattered arrival at 1000 meters is actually due

to the surface-bottom reflection, whereas in both the 250 and 500 meter cases it is

due to the first single surface reflection. The surface-bottom reflection in the 1000

meter case experiences more attenuation and is subject to more scattering from the

second boundary interaction. By observing the absolute error in Figure 2-9, one can

see that these Rician fading characteristics do not seem to be related to wave activity.

However, they do occur more frequently and cause more severe differences in error at

low wind speeds as seen in Figure 2-10.

As the K-distribution of a signal’s envelope does not account for a process with

non-zero mean, the Rician distribution provides a better fit in the presence of a

dominant arrival. This discrepancy could potentially be circumvented by using a

generalized version of the K-distribution that relies on a Rician distribution in place

of the Rayleigh distribution in the compound representation. Also, the K-distribution

parameter estimate fails (i.e. returns an imaginary number) in the presence of a

strong mean value. In this case, the estimate of ν is set to 100, where the distribution

essentially becomes Rayleigh. Better initial parameter estimates could be obtained

by subtracting out the mean prior to forming the envelope and making the estimate

of the shape parameter.

39



Table 2.4: Envelope distribution parameters: 250, 500, and 1000 meters
(a) 250 meter

K-dist Rician Rayleigh
ν α µ σ σ

Maximum 127 0.00191 0.00307 0.00452 0.00503
Minimum 2.21 1.41× 10−4 3.19× 10−11 0.00112 0.00224
Average 41.5 8.51× 10−4 0.00112 0.003 0.0033

(b) 500 meter

K-dist Rayeigh Rician
ν α µ σ σ

Maximum 170 0.000394 0.00384 0.0022 0.00364
Minimum 2.04 6.29× 10−5 1.32× 10−12 0.000507 0.00088
Average 114 0.000128 0.0013 0.00103 0.00155

(c) 1000 meter

K-dist Rayeigh Rician
ν α µ σ σ

Maximum 165 0.0019 0.00268 0.00124 0.00236
Minimum -0.0879 1.4× 10−4 8.02× 10−13 0.000371 0.000371
Average 14.7 8.95× 10−4 0.000302 0.000554 0.00065

Table 2.5: Total absolute distribution errors: 250, 500, and 1000 meters

Receiver K-distribution Rician Rayleigh
Distance Max Min Avg. Max Min Avg. Max Min Avg.

250 0.394 0.0159 0.102 0.142 0.065 0.103 0.391 0.0668 0.143
500 0.655 0.0117 0.312 0.283 0.0320 0.132 0.653 0.0320 0.32
1000 0.375 0.0154 0.138 0.241 0.111 0.158 0.376 0.117 0.178
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(a) Low wind and wave activity

(b) High wind and wave activity

(c) High waves and moderate wind activity

Figure 2-5: Envelope distributions: 80 meters
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(a) Absolute error vs. wave height

(b) Average absolute error vs. filter length

Figure 2-6: Absolute distribution error trends: 80 meters
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(a) 250 meters, low wind/wave activity (b) 500 meters, low wind/wave activity

(c) 1000 meters, low wind/wave activity

Figure 2-7: Channel impulse response during low wind and wave activity: 250, 500,
and 1000 meters
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(a) 250 meters, high wind/wave activity (b) 500 meters, high wind/wave activity

(c) 1000 meters, high wind/wave activity

Figure 2-8: Channel impulse response during high wind and wave activity: 250, 500,
and 1000 meters
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(a) 250 meters

(b) 500 meters

(c) 1000 meters

Figure 2-9: Error vs. wave height: 250, 500, and 1000 meters
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(a) 250 meters

(b) 500 meters

Figure 2-10: Error vs. wind speed: 250 and 500 meters
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Table 2.6: Sample partial correlation coefficients between environmental conditions
and distribution parameters: 250, 500, and 1000 meters

(a) K-distribution

Receiver Wave Height (m) Wave Period (m) Wind Speed (m/s)
Distance (m) ν α ν α ν α

250 0.0782 -0.396 0.497 0.0199 -0.942 0.803
500 -0.42 -0.0967 0.315 0.314 -0.457 0.134
1000 -0.806 -0.0299 0.752 0.346 -0.51 -0.14

(b) Rician distribution

Receiver Wave Height (m) Wave Period (m) Wind Speed (m/s)
Distance (m) µ σ µ σ µ σ

250 -0.177 -0.914 0.563 0.776 -0.879 0.869
500 0.554 -0.76 0.548 0.722 -0.655 0.172
1000 -0.848 -0.863 0.816 0.856 -0.479 -0.374

(c) Rayleigh distribution

Receiver Wave Height (m) Wave Period (m) Wind Speed (m/s)
Distance (m) σ σ σ

250 -0.897 0.786 0.58
500 -0.893 0.874 -0.6
1000 -0.852 0.829 -0.487
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Chapter 3

An Empirical Study of the

Scattering Model

3.1 Introduction

Both the amplitude and arrival time of the surface scattered signals vary in time. It is

this fluctuation that leads to the delay spread of the channel and the overall statistics

of the envelope. By examining these fluctuations more closely, perhaps more insight

can be gained into the phenomena that govern the channel statistics.

3.2 Modeling the Channel Statistics

The received signa is comprised of three main components: the part of the signal

that varies due to the physical path taken, the transmitted waveform that has been

processed, and the phase of the signal. The received signal due to a single scatterer

can be expressed as

ri(t) = Ai(t)� �� �
path

s(t− τi)� �� �
waveform

e
−j(ωτi+θi(t))� �� �

phase

(3.1)

With a model for the amplitude and arrival time statistics, a crude simulation
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of the scattering process can be constructed. For the purpose of the simulation, the

waveform is modeled as a Gaussian pulse with a pulse-width (1/
√
α) of 0.1 millisec-

onds. If the signal’s surface scattered component were due to just one scatterer, the

envelope would be given by

|r(t)| = Ae
−α(t−τ)2 (3.2)

where τ and A are random variables denoting the fluctuating amplitude and arrival

time.

It turns out that this is not a very realistic model. Upon closer examination of

the received signal, it becomes clear that several scatterers contribute to the received

signal at each instance in time. This is demonstrated in Figure 3.2. The resulting

received signal can be expressed as the sum of N independent, complex-valued random

variables reminiscent of the ”discrete scatterer model” explained by Jakeman and

Pusey [8]. As in [8] and [1], the phase of each scattered component is assumed

uniformly distributed between 0 and 2π.

r(t) =
N�

i=1

Aie
−α(t−τi)2e

jφi (3.3)

3.2.1 Peak Amplitude Fluctuations

The peak amplitude and arrival time fluctuations were analyzed using the data from

SPACE02, described in Section 2.3. For now, only the arrivals whose nominal prop-

agation path includes one surface interaction and no bottom interactions are consid-

ered. The dominant single surface scattered arrival for each pulse was identified by

searching for the maximum value of intensity over the extent of the delay spread for

the scattered return. Figure 3-2(b) shows the channel impulse response with each

pulse shifted, such that the peak single surface scattered arrivals are aligned in de-

lay. The ”straightened” impulse response was processed as discussed in Section 2.3.2.
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Figure 3-1: Detailed view of a received signal: epoch 3330200

However, histogram and statistics for the envelope were averaged over a smaller win-

dow of 0.112 ms in delay. A plot of the average and maximum intensity values at

each time in delay for the straightened channel impulse response of epoch 3330000

can be found in Figure 3-3. Again, vertical green lines mark the window over which

the statistics are averaged.

With the effect of the changing arrival time removed, the amplitude statistics

of the scattered signal can be evaluated. Figure 3-4 contains the histograms of the

peak amplitudes from epochs 3330000 and 3340200. Several distributions were tested

as fits, the best of wich were log-normal and gamma distributions. The log-normal

distribution parameters were obtained through maximum likelihood, as discussed in

Chapter 2. However, since no closed-form solution exists for both parameters of the

gamma distribution, these parameters were found by the method of moments, which

is described in Section 2.2.2
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(a) Impulse response (b) ”Straightened” around first surface reflection

Figure 3-2: Channel fluctuations: 80 meters, epoch 3341200

Figure 3-3: Maximum (blue dotted line) and average (red solid line) intensity: 80
meters, epoch 3330000 ”straightened”

The log-normal distribution results when the natural logarithm of the variable is
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normally distributed. It has probability density function

p(x;µ, σ) =
1

xσ
√
2π

e
− (ln x−µ)2

2σ2 , x > 0, (3.4)

where µ and σ are the mean and standard deviation of ln x. The parameters of the

lognormal distribution are estimated as follows:

µ̂ = argmax
µ

f(x;µ, σ) = argmax
µ

ln(f(x;µ, σ)) (3.5)

= argmax
µ

�
N�

i=1

1

xi

√
2πσ2

e
− (ln xi−µ)2

2σ2

�
(3.6)

= argmax
µ

�
−N

2
ln(2πσ2)−

N�

i=1

(ln xi − µ)2

2σ2
−

N�

i=1

ln xi

�
. (3.7)

Taking the derivative with respect to µ and setting equal to zero gives

∂

∂µ
ln(f(x;µ, σ)) =

N�

i=1

ln xi −Nµ

σ2
= 0 (3.8)

µ̂ =
N�

i=1

ln xi

N
. (3.9)

Repeating this procedure for σ yields

∂

∂σ
ln(f(x;µ, σ)) =

N�

i=1

(ln xi − µ)2

2σ4
− N

2σ2
= 0 (3.10)

σ̂2 =

�
N

i=1(ln xi − µ)2

N
. (3.11)

The gamma probability density function is given by

p(z) =
x
k−1

e
−x

θ

θkΓ(k)
, (3.12)

where k is the shape parameter and θ is the scale parameter. The parameters of the
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gamma distribution are found by equating the sample moments to the moments of

the distribution.

m1 =
N�

i=1

xi = E[x] = kθ (3.13)

m2 =
N�

i=1

x
2
i
= E[x2] = kθ2(1 + k) (3.14)

Solving these equations yields the estimates:

k̂ =
m

2
1

m2 −m
2
1

(3.15)

θ̂ =
m2 −m

2
1

m1
(3.16)

As demonstrated in Figure 3-4, the data are best characterized by the gamma distri-

bution. The corresponding shape and scale parameters for each epoch are given in

Table 3.1.

Figure 3-4: ”Peak amplitude” histogram: 80 meters, epoch 3330000
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Table 3.1: Gamma ”peak” amplitude parameters: 80 meters

Epoch k (shape) θ (scale)
3310000 6.3841 0.0033
3330000 3.7900 0.0038
3330200 5.0211 0.0033
3330400 5.0992 0.0035
3331600 2.8226 0.0044
3331800 3.8021 0.0032
3340200 3.6120 0.0026
3341200 4.8721 0.0037
3341400 3.3334 0.0040
3370000 5.1042 0.0034
3370200 4.7741 0.0039
3370800 5.0716 0.0039
3371400 4.6702 0.0033

3.2.2 Arrival Time Fluctuations

The time in delay at which the peak amplitude arrives is fluctuating due to the

motion of the sea surface. This fluctuation is highly correlated and even appears

somewhat sinusoidal. However, for simplicity the arrival times were analyzed as

independent realizations of a random variable. Figure 3-5 contains histograms of the

arrival times for epoch 3330000 along with normal distributions fit to the data using

maximum likelihood estimates for the mean and variance. This is not a particularly

good fit, however it will suffice for the purpose of the simulation. The corresponding

parameters are given in Table 3.2.

Table 3.2: Arrival time parameters: 80 meters

Epoch µτ στ

3330000 2.78746 0.18113
3331600 2.93277 0.235705
3340200 2.73522 0.00354509
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(a)

(b)

Figure 3-5: Arrival time histograms: 80 meters

3.3 Simulation Results

The scattering process was simulated using the model in (3.3), with the Matlab code

found in Appendix B. The simulations presented in the following section were run
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with statistics chosen to represent epoch 3330000, such that the Ai were gamma

distributed with k = 3.79 and θ = 0.0038. A histogram was created for the simulated

data using 9149 simulated pulses and averaging the statistics over 0.1120 ms in delay

(5 samples). For the simulation in 3.3, the number of scatterers is set to one. This

simulation clearly does not represent the behavior of the actual system. However,

the resulting simulation histogram bears some resemblance to a gamma distribution.

