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ABSTRACT

The ecological integrity of tropical habitats, including mangroves, seagrass beds and
coral reefs, is coming under increasing pressure from human activities. Many coral reef
fish species are thought to use mangroves and seagrass beds as juvenile nurseries before
migrating to coral reefs as adults. Identifying essential habitats and preserving functional
linkages among these habitats is likely necessary to promote ecosystem health and
sustainable fisheries on coral reefs. This necessitates quantitative assessment of
functional connectivity among essential habitats at the seascape level. This thesis presents
the development and first application of a method for tracking fish migration using amino
acid (AA) 8"°C analysis in otoliths. In a controlled feeding experiment with fish reared on
isotopically distinct diets, we showed that essential AAs exhibited minimal trophic
fractionation between consumer and diet, providing a 8"°C record of the baseline
isoscape. We explored the potential for geochemical signatures in otoliths of snapper to
act as natural tags of residency in seagrass beds, mangroves and coral reefs in the Red
Sea, Caribbean Sea and Eastern Pacific Ocean. The 8"3C values of otolith essential AAs
varied as a function of habitat type and provided a better tracer of residence in juvenile
nursery habitats than conventional bulk stable isotope analyses (SIA). Using our otolith
AA SIA approach, we quantified the relative contribution of coastal wetlands and reef
habitats to Lutjanus ehrenbergii populations on coastal, shelf and oceanic coral reefs in
the Red Sea. L. ehrenbergii made significant ontogenetic migrations, traveling more than
30 km from juvenile nurseries to coral reefs and across deep open water. Coastal
wetlands were important nurseries for L. ehrenbergii; however, there was significant
plasticity in L. ehrenbergii juvenile habitat requirements. Seascape configuration played
an important role in determining the functional connectivity of L. ehrenbergii populations
in the Red Sea. The compound-specific SIA approach presented in this thesis will be
particularly valuable for tracking the movement of species and life-stages not amenable
to conventional tagging techniques. This thesis provides quantitative scientific support
for establishing realistic population connectivity models that can be used to design
effective marine reserve networks.

Thesis Supervisor: Dr. Simon R. Thorrold
Title: Senior Scientist, Department of Biology, Woods Hole Oceanographic Institution
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CHAPTER ONE
An introduction to functional connectivity in coral reef seascapes

INTRODUCTION

Coral reef fishes are some of the most conspicuous animals on coral reefs. They are
also major drivers behind eco-tourism, the primary source of food from a billion dollar
fishery and important components of reef ecosystem biodiversity (Moberg and Folke
1999). As such, coral reef fishes are vital contributors to the economic value of reef
ecosystems, estimated to be worth more than $375 billion each year (Costanza et al.
1997). With this great value comes a tremendous amount of pressure from anthropogenic
disturbance that threatens the function of coral reefs and the fisheries they support
(Hughes 1994; Jackson et al. 2001a; Pandolfi et al. 2003; Cote et al. 2005). Overfishing is
a chronic problem that directly affects the distribution and abundance of coral reef fish
and indirectly impacts the health and resilience of coral reef ecosystems (Jackson et al.
2001a; Pauly et al. 2002). Severe depletions of coral reef fishes that exert important top-
down controls on coral reef structure and function, including large predatory snapper and
grouper and herbivorous parrotfish, illustrates the conflict between the global demand for
reef fishes and the need to sustain functional groups to promote coral reef resilience.

Marine protected areas (MPAs) have received increased attention as a

management tool to enhance coral reef fish biomass and sustainable fisheries on coral
reefs as well as promote healthy ecosystem structure and function (Guenette et al. 1998;
Roberts et al. 2001; Pauly et al. 2002; Mumby and Hastings 2008). Currently there are

over 900 MPAs in the world containing coral reef habitats (Mora et al. 2006). However,
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effectively managed, no-take MPAs tend to be small and isolated, covering less than
0.1% of the worldwide coral reef area (Mora et al. 2006). Furthermore, management has
primarily focused on protecting offshore coral reefs. However, many ecologically and
commercially important coral reef fishes, including representatives from the families
Lutjanidae (snapper), Serranidae (grouper), Haemulidae (grunts) and Scaridae
(parrotfish), are thought to use coastal wetlands as nurseries before undergoing
ontogenetic migrations to join adult populations on coral reefs (Nagelkerken et al. 2000;
Nagelkerken and van der Velde 2004; Adams et al. 2006). The size and spatial
arrangement of these reserves and their proximity to juvenile nursery habitats can affect
reef fish assemblage patterns through animal movements, and in turn, impact ecosystem
dynamics (Appeldoorn et al. 2003; Christensen et al. 2003; Mumby et al. 2004; Grober-

Dunsmore et al. 2007, 2008).

Connectivity conservation
Tropical seascapes are complex mosaics of patchily distributed habitats, including

coastal wetlands, nearshore patch reefs and offshore coral reefs, that can be linked
through fish movement. Effective management of coral reefs and the fisheries they
sustain, therefore, requires that we not only identify essential habitat types for coral reef
fishes, but also maintain the functional linkages among these habitats that underlie
ecosystem health and resilience. As anthropogenic disturbance continues to degrade and
fragment tropical seascape habitats, a quantitative understanding of connectivity among

habitats becomes increasingly important.
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In its most basic sense, connectivity is the flux of items between spatially distinct
locations (Crooks and Sanjayan 2006). However, the metrics used to determine how
habitats or populations are connected, the impacts of such connectivity on ecosystem
dynamics and the subsequent application to conservation efforts depend on the species of
interest and the scales at which these processes occur. As a result, no all-inclusive
definition of connectivity has been developed. Coral reef fish ecology typically addresses
population connectivity (Mora and Sale 2002; Sale 2006): the movement of individuals
among spatially separated populations and the subsequent influence on population
demographics or dynamics. This definition focuses on dispersal of individuals (typically
pelagic larvae) among populations residing on spatially separated coral reefs at regional
scales. However, successful management of coral reef fish populations also requires
conservation of habitats essential to different life-history stages within populations.
Functional connectivity is the movement of individuals among spatially separated
habitats within a population resulting from interactions between behavioral processes and
the seascape configuration (adapted from the landscape ecology literature [Taylor et al.
1993]). Functional connectivity is an emergent property of species-seascape interactions,
and is particularly well suited for assessing functional linkages among juvenile nursery

habitats and coral reefs within a tropical seascape.

Juvenile nursery habitats

The nursery concept was first adapted to marine systems a century ago for mobile

fish and invertebrates with complex life histories in which larvae are transported to
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estuaries, metamorphose, grow to subadults and then move to adult habitats offshore
(Hay 1905; Hildebrand and Schroeder 1928). Beck et al. (2001) defined a nursery as a
habitat for juveniles whose contribution of individuals to the adult population is, per unit
area, greater than other habitats where juveniles occur. This nursery definition provided a
rationale for evaluating juvenile habitat productivity in the context of management
efforts, particularly when priorities must be set for limited resources. However, under this
definition a high quality but very small habitat could be a significant contributor per unit
area but do little to actually sustain adult populations. Dahlgren et al. (2006) revised the
nursery definition to encompass juvenile habitats that contribute a greater proportion of
individuals to the adult population than the mean level for all habitats that juveniles
occupy, regardless of area. While this definition does not account for the affects of scale
or the reproductive output of individuals from the nursery (Sheaves et al. 2006), it does
provide a practical measure of nursery value that can be used to guide marine
conservation efforts and stimulate future research (Layman et al. 2006).

Nursery habitats are thought to support higher juvenile densities through several
potential mechanisms, including faster growth rates, reduced predation and higher levels
of larval settlement (Laegdsgaard and Johnson 2001; Cocheret de la Morinicre et al.
2004; Verweij et al. 2006). Numerous studies have provided correlative evidence of a
relationship between availability of juvenile habitats and the abundance of adults on
nearby reefs (Nagelkerken et al. 2002; Dorenbosch et al. 2004b; Mumby et al. 2004;
Grober-Dunsmore et al. 2007). Ecological theory related to species that shift habitats

suggests that ontogenetic migration from nurseries to adult habitats are driven by
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conflicting demands for growth and survival that vary between habitats and change
through an animal’s ontogeny (Werner and Gilliam 1984; Dahlgren and Eggleston 2000;
Grol et al. 2008).