When used as the step-size statistic in the random walk model discussed earlier, the

gamma distribution is known to produce a K-distributed envelope [1]. This suggests

that the summation of these variables might produce a histogram which resembles

the K-distribution.

Figure 3.3 contains the histogram from a simulation with N=6. The arrival times

were formed such that τ1 was normally distributed with µτ = 2.787 and στ = 0.18113.

For all i > 1, the arrival times were given by an independent interval processes such

that τi = τi−1 +∆τi, where the ∆τi were uniformly distributed. For this simulation,

∆τi was uniformly distributed between 0 and 0.3136 ms. The simulated histogram fits

very closely with the actual histogram. This suggests that the dynamics assumed in

the simulation model result in statistics which mimic that of the experimental data.

The model was analyzed for its sensitivity to changes in the parameters. For

this test, each parameter was varied while the others were held constant in order

to observe the change in mean square error associated with a fractional change in

the parameter. The results are displayed in Figure 3-8. The parameters with the

largest influence on error are the interval range of the independent interval process

and the number of scatterers. The shape parameter of the amplitude has a relatively

significant impact on the resulting mean square error, however the scale parameter

does not. The standard deviation of the initial arrival time also has an impact on

the error, while its mean has no apparent influence. The latter is expected, since a

change in mean simply changes the location of the arrivals.

These results imply that this model could provide a reasonable representation of
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Figure 3-6: Scatterer simulation histogram with N=1 scatterer

Figure 3-7: Scatterer simulation histogram with N=6 scatterers

the scattering statistics. However, it is not a realistic model for several reasons. Per-

haps most importantly, it does not take into account the correlation structure of the
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Figure 3-8: Scatterer model sensitivity to change in parameters

arrival times. Furthermore, the independent interval process and the number of scat-

terers were chosen by trial and error and consequently have no physical justification.

The parameters that ultimately provided the matching histogram of Figure 3.3 were

not unique, and by tuning both parameters simultaneously other acceptable matches

could be found. Additional matches could be produced by using other distributions

to represent the independent interval process.
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Chapter 4

Bayesian Estimation in

K-Distributed Fading Models

4.1 Introduction

The dynamics of the ocean surface cause the underwater acoustic communication

channel to fluctuate rapidly and suffer from a significant delay spread. For effective

communication, the time-varying channel impulse response must be both estimated

and tracked. Channel estimation errors will degrade the performance of any commu-

nication system, and it is therefore our goal to reduce these errors whenever possible.

Estimation problems are typically approached from either a classical or Bayesian

viewpoint. While classical estimation assumes that the unknown parameters are

deterministic but unknown, Bayesian estimation seeks to estimate a particular real-

ization of a random variable. The Bayesian approach uses a-priori statistics of the

parameters to formulate estimates optimized for a given cost criterion. If these sta-

tistical models are accurate, Bayesian estimation offers an improvement over classical

methods, which do not consider any a-priori statistics.

Most channel estimation techniques in use today assume that the underwater

acoustic channel exhibits Rayleigh or Rician fading behavior. However, as was demon-
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strated in Chapter 2, this is not always accurate. The question remains: what, if any,

performance gains can be achieved by incorporating K-distribution fading models into

channel estimation algorithms?

4.1.1 The Complex Bayesian Linear Channel Model

The complex Bayesian linear channel model will be used throughout this work for the

analysis of estimator performance. The N x 1 output vector y is given by

y = Dh+w, (4.1)

whereD is a known N x M matrix of transmitted data values, h is the channel impulse

response, and w is a zero-mean, complex Guassian noise vector, which is independent

of h.

In the standard model, h is generally assumed to be a complex Guassian random

process with mean µh and covariance matrix Rh. With this assumption, the envelope

of the channel response is Rician distributed (or Rayleigh distributed for a zero-

mean process). This work will explore the implications of assuming that the channel

envelope is K-distributed.

4.1.2 Bayesian Estimators

Minimum Mean Square Error Estimation

It is often desirable to minimize the mean square error (MSE) of the estimate.

mse(ĥ) = E[|h− ĥ|2] (4.2)
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The estimate that minimizes this cost function is the mean of the posterior distribu-

tion and is known as the Minimum Mean Square Error Estimate (MMSE).

ĥMMSE = E[h|y] (4.3)

Consequently, the minimumMSE obtained by this estimate is given by the conditional

variance.

mse(ĥ) = V ar(h|y) (4.4)

Maximum A Posteriori Estimation

A popular alternative to the MMSE estimate is the Maximum A Posteriori (MAP)

estimate. Although this estimate may lead to a larger MSE than the former, it is often

simpler to compute. The MAP estimate is the mode of the posterior distribution.

ĥMAP (y) = argmax
h

ph|y(h|y) (4.5)

This is equivalent to maximizing the logarithm of the posterior distribution, which is

often easier to compute.

ĥMAP (y) = argmax
h

�
p(y|h)p(h)

p(y)

�
(4.6)

= argmax
h

{ln p(y|h) + ln p(h)} (4.7)

= argmax
h

{J(y,h)} (4.8)

The problem reduces to maximizing the objective function, J(y,h).

4.1.3 Optimization Methods

The maximizations in (4.5) and (4.8) sometimes lead to expressions that are difficult,

or impossible, to compute in closed form. In this case, standard numerical optimiza-

63



tion methods can be applied. Although there are many methods available, this work

will consider only Coordinate Descent and Newton’s Method.

Coordinate Descent

Coordinate descent is a simple descent algorithm for finding extrema of a convex

objective function. The function is iteratively optimized along each coordinate axis.

For example, a two dimensional function of x and y could be iteratively minimized

by the following algorithm:

• Initialize x
k = x0, yk = y0

• x
k+1 = argminx f(x, yk)

• y
k+1 = argminy f(xk+1

, y)

This is naturally extended to convex functions of higher dimension. Coordinate de-

scent converges linearly to the optimal solution. A similar approach can be applied

to vectors variables x and y, and will be termed the Grouped Coordinate Descent.

The Grouped Coordinate Descent also converges linearly in both variables[2].

Newton’s Method

Newton’s Method is a hugely successful iterative algorithm for minimization and

maximization. It is well known for its very fast convergence rate, which is locally

quadratic. At each iteration, the estimate is advanced in a direction given by the

Newton Step, ∆h.

∆h � −∇2
f(h)−1∇f(h) (4.9)

A line search (either exact or inexact) is conducted to find the optimal step length.

The Newton Decrement, λ(h), provides a measure of the estimate’s proximity to the

optimal solution and is used as a stopping criterion in the algorithm.

λ(h) � (∇f(h)T∇2
f(h)−1∇f(h))1/2 (4.10)
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The method can be summarized as follows:

• Initialize h = h0 ∈ domf(h), choose tolerance � > 0

• Compute ∆h and λ2

• Quit if λ2 ≤ �

• Line search for t

• Update h := h+ t∆h

Complex Gradient and Hessian of a Real Function

In order to compute the optimal solution, the gradient and hessian of a real function,

J(n), must be computed with respect to a complex vector, n. Although such a

function is not differentiable in the traditional sense, a complex gradient operator

can be used to achieve the same optimality criteria [3].

∇nJ(n, r) �





dJ

dn
∗
1

dJ

dn
∗
2

:

dJ

dn
∗
M




(4.11)

Similarly, the Hessian is defined as [15]:

∇2
n
J(n, r) �





dJ

dn
∗
1dn1

. . .
dJ

dn
∗
Mdn1

...
. . .

...

dJ

dn
∗
1dnM

. . .
dJ

dn
∗
MdnM




. (4.12)
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4.2 Scalar Estimation in K-distributed Fading

Suppose h is corrupted by complex Gaussian noise such that

y = dh+ w, (4.13)

where d is a known (possibly complex) constant, w is a complex normal random

variable with variance 2σ2
w
, and h is a complex random variable with a K-distributed

envelope. The channel is said to exhibit K-distributed fading when the envelope of its

impulse response follows a K-distribution. In channel estimation, the complex-valued

channel tap is the parameter to be estimated, and consequently its probability density

function (PDF) must be derived.

4.2.1 The PDF of a Variable with K-distributed Envelope

Let h be the complex-valued variable with an envelope, x = |h|, which is K-distributed.

This variable can be represented in component form by the product of a zero-mean,

unit variance complex Gaussian random variable and the square root of a gamma

distributed variable. Equivalently, this can be interpreted as a zero-mean, complex

Gaussian random variable with a random variance that follows a gamma distribution

[17].

h =
√
z(nR + jnI) = rn (4.14)

The Gamma distribution is given by

p(z) =
z
k−1

e
− z

θ

θkΓ(k)
, (4.15)
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where Γ(·) is the Gamma function, k the shape parameter, and θ the scale parameter.

The Gamma distribution has mean,

E[z] = kθ, (4.16)

and variance,

V ar(z) = kθ2. (4.17)

Both nR and nI follow a unit-variance, zero mean Gaussian distribution,

p(nR) =
1√
2π

e
−n2

R
2 , (4.18)

such that p(hR|z) and p(hI |z) are i.i.d Gaussian distributions with variance z.

p(hR|z) =
1√
2πz

e
−h2R

2z (4.19)

Thus,

p(h|z) = 1

2πz
e
− |h|2

2z . (4.20)

The component form in (4.14) can be shown to produce the desired K-distributed

envelope by first noting that the amplitude of h is simply Rayleigh distributed when

conditioned on z.

x = |h| (4.21)

px|z(x|z) =
x

z
e

−x2

2z (4.22)

Using this conditional distribution to calculate the unconditional probability den-

sity function of x with θ = 2α2 and k = ν + 1 yields the familiar form of the
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K-distributed random variable.

px(x) =

� ∞

0

px|z(x|z)pz(z)dz (4.23)

=

� ∞

0

xz
ν−1

(2α2)ν+1Γ(ν + 1)
e
−( z

2α2+
x2

2z )dz (4.24)

=
2

αΓ(ν + 1)

�
x

2α

�ν+1
Kν

�
x

α

�
(4.25)

The pdf of r =
√
z, which will be of use later, can be found by derived distributions.

Since
√
z is a monotonically increasing function, this can be done by applying the

following formula:

pR(r) = pZ(r
2)

����
d

dr
(r2)

���� (4.26)

=
2r2k−1

e
− r2

θ

θkΓ(k)
. (4.27)

The PDF of the complex-valued h is defined as the joint distribution of its real

and imaginary parts. Defining the random variables v and u as

v =
√
znR and u =

√
znI , (4.28)

which are independent and identically distributed when conditioned on z, the distri-

bution of h becomes:
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ph(h) � pu,v(u, v) (4.29)

=

� ∞

0

p(u|z)p(v|z)p(z)dz (4.30)

=

� ∞

0

1

2πz
e

−u2−v2

2z
z
ν
e
− z

2α2

θν+1Γ(ν + 1)
dz (4.31)

=
1

2π(2α2)ν+1Γ(ν + 1)

� ∞

0

z
ν−1

e
− |h|2

2z − z
2α2 dz (4.32)

=
1

2πα2Γ(ν + 1)

�
|h|
2α2

�ν

Kν

�
|h|
α

�
(4.33)

4.2.2 MAP Estimation of a Scalar

Direct implementation of the MAP estimator in (4.5) requires the maximization of

the function p(y|h)p(h), or equivalently the maximization of

J(y, h) = − |y − dh|2

2σ2
w

+ ν ln|h|+ lnKν

�
|h|
α

�
+ c, (4.34)

where c is a constant that does not depend on y or h.

While there may exist techniques to maximize such a function, the MAP estimate

can be simplified by considering the component representation in (4.14) and instead

estimating the parameter γ.

γ =



 r

n



 (4.35)

The posterior distribution is again a complex normal distribution with mean h = drn.

p(y|γ) = 1

2πσ2
w

e
− |y−drn|2

2σ2
w (4.36)

=
1

2πσ2
w

e
− |y|2−rd∗n∗y−rdny∗+r2|dn|2

2σ2
w (4.37)
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Since n and r are independent, the log-posterior function becomes

J(γ, y) = ln p(y|γ) + ln p(r) + ln p(n) (4.38)

= − |y|2 − rd
∗
n
∗
y − rdny

∗ + r
2|d|2|n|2

2σ2
w

− |n|2

2
+ (2k − 1) ln r − r

2

θ
+ c

(4.39)

The Jacobian of the log-posterior function is

∇J =
�

2k−1
r

− 2r
θ − 2r|d|2|n|2−d

∗
n
∗
y−dny

∗

2σ2
w

,
d
∗
ry−r

2|d|2n
2σ2

w
− n

2

�
, (4.40)

and the Hessian is

∇2
J =



 − |d|2|n|2
σ2
w

− 2k−1
r2

− 2
θ ,

d
∗
y−2r|d|2n
2σ2

w

d
∗
y−2r|d|2n
2σ2

w
− r

2|d|2
2σ2

w
− 1

2



 . (4.41)

It follows from (4.40) that the optimal n and r satisfy the following criteria:

n̂ =
d
∗
ry

σ2
w
+ |d|2r̂2 (4.42)

r
2 − d

∗
n
∗
y + dny

∗

4(2σ2
w
+ θ|d|2|n|2)r +

2k − 1

2
= 0. (4.43)

The estimate of n, assuming r is known, is simply the MAP estimate (also the

MMSE estimate) of a complex Gaussian random process, as expected. The estimate

γ̂ could be found by substituting (4.42) into (4.43) and solving for r. However, as a

simpler approach, the solution is found iteratively using coordinate descent.

4.2.3 MMSE Estimation of a Scalar

The complicated form of the K-distributed variable leads to computationally cum-

bersome expressions. However, the calculation of the MMSE estimate for h can be
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simplified via the law of iterated expectations.

ĥMMSE = E[h|y] (4.44)

= Ez|y [E[h|y, z]] (4.45)

where the expectation, Ez|y[·], in (4.45) is with respect to p(z|y).

The posterior distribution, p(h|y, z) can be calculated using Baye’s rule

p(h|y, z) = p(y|h, z)p(h|z)
p(y|z) , (4.46)

where

p(y|h, z) = p(y|h) (4.47)

=
1

2πσ2
w

e
− |y−dh|2

2σ2
w . (4.48)

The mean of the conditional posterior in (4.45) can be found without explicitly cal-

culating the distribution by recognizing that its form is that of another complex

Gaussian.

p(h|y, z) ∼ exp

�
− |y − dh|2

2σ2
w

�
exp

�
− |h|2

2z

�
(4.49)

= exp

�
−z|d|2 + σ2

w

2zσ2
w

�
|h|2 + z

z|d|2 + σ2
w

(d∗h∗
y + dhy

∗)− g(y, z)

��
(4.50)

∼ exp

�
−z|d|2 + σ2

w

2zσ2
w

����h− d
∗
z

z|d|2 + σ2
w

y

����
2
�

(4.51)

The conditional mean is therefore

E[h|y, z] = d
∗
zy

z|d|2 + σ2
w

. (4.52)

This is exactly as one would anticipate, since given z, h is a complex Gaussian process.
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The expression derived in (4.52) is merely the Wiener filter.

Applying Baye’s Rule once more yields

p(z|y) = p(y|z)p(z)
p(y)

(4.53)

=

1
2π(σ2

w+|d|2z) exp
�
− |y|2

2(σ2
w+|d|2z)

�
z
k−1

e
− z

θ

θkΓ(k)

�∞
0

1
2π(σ2

w+|d|2z) exp
�
− |y|2

2(σ2
w+|d|2z)

�
zk−1e

− z
θ

θkΓ(k) dz

(4.54)

=

z
k−1

z+η exp
�
− β

z+η −
z

θ

�

�∞
0

zk−1

z+η exp
�
− β

z+η −
z

θ

�
dz

, (4.55)

where η = σ2
w
/|d|2 and β = |y|2/2|d|2. The estimate becomes

ĥMMSE =
y

d
Ez|y

�
z

z + η

�
(4.56)

=
y

d

�∞
0

z
k

(z+η)2 exp
�
− β

z+η −
z

θ

�
dz

�∞
0

zk−1

z+η exp
�
− β

z+η −
z

θ

�
dz

. (4.57)

The value of η can be interpreted as inverse SNR, scaled by the variance of h. It

represents the ratio of energy in the noise to energy in the transmitted signal. The

value of β is the ratio of total instantaneous energy in the received signal to energy in

the transmitted signal. Defining the integral in the numerator of (4.57) as ζ(β, η; k, θ),

we obtain

ζ(β, η; k, θ) �
� ∞

0

z
k

(z + η)2
e
− β

z+η e
− z

θ dz (4.58)

= − 1

β

� ∞

0

e
−z/θ

e
− β

z+η

�
kz

k−1 − 1

θ
z
k

�
dz. (4.59)

The expression in (4.59) is found by applying integration by parts:

� ∞

0

g
�(z)f(z)dz = lim

c→∞

�
f(z)g(z)

�c

0

−
� ∞

0

f
�(z)g(z)dz, (4.60)
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with

g
�(z) =

1

(z + η)2
e
− β

z+η (4.61)

f(z) = z
k
e
− z

θ . (4.62)

Assuming the energy of the transmitted signal is much greater than the energy of the

noise, a 2nd order Taylor series expansion about η = 0 is a reasonable approximation.

e
− β

z+η ≈ e
−β
z

�
1 +

βη

z2

�
(4.63)

Substituting this into (4.59) yields

ζ(β, η; k, θ) ≈ 1

β

� ∞

0

e
−z/θ−β/z

�
1

θ
z
k − kz

k−1 +
βη

θ
z
k−2 − kβηzk−3

�
dz. (4.64)

Since β and θ are both guaranteed to be greater than zero, this integral can be

computed as [5]:

ζ(β, η; k, θ) ≈ 2(βθ)k/2
�√

βθ

βθ
Kk+1

�
2
�
β/θ

�
− k

β
Kk

�
2
�
β/θ

�

+
η

θ
√
βθ

Kk−1

�
2
�

β/θ
�
− kη

βθ
Kk−2

�
2
�
β/θ

��
. (4.65)

The function, Kp(·), is the p
th order modified Bessel function of the 2nd kind. The

integral in the denominator of (4.57) can also be written in terms of the function

ζ(β, η; k, θ):

� ∞

0

z
k−1

z + η
e
−β(y)

z+η e
− z

θ dz (4.66)

=

� ∞

0

z
k

(z + η)2
e
−β(y)

z+η e
− z

θ dz + η

� ∞

0

z
k−1

(z + η)2
e
−β(y)

z+η e
− z

θ dz (4.67)

= ζ(β, η; k, θ) + ηζ(β, η; k − 1, θ). (4.68)
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Finally, the MMSE estimate of h is

ĥMMSE =
y

d

ζ(β, η; k, θ)

ζ(β, η; k, θ) + ηζ(β, η; k − 1, θ)
. (4.69)

4.2.4 Results

The MAP and MMSE estimators derived above were evaluated in Matlab with the

simulation in Appendix C. Realizations of the random variable h were generated using

the component form in (4.14). The variance of h was held constant throughout each

simulation, while the variance of the noise was adjusted to evaluate the performance

of each estimator as a function of the Signal to Noise Ratio (SNR). For the purpose

of these simulations, the value of the input parameter, d, was set to one. The MSE

of each estimator was approximated by a sample average over 2000 trials.

The K-distribution approaches a Rayleigh distribution as ν → ∞. Likewise, the

largest discrepancies between the two distributions occur as ν → −1. The smallest

value of the shape parameter observed in Table 2.4(a) was ν = −0.3447, accompanied

by a scale parameter of α = 0.0062. Since the Rayleigh parameter estimates are based

on second order statistics, the value of the Rayleigh σ parameter was chosen such that

the variance of the two distributions were equivalent. The corresponding distributions

that were used in the channel simulation are shown in Figure 4-1.

The K-distribution MAP estimate was made using the coordinate descent outlined

in Section 4.1.3. The MMSE estimate was implemented with both a first and second

order Taylor approximation. The Raleigh MMSE estimate is also its MAP estimate,

as well as the Linear Minimum Mean Square Error (LMMSE) estimate of the K-

distribution. These are compared with the error obtained by taking the output y as

the estimate of h. The resulting sample MSEs are plotted in Figure 4-4.

The results are displayed in Figure 4-4. The 2nd order K-distribution MMSE

estimate outperforms all other estimates, while the 1st order approximation performs

comparably, except at very low SNR. A maximum improvement in MSE of 0.5 dB is
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Figure 4-1: Envelope PDFs used in channel simulations for ν = −0.3447, α = 0.0062

Figure 4-2: K-distribution channel estimate MSE: ν = −0.3447, α = 0.0062
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observed using the 2nd order K-distribution MMSE in place of the Rayleigh estimate.

The MAP estimate offers an improvement of 0.26 dB over the Rayleigh estimate.

Although there is some advantage in utilizing the K-distribution for the estima-

tion, it is not incredibly significant. In order to illustrate a maximal performance

gain obtainable by using the K-distribution in place of the Rayleigh model, we will

consider extreme parameters that produce a larger disparity between the two distri-

butions. The distributions in Figure 4-3 are obtained with ν = −0.95, and α chosen

such that the variance is the same as those in Figure 4-1.

Figure 4-3: Envelope PDFs used in channel simulations for ν = −0.95, α = 0.0224

The results for this model are shown in Figure 4-3. This time, the K-distribution

estimates perform significantly better than the Rayleigh estimate. The 2nd order K-

distribution MMSE performs substantially better than the others, while the 1st order

MMSE and the MAP estimates have similar performance. A maximum improvement

in MSE of 3.64 dB is obtained by the 2nd order MMSE and 2.30 dB by the MAP

estimate.
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Figure 4-4: K-distribution channel estimate MSE: ν = −0.95, α = 0.0224

4.3 Vector Estimation in K-distributed Fading

Now suppose the variable to be estimated is a vector of independent complex random

variables with K-distributed envelopes. The received signal is given by

y = Dh+w. (4.70)

In this representation D is a known N x M matrix of transmitted data values, w

is a N x 1 complex normal random vector, and each element of the M x 1 vector h is

a complex random variable with a K-distributed envelope. In component form, this

can be represented as

y = DRn+w (4.71)

= DNr+w, (4.72)
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where

R =





r1 0 0 0

0 r2 0 0
...

...
. . .

...

0 0 . . . rM




and N =





n1 0 0 0

0 n2 0 0
...

...
. . .

...

0 0 . . . nM




. (4.73)

For the vector h with independent components the joint distribution becomes

ph(h) =
M�

i=1

1

2πα2
i
Γ(νi + 1)

�
|h̃i|
2α2

i

�νi

Kνi

�
|h̃i|
αi

�
. (4.74)

4.3.1 MAP Estimation of a Vector

The new parameter, γ, contains the parameterization from (4.14) for each element of

h̃.

γ =



 r

ñ



 (4.75)

Its MAP estimate can be found by maximizing the log-posterior function.