Identifying essential juvenile habitats for coral reef fish has been a difficult
proposition. Previous studies typically relied on visual surveys of juvenile fish abundance
among juvenile habitats (e.g. Nagelkerken et al. 2000; Nagelkerken and van der Velde
2002). Habitats with the highest juvenile abundances were deemed the most important
juvenile nurseries. It is typically assumed that this juvenile biomass is successfully
transferred to the adult population on coral reefs. However, the question remains: What if
juveniles from these habitats do not successfully migrate to offshore coral reefs?
Management efforts are beginning to focus attention on understanding connectivity of
coral reef fish populations, both ontogenetically and among subpopulations (Cowen et al.
2007; McCook et al. 2009). The current paradigm of ontogenetic migration of coral reef
fishes is a simple linear progression from coastal wetlands to offshore coral reefs
(Nagelkerken 2007). However, conservation and management efforts are still hampered
by a lack of knowledge concerning the functional connectivity of coral reef fishes in
tropical seascapes. Identifying essential juvenile habitats for coral reef fish, and the
movement of individuals among these habitats is particularly critical given that juvenile
nursery habitats, including coastal wetlands are being destroyed at a rate of over 2% yr',
resulting in losses of 30 to 60% of the world’s mangroves and seagrass beds (Valiela et
al. 2001; Alongi et al. 2002; Duarte et al. 2002; Orth et al. 2006; Duke et al. 2007).

Quantifying the relative contribution of individuals from potential juvenile habitats to
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adult populations is critical for distinguishing between habitats that are productive for
resident juveniles and habitats that are actually serving as valuable nurseries for adult reef

fish populations on offshore coral reefs.

Tracking movement with traditional extrinsic markers

To assess the relative contribution of individuals from juvenile habitats to coral
reefs, we must track fish movement among these habitats. Previous studies have used
spatial and temporal patterns in size distribution of species throughout the coral reef
seascape to infer ontogenetic migration (Cocheret de la Moriniére et al. 2002;
Nagelkerken 2007). For instance, Cocheret de la Moriniére et al. (2002) used underwater
visual surveys of density and size-frequency distribution of nine reef fish species
(including herbivores, zoobenthivores and piscivores) to infer ontogenetic migration
patterns in a Caribbean coral reef seascape. Lutjanus griseus and L. apodus appeared to
undertake long distance migrations, as juveniles were abundant in bays while adults only
found on offshore reefs. Conversely, Acanthurus bahianus and Scarus taeniopterus were
seen only in bay habitats at close proximity to the coral reef or on the reef itself,
indicating short distance ontogenetic movements. Haemulon flavolineatum and Ocyurus
chrysurus displayed a stepwise pattern in which the smallest juveniles occupied the
mouth of the bay, intermediate-sized individuals were found deeper in the bay and adults
were found on nearby coral reefs. These correlation-based studies suggest ontogenetic
movement patterns; however, differences in growth rates or differential mortality among

habitats could result in similar density and size distribution patterns (Gillanders et al.
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2003). A more direct measure of connectivity between these habitats is necessary to truly
understand the importance of coastal nursery habitats to supporting coral reef fish
populations.

The most effective means of assessing functional connectivity in a coral reef
seascape is to directly measure the movement of individuals between juvenile and adult
habitats. Tracking animal migration has historically been accomplished using mark-
recapture techniques with extrinsic markers (Seber 1982; Hobson and Norris 2008).
Advances in archival tag technology have provided impressive data on long distance
migrations of large tunas (Block et al. 2005) and sharks (Skomal et al. 2009). Acoustic
tags have provided similar movement data on smaller spatial scales (Parsons et al. 2003;
Luo et al. 2009). Luo et al. (2009) quantified gray snapper, L. griseus, movement among
seagrass beds, mangroves and coastal coral reefs in southern Florida using ultrasonic
acoustic and mini-archival tags, as well as an underwater video monitoring system. They
found that L. griseus exhibited diel movement between mangroves and seagrass beds and
seasonal bay-to-ocean movements during the known spawning season of L. griseus.
However, the study was conducted on large bodied individuals over relatively short
spatial scales, and as the authors noted, there were numerous ways for fish to move
between the bay and reefs while avoiding detection by the receivers. While extrinsic tags
provide some of the most direct measures of movement patterns of mobile fishes, not all
species or life stages are amenable to archival or acoustic tags (Fairweather and Quinn
1993). Many species of coral reef fish species are highly fecund, producing millions of

tiny offspring that are difficult to tag without introducing significant handling effects. In
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addition, the high mortality rate of young fish makes the probability of recovering tagged
individuals extremely low. Dealing with these limitations over the potentially large
spatial and temporal scales at which these linkages occur makes the use of conventional

mark-recapture techniques daunting (Thorrold et al. 2002).

Tracking movement with ecogeochemistry

Ecogeochemistry is the use of stable isotopes to reconstruct the movement and
dietary histories of animals. The ecogeochemistry approach relies on spatial variations in
the abundances of ambient isotope or elemental ratios (e.g. isoscapes [West et al. 2010])
that are recorded in the chemical composition of tissues as an animal lives and feeds in
different habitats. This approach has several distinct advantages over conventional
tagging techniques for tracking ontogenetic movement of small-bodied species and early
life-history stages. All animals within a specified habitat are inherently labeled without
having to be captured and tagged. Therefore, every individual captured some time later
and assigned to a habitat based on geochemical signatures is effectively a recapture.
While extrinsic markers come with tagging and handling effects that limit their use to
large bodied animals, stable isotopes are natural tags and do affect the behavior or
mortality rates of fish (McFarlane 1990).

To be successfully applied in the field, an ecogeochemistry approach must do
each of the following (Hobson et al. 2010): 1) establish a baseline isoscape that
characterizes distinct geochemical signatures in different habitats, 2) constrain tissue

turnover rates that determine the period of spatial integration of geochemical signatures
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for a particular animal tissue and 3) identify isotope or elemental fractionation factors
between consumer and diet (A"*Cc.p), or between animals and the ambient environment,
that offset animal geochemical signatures from the baseline isoscape.

The mangrove-coral reef-seagrass continuum provides an excellent system for
tracking the movement of fish between coastal wetlands and coral reefs using an
ecogeochemistry approach (Marguillier et al. 1997; Lugendo et al. 2006; Nagelkerken et
al. 2008a). Measurements of 8'°C have proven particularly useful in distinguishing
production based on marine phytoplankton, C4 plants such as seagrasses, and C3 plants
such as mangroves (Fry and Sherr 1984). Phytoplankton often exhibit a cross-shelf
gradient in §"°C values, ranging from -16 to -22%o, with nearshore signatures more >C
heavy than offshore signatures (Hobson 1999). This is typically due to higher nutrient
concentrations nearshore resulting in greater overall productivity, coupled with patterns
in phytoplankton species composition and growth rates with distance offshore (Michener
and Schell 1994). In coastal wetlands, photosynthesis using phosphoenolpyruvate-
carboxylase produces significantly higher 8'°C signatures (-5 to -12%o) in bulk tissues of
seagrass compared to mangroves that use ribulose 1,5-bisphosphate-carboxylase and
generate 8'"°C values of -26 to -30%o in bulk tissues (Farquhar et al. 1989). These habitat-
specific carbon isotope signatures are reflected in the tissues of resident invertebrates and
fishes from mangroves, seagrass beds and coral reefs (Fry et al. 1982; Marguillier et al.
1997; Nagelkerken and van der Velde 2004). The result is a well-constrained isoscape in
coastal tropical environments that can be used to track the movement of animals through

the seascape. For instance, Fry (1981) found that resident brown shrimp, Penaeus
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aztecus, on offshore habitats with a phytoplankton-based food web were *C-depleted
relative to those from a seagrass-based food web. However, many newly settled sub-adult
P. aztecus collected on offshore reefs had §'°C values typical of individuals in seagrass
meadows, suggesting that they had recently migrated from seagrass nursery habitats.
Similarly, Nakamura et al. (2008) found that L. fulvus collected on coral reefs gradually
shifted from a mangrove 8'"°C signature to a coral reef §'°C signature with increased size.
Based on the muscle 8'°C values of the subadult population of L. fulvus on the coral reef,
they suggested that 88% of individuals analyzed used mangroves as juvenile nurseries.
The second issue that needs to be resolved before ecogeochemistry can be used to
track fish movement is constraining tissue turnover rates. For metabolically active
tissues, the time period over which the spatial isotope information is integrated varies
with tissue type and life stage (Tieszen et al. 1983; Herzka 2005). Fast turnover rates in
soft tissues, including muscle, can make it challenging to distinguish recent immigrants
from those that have equilibrated to the isotopic signature of the new habitat (Hesslein et
al. 1991; Fry et al. 1999; Herzka et al. 2002). Stable isotope signatures in metabolically
inactive tissues, including otoliths, are not reworked following deposition. Indeed,
otoliths have several properties that make them an ideal tissue for retrospective analysis
of ontogenetic migration (Campana and Neilson 1985; Campana 1999; Campana and
Thorrold 2001). Otoliths accurately record information about the fish’s metabolic activity
and the physical and chemical characteristics of the water in which the fish resides
(Thorrold et al. 1997). In addition, otoliths grow throughout the life of a fish by means of

successive addition of daily and annual aragonitic growth bands on a proteinaceous
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matrix, providing a life-long record of geochemical signatures (Degens et al. 1969;
Campana 1999).