γ̂ = argmax
γ

{ln p(y|h̃(γ)) + ln p(r) + ln p(ñ)} (4.76)

Defining the moment matrix of the noise vector as half the covariance matrix,

Λw =
1

2
E[wwH ], (4.77)

the distributions in the vector case become:
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p(w) =
exp(−1

2w
HΛw

−1w)

(2π)M det(Λw)
(4.78)

p(n) =
exp(−1

2n
Hn)

(2π)M
(4.79)

p(r) =
M�

i=1

2r2k−1
i

e
− r2i

θ

θkΓ(k)
(4.80)

=

�
2

θkΓ(k)

�M

exp

�
−1

θ
rT r

� M�

i=1

r
2k−1
i

(4.81)

p(y|h(γ)) =
exp(−1

2(y −Dh)HΛw
−1(y −Dh))

(2π)M det(Λw)
(4.82)

Subsituting these into (4.76) yields the objective function for the vector case,

γ̂ = argmax
γ

�
−1

2
(y −DRn)HΛw

−1(y −DRn)− 1

θ
rT r+ (2k − 1)

M�

i=1

ln ri −
1

2
nHn

�

(4.83)

= argmax
γ

{J(r,n)} (4.84)

In order to compute the optimal solution, the gradient is computed with respect to

r and n. Although r is a real variable, J(r,n) is also a real function of the complex-

valued variable n. Therefore, the complex gradient operator, described in Section

4.1.3, must be applied. Using this definition of the gradient,

∇nJ(n, r) = −1

2
RHDHΛw

−1(DRn− y)− 1

2
n. (4.85)

Setting (4.85) to zero, the optimal n will satisfy

n̂ =
�
RHDHΛw

−1DR+ I
�−1

RHDHΛw
−1y. (4.86)
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The gradient with respect to r yields

∇rJ(n, r) = Re{NHDHΛw
−1y}−

�
Re{NHDHΛw

−1DN}+ 2

θ
I

�
r− (2k − 1)rI,

(4.87)

where rI is defined as

rI =





1/r1

1/r2

:

1/rM




. (4.88)

The set of multivariate polynomial equations resulting from (4.87) is non-trivial

to solve. Consequently, the coordinate descent approach as applied in the scalar case

will not suffice. Instead, an inexact maximization via Newton’s Method is applied to

optimize r in the coordinate descent. Even with this additional step, local linear con-

vergence is preserved. In fact, only a small number of Newton Method iterations are

necessary [6]. To apply Newton’s Method, the Hessian with respect to r is required.

∇2
rJ(n, r) = Re{NHDHΛw

−1DN}− 2

θ
I+ (1− 2k)R−1R−1 (4.89)

Combining coordinate descent with Newton’s method for r results in the ”Grouped

Coordinate Descent with Newton’s Method” described bellow. This method was im-

plemented by Bezdek [6] and shown to preserve the linear convergence of the tradi-

tional coordinate descent with only one or two Newton iterations (P=1 or 2).
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Grouped Coordinate Descent with Newton’s Method

• Initialize rk = r0, r > 0, choose tolerance � > 0

• nk+1 =
�
RH

k
DHΛw

−1DRk + I
�−1

RH

k
DHΛw

−1y

• Set rp = rk. While λ2 ≤ � or p ≤ P , Do:

� Compute ∆r = − (∇2
J(nk+1, rp))

−1 (∇J(nk+1, rp))

� Compute λ2 = (∇J(nk+1, rp))
T (∇2

J(nk+1, rp))
−1 (∇J(nk+1, rp))

� Line search for t

� Update rp+1 := rp + t∆r

• Update rk+1 = rP

4.3.2 MMSE Estimation of a Vector

Following the same method used in the scalar estimation problem, the MMSE esti-

mate of the vector h is

hMMSE = E[h|y] (4.90)

= Ez|y [E[h|y, z]] , (4.91)

where the conditional posterior distribution is now:

p(h|y, z) = p(y|h, z)p(h|z)
p(y|z) (4.92)

=
exp(−1

2(y −Dh)HΛw
−1(y −Dh)− 1

2h
HΓz

−1h)

(2π)2M det(Λw) det(Γz)p(y|z)
(4.93)

=
exp(12(−yHΛw

−1y + yHΛw
−1Dh+ hHDHΛw

−1y − hH(DHΛw
−1D+ Γz

−1)h))

(2π)2M det(Λw) det(Γz)p(y|z)
.

(4.94)
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Again, this is recognized as a complex normal distribution,

p(h|y, z) ∼ CN ((DHΛw
−1D+ Γz

−1)−1DHΛw
−1y, 2(DHΛw

−1D+ Γz
−1)−1), (4.95)

from which the MMSE estimate becomes

ĥMMSE = Ez|y
�
(DHΛw

−1D+ Γz
−1)−1DHΛw

−1y
�

(4.96)

= Ez|y
�
ΓzD

H(DΓzD
H +Λw)

−1
�
y. (4.97)

The estimate suggested by (4.97) requires a multidimensional integral of a com-

plicated function. To avoid this, an iterative method for estimating the vector h will

be employed. Each element, hl, can be estimated separately, assuming the set of

all other elements, {hi �=l}, is known. Once each channel tap has been estimated, the

process is repeated, until some convergence criteria is met. This is an implementation

of coordinate descent, where the objective function being minimized is the Bayesian

MSE cost function.

For convenience, the elements of the matrix D will be denoted as

D =





d11 d12 . . . d1M

d21 d22 . . . d2M

...
...

. . .
...

dN1 dN2 . . . dNM




=





d1
T

d2
T

...

dN
T




=

�
d1 d2 . . . dM

�
, (4.98)

where dij is the element of D in the i
th row and j

th column, di is the i
th row vector,

and d
i
is the i

th column vector.

The MMSE estimate of hl, assuming all other tap values are known, is

ĥl = E[hl|y, {hi �=l}] (4.99)

= Ezl|y [E [hl|y, zl, {hi �=l}]] . (4.100)
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The conditional posterior distribution is then:

p(hl|y, zl, ,{hi �=l}) =
p(y|hl, zl, {hi �=l})p(hl|zl, , {hi �=l})

p(y|zl, {hi �=l})
(4.101)

=
p(y|h)p(hl|zl)
p(y|zl, {hi �=l})

(4.102)

∼ exp

�
− |y −Dh|2

2σ2
w

− |hl|2

2zl

�
(4.103)

= exp

�
−
�

N

i=1 |yi − di
Th|2

2σ2
w

− hl

2zl

�
(4.104)

= exp

�
−
�

N

i=1 |yi −
�

M

j �=l
dijhj − dilhl|2

2σ2
w

− |hl|2

2zl

�
(4.105)

∼ exp




σ2
w
+
�

N

i=1 |dil|2

2zlσ2
w

������
hl −

zl

��
N

i=1 d
∗
il
yi −

�
N

i=1 d
∗
il

�
j �=l

dilhl

�

σ2
w
+ zl

�
N

i=1 |dil|2

������

2


 .

(4.106)

Defining D̃l as the matrix D with the lth column removed and h̃l as the vector h with

the l
th element removed, we have

E [hl|y, zl, {hi �=l}] =
zl

��
N

i=1 d
∗
il
yi −

�
N

i=1 d
∗
il

�
j �=l

dilhl

�

σ2
w
+ zl

�
N

i=1 |dil|2
(4.107)

=
dH

l
(y − D̃lh̃l)

|d
l
|2

zl

zl + σ2
w
/|d

l
|2 . (4.108)

When estimating a scalar h, D̃l and h̃l are empty, reducing the expression in (4.108)

to the one in (4.52).

p(zl|y, {hi �=l}) =
p(y|zl, {hi �=l})p(zl|{hi �=l})

p(y|{hi �=l})
. (4.109)
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Making the observation that

yi = dil
√
zlnl +

M�

j �=l

dijhj + wi (4.110)

y =
√
zlnldl

+ D̃lh̃l +w, (4.111)

where nl is a complex normal random variable with σ2
n
= 2, the conditional posterior

of zl can be computed as

p(zl|y, {hj �=l}) =
exp

�
−(y − D̃lỹl)H(2zldl

dH

l
+ 2σ2

w
IN)−1(y − D̃lỹl)

�
z
k−1
l

exp(−zl/θ)

p(y|{hj �=l})πN det(2zldl
dH

l
+ 2σ2

w
IN)θkΓ(k)

.

(4.112)

Next, noting that

det
�
2zldl

dH

l
+ 2σ2

w
IN

�
= (2σ2

w
)N det

�
zldl

dH

l

σ2
w

+ IN

�
(4.113)

= (2σ2
w
)N

|d
l
|2

σ2
w

�
zl +

σ2
w

|d
l
|2

�
, (4.114)

and applying the well-known Woodbury matrix identity,

(A+ UCV ) = A
−1 − A

−1
U(C−1 + V A

−1
U)−1

V A
−1
, (4.115)

with

A = σ2
w
IN , U = d

l
, V = dH

l
, C = zlIN (4.116)
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to obtain

(2zldl
dH

l
+ 2σ2

w
IN)

−1 =
1

2σ2
w

�
IN − zl

zi + σ2
w
/|d

l
|2
d
l
dH

l

|d
l
|2

�
(4.117)

=
1

2σ2
w

�
IN − d

l
dH

l

|d
l
|2 − σ2

w
/|d

l
|2

zi + σ2
w
/|d

l
|2
d
l
dH

l

|d
l
|2

�
(4.118)

leads to an expression of the same form as (4.57).

p(zl|y, {hj �=l}) =
z
k−1
l
zl+η exp

�
− β

zl+η −
zl
θ

�

�∞
0

z
k−1
l
zl+η exp

�
− β

zl+η −
zl
θ

�
dzl

(4.119)

However, the parameters are now

η� =
σ2
w

|d
l
|2 (4.120)

β� =

�
y − D̃lh̃l

�H �
d
l
dH

l

� �
y − D̃lh̃l

�

2|d
l
|4 (4.121)

=
|dH

l

�
y − D̃lh̃l

�
|2

2|d
l
|4 . (4.122)

Finally, the MMSE estimate of hl given {hj �=l} is

ĥl =
dH

l

�
y − D̃lh̃l

�

|d
l
|2 E

�
zl

zl + η�

�
(4.123)

=
dH

l

�
y − D̃lh̃l

�

|d
l
|2

ζ(β�
, η�; k, θ)

ζ(β�, η�; k, θ) + ηζ(β�, η�; k − 1, θ)
. (4.124)

4.3.3 Results

The Matlab code used to implement the vector channel simulation and estimation

techniques can be found in Appendix C. The channel taps and noise were assumed to

each have independent components. The random variable realizations were calculated
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in the same manner as the scalar case, and the MSE was estimated from a sample

average over 5000 trials. The matrix D was assumed to be the identity matrix.

The MAP estimate was calculated using the grouped coordinate descent algorithm

described in Section 4.3.1. The convergence of Newton’s Method was analyzed for

different initial values of r0. Figure 4-5 displays the error as measured from the current

estimate to the final estimate over each iteration. Quadratic convergence begins

immediately when the initial point is set to
√
µz, where µz is the mean of the Gamma

distribution. This corresponds to the left most curve in the figure with r0 = 0.0071.

The convergence of the grouped coordinate descent is dependent upon the number of

iterations allocated to Newton’s Method in each iteration of the coordinate descent

(CD). This is demonstrated in Figure 4-6. Ultimately, a maximum of 20 iterations of

the coordinate descent were performed, with one Newton iteration at each step.

Figure 4-5: The convergence of Newton’s method in estimating r for different initial
values

The MMSE estimate was calculated via the coordinate descent approach outlined

in section 4.3.2, using 20 iterations. As in the scalar case, the estimators were tested
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Figure 4-6: Coordinate descent convergence rates for various Newton iterations

on channel simulations governed by statistics that corresponded to realistic param-

eters seen in the data of Chapter 2, as well as extreme values of the K-distribution

parameters.

The distributions that were observed in the SPACE02 data are displayed in Figure

4-1. When the estimators derived in this chapter were implemented with M=4 and

N=4, the MSE behavior seen in Figure 4-7 was obtained. The resultant MSE curves

for ν = −0.95 can be seen in Figure 4-8. There is a maximum improvement in MSE

of 1.54 dB by using the MAP estimate, and 2.96 dB using the MMSE estimate. The

probability distributions associated with this simulation can be found in Figure 4-3.
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Figure 4-7: K-distribution vector channel estimate MSE: ν = −0.3447, α = 0.0062

Figure 4-8: K-distribution vector channel estimate MSE: ν = −0.95, α = 0.0224
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Chapter 5

Conclusions

Analysis of data from the SPACE02 experiment confirms that the channel taps associ-

ated with reflections from the ocean surface can exhibit fading that is better modeled

as K-distributed than Rayleigh or Rician. The reflections from a single surface inter-

action were analyzed in detail. The results suggested that these channel taps became

more K-distributed, with smaller shape parameters, during periods of high wind and

wave activity. The channel taps became more Rayleigh-like at lower bandwidths and

longer source-to-receiver distances. Both of these scenarios were attributed to more

scatterers contributing to a resolvable arrival in delay.

The components of the scattering process were empirically examined. The ”peak

arrival” amplitude was determined to be well fit by a gamma distribution. Simulations

of the scattering process were conducted, and it was possible to recreate the envelope

statistics observed in the data. The simulation results also indicated that, under a

discrete scatterer model, the resulting distribution is most sensitive to the number of

scatterers used and their arrival’s separation in delay.

Although there is a substantial performance improvement using the K-distribution

estimates with certain distribution pairs, there is no evidence that such extreme

distribution disparities exist in a realistic environment. The performance gained by

using the K-Distribution model with realistic parameters was small compared with
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the increased computational complexity of the estimates. However, should fading

models or other estimation scenarios arise with distributions comparable to those

shown in Figure 4-3, this approach might prove advantageous.
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Appendix A

MATLAB Code: Fading Statistics

A.1 Histogram Calculations

1 %adapted from code written by Dr. James C. Preisig

2 curdir = pwd;

3 rxsigdir =['/Users/alisonlaferriere/Documents/WHOI/'...

4 'Summer Research/SPACE02 Pulse Data/'];

5 savedir = uigetdir

6

7 fs = 5e6/112;

8 siglen = 56;

9 fc = 14e3;

10 numpulsereps = 1307;

11 Nr = 1786;

12 Tb = 0.5;

13 numsampperfile = fs*siglen;

14

15 chnum = 18;

16

17 ∆cycles = Nr/fs*fc;

18 ∆cycles = ∆cycles - floor(∆cycles);
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19 ∆omega = 2*pi*∆cycles;

20 phaseadjust = repmat(exp(-sqrt(-1)*∆omega*[0:numpulsereps-1]),Nr,1);

21

22 numblank = round(fs*Tb); clear Tb

23

24 expvec = exp((-sqrt(-1)*2*pi*fc/fs)*[0:numsampperfile-1].');

25 daxis = ([0:Nr-1]-59)*1000/fs;

26

27 sdi = min(find(daxis≥-1));

28 edi = max(find(daxis≤18));

29

30

31 epochvec = [3310000 3330000 3330200 3330400 3331600 3340200 ...

32 3341200 3341400 3370000 3370200 3370800 3371400];

33 segnumvec = [13:19];

34 numsegs = length(segnumvec);

35

36 taxis = [0:numpulsereps-1]*Nr/fs;

37 lta = length(taxis);

38

39 numbins = 80;

40 dB range = 30;

41

42 for epoch = epochvec

43 for system number = [1 2 4]

44 if (system number==1)

45 startindex = 7404; %60 samples in front of peak of first arrival

46 elseif (system number==2)

47 if (chnum≥16)

48 startindex = 14508;

49 else

50 startindex = 4472;

51 end

52 elseif (system number==4)
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53 startindex = 28029;

54 else

55 % error('unrecognized system number.')

56 end

57

58 for lpfiltlen = [4 8 16 32 64 128 256]

59

60 desired baseband = ones(lpfiltlen,1)/lpfiltlen;

61 numprior = 0;

62 mv abs = 0;

63 numgoodpulses = zeros(1,numsegs);

64 suspectpulses saved = ones(numsegs,lta);

65 impresp = complex(zeros(Nr,numpulsereps,numsegs));

66

67 for segnum = segnumvec

68 fname = ['sys',int2str(system number),'ch',int2str(chnum) ...

69 ,' ',int2str(epoch),int2str(segnum),'.rsig']

70 cd(rxsigdir);

71 cd(int2str(epoch))

72 rsig = load SPACE02 single chan rsig fn(fname, ...

73 startindex+numblank,numsampperfile);

74 cd(curdir)

75 bbsig1 = rsig.*expvec;

76 bbsig2 = freqdomainconv(desired baseband,bbsig1);

77 bbsig3 = bbsig2([1:Nr*numpulsereps]);

78 bbsig3 = reshape(bbsig3,Nr,numpulsereps);

79 bbsig3 = bbsig3 .* phaseadjust;

80 % this compensates for phase discontinuity in tx sig

81 % at the end of each pulse cycle.

82

83 numprior = numprior + 1;

84

85 impresp(:,:,numprior) = bbsig3;

86 diffabs = diff(abs(bbsig3).').'/max(max(abs(bbsig3)));
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87 temppos = zeros(size(diffabs));

88 tempneg = temppos;

89 temppos(find(diffabs>0.3)) = 1;

90 tempneg(find(diffabs<-0.3)) = 1;

91 nr = size(tempneg,2);

92 tempselect = max(temppos(:,1:nr-1).*tempneg(:,2:nr));

93 suspectpulses saved(numprior,2:numpulsereps-1) = tempselect;

94

95 mv abs=max([mv abs,max(max(abs(bbsig3(:,find(...

96 tempselect==0)))))]);

97 numgoodpulses(numprior) = sum(tempselect==0);

98 end

99

100 max abs = double(zeros(numsegs,Nr));

101 min abs = double(zeros(numsegs,Nr));

102 mean abs = double(zeros(numsegs,Nr));

103 std abs = double(zeros(numsegs,Nr));

104 mean abssq = double(zeros(numsegs,Nr));

105 std abssq = double(zeros(numsegs,Nr));

106 mean dB = double(zeros(numsegs,Nr));

107 std dB = double(zeros(numsegs,Nr));

108 mean real = double(zeros(numsegs,Nr));

109 mean imag = double(zeros(numsegs,Nr));

110 std real = double(zeros(numsegs,Nr));

111 std imag = double(zeros(numsegs,Nr));

112 mean realsq = double(zeros(numsegs,Nr));

113 mean imagsq = double(zeros(numsegs,Nr));

114 cc real imag = double(zeros(numsegs,Nr));

115

116 moment 2 abs = double(zeros(numsegs,Nr));

117 moment 2 dB = double(zeros(numsegs,Nr));

118 moment 4 abs = double(zeros(numsegs,Nr));

119 moment 4 dB = double(zeros(numsegs,Nr));

120 var abs = double(zeros(numsegs,Nr));
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121 var dB = double(zeros(numsegs,Nr));

122

123 mv dB = 20*log10(mv abs);

124 edges abs = [0:numbins]*mv abs*1.0001/(numbins);

125 edges dB = [-(numbins):0]/(numbins)*dB range + mv dB+0.001;

126 ∆ abs = mv abs*1.0001/(numbins);

127 ∆ dB = dB range/(numbins);

128

129 hist abs = zeros(numbins,Nr,numsegs);

130 hist dB = zeros(numbins,Nr,numsegs);

131

132 for ii=1:numsegs

133

134 curresp = impresp(:,find(suspectpulses saved(ii,:)==0),ii).';

135 mean real(ii,:) = mean(real(curresp));

136 mean imag(ii,:) = mean(imag(curresp));

137 std real(ii,:) = std(real(curresp));

138 std imag(ii,:) = std(imag(curresp));

139 mean realsq(ii,:) = mean(real(curresp).ˆ2);

140 mean imagsq(ii,:) = mean(imag(curresp).ˆ2);

141 cc real imag = ...

142 mean((imag(curresp) - repmat(mean imag(ii,:),...

143 numgoodpulses(ii),1)).* (real(curresp) - ...

144 repmat(mean real(ii,:),numgoodpulses(ii),1)));

145

146 curresp = abs(curresp);

147

148 max abs(ii,:) = max(curresp);

149 min abs(ii,:) = min(curresp);

150 mean abs(ii,:) = mean(curresp);

151 std abs(ii,:) = std(curresp);

152 moment 2 abs(ii,:) = sum(curresp.ˆ2)/numgoodpulses(ii);

153 moment 4 abs(ii,:) = sum(curresp.ˆ4)/numgoodpulses(ii);

154 var abs(ii,:) = var(curresp);
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155 temphist = histc(curresp,edges abs);

156 hist abs(:,:,ii) = temphist(1:numbins,:);

157

158

159 curresp = curresp.ˆ2;

160 mean abssq(ii,:) = mean(curresp);

161 std abssq(ii,:) = std(curresp);

162

163 curresp = 10*log10(curresp);

164 mean dB(ii,:) = mean(curresp);

165 std dB(ii,:) = std(curresp);

166 moment 2 dB(ii,:) = sum(curresp.ˆ2)/numgoodpulses(ii);

167 moment 4 dB(ii,:) = sum(curresp.ˆ4)/numgoodpulses(ii);

168 var dB(ii,:) = var(curresp);

169 temphist = histc(curresp,edges abs);

170 hist dB(:,:,ii) = temphist(1:numbins,:);

171

172

173 end

174 cd([savedir])

175 eval(['save hist fading lpfiltlen',int2str(lpfiltlen),' sys'...

176 ,int2str(system number),' channel',int2str(chnum),' ',...

177 int2str(epoch),' hist abs hist dB edges abs edges dB '...

178 'max abs min abs mean abs std abs mean abssq std abssq '...

179 'mean dB std dB numpulsereps mv abs mv dB ∆ abs ∆ dB '...

180 'mean real mean imag std real std imag mean realsq '...

181 'mean imagsq cc real imag suspectpulses saved '...

182 'numgoodpulses moment 2 abs moment 2 dB moment 4 abs '...

183 'moment 4 dB'])

184 cd(curdir)

185 pause(0.5)

186 end

187 end

188 end
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1 function rsig = ...

2 load SPACE02 single chan rsig fn(filename,startindex,numsamp)

3 %following code provided by Dr. James C. Preisig

4 %filename = input('file name? ','s');

5 %startindex = input('starting sample index (first sample index = 0)?')

6 %numsamp = input('number samples? ');

7

8 numbuffersamp = 200000;

9 rsig = zeros(numsamp,1);

10

11 fid = fopen(filename,'r','ieee-le');

12

13 [endian flag,count] = fread(fid,1,'int32');

14 if (endian flag == -402456576)

15 [fname,permission,fileformat] = fopen(fid);

16 if (fileformat == 'ieee-be')

17 iostat = fclose(fid);

18 if (iostat �= 0)

19 error('problem closing file')

20 end

21 fid = fopen(filename,'r','ieee-le');

22 if (fid<0)

23 error('problem opening file')

24 end

25 [a,count] = fread(fid,4,'int32');

26 endian flag = a(1);

27 if (endian flag �= 1000)

28 fclose(fid)

29 error(['file does not return proper endian flag in either'...

30 'big or little endian format'])

31 end

32 elseif (fileformat == 'ieee-le')

33 iostat = fclose(fid);
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34 if (iostat �= 0)

35 error('problem closing file')

36 end

37 fid = fopen(filename,'r','ieee-be');

38 if (fid<0)

39 error('problem opening file')

40 end

41 [a,count] = fread(fid,4,'int32');

42 endian flag = a(1);

43 if (endian flag �= 1000)

44 fclose(fid)

45 error(['file does not return proper endian flag in either big'...

46 ' or little endian format'])

47 end

48 else

49 fclose(fid)

50 error('unknown file format returned.')