Although differences in bulk otolith 8"°C signatures have been documented along
the mangrove-coral reef-seagrass continuum (Chittaro et al. 2004; Nakamura et al. 2008;
Mateo et al. 2010), interpreting carbon isotope signatures in otoliths remains a difficult
proposition. Otolith carbon comes from dissolved inorganic carbon (DIC) and metabolic
sources in the form of respired CO; and dietary derived protein. These two sources have
8'"C values that can differ by more than 20%.. Because DIC typically contributes the
majority of carbon in otoliths (Kalish 1991; Thorrold et al. 1997; Solomon et al. 2006),
dietary signatures in otoliths are almost inevitably diluted by this DIC signature. More
importantly, there is no consensus regarding the exact contributions of these two end
members, making it difficult to mathematically correct for the DIC dilution effect.
Variations in bulk otolith '"*C values appear to reflect a number of factors, including
metabolism (Kalish 1991; Weidman and Millner 2000; Stephenson et al. 2001), diet and
DIC 8"C values (Schwartz et al. 1998), and environmental conditions (Mulcahy et al.
1979; Kalish 1991).

One potential method for avoiding the confounding effect of DIC-derived carbon
on otolith 8'°C values is to focus on otolith protein that may constitute up to 10 % (by
weight) of a fish otolith (Degens et al. 1969; Sasagawa and Mugiya 1996, Murayama et
al. 2002). Analyzing otolith proteins provides an unambiguous dietary signature that
avoids the effects of DIC dilution and variable metabolic carbon contribution on otolith

8"C. Bulk protein SIA, however, is not without problems. Otolith protein represents a
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mixture of amino acids (AAs) directly routed from dietary protein and AAs
biosynthesized from a bulk carbon pool consisting of dietary protein, lipids and
carbohydrates (Schwarcz 1991; Ambrose and Norr 1993). Furthermore, it can be difficult
to distinguish between changes in 8'"°C associated with diet or trophic shifts versus
changes due to movement among habitats with different 613CBase values (Post 2002). This
is particularly true when tracking the ontogenetic shifts of highly migratory fishes, where
juveniles and adults often occupy different habitats and different trophic levels
(Eggleston et al. 1998; Cocheret de la Moriniere et al. 2003).

The third underlying principle of ecogeochemistry requires well-constrained
fractionation factors between consumer and diet (A"’ Cc.p) for specific tissues. While
carbon is typically thought to fractionate conservatively through marine food webs
(APCc.p =0 to 1%o [DeNiro and Epstein 1978; Fry et al. 1978]), there can be significant
variation in A"”Cc.p, ranging from -3 to +5%o, depending on consumer taxa, diet and
tissues analyzed (Vander Zanden and Rasmussen 2001; McCutchan et al. 2003; Elsdon et
al. 2010). Furthermore, the 8"°C value of a consumer tissue may not always follow bulk
diet '"°C values because the carbon skeletons of different dietary constituents (proteins,
lipids and carbohydrates) can be routed to different tissue constituents (“isotopic
routing”; Schwarcz 1991). These factors can make interpretations of animal movement
through isoscapes based on bulk protein 8'°C values challenging.

The opportunity now exists to increase the specificity of ecogeochemical studies
by analyzing §"°C values of specific biochemical compounds, including AAs, thanks to

recent advances in gas chromatography-combustion-isotope ratio monitoring-mass
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spectrometry (GC-C-irm-MS) (Merritt et al. 1994; Meier-Augenstein 1999; Sessions
2006). This compound-specific SIA approach has the potential to provide more detailed
information about diet (Fantle et al. 1999; Fogel and Tuross 2003; Popp et al. 2007) and
the sources of complex mixtures of organic matter (Uhle et al. 1997; McCarthy et al.
2004) than conventional bulk tissue SIA. Several studies have shown that typical bulk
muscle fractionation factors of 0 to 1%o are underlain by little to no fractionation in
essential AAs and large fractionations in non-essential AAs (> 7%o0) (Hare et al. 1991;
Howland et al. 2003; Jim et al. 2006). Essential AAs, whose carbon skeletons cannot be
synthesized de novo, reflect the 5t Cpase values without the confounding influence of
trophic fractionation. These AAs should provide a more accurate tracer of the
environmental isoscapes in which the animal was feeding. Conversely, non-essential AA
8'°C values reflect metabolic processing and correlate with diet quality and composition.
The compound-specific SIA technique has been applied to muscle and biominerals, such
as eggs shells, mollusk shells and bones, to assess changes in diet and habitat use (Hare et
al. 1991; Johnson et al. 1993; Silfer et al. 1994; Popp et al. 2007) for a variety of marine
and terrestrial taxa. However, researchers have yet to apply compound-specific SIA to
accretionary tissues in fishes, including otoliths, that would allow for retrospective

analyses of diet and movement.

Study species

Ehrenberg’s snapper (Lutjanus ehrenbergii, Family: Lutjanidae, Peters 1869) is a

common reef-associated snapper species in the tropical Indo-West Pacific that is widely
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distributed from the Red Sea and East Africa to the Solomon and Mariana Islands (Allen
1985; Allen and Talbot 1985). L. ehrenbergii is a commercially targeted species
throughout its range (Sumaila et al. 2007). Adult L. ehrenbergii form large schools on
coral reefs between 5 and 20 m deep, often with the congeneric species L. kasmira, L.
fulviflamma and L. monostigma. L. ehrenbergii 1s an important predator in tropical
seascapes, feeding primarily on small fish and invertebrates, with no notable ontogenetic
diet shift (Blaber et al. 1990). Mean total length (TL) of adult L. ehrenbergii is 200 mm
but can reach a maximum of 350 mm (Allen 1985). While the length at maturity for L.
ehrenbergii is not well known, it is thought to be greater than 120 mm. Minimum
population doubling time is 1.4 to 4.4 yrs.

L. ehrenbergii is a dioecious, batch spawning species on coral reefs that releases
gametes into the water column for external fertilization (Allen 1985). The pelagic larval
duration (PLD) of L. ehrenbergii larvae is not currently known, however mean PLDs for
the family Lutjanidae are typically between three to four weeks but can be up to six
weeks (Brothers et al.1983; Stobutzki and Bellwood 1997; Zapata and Herron 2002).
Larvae are thought to settle in high numbers in coastal wetland habitats due to a
combination of the hydrodynamic properties of seagrass beds and coral reefs, coupled
with active selection behavior of larvae for coastal wetland habitats (Verweij et al. 2006;
Huijbers et al. 2008). Juvenile L. ehrenbergii (<120 mm) are very abundant in coastal
wetlands, including mangroves and seagrass beds, but can also be found in other
nearshore estuarine habitats, including tidal channels and patch reefs (Dorenbosch et al.

2004b; Unsworth et al. 2009). Juvenile L. ehrenbergii show strong site-fidelity to
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relatively small home ranges, but do exhibit diel movements between mangroves
typically used as shelter during the day and seagrass beds used for feeding at night
(Dorenbosch et al. 2004a). Sub-adult L. ehrenbergii (TL >120 mm) are thought to
undergo an ontogenetic habitat shift from coastal wetland nursery habitats to coral reefs.
As such, L. ehrenbergii is an excellent species for tracking ontogenetic migration of a
commercially and economically important coral reef fish between juvenile nurseries and

coral reefs in a tropical seascape.