51 end

52 elseif (endian flag �= 1000)

53 error(['unknown endian flag variable: endian flag = ',endian flag])

54 end

55

56 numdatabyteskip = startindex*2; % number of bytes to skip

57 skipstatus = fseek(fid,numdatabyteskip,'cof');

58

59 numsegs = ceil((numsamp-startindex)/numbuffersamp);

60 numdataread = numbuffersamp;

61

62 for mm=0:numsegs-2

63 [data,count] = fread(fid,numdataread,'int16');

64 e = 8.ˆ(3-mod(data,4));

65 m = bitshift(data,-2);

66 rsig(mm*numbuffersamp+[1:numbuffersamp]) = m.*e;

67 end
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68 mm= numsegs-1;

69 lastsamp = mm*numbuffersamp;

70 numbuffersamp = numsamp - lastsamp - startindex;

71 numdataread = numbuffersamp;

72 [data,count] = fread(fid,numdataread,'int16');

73 e = 8.ˆ(3-mod(data,4));

74 m = bitshift(data,-2);

75 rsig(lastsamp+[1:length(e)]) = m.*e;

76 rsig = rsig * (2.ˆ(-22));

77

78 fclose(fid);

1 function fout = freqdomainconv(in1,in2)

2 % fout = freqdomainconv(in1,in2)

3

4 foutlen = length(in1) + length(in2) -1;

5 fftlen = 2ˆnextpow2(foutlen);

6 fout = ifft(fft(in1,fftlen).*fft(in2,fftlen));

7 fout = fout(1:foutlen);

1 function [ls s,ls g,ls x,ls px]=...

2 grid search fcn(data hist,s,g,∆ abs,type dist)

3 %data hist= histogram to compare

4 %s = parameter 1

5 %g = parameter 2

6 %x = data points

7 %type dist = type of distribution (k-dist, rician, rayleigh,log)

8

9 save form param=0; %set to 1 to create record of parameters

10

11 num x=length(data hist);
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12 ∆ scale=10; %scales number of data points for distribution calc

13 x scaled = ([0:2*num x*∆ scale-1]+0.0001)*∆ abs/∆ scale;

14 ls x = [0:2*num x-1]*∆ abs;

15

16 if type dist=='k' %(k-dist) s=nu, g=a

17 px = k dist pdf(s,g,x scaled);

18 elseif type dist=='c' %(rician) sigma=s, mu=g

19 px = rician pdf(s,g,x scaled);

20 elseif type dist=='r' %(rayleigh) sigma=s, mu=0

21 px = rician pdf(0,g,x scaled);

22 elseif type dist=='l' %log-normal sigma=s, mu=g

23 px=lognpdf(x scaled,g,s);

24 else

25 error('invalid distribution type')

26 end

27

28 %segmented integration

29 int px = zeros(1,2*num x);

30 int px(1)=(∆ abs/∆ scale)*(sum(px(1:∆ scale-1))+ ...

31 sum(px(2:∆ scale)))/2;

32 index=0;

33 for ii=2:160

34 index=index+∆ scale;

35 int px(ii)=(∆ abs/∆ scale)*(sum(px(index:index+...

36 ∆ scale-1))+ sum(px(index+1:index+∆ scale)))/2;

37 end

38

39 ls s = s;

40 ls g = g;

41 grid spacing = 0.1;

42 num grid = 11;

43

44 numiterations = 0;

45 if save form param==1
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46 former param px=zeros(10,2);

47 former error px=zeros(10,1);

48 end

49 while (grid spacing > 0.001)

50 old s = ls s;

51 old g = ls g;

52 g grid = old g*(1+[-(num grid-1)/2: ...

53 (num grid-1)/2]*grid spacing);

54 s grid = old s*(1+[-(num grid-1)/2:(num grid-1)/2]*grid spacing);

55 %changed = 0;

56

57 if type dist=='k' %(k-dist) s=nu, g=a

58 cur px = grid k dist pdf(g grid,s grid,x scaled);

59 elseif type dist=='c' %(rician) s=sigma, g=mu

60 cur px = grid rician pdf(g grid,s grid,x scaled);

61 elseif type dist=='r' %(rayleigh) s=sigma, g=0

62 cur px = grid rician pdf(g grid,s grid,x scaled);

63 elseif type dist=='l' %log-normal sigma=s, mu=g

64 cur px = grid log pdf(g grid,s grid,x scaled);

65 else

66 error('invalid distribution type')

67 end

68

69 cur int px = zeros(11,160,11);

70 index=0;

71

72 cur int px(:,1,:)=∆ abs/∆ scale*(sum(cur px(:,1:∆ scale-1,:),2)...

73 + sum(cur px(:,2:∆ scale,:),2))/2;

74 for ii=2:160

75 index=index+∆ scale;

76

77 cur int px(:,ii,:) = ...

78 (∆ abs/∆ scale)*(sum(cur px(:,index:index+∆ scale-1,:),2)...

79 + sum(cur px(:,index+1:index+∆ scale,:),2))/2;
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80 end

81

82 %create matrix of errors for all values of sigma and mu

83 cur error px = squeeze(sum(abs(cur int px(:,1:num x,:) - ...

84 repmat(data hist,[11 1 11])),2) ...

85 + sum(cur int px(:,num x+1:2*num x,:),2));

86

87 [g index,s index]=find(cur error px==min(min(cur error px)));

88

89 g index = g index(round(length(g index)/2));

90 s index=s index(round(length(s index)/2));

91

92 ls px = cur int px(g index,:,s index);

93 ls s = s grid(s index);

94 ls g = g grid(g index);

95

96 ls error px = cur error px(g index,s index);

97

98 if type dist == 'r'

99 if abs(s index-5) < 3

100 grid spacing = grid spacing / 2;

101 end

102 else

103 if abs(s index-5) < 3 && abs(g index-5) < 3

104 grid spacing = grid spacing / 2;

105

106 end

107 end

108

109 numiterations = numiterations + 1;

110 %record former parameters

111 if save form param==1

112 former param px(numiterations,1) = ls s;

113 former param px(numiterations,2) = ls g;
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114 former error px(numiterations) = ls error px;

115 end

116 end

A.2 Distribution Fitting

1 %uses abs error to find best fit

2 %can choose option of displaying calculated arrivals

3 %can choose option of running parameter/error correlations

4 savefolder1=uigetdir;

5

6 epochvec=[3310000 3330000 3330200 3330400 3331600 3331800 3340200 ...

7 3341200 3341400 3370000 3370200 3370800 3371400];

8 lpfiltlen vec =[4 8 16 32 64 128 256];

9

10 chnum =2;

11 dist = 80; %source to receiver distance

12 D=16; %water depth

13 c=1450; %speed of sound in water

14 del delay=4; % will avg statistics over +-del delay samples

15

16 segnumvec = [13:19];

17 system vec = [1 2 4];

18 numsegs = length(segnumvec);

19

20 fs=5e6/112;

21 Nr=1786;

22 daxis=([0:Nr-1]-59)*1000/fs;

23

24 start band vec=zeros(length(epochvec),1);

25 end band vec=zeros(length(epochvec),1);
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26 band length vec=zeros(length(epochvec),1);

27

28 idx=0;

29 for lpfiltlen=lpfiltlen vec

30 idx=idx+1;

31 close all

32 clear out, clear intervals, clear output

33 mkdir(savefolder1,['/lpfilt',num2str(lpfiltlen)])

34 savefolder=[savefolder1,'/lpfilt',num2str(lpfiltlen)];

35

36 taud=1000*sqrt(distˆ2+(6.25-3.3)ˆ2)/c;

37 taus=1000*sqrt(distˆ2+(D-6.25+D-3.3)ˆ2)/c-taud;

38 taub=1000*sqrt(distˆ2+(6.25+3.3)ˆ2)/c-taud;

39 taubs=1000*sqrt(distˆ2+(D-3.3+D+6.25)ˆ2)/c-taud;

40 tausb=1000*sqrt(distˆ2+(D+3.3+D-6.25)ˆ2)/c-taud;

41

42 curdir = pwd;

43 out = [];

44 intervals = [];

45

46 for ep=1:length(epochvec)

47 epoch=epochvec(ep);

48 for system number = system vec

49 savedir = ['/Users/alisonlaferriere/Documents/WHOI/'...

50 'Re-evaluated/histograms'];

51 fname = ['hist fading lpfiltlen',int2str(lpfiltlen),...

52 ' sys', int2str(system number),' channel',...

53 int2str(chnum),' ',int2str(epoch)];

54 cd(savedir)

55 load(fname)

56 cd(curdir)

57

58 numbins = length(edges abs)-1;

59 numtaps = length(mean abs);
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60

61 centers abs=(edges abs(1:numbins)+...

62 edges abs(2:numbins+1))/2;

63 max x = max(centers abs);

64 min x = min(centers abs);

65 num x = length(centers abs);

66 sample rician = [0:2*num x-1]*∆ abs;

67

68 combined mean abssq = numgoodpulses*mean abssq/...

69 sum(numgoodpulses);

70 combined mean imag = numgoodpulses*mean imag/...

71 sum(numgoodpulses);

72 combined mean real = numgoodpulses*mean real/...

73 sum(numgoodpulses);

74 combined mean abs = numgoodpulses*mean abs/...

75 sum(numgoodpulses);

76 combined max abs = max(max abs);

77 combined abs pdf = sum(hist abs,3)/sum(numgoodpulses);

78 combined std imag = sqrt(numgoodpulses*(std imag.ˆ2 ...

79 + mean imag.ˆ2)/sum(numgoodpulses) ...

80 - combined mean imag.ˆ2);

81 combined std real = sqrt(numgoodpulses*(std real.ˆ2 ...

82 + mean real.ˆ2)/sum(numgoodpulses) ...

83 - combined mean real.ˆ2);

84 combined std abs = sqrt(numgoodpulses*(std abs.ˆ2 ...

85 + mean abs.ˆ2)/sum(numgoodpulses) ...

86 - combined mean abs.ˆ2);

87 combined moment 2 abs = numgoodpulses*moment 2 abs/...

88 sum(numgoodpulses);

89 combined moment 4 abs = numgoodpulses*moment 4 abs/...

90 sum(numgoodpulses);

91

92 data plot=figure(1); clf, hold on, grid on

93 [minerr,zerdel]=min(abs(daxis));
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94 plot(daxis,10*log10(combined max abs.ˆ2))

95 plot(daxis,10*log10(combined mean abssq),'r')

96 aa = axis;

97 axis([daxis(zerdel) daxis(600) aa(3:4)]) %30-600

98 xlabel('Relative Delay (milliseconds)')

99 ylabel('Intensity (dB)')

100

101 figure(data plot)

102

103 if idx==1

104

105 %********************************************************

106 %if uncommented the following lines of code will mark the

107 % calculated arrival times of the

108 %direct/surface/surface-bottom/bottom-surface arrivals

109 %pause

110 %[dir arrival,yd,nextd]=ginput(2);%input for delayband

111 %[err,start d]=min(abs(daxis-dir arrival(1)));

112 %[err,end d]=min(abs(daxis-dir arrival(2)));

113 %taud meas=find(combined mean abs==...

114 % max(combined mean abs(start d:end d)));

115 %taud meas=daxis(taud meas);

116 %aa=axis;

117

118 %plot([(taud meas) (taud meas)],aa(3:4),'k', ...

119 % 'linewidth',2);

120 %plot([(taus+taud meas) (taus+taud meas)],aa(3:4),...

121 %'c','linewidth',2);

122 %plot([taub+taud meas taub+taud meas],aa(3:4),'g',...

123 %'linewidth',2);

124 %plot([tausb+taud meas tausb+taud meas],aa(3:4),'m',...

125 %'linewidth',2);

126 %plot([taubs+taud meas taubs+taud meas],aa(3:4),'y',...

127 %'linewidth',2);
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128 %cur aa=gca;

129 %legend('max','avg','d','s','b','sb','bs')

130 pause

131 %axes(cur aa);

132 %********************************************************

133

134 [delay band,y,next]=ginput(2);%input for delay band

135 [err,start band]=min(abs(daxis-delay band(1)));

136 [err,end band]=min(abs(daxis-delay band(2)));

137 maxmeanpoint=find(combined mean abs==...

138 max(combined mean abs(start band:end band)));

139 start band vec(ep)=maxmeanpoint-del delay;

140 end band vec(ep)=maxmeanpoint+del delay;

141 end

142

143 start band=start band vec(ep);

144 end band=end band vec(ep);

145 band length=length(start band:end band);

146

147 band mean abssq=...

148 sum(combined mean abssq(start band:end band))...

149 /band length;

150 band mean imag = ...

151 sum(combined mean imag(start band:end band))...

152 /band length;

153 band mean real = ...

154 sum(combined mean real(start band:end band))...

155 /band length;

156 band max abs = ...

157 sum(combined max abs(start band:end band))...

158 /band length;

159 band abs pdf = ...

160 sum(combined abs pdf(:,start band:end band),2)...

161 ./band length;
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162 band std imag = ...

163 sum(combined std imag(start band:end band))...

164 /band length;

165 band std real = ...

166 sum(combined std real(start band:end band))...

167 /band length;

168 band std abs = ...

169 sum(combined std abs(start band:end band))...

170 /band length;

171 band moment 2 abs = ...

172 sum(combined moment 2 abs(start band:end band))...

173 /band length;

174 band moment 4 abs = ...

175 sum(combined moment 4 abs(start band:end band))...

176 /band length;

177

178 m= band moment 4 abs/(band moment 2 absˆ2);

179 band nu=(m-4)/(2-m);

180 if band nu<-1

181 epoch

182 band nu

183 warning('K parameter estimate invalid, set to abs(.)')

184 band nu=100;

185 elseif band nu>100

186 warning('K param exceeds threshold, set to 100')

187 band nu=100;

188 end

189 band a=sqrt(band moment 2 abs/(4*(1+band nu)));

190

191 band raysigma = sqrt(band moment 2 abs/2);

192

193 cur abs pdf = band abs pdf';

194

195
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196 band sigma = sqrt((band std imagˆ2 + band std realˆ2)/2);

197 band mu=abs(sqrt(band moment 2 abs-2*band sigma.ˆ2));

198 rp = rician pdf(band mu,band sigma,sample rician);

199 kp = k dist pdf(band nu,band a,sample rician);

200 ray = rician pdf(0,band raysigma,sample rician);

201

202 rp total prob = sum(rp)*∆ abs;

203 kp total prob = sum(kp)*∆ abs;

204 ray total prob = sum(ray)*∆ abs;

205

206 cap total prob = sum(cur abs pdf);

207

208 [ls raysigma,ls raymu,¬,ls ray]=...

209 grid search fcn(cur abs pdf,band raysigma,0,∆ abs,'r');

210 [ls sigma,ls mu,¬,ls rp]=...

211 grid search fcn(cur abs pdf,band sigma,band mu,∆ abs,'c');

212 [ls nu,ls a,ls x,ls kp]=...

213 grid search fcn(cur abs pdf,band nu,band a,∆ abs,'k');

214

215

216 pdf plot=figure(2);clf;grid on;hold on;

217 figure(pdf plot);

218 plot(centers abs,cur abs pdf,'linewidth',1);

219 grid on;hold on

220 plot(sample rician,rp*∆ abs,'--r','linewidth',1)

221 plot(sample rician,kp*∆ abs,'--k','linewidth',1)

222 plot(sample rician,ray*∆ abs,'--c','linewidth',1)

223 plot(ls x,ls rp,'m','linewidth',1)

224 plot(ls x,ls kp,'g','linewidth',1)

225 plot(ls x,ls ray,'--y','linewidth',1)

226 legend('Histogram','Rician Theory','K Theory',...

227 'Rayleigh Theory','Rician Best Fit','K Best Fit',...

228 'Rayleigh Best Fit')

229 xlabel('Intensity')
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230 ylabel('Probability Density')

231 title({['Ch' num2str(chnum) ' System ' ...

232 num2str(sysnum)], ['Epoch: ' num2str(epoch)]})

233

234 printfile =[savefolder,'/ch',num2str(chnum),'sys',...

235 num2str(sysnum),' pdf ',num2str(epoch)];

236 print('-dpdf',printfile)

237

238 saveas(pdf plot,printfile,'fig')

239

240

241 figure(data plot)

242 [minerr,zerdel]=min(abs(daxis));

243 plot(daxis,10*log10(combined max abs.ˆ2))

244 plot(daxis,10*log10(combined mean abssq),'r')

245 aa = axis;

246 plot([daxis(start band) daxis(start band)],aa(3:4), ...

247 'g','linewidth',2);

248 plot([daxis(end band) daxis(end band)],aa(3:4),'g',...

249 'linewidth',2);

250 aa = axis;

251 axis([daxis(zerdel) daxis(600) aa(3:4)]) %30-600

252 xlabel('Relative Delay (milliseconds)')

253 ylabel('Intensity (dB)')

254 title({['Ch' num2str(chnum) ' System ' ...

255 num2str(sysnum)], ['Epoch: ' num2str(epoch)]})

256

257 printfile =[savefolder,'/ch',num2str(chnum),'sys',...

258 num2str(sysnum),' signal ',num2str(epoch)];

259 print('-dpdf',printfile)

260

261 saveas(data plot,printfile,'fig')

262

263 env data=figure(3);
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264 [h,p,s,d]=plot wind and wave data(epoch);

265 end

266 out=[out;epoch, ls nu, ls a, min error kp, D KL kp, ls mu, ...

267 ls sigma,min error rp, D KL rp, ls raysigma, ...

268 min error ray, D KL ray, h,p,s,cur abs pdf];

269 intervals=[intervals; delay band';];

270 end

271 output = {'Epoch','K-Dist Nu','K-Dist a','K-Dist Error',...

272 'K-Dist K-L Diff','Rician Mu','Rician Sigma',...

273 'Rician Error','Rician K-L Diff','Ray Sigma',...

274 'Rayleigh Error', 'Rayleigh K-L Diff','Wave Height',...

275 'Wave Period','Wind Speed','Data Histogram'};

276 %*********************************************************************

277 %if uncommented the following lines of code save the data to file

278 %and run the environmental parameter vs. error and parameter analysis

279 % fileinfo = ['/lpfiltlen',int2str(lpfiltlen),' ch',...

280 %int2str(chnum),' sys',int2str(system number)];

281 % save([savefolder,fileinfo,' alldata'])

282 % plotresultsv2 partialcorr

283 %********************************************************************

284

285 end
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Appendix B

MATLAB Code: Simulations

1 %scatterer simulation

2

3 close all

4

5 N=1307*7;

6 T=1786;

7 start = 149; %for tau

8 X=zeros(N,T);

9

10 fs=5e6/112;

11 Nr=1786;

12 daxis = ([0:Nr-1]-59)*1000/fs;

13

14

15 pulsewidth=0.1; %miliseconds

16 alpha=1/pulsewidthˆ2;

17 Rs=exp(-alpha*daxis.ˆ2);

18 Rs0=0.04*Rs;

19

20 %normal tau using time in ms
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21 tau mu=2.787;

22 tau sigma=0.18113;

23

24 %Gamma amplitude

25 z shape = 14.4086;

26 z scale= 0.008;

27 A shape = 3.79;

28 A scale=0.0038;

29

30 d1=90;b1=105; % stationary arrival delays at

31 Rs center=60; % ie daxis=0

32

33 Rsd1= [zeros(1,d1-Rs center) Rs0];

34 Rsd1(T+1:T+d1-Rs center)=[];

35

36 Rsb1 = [zeros(1,b1-Rs center) Rs0];

37 Rsb1(T+1:T+b1-Rs center)=[];

38

39 m=1;% # of surface scatterers

40 r=5;% # scatterers per surface scatterer

41 Rst=zeros(m,T);

42 for n=1:N

43

44 Ai=gamrnd(A shape,A scale,m,r); %gamma A

45

46 if r>1

47 del tau=randi([0 14],1,r-1);

48 end

49

50 sig phase=unifrnd(0,2*pi,m,r);

51

52 tauii = normrnd(tau mu,tau sigma,m,1);

53 taui=59+find(abs(daxis(60:end)-tauii)==min(abs(daxis(60:end)-tauii)));

54 %find closest number of units, zero starts at daxis(60)
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55

56 for ii=1:m %calculate scattered arrival for each arrival time

57 Rsti = (Ai(ii,:).*exp(-1i*sig phase))'*Rs;

58 for k=1:r

59 if k>1

60 %independent interval process:

61 taui(ii,k)=taui(ii,k-1)+del tau(k-1);

62 end

63

64 Rsti(k,:)=[zeros(1,taui(ii,k)-Rs center) ...

65 Rsti(k,1:T-taui(ii,k)+Rs center)];

66

67

68 end

69 if r>1

70 Rst(ii,:)=sum(Rsti);

71 else

72 Rst=Rsti;

73 end

74 end

75

76 X(n,:)=Rsb1+Rsd1+Rst;

77

78 desired baseband=ones(4,1)/4;

79 s=freqdomainconv(desired baseband,X(n,:)');

80 X(n,:)=s(1:T);

81 end

82

83 mean real = mean(real(X));

84 mean imag = mean(imag(X));

85 std real = std(real(X));

86 std imag = std(imag(X));

87 mean realsq = mean(real(X).ˆ2);

88 mean imagsq = mean(imag(X).ˆ2);
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89

90 X=abs(X);

91

92 numbins=80;

93 mv=max(max(X));

94 edges abs=[0:numbins]*mv*1.0001/numbins;

95 ∆ abs = mv*1.0001/(numbins);

96

97 pcolor(daxis,0:1299,X(1:1300,:));shading('flat')

98 axis([0 5 0 1300])

99

100 max abs = max(X);

101 min abs = min(X);

102 mean abs = mean(X);

103 std abs = std(X);

104 moment 2 abs = sum(X.ˆ2)/size(X,1);

105 moment 4 abs = sum(X.ˆ4)/size(X,1);

106 var abs = var(X);

107 temphist = histc(X,edges abs);

108 hist abs = temphist(1:numbins,:);

109 mean abssq = mean(X);

110 std abssq = std(X);

111

112 combined mean abssq = mean abssq;

113 combined mean imag = mean imag;

114 combined mean real = mean real;

115 combined mean abs = mean abs;

116 combined max abs = max abs;

117 combined abs pdf = hist abs/N;

118 combined std imag = std imag;

119 combined std real = std real;

120 combined std abs = std abs;

121 combined moment 2 abs = moment 2 abs;

122 combined moment 4 abs = moment 4 abs;
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Appendix C

MATLAB Code: Channel

Estimation

1 clear all

2

3 %setting this to 1 causes random number generators to use same seed

4 %for each trial

5 rand off=0;

6 %set to zero to supress plot output

7 plots on=0;

8

9 num mmse it=20;% # of iterations in coordinate descent, MMSE estimate

10 M=4; %number of channel taps

11 Num=5000; %number of trials

12 K=10; %number of observations

13 CD iterations=10; %# of iterations in coordinate descent, MAP estimate

14 Newton it=1; % # of iterations in Newton's method for MAP estimate

15

16

17 %K-dist parameters

18 thetax=2*0.0062ˆ2*(1-0.3447)/0.05;
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19 a=sqrt(thetax/2);

20 nu=-0.95;%

21 %nu=-0.3447;

22 %a=0.0062;

23

24 %gamma dist parameters

25 theta=2*aˆ2;

26 k=nu+1;

27

28 % Rayleigh distribution sigma parameter

29 sig=sqrt(k*theta);

30

31 % K-dist var, 2*sig hKˆ2 is var of complex channel tap

32 sig hK=sqrt(k*theta);

33

34 % Covariance matrix for h

35 Rh=2*sigˆ2*eye(M);

36

37 %vector of SNR in dB

38 noise lev=5;%-5:20;

39

40 %initialize MSE vectors

41 hKk mse=zeros(1,length(noise lev));

42 hKy mse=zeros(1,length(noise lev));

43 hKr mse=zeros(1,length(noise lev));

44

45 hK var=zeros(1,length(noise lev));

46

47 hRk mse=zeros(1,length(noise lev));

48 hRy mse=zeros(1,length(noise lev));

49 hRr mse=zeros(1,length(noise lev));

50

51 min MSE=zeros(1,length(noise lev));

52
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53 for noise lev index=1:length(noise lev)

54

55 % initialize MSE vectors for each "look", i.e. trial

56 hKk mse look=zeros(M,Num);