Thesis objectives

The goal of this thesis was to demonstrate the functional connectivity of a coral
reef fish in a tropical seascape. Specific objectives were to: 1) develop a method to
analyze individual AA 8"°C values from otoliths via GC-C-irm-MS (Chapters 2 and 3),
and 11) evaluate the contribution of wetland and reef habitats to L. ehrenbergii
populations on coastal, shelf and oceanic coral reefs in the Red Sea (Chapters 4 and 5).
The objectives of this thesis were accomplished in four chapters.

In chapter two, common mummichogs (Fundulus heteroclitus, Linnaeus 1766)
were reared on four isotopically distinct diets to determine stable carbon isotope
fractionation factors (A"’ Cc.p) for individual AAs between diet and consumer. Modest
bulk tissue A’Cc.p values reflected relatively large fractionation for many non-essential
AAs and little to no fractionation for all essential AAs. The AA A" Cc.p values from this
study were used in subsequent chapters to examine residence of fish in isotopically

distinct habitats. The third chapter described the application of compound-specific SIA to
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analyze AA §"C values from otoliths. Carbon isotope values of AAs in otolith and
muscle of L. ehrenbergii were highly correlated within and among coastal habitats,
providing a robust 8"°C tracer of residence in isotopically distinct habitats.

Chapter four explored the potential for geochemical signatures in otoliths of
snapper (Family: Lutjanidae) to act as natural tags of residency in seagrass beds,
mangroves and coral reefs in the Red Sea, Caribbean Sea and Eastern Pacific Ocean.
Essential AA 8"°C values in otoliths varied as a function of habitat type and provided a
better tracer of residence in different juvenile nursery habitats than conventional bulk STA
alone. In the fifth chapter, we evaluated the relative contribution of coastal wetland and
reef habitats to L. ehrenbergii populations on coastal, shelf and oceanic coral reefs in the
Red Sea. This chapter examined the role that seascape attributes, including configuration,
habitat spacing and water depth, played in determining the functional connectivity of L.
ehrenbergii populations in the Red Sea. This thesis presents the development and first
application of a method for tracking fish movement in the marine environment using
otolith AA §"°C analysis. This research provides quantitative scientific support for
establishing realistic population connectivity models that can be used to design and

implement effective marine reserve networks.
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ABSTRACT

Analysis of stable carbon isotopes is a valuable tool for studies of diet, habitat
use, and migration. However, significant variability in the degree of trophic fractionation
(APCc.p) between consumer (C) and diet (D) has highlighted our lack of understanding
of the biochemical and physiological underpinnings of stable isotope ratios in tissues. An
opportunity now exists to increase the specificity of dietary studies by analyzing the 8"°C
values of amino acids (AAs). Common mummichogs (Fundulus heteroclitus, Linnaeus
1766) were reared on four isotopically distinct diets to examine individual AA A”Cc.p
variability in fish muscle. Modest bulk tissue A"’ Cc.p values reflected relatively large
trophic fractionation for many non-essential AAs and little to no fractionation for all
essential AAs. Essential AA 8"°C values were not significantly different between diet and
consumer (A"”Cc.p = 0.0 = 0.4%o), making them ideal tracers of carbon sources at the
base of the food web. Stable isotope analysis of muscle essential AAs provides a
promising tool for dietary reconstruction and identifying baseline 8'°C values to track
animal movement through isotopically distinct food webs. Non-essential AA A*Cc.p
values showed evidence of both de novo biosynthesis and direct isotopic routing from
dietary protein. We attributed patterns in A"’ Cc.p to variability in protein content and AA
composition of the diet as well as differential utilization of dietary constituents
contributing to the bulk carbon pool. This variability illustrates the complicated nature of
metabolism and suggests caution must be taken with the assumptions used to interpret

bulk stable isotope data in dietary studies. Our study is the first to investigate the
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expression of AA ABCC_D values for a marine vertebrate and should provide for

significant refinements in studies of diet, habitat use, and migration using stable isotopes.

INTRODUCTION

Stable isotope analysis (SIA) has become a routine tool in ecology for studies of
diet and trophic dynamics (Peterson and Fry 1987; Gannes et al. 1998; Michener and
Kaufmann 2007), habitat use (McMahon et al. 2005; Cherel et al. 2007) and animal
migration (Hansson et al. 1997; Hobson 1999; Rubenstein and Hobson 2004). Bulk tissue
SIA studies using carbon rely upon the assumption that the isotope composition of a
consumer reflects the weighted average of the carbon isotope compositions of its diet
with a small amount of diet (D) to consumer (C) fractionation, hereafter A”Cc.p
(typically 0 to 1%o0 [DeNiro and Epstein 1978; Fry et al. 1978]). Despite the prevalence of
bulk SIA in ecological studies of diet and food webs, there are still a number of
confounding factors that can complicate interpretations of bulk SIA data.

The carbon isotope composition at the base of the food web (8'*Cpase) ultimately
determines the 8"°C values of higher trophic level consumers. Without suitable estimates
of 8"*Chase, which can vary both spatially and temporally (Vander Zanden and Rasmussen
1999; Graham et al. 2010), it is difficult to interpret consumer §'°C values using bulk SIA
in light of potential changes in food web structure versus variations in 8'°Cyase (Post
2002). This can be particularly problematic when studying the diet and trophic dynamics
of highly migratory marine organisms that move among isotopically distinct food webs

(Estrada et al. 2005; Graham et al. 2010). There can also be significant variation in
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A”CC_D, ranging from -3 to +5%o, depending on consumer taxa, diet, and tissues analyzed
(Gannes et al. 1997; Vander Zanden and Rasmussen 2001; McCutchan et al. 2003; Olive
et al. 2003). Furthermore, the 8'°C value of consumer tissue may not always follow bulk
diet "°C values because the carbon skeletons of different dietary constituents (proteins,
lipids, and carbohydrates) can be routed to different tissue constituents (“isotopic
routing” [Schwarcz 1991]). Several studies have emphasized the problems that isotopic
routing poses to the interpretation of stable isotope data in diet reconstructions
(Parkington 1991; Schwarcz and Schoeninger, 1991; Ambrose and Norr 1993). All of
these factors can make interpretations of bulk tissue SIA challenging for studies of diet
and migration, prompting a call for studies that examine the biochemical and
physiological basis of stable isotope ratios in ecology (Gannes et al. 1997; Gannes et al.
1998; Karasov and Martinez del Rio 2007).

The opportunity now exists to increase the specificity of dietary studies by
analyzing 8"°C values of specific biochemical compounds, including amino acids (AAs),
thanks to recent advances in gas chromatography-combustion-isotope ratio monitoring
mass spectrometry (GC-C-irmMS) (Merritt et al. 1994; Meier-Augenstein 1999; Sessions
2006). Stable isotope analysis of individual AAs has the potential to provide more
detailed information about diet (Fantle et al. 1999; Fogel and Tuross 2003; Popp et al.
2007) and the sources of complex mixtures of organic matter (Uhle et al. 1997; McCarthy
et al. 2004) than conventional bulk tissue SIA.

There have been very few controlled feeding experiments examining the trophic

fractionation of individual AAs between diet and consumer (Hare et al. 1991; Howland et
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al. 2003; Jim et al. 2006). Studies to date found modest bulk tissue A *Cc.p values (~1%o)
actually reflected an average of relatively large fractionations in many non-essential AAs
and comparatively little fractionation in most essential AAs. However, there was
considerable variation in A13CC_D across diets and individual AAs among studies.
Furthermore, these studies all dealt with terrestrial vertebrates (pigs and rats), yet no
controlled feeding experiments looking at compound-specific A"C¢.p have been
conducted on an aquatic vertebrate. Given the variability in bulk tissue A"”*Cc.p across
terrestrial and aquatic taxa (Vander Zanden and Rasmussen 2001; McCutchan et al.
2003), it is important to determine the mechanisms leading to variability in the
fractionation of AA 8"°C values for aquatic taxa.

We reared common mummichogs (Fundulus heteroclitus, Linnaeus 1766) on four
isotopically distinct diets to examine trophic fractionation (A"’ Cc.p) of individual AAs
between diet and consumer. By choosing an herbivorous diet, two carnivorous diets and
an omnivorous diet, we aimed to examine the potential variability in AA A”Cc.p. We
addressed the specific question: What is the isotopic relationship between diet and
consumer for individual AAs in fish muscle? We focused on muscle tissue, because it is
one of the most commonly used tissues in ecological studies of diet and trophic
dynamics. We hypothesized that non-essential AA §"°C values would show evidence of
both de novo biosynthesis and direct isotopic routing from dietary protein while essential
AA 8"C values would only reflect isotopic routing. Similar results were found for pigs
(Hare et al. 1991; Howland et al. 2003) and rats (Jim et al. 2006), although the magnitude

and direction of trophic fractionation was quite variable. We also hypothesized that fish

31



fed a high protein content diet would exhibit a greater degree of isotopic routing because
routing is thought to be more efficient than de novo biosynthesis when non-essential AAs
are sufficiently available (Ambrose and Norr 1993, Tieszen and Fagre 1993, Jim et al.
2006). Finally, we predicted that a deficit in non-essential AA abundance in diet relative
to consumer tissue would result in higher trophic fractionation than would be expected
from diets with excess non-essential AAs due to enhanced biosynthesis. Our study is the
first to investigate the expression of individual AA A"”Cc.p values for an aquatic
vertebrate and should provide significant refinements to studies of diet, habitat use and

migration using stable isotopes.

METHODS AND MATERIALS
Feeding experiment

We conducted a controlled feeding experiment on juvenile mummichogs
(Fundulus heteroclitus) reared at the Atlantic Ecology Division, U.S. Environmental
Protection Agency, in Narragansett, Rhode Island, USA. Adult F. heteroclitus collected
from a salt marsh in Sandwich, Massachusetts were held in flow through seawater at
temperatures elevated above ambient to induce spawning. Eggs from two spawnings were
collected and transferred to tanks and allowed to hatch. Juvenile fish were reared on an
Artemia diet for six weeks (approximate length: 11 mm), after which they were
transferred to experimental tanks.

Experimental tanks consisted of twelve 40 gallon aquaria with flow through

seawater at ambient temperature (20°C) in two randomly positioned rows under a 12:12

32



hr light:dark cycle from fluorescent tubes. Twenty juvenile F. heteroclitus were placed in
each tank. Dietary manipulations consisted of triplicate tanks of fish reared on one of four
isotopically distinct diets. A plant-based commercial fish pellet (Vegi-Pro, Freedom
Feeds Inc., Urbana, OH, USA) consisted primarily of wheat and soy with a small
contribution from corn meal. A second commercial fish pellet (Bio-Vita, Bio-Oregon,
Westbrook, ME, USA) consisted of fish and krill meal, wheat gluten and whey protein.
Two natural animal-based diets, squid and clam, were obtained from a local supermarket,
homogenized and then freeze-dried before being fed to the experimental fish. Proximate
analysis of moisture by loss on drying at 135°C for 2 hours (Method 930.15 [AOAC
2005]), crude protein by combustion (Method 990.03 [AOAC 2005]), crude fat by ether
extraction (Method 920.39 [AOAC 2005]), crude fiber (Method 978.10 [AOAC 2005]),
and ash (Method 942.05 [AOAC 2005]) were conducted on all four diets at the New
Jersey Feed Laboratory, Trenton, New Jersey, USA. Carbohydrate content was
determined as 100% minus the sum of moisture, protein, fat, and ash. Amino acid
compositions (16 individual AAs) (Method 994.12 [AOAC 2005]) of the four diets and
fish muscle from each treatment were also determined at the New Jersey Feed Laboratory

(n = 3 replicates).

Sample preparation and analysis
Fish were fed to saturation once per day, and tanks were cleaned of excess food
and bio-films every three days. Fish were reared on isotopically distinct diets for eight

weeks and more than doubled in biomass during that time. All fish were then sacrificed in
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an ice slurry, frozen and freeze-dried for 72 hrs. White muscle was removed from each
fish, homogenized using a mortar and pestle, and subdivided into two portions, one for
bulk tissue SIA and the other for compound-specific SIA. Results from the bulk tissue
analyses are presented elsewhere (Elsdon et al. 2010).

Approximately 2 mg of each sample, both diet and fish muscle, were acid
hydrolyzed in 1 ml of 6 N HCI at 110°C for 20 hrs to isolate the total free AAs. Samples
were neutralized with ultra-pure water and evaporated to dryness via rotary evaporation
to remove HCI before being resuspended in 1 mL of ultra-pure water. Samples were then
passed through solid phase extraction-C18 columns to remove particulates and
melanoidins. After drying under a stream of N, gas, the total free AAs were derivatized
by esterification with acidified iso-propanol followed by acetylation with trifluoroacetic
anhydride (Silfer et al. 1991). The resulting derivatized AAs were diluted to a
concentration of 2 pg pl™ in dichloromethane.

Approximately 2 pg of AAs (via 1 pl injection) were injected on column in
splitless mode at 220°C and separated on an HP Ultra-1 column (50 m length, 0.32 mm
inner diameter and 0.52 um film thickness; Hewlett Packard, Wilmington, Delaware,
USA) in a Varian 3400 Gas Chromatograph (GC) at the Carnegie Geophysical
Laboratory, Washington, D.C., USA. Gas chromatography conditions were set to
optimize peak separation and shape as follows: initial temperature 75°C held for 2 min;
ramped to 90°C at 4 °C min'l, held for 4 min.; ramped to 185°C at 4°C min'l, held for 5
min.; ramped to 250°C at 10 °C min"l, held 2 min.; ramped to 300°C at 20°C min'l, held

for 8 min. The separated AA peaks were combusted in a Finnegan GC continuous flow
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interface at 980°C, then measured as CO; on a Finnegan MAT Delta™™ XL or Delta V
Advantage 1sotope ratio mass spectrometer. Twelve of the 16 individual AAs identified
had sufficient baseline separation for stable carbon isotope analysis, accounting for
approximately 80% of the total AA percent abundance. Glutamic acid and aspartic acid
peaks contained unknown contributions from glutamine and asparagine, respectively, due
to conversion to their dicarboxylic acids during acid hydrolysis. For consumer muscle,
three replicate tanks were analyzed per treatment, with three fish analyzed per tank.
Three replicate samples of each of the four diets were analyzed following the same
procedure as the fish muscle. All compound-specific SIA samples were analyzed in

duplicate along with AA standards of known isotopic composition.

Data analysis

Stable isotopes were expressed in standard delta (6) notation:

1 3 /
C xampl(
X(IHI])[L 1 3 /
C std

where the standard for carbon was VPDB. Trophic fractionation factors (A"’ Cc.p) were

8°C —-1[*1000

b

calculated for each treatment as A*Cc.p = 8"°C¢ - 8"*Cp, where 8"*C¢ and 8"°Cp
represent the §'°C values of the consumer and diet, respectively. Standardization of runs
was achieved using intermittent pulses of a CO, reference gas of known isotopic value.
To correct for the introduction of exogenous carbon and kinetic fractionation
during derivatization (Silfer et al. 1991), AA standards of known isotopic value were

derivatized and analyzed concurrently with the samples. Error for determining the
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isotopic composition of the exogenous carbon added during derivatization averaged +
0.4%o. Differences in bulk 8"°C of diet and fish muscle among treatments were assessed
using separate one-way analyses of variance (ANOV As) and Tukey’s honestly significant
difference (HSD) post-hoc tests (o = 0.05). Differences in individual AA 8"°C values
within and among treatments for both diet and fish muscle were determined using
separate model I (treatment and AA factors fixed) two-way ANOVAs and Tukey’s HSD
post-hoc tests (a. = 0.05). To examine differences in individual AA A”Cc.p both within
and among treatments, AAs were a priori subdivided into non-essential and essential
AAs. Differences in non-essential and essential AA A”Cc.p values were analyzed using
separate model I (treatment and AA factors fixed) two-way ANOVAs and Tukey’s HSD
post-hoc tests. Separate two-sided one sample t-tests were used to determine if AA A*C
values were significantly different from 0%o. Linear regressions were performed to
compare AA 8"C values in muscle (8" Chuscle aa) to 1) their respective dietary AAs
(613Cdiet_AA) and 2) the bulk diets (6]3 Chulk_diet). Using the AA composition data, we
determined the difference in AA percent abundance between diet and muscle, with
negative values indicating a deficit in AA abundance in diet relative to muscle. To look
for trends in trophic fractionation as a function of AA composition, we conducted a
correlation analysis between the AA percent abundance difference and AA A*Cc.p for all
AAs showing de novo biosynthesis (A'*Cc.p significantly different from 0%o). All

statistics were performed in Prism version 4.0.
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RESULTS

Bulk 8"°C values were significantly different among the diets (one-way ANOVA,
df=3,19,F=717.7, p <0.05; Fig. 2.1) and fish muscle (one-way ANOVA, df=3, 11, F
=321.8, p <0.05; Fig. 2.1) across treatments. The Vegi-Pro diet had the highest
carbohydrate content (73%) and lowest crude fat (6%) and protein (8%) content, while
the squid and clam diets had the highest crude fat (18%) and protein (69% and 71%
respectively) content and almost no carbohydrates (Table 2.1). Bio-Vita content was
generally intermediate between the Vegi-Pro and the animal-based diets, with the
exception of a high crude fat content (24%).

The mean range in 8"°C values across all 12 AAs analyzed was 27.9 = 6.9%o for
diet (Fig. 2.1a) and 23.6 = 2.6%o for fish muscle (Fig. 2.1b). We found significant
differences in dietary 8'°C values (Fig. 2.1a) among individual AAs (two-way ANOVA,
df=11, 96, F =1239.0, p < 0.05) and among diet treatments (two-way ANOVA, df = 3,
96, F = 552.0, p < 0.05). However, variability in AA 8"°C values was not consistent
among diet treatments, generating a significant diet* AA interaction (two-way ANOVA,
df =33, 96, F = 21.71, p < 0.05). Fish muscle AA 8"C values (Fig. 2.1b) showed similar
patterns to those of the diets, with significant differences among individual AAs (two-
way ANOVA, df =11, 96, F = 2681.0, p < 0.05) and among diet treatments (two-way
ANOVA, df =3, 96, F =642.7, p < 0.05), including a significant interaction term (two-
way ANOVA, df =33, 96, F = 18.72, p <0.05).

Despite significant variability in individual AA 8"°C values in diet and muscle,

there were several consistent patterns in our data. All AAs from the Vegi-Pro treatment,
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both diet and fish muscle, were the most 13C-depleted, while AAs from the squid and
clam treatments were typically the most *C-enriched. Glycine and serine were always
the most *C-enriched AAs in all treatments for both diet and fish muscle, where as
valine, phenylalanine and leucine were always the most *C-depleted AAs in all
treatments. The §'"°C value of aspartic acid, glutamic acid and proline were generally
similar to one another in each treatment for both diet and muscle, although the values
diverged more so for the Vegi-Pro diet. Finally, the non-essential AAs were “C-enriched
relative to the essential AAs by 7.5 = 2.9%o for diet and 7.3 = 0.8%o for fish muscle.

Muscle essential AA 8"°C values showed stronger linear relationships to their
respective dietary AA §'°C values with slopes closer to unity (m = 0.9 = 0.2, b=-2.7 +
3.8, R =0.95 = 0.04) than was found for non-essential AAs (m =0.51 =0.14, b=-7.0 =
3.5,R*=0.71 = 0.21) (Table 2.2). Muscle essential AA §"°C values were also more
closely related to their dietary AA 8">C values than they were to bulk diet 8'°C values (m
=0.7+0.4,b=-57+11.7, R*=0.78 + 0.18) (Table 2.2). Non-essential AAs d"°C values
in muscle tissue typically showed stronger correlations to bulk diet '°C values (m = 0.9
+0.5,b=5.7 % 15.3, R* = 0.69 + 0.26) than to their respective dietary AA §"°C values
(Table 2.2).

Bulk fish muscle showed positive, albeit diet-specific, trophic fractionation (Fig.
2.2) for all treatments, with Vegi-Pro having the highest A”*Cc.p values and the squid and
clam treatments having the lowest A"Cc.p values. There was a large range in A”Cc.p
(12.5%o0) values across individual AAs and dietary treatments (Fig. 2.2), from -7.9 =

0.7%o for glycine in the Bio-Vita treatment to 4.7 = 0.5%o for glutamic acid in the Vegi-
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Pro treatment. Even within individual AAs, the mean range in AP Cc.p across all four
diets was large (5.8 = 2.9%o), ranging from aspartic acid (3.5%o) to glycine (11.2%o).
While there was significant variability in A”’Cc.p values among diets and individual AAs,
we observed several consistent patterns in the data. Essential AA ACc.p values were
very consistent among individual AAs (two-way ANOVA, df =4, 40, F=2.5,p>0.05)
and dietary treatments (two-way ANOVA, df =3, 40, F=1.7, p > 0.05). All essential AA
APCc.p values were not significantly different from 0%o (mean A*Cc.p = 0.02 = 0.44%o)
(one sample t-test, p > 0.05 for all essential AAs).

Conversely, A”Cc.p values of non-essential AAs showed much larger deviations
from 0%o and considerably more variation among AAs (two-way ANOVA, df =5, 48, F
=165.0, p <0.05) and among treatments (two-way ANOVA, df =3,48, F=2184,p <
0.05), including a significant interaction term (two-way ANOVA, df=15,48, F=35.1,p
< 0.05). Only arginine in the Vegi-Pro treatment (one sample t-test, t = 0.8, p > 0.05) and
glutamic acid in the Bio-Vita (one sample t-test, t = 0.3, p > 0.05), squid (one sample t-
test, t = 0.6, p > 0.05), and clam (one sample t-test, t = 0.8, p > 0.05) treatments had
ABCC_D values that were not significantly different from 0%o. Non-essential AA A”CC_D
values generally followed the patterns observed in the bulk tissues A’C values (Fig. 2.2).
Non-essential AA A”Cc.p values were typically the most positive in the Vegi-Pro
treatment with the exceptions of serine and arginine, where Bio-Vita showed the highest
ABCC_D values. Conversely, AP Cc.p values of non-essential AAs from the squid and
clam treatments were never significantly different from one another (Tukey’s HSD post-

hoc test, p > 0.05) and were generally the lowest values.
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There was notable variation in the percent abundance of AAs for both diets (Fig.
2.3a) and fish muscle (Fig. 2.3b). In general, the non-essential AAs glutamic acid,
aspartic acid and arginine were the most abundant AAs. Although lysine was also quite
abundant in both diet and muscle, it was not analyzed for 8"°C due to coelution with
tyrosine. Leucine was the most abundant essential AA that was analyzed for §'°C. The
patterns of percent abundance of AAs were very consistent across treatments for muscle
(Fig. 2.3b), with a mean standard deviation of 0.1 = 0.1% across all AAs. There was
considerably more variation in AA percent abundance across the four diets (Fig. 2.3a),
with a mean standard deviation of 1.0 + 0.8% across all AAs. In the Vegi-Pro and Bio-
Vita treatments, all of the non-essential AAs analyzed were less abundant in the diets
than they were in the muscle (mean difference in percent abundance, Vegi-Pro: -2.0 =
1.6% and Bio-Vita: -1.5 = 1.0%). The squid and clam diets usually, but not exclusively,
had a surplus of non-essential AAs (0.0 = 0.9% and 0.4 = 1.2%, respectively).

There was a significant negative correlation between the difference in non-
essential AA percent abundance in diet and muscle versus AA A”Cc.p (correlation
coefficient, r =-0.43, p < 0.05; Fig. 2.4). Biosynthesized non-essential AAs tended to
exhibit larger A Cc.p values when there was a greater deficit in AA percent abundance in
the diet relative to fish muscle. The Bio-Vita treatment showed the most variability in
ABCC_D values, with the A13CC_D values of aspartic acid and proline in the Bio-Vita
treatment closer those in the Vegi-Pro treatment and the A"’ Cc.pp value of glycine more
similar to those in the natural animal diet treatments (Fig. 2.2). Both aspartic acid and

proline showed large deficits in the Bio-Vita diet compared to fish muscle, as was the
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case for Vegi-Pro (Fig. 2.3). Conversely, glycine was much closer to the percent

abundance in muscle for the Bio-Vita, squid and clam treatments (Fig. 2.3).

DISCUSSION

We examined variability in carbon isotope fractionation of individual AAs in a
common marine fish across a wide range of potential diets. Modest diet-specific A”Cc.p
values in bulk tissue reflected relatively large trophic fractionations for many non-
essential AAs and little to no fractionation for all essential AAs. Essential AA §"°C
values reflected a purely dietary signature with A"Cc.p values near 0%o, making them
1deal tracers of carbon sources at the base of the food web (E)l3 Cpgase). Consumer non-
essential AAs showed a large range in A"*Cc.p across diets and a variable, diet-specific
degree of isotopic routing from dietary protein, which together may contribute
significantly to the high variability in bulk tissue A’ Cc.p observed in th natural
environment. The diet-specific fractionation we found should promote discussion about
the assumptions of minimal and invariant bulk tissue carbon isotope fractionation in
dietary reconstructions.

The patterns observed in the bulk 8'°C values (Elsdon et al. 2010) were reflected
in the 8"°C values of individual AAs. For instance, AAs from the Vegi-Pro treatment
(diet and muscle) were always the most *C-depleted, while those from the clam and
squid treatments were typically the most *C-enriched. This is not surprising given that
protein was a significant component (up to 71%) of the diets and fish muscle, making

AAs a major contributor to bulk tissue 8"°C values. There were several consistent
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patterns in AA §'°C values across all treatments. The large range in AA 8"°C values of
diet (27.9 = 6.9%0) and consumer muscle (23.6 = 2.6%o) likely reflected the varied
metabolic histories of these AAs. These ranges were similar to previous results on a
variety of taxa including vertebrates (Hare et al. 1991; Fogel and Tuross 2003; Howland
et al. 2003; Jim et al. 2006), invertebrates (Uhle et al. 1997; Fantle et al. 1999; O’Brien et
al. 2002) and plants (Fogel and Tuross 1999) from terrestrial and aquatic systems. This
consistency likely reflects the influence of two main factors: 1) similarities in the major
biosynthetic pathways that produce AAs in plants and animals and 2) incorporation of
dietary constituents directly into consumer tissue.

The patterns of A”*Cc.p of individual AAs generally mirrored those of the bulk
tissue, with A"Cc.p values in the Vegi-Pro and Bio-Vita treatments significantly higher
than those in the squid and clam treatments. A closer look at the A”Cc.p values of
individual AAs revealed some interesting insights into metabolic processes impacting the
synthesis of muscle from dietary constituents. All essential AAs had A"Cc.p values near
0%o, indicating no significant carbon isotope fractionation between diet and consumer
muscle AAs. This observation was supported by the strong correlation and nearly 1:1
relationship between 8" Caiet essential aa and 8" Crnuscle essential aa. Small deviations from
APCc.p = 0%o, and thus a slope of 1, most likely represented minor kinetic isotope
fractionation during catabolism or conversion of essential AAs to other metabolites. If we
interpret the slope of this regression to be roughly equivalent to the proportion of carbon
routed into muscle directly from the diet, the results support our hypothesis of a high

degree of isotopic routing of essential AAs into consumer muscle. Our data support

42



previous work on a variety of taxa and tissues (Hare et al. 1991; Fantle et al. 1999;
Howland et al. 2003; O’Brien et al. 2003; Jim et al. 2006), indicating that these findings
are generally applicable to a wide range of taxa and tissue types.

Although plants and bacteria can synthesize essential AAs de novo, most animals
have lost the necessary enzymatic pathways to synthesize these AAs at a rate sufficient
for normal growth, and thus must incorporate them directly from their diet (Borman et al.
1946, Reeds 2000). As a result, the 8!3C value of consumer essential AAs, such as
phenylalanine and leucine, must represent the isotopic fingerprint of primary producers at
the base of the food web (6]3 Cpase). It should be noted that this relationship could be
obscured when dealing with strict herbivores that receive a significant contribution of
bacterially synthesized AAs from their symbiotic gut microbial community (Rimmer and
Wiebe 1987). The fidelity with which essential AAs reflect dietary sources makes
compound-specific SIA a powerful tool for foraging ecology and dietary reconstruction.
Essential AA 8"°C values have provided insights into the diet of ancient humans and
herbivores (Stott et al. 1999; Fogel and Tuross 2003), the allocation of adult resources to
eggs in butterflies (O’Brien et al. 2002, 2003, 2005), the contributions of carbon sources
to marine dissolved organic matter (McCarthy et al. 2004), and the importance of marsh-
derived diets in supporting the growth of juvenile blue crabs (Fantle et al. 1999). This
approach may also provide a powerful new tool for reconstructing the diet of highly
mobile consumers that move among isotopically distinct food webs. Certainly
compound-specific SIA avoids the confounding variable of determining whether

consumers with different bulk tissue 8'°C values represent feeding in the same food web
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but at different trophic levels, or feeding at the same trophic level but in isotopically
distinct food webs (Post 2002).

Non-essential AAs showed significant deviations from ACe¢.p = 0%o, and much
greater variability both among AAs and across diet treatments compared to essential
AAs. This variability most likely reflects the influence of the varied metabolic processes
that shape the isotopic signatures of non-essential AAs during biosynthesis. The Vegi-Pro
treatment exhibited primarily positive A”*Cc.p values while the natural diet treatments,
squid and clam, typically showed large negative A’ Cc.p values. The large A”Cc.p values
that shifted muscle non-essential AA §"°C towards bulk diet 8"°C values suggest a high
degree of de novo biosynthesis. This hypothesis was supported by linear regressions
between 6]3Cdiet_n0n_essemia]_AA and 613Cmuscle_non_essemial_AA, where the mean slopes were far
from unity, indicating a disparity between the 8"°C values of dietary and muscle non-
essential AAs.

The high degree of biosynthesis is surprising for the three diets containing animal
matter, Bio-Vita, squid and clam, given the high protein content of those diets (53%,
69%, and 71%, respectively). Previous research suggested that when fed high protein
diets, organisms typically route most AAs, including non-essentials, directly from diet as
a means of energy conservation, because dietary routing is typically more efficient than
de novo biosynthesis (Ambrose and Norr 1993, Tieszen and Fagre 1993, Jim et al. 2006).
Fish, however, use a significant portion of dietary protein for energetic purposes (Kim et
al. 1991; Dosdat et al. 1996), and thus it is possible that fish exhibit a lower degree of

dietary routing than terrestrial vertebrates. Only the Vegi-Pro diet had a low protein
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content (8%) that would likely require biosynthesis, resulting in the high A"*Cc.p
observed across most individual AAs in that treatment. Hare et al. (1991) found that 8"°C
of proline and glutamate differed by 5.7%o in the bone collagen of pigs, suggesting that
proline was being directly routed from diet into the consumer tissue. We found that
proline had 8"°C signatures closer to those of glutamic acid rather than dietary proline
and had A"Cc.p values significantly different from 0%o. This suggests that proline was
biosynthesized from glutamic acid via reduction through a Schiff base intermediate
(Baich and Pierson 1965) rather than being directly routed from the diet.

Arginine in the Vegi-Pro treatment and glutamic acid in the Bio-Vita, squid and
clam treatments showed strong evidence of isotopic routing directly from dietary protein,
yet evidence of biosynthesis in the other dietary treatments. Arginine is synthesized from
glutamate via glutamyl-y-semialdehyde and thus if arginine and glutamic acid were both
biosynthesized or both isotopically routed, we would expect them to have similar 8"°C
values, as was the case for glutamic acid and proline discussed earlier. However, arginine
and glutamic acid had different 8'°C values, reflecting the different pathways leading to
arginine and glutamic acid incorporation into fish muscle. Glutamic acid and arginine
account for over 18% of the AAs in fish muscle alone, and it is probable that other AAs
can be directly routed as well. We found that when glutamic acid was biosynthesized in
the Vegi-Pro treatment, it exhibited relatively large A'>Cc.p values (~5%o) similar to the
APCc.p values Hare et al. (1991) and Howland et al. (2003) found for biosynthesized
glutamic acid in pig bone collagen (~6 to 7%o). Thus varying degrees of isotopic routing

versus de novo biosynthesis for these abundant AAs could significantly alter consumer
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tissue &'°C values relative to diet, further complicating the stable isotope relationship
between diet and consumer.

We hypothesized that an underrepresentation of non-essential AAs in diet relative
to muscle composition would necessitate a higher degree of biosynthesis than would be
expected from diets with excess non-essential AAs. We found a significant correlation
between diet and muscle AA percent abundance and AP Cc.p for biosynthesized non-
essential AAs. The AA composition of fish muscle is highly conserved (Wilson and
Cowey 1985) as evidenced by the fact that muscle AA percent abundance was very
consistent across treatments (mean SD across treatments 0.1 + 0.1%) despite feeding on
diets with highly variable AA content (1.0 = 0.8%). When there was a deficit in AA
percent abundance in the diet relative to the muscle, there tended to be greater trophic
fractionation. This was particularly true for the Vegi-Pro and Bio-Vita treatments, where
all non-essential AAs analyzed were less abundant in the diets than they were in fish
muscle, and typically had the highest A”Cc.p values. The disparity in AA percent
abundance was perhaps not surprising given that Vegi-Pro and Bio-Vita both contained
plant matter, while the other diets were entirely animal protein.

Bio-Vita showed the most variability in AP Cc.p values, with some AAs trending
towards Vegi-Pro and other towards the squid and clam treatments. For example, aspartic
acid and proline had similar A”Cc.p values in the Bio-Vita and Vegi-Pro treatments.
Those AAs also showed large deficits in the Bio-Vita and Vegi-Pro diets compared to
fish muscle. Conversely, glycine in the Bio-Vita treatment had a very negative A”Cc.p

value closer to those of the squid and clam treatments. In this case, the disparity in
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glycine percent abundance between diet and fish muscle was small for the Bio-Vita,
squid, and clam treatments. Differences in AA abundance in the diet relative to consumer
muscle likely required varying the degree of biosynthesis and catabolism to meet the
muscle composition demand, which may explain the corresponding shifts in AA trophic
fractionation. However, disparities in diet and muscle AA composition alone only explain
a relatively small fraction (R* = 0.19) of A”*Cc.p values.

The differences in A"*Cc.p values between the Vegi-Pro treatment and the squid
and clam treatments may reflect differences in utilization of the bulk carbon pool from a
plant based-diet versus an animal-based diet. The Vegi-Pro diet had far more
carbohydrates (73%) than lipids (6%), while the animal-based diets showed the opposite
trend (18% lipid, <1% carbohydrate). The biosynthesis of non-essential AAs in the Vegi-
Pro treatment appeared to rely on a more '“C-enriched carbon pool than the other
treatments, possibly indicating a greater contribution of carbohydrates to the bulk carbon
pool (Teece and Fogel 2007). Howland et al. (2003) reared pigs on a plant-based diet
with a §"°C value close to the Vegi-Pro diet used in our study. Our results were similar to
those of pig collagen A"*Cc.p values, showing large positive A"*C¢.p values for most non-
essential AAs, particularly glutamic acid, proline, and aspartic acid. Similar metabolic
processes may, therefore, control A”’Cc.p values for many animals feeding on plant-
based diets.

If lipids in the animal-based diets were being catabolized as a significant source
of energy (Post et al. 2007), they would provide a very *C-depleted carbon pool relative

to bulk diet values (6 to 8%o0 [DeNiro and Epstein 1977]) from which non-essential AAs
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were biosynthesized. This may explain why the A"*Cc.p values in the animal-based
dietary treatments were significantly more negative than in the Vegi-Pro treatment. The
divergence in ACc.p between Vegi-Pro and the squid and clam treatments is greatest for
glycine, serine and alanine, which are also the first AAs synthesized from carbohydrates
entering the glycolysis as glucose. Glucose is converted to 3-phosphogylcerate, which is
the precursor for both glycine and serine. Alanine is synthesized from pyruvate several
steps after 3-phosphogylcerate and showed less of a difference in A">Cc.p between the
plant and animal-based diets. The remaining non-essential AAs are synthesized from
oxaloacetate and a-ketogluterate intermediates many steps later in the TCA cycle and
showed the smallest differences in ABCC_D between the plant and animal-based diets. If
different carbon pools are in fact driving the diet-specific differences in A"”Cc.p values of
non-essential AAs, the impact appears to be greatest near the source of carbon entering
glycolysis and gets diluted or altered as carbon flows through the TCA cycle. Our work
supports previous observations that organisms feeding on apparently homogeneous diets
can show substantially different §'°C values when routing of dietary components and
alterations of available carbon pool 8'°C values become important (O’Brien et al. 2002,
2003; Jim et al. 2006).

The diets chosen for this study ranged from solely plant matter to solely animal
matter in order to examine the potential variability in diet to consumer carbon isotope
fraction. Without knowing the fractionation between steps as lipid and carbohydrate
carbon enter the TCA cycle and get incorporated into AAs, we cannot accurately predict

how the precursor 8'"°C signatures will be manifested in the product AA 8"°C values. The
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next step will be to identify the mechanisms behind the high, diet-specific variability in
ABCc.p and determine what information non-essential AA 8"°C values hold about
consumer diet and metabolic history. This calls for targeted feeding experiments that
track the fractionation of individual, potentially isotopically labeled dietary constituents
as they are metabolically processed. While it is currently unclear how much useful
information about diet and metabolic history is recorded in non-essential AA §"°C values,
the fact that the A"Cc.p values in both animal diet treatments tracked very closely and
were always significantly different from the plant-based Vegi-Pro diet holds promise that
there may be some valuable underlying principles controlling consumer individual AA

8'3C values.
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Table 2.1. Proximate analysis of moisture, crude protein, crude fat, crude fiber, ash and
carbohydrate content (%) of four diets Vegi-Pro, Bio-Vita, squid, and clam (n=1).

Analysis Vegi-Pro Bio-Vita Squid Clam
Moisture 6.8 6.0 10.0 8.8
Protein (Crude) 8.0 53.3 69.1 71.0
Fat (Crude) 59 23.9 17.6 18.0
Fiber (Crude) 2.0 0.3 0.3 0.2
Ash 6.7 10.9 2.9 2.1
Carbohydrates 72.6 6.0 0.3 0.2
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Figure 2.1. Mean (+ SD) bulk tissue and individual amino acid 8"°C values of a) diet and
b) Fundulus heteroclitus muscle from four dietary treatments: Vegi-Pro (open squares),

Bio-Vita (light gray triangles), squid (dark gray circles), and clam (black diamonds) (n =
5 replicates per treatment for diets and n = 3 tanks per treatment, consisting of 3 fish per

tank for fish muscle).
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Figure 2.3. Mean percent abundance (% = SD) of 16 individual amino acids (left axis)
and the total percent abundance of the 12 amino acids analyzed for 8'"°C values (right
axis) in a) diet and b) Fundulus heteroclitus muscle from four dietary treatments: Vegi-
Pro (open bars), Bio-Vita (light gray bars), squid (dark gray bars), and clam (black bars)
(n = 3 replicates per treatment).
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Figure 2.4. Differences between amino acid percent abundance in diet and muscle (mean
% = SD) versus stable carbon isotope trophic fractionation (A*Cc.p = SD). Negative
values signify a lower percent abundance or 8'"°C value in the diet relative to the muscle
respectively (n = 3 for percent abundance and n = 3 tanks per treatment, consisting of 3
fish per tank for ABCC_D).
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ABSTRACT

Fish ecologists have used geochemical signatures in otoliths to examine habitat
use, migration and population connectivity for decades. However, it remains difficult to
determine an unambiguous dietary 8"°C signature from bulk analysis of otoliths. Studies
to date have focused on the aragonite component of otoliths with less attention paid to an
organic fraction. We describe the application of compound-specific stable isotope
analysis (SIA) to analyze amino acid (AA) 8"°C values from small amounts (<1 mg) of
otolith powder. We examined 8'°C values of otolith and muscle AAs from a reef-
associated snapper (Lutjanus ehrenbergii) collected along a carbon isotope gradient
(isoscape) from seagrass beds to coral reefs. Carbon isotope values in otolith and muscle
samples were highly correlated within and among coastal habitats