57 hKy mse look=zeros(M,Num);

58 hKr mse look=zeros(M,Num);

59

60 hRk mse look=zeros(M,Num);

61 hRy mse look=zeros(M,Num);

62 hRr mse look=zeros(M,Num);

63

64 hK var look=zeros(M,Num);

65 D=2*(randn(K,M)>0)-1;%eye(K,M);

66 %Calculate noise variance based on SNR

67 %noise in dB = 10log10(sig hˆ2/sig wˆ2)

68 sig u=sqrt((sig hKˆ2)*10ˆ(-noise lev(noise lev index)/10));

69 Cuu=diag(sig uˆ2*ones(K,1));

70 Cvu=0;

71 Cw=2*(Cuu+1i*Cvu); %complex noise covariance

72

73 %calculate MSE expected using LMMSE estimate

74 min MSE(noise lev index)=trace((eye(M)/Rh+D'/Cw*D)\eye(M));

75

76 for look index = 1:Num

77

78 %generate complex guassian noise

79 if rand off==1

80 randn('state',0);

81 end

82 u=mvnrnd(zeros(K,1),sig uˆ2);

83 if rand off==1

84 randn('state',1);

85 end

86 v=mvnrnd(zeros(K,1),sig uˆ2);
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87 w=u+1i*v;

88

89 %generate K channel

90 if rand off==1

91 randn('state',1);

92 end

93 [hK,z,nX,nY]=genKchannel(nu,a,M);

94 if rand off==1

95 randn('state',0);

96 end

97 %generate Rayleigh channel

98 hR=genRayleighchannel(sig,M);

99

100 yK=D*hK+w;

101

102 %initialize r hat=r0

103 r0=1*ones(M,1);%sqrt(k*theta)*ones(M,1);

104 R0=diag(r0);

105 n0=(R0'*D'/Cw*D*R0+eye(M)/2)\(R0'*D'/Cw*yK);

106

107 y=yK;

108

109 if M==1

110

111 betak=abs(yK)ˆ2/(2*Dˆ2);

112 etak=sig uˆ2/Dˆ2;

113 Karg=2*sqrt(betak/theta);

114

115 %1st order MMSE estimate

116 t1 1st=-k*besselk(k,Karg)/betak+sqrt(betak*theta)*...

117 besselk(k+1,Karg)/(theta*betak);

118 t2 1st=(1-k)*besselk(k-1,Karg)/(betak*sqrt(betak*theta))+...

119 besselk(k,Karg)/(betak*theta);

120 hK mmse1=(y/D)*t1 1st/(t1 1st+etak*t2 1st);
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121

122 %second order MMSE estimate

123 hK mmse hat=(y/D)*t fcn(betak,etak,k,theta)/...

124 (t fcn(betak,etak,k,theta)...

125 +etak*t fcn(betak,etak,k-1,theta));

126

127 else

128

129 hK mmse hat=zeros(M,1); %initialize algorithm

130 for hkhat it=1:num mmse it

131 for kidx=1:M

132 dk=D(:,kidx);

133 Dtilde=D;

134 Dtilde(:,kidx)=[];

135 htilde=hK mmse hat;

136 htilde(kidx)=[];

137

138 etak=sig uˆ2/norm(dk)ˆ2;

139

140 betak=norm(dk'*(y-Dtilde*htilde))ˆ2/(2*norm(dk)ˆ4);

141

142 t hat=t fcn(betak,etak,k,theta)/...

143 (t fcn(betak,etak,k,theta)+...

144 etak*t fcn(betak,etak,k-1,theta));

145 hK mmse hat(kidx)=t hat*dk'*(y-Dtilde*htilde)/...

146 norm(dk)ˆ2;

147 end

148 end

149 end

150

151

152 r=r0;

153 R=diag(r0);

154 vals CD=[];
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155 for CD index=1:CD iterations

156

157

158 R=diag(r);

159 n(:,CD index)=(R'*D'/Cw*D*R+eye(M)/2)\(R'*D'/Cw*y);

160 N=diag(n(:,CD index));

161 val CD=real((y-D*N*r)'/Cw*(y-D*N*r))+r'*r/theta-(2*k-1)*...

162 sum(log(r))+n(:,CD index)'*n(:,CD index)/2;

163 vals CD=[vals CD, val CD];

164

165 newton opt; %sets opt r using newton method

166

167 end

168 R=diag(r);

169 n(:,CD index)=(R'*D'/Cw*D*R+eye(M)/2)\(R'*D'/Cw*y);

170 N=diag(n(:,CD index));

171 val CD=real((y-D*N*r)'/Cw*(y-D*N*r))+r'*r/theta-(2*k-1)*...

172 sum(log(r))+n(:,CD index)'*n(:,CD index)/2;

173 vals CD=[vals CD, val CD];

174 optval=val CD;

175

176

177 r khat=r;

178 n khat=n(:,CD index);

179 R khat=diag(r khat);

180

181 %K channel estimates

182 hK khat=r khat.*n khat;

183 hK rhat=(D'/Cw*D+eye(M)/Rh)\D'/Cw*yK;

184 hKk err=hK-hK khat;

185 hKy err=hK-yK(1:M);

186 hKr err=hK-hK rhat;

187 hKmmse1 err=hK-hK mmse1;

188 hKmmsehat err=hK-hK mmse hat;
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189

190

191 %Rayleigh channel estimates

192 yR=D*hR+w;

193

194 y=yR;

195 r=r0;

196 vals CD=[];

197 for CD index=1:CD iterations

198 R=diag(r);

199 n(:,CD index)=(R'*D'/Cw*D*R+eye(M)/2)\(R'*D'/Cw*y);

200 N=diag(n(:,CD index));

201 val CD=real((y-D*N*r)'/Cw*(y-D*N*r))+r'*r/theta-(2*k-1)*...

202 sum(log(r))+n(:,CD index)'*n(:,CD index)/2;

203 vals CD=[vals CD, val CD];

204

205 newton opt; %sets opt r using newton method

206

207 end

208

209 r rhat=r;

210 n rhat=n(:,CD index);

211 R rhat=diag(r rhat);

212

213 hR khat=r rhat.*n rhat;

214 hR rhat=(D'/Cw*D+eye(M)/Rh)\D'/Cw*yR;

215 hRk err=hR-hR khat;

216 hRy err=hR-yR(1:M);

217 hRr err=hR-hR rhat;

218

219

220 hKk mse look(:,look index)=abs(hKk err).ˆ2;

221 hKy mse look(:,look index)=abs(hKy err).ˆ2;

222 hKr mse look(:,look index)=abs(hKr err).ˆ2;
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223 hKmmse1 mse look(:,look index)=abs(hKmmse1 err).ˆ2;

224 hKmmsehat mse look(:,look index)=abs(hKmmsehat err).ˆ2;

225

226 hRk mse look(:,look index)=abs(hRk err).ˆ2;

227 hRy mse look(:,look index)=abs(hRy err).ˆ2;

228 hRr mse look(:,look index)=abs(hRr err).ˆ2;

229

230 end

231 hKk mse(noise lev index)=sum(sum(hKk mse look,2)/Num);

232 hKy mse(noise lev index)=sum(sum(hKy mse look,2)/Num);

233 hKr mse(noise lev index)=sum(sum(hKr mse look,2)/Num);

234 hKmmse1 mse(noise lev index)=sum(sum(hKmmse1 mse look,2)/Num);

235 hKmmsehat mse(noise lev index)=sum(sum(hKmmsehat mse look,2)/Num);

236

237 hK var(noise lev index)=sum(sum(hK var look,2)/Num);

238

239 hRk mse(noise lev index)=sum(sum(hRk mse look,2)/Num);

240 hRy mse(noise lev index)=sum(sum(hRy mse look,2)/Num);

241 hRr mse(noise lev index)=sum(sum(hRr mse look,2)/Num);

242 end

243

244 if plots on ==1

245 figure, hold on, grid on

246 plot(noise lev,10*log10(hKr mse),'r')

247 plot(noise lev,10*log10(hKk mse),'k')

248 plot(noise lev,10*log10(hKy mse))

249 plot(noise lev,10*log10(min MSE),'m')

250 %plot(noise lev,10*log10(hK var),'c')

251 %plot(noise lev,10*log10(hKmmse1 mse),'g')

252 plot(noise lev,10*log10(hKmmsehat mse),'-c')

253

254 legend('Rayleigh estimate','K-MAP estimate',...

255 'Output as estimate',...

256 'Linear MSE (calculated)','2nd order K-MMSE')
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257

258 xlabel('SNR (dB)')

259 ylabel('MSE (dB)')

260 title({'K-dist Channel Estimates,'; ['hK var: '...

261 num2str(2*sig hKˆ2) ...

262 ', hR var: ' num2str(2*sigˆ2)]})

263

264 figure, hold on, grid on

265 plot(noise lev,10*log10(hRr mse),'r')

266 plot(noise lev,10*log10(hRk mse),'k')

267 plot(noise lev,10*log10(hRy mse))

268 plot(noise lev,10*log10(min MSE),'m')

269 legend('Rayleigh estimate','K-dist estimate',...

270 'Output as estimate','MMSE')

271 xlabel('SNR (dB)')

272 ylabel('MSE (dB)')

273 title({'Rayleigh Channel Estimates,'; ['hK var: ' ...

274 num2str(2*sig hKˆ2),', hR var: ' num2str(2*sigˆ2)]})

275

276 end

1 % Newton method

2 % adopted from course material for Convex Optimization I at Stanford

3 % University, taught by Professor Stephen Boyd

4 ALPHA = 0.01;

5 BETA = 0.5;

6 MAXITERS =200;% Newton it;

7 NTTOL = 1e-9;

8 GRADTOL = 1e-6;

9

10

11 vals = [];

12 steps =[];
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13

14 for iter = 1:MAXITERS

15 val =real((y-D*N*r)'/Cw*(y-D*N*r))...

16 +r'*r/theta-(2*k-1)*sum(log(r))+...

17 n(:,CD index)'*n(:,CD index)/2;

18 vals = [vals, val];

19 grad= -2*real(N'*D'/Cw*y)+2*real(N'*D'/Cw*D*N)*r...

20 +2*r/theta-(2*k-1)./r;

21 hess = 2*real(N'*D'/Cw*D*N)+2/theta+(2*k-1)*(diag(1./r.ˆ2));

22 v = -hess\grad;

23 fprime = grad'*v ;

24 if abs(fprime) < NTTOL, break; end;

25 t = 1;

26 while (min(r+t*v) < 0)

27 t = BETA*t;

28 end;

29 while ((y-D*N*(r+t*v))'/Cw*(y-D*N*(r+t*v))+(r+t*v)'*(r+t*v)/...

30 theta-(2*k-1)*sum(log(r+t*v))+n(:,CD index)'...

31 *n(:,CD index)/2>val + ALPHA*t*fprime )

32 t=BETA*t;

33 end;

34

35 r = r+t*v;

36 steps = [steps,t];

37

38 end;

39

40 optval = vals(length(vals));

41 steps = []; % don't output figures

42 if isempty(steps) �=1

43 figure(3)

44 semilogy([0:(length(vals)-2)], ...

45 vals(1:length(vals)-1)-optval, '-', ...

46 [0:(length(vals)-2)], vals(1:length(vals)-1)-optval, 'o');
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47 xlabel('r'); ylabel('z');

48

49 figure(4)

50 plot([1:length(steps)],steps, '-',[1:length(steps)], steps, 'o');

51 axis([0, length(steps), 0, 1.1]);

52 xlabel('r'); ylabel('z');

53 end

1 function t=t fcn(betak,etak,k,theta)

2

3 Karg=2*sqrt(betak/theta);

4

5 t=2*(betak*theta)ˆ(k/2)*(-k*besselk(k,Karg)/betak...

6 +etak*besselk(k-1,Karg)/...

7 (theta*sqrt(betak*theta))...

8 -k*etak*besselk(k-2,Karg)/(betak*theta)+...

9 sqrt(betak*theta)*besselk(k+1,Karg)/(theta*betak));
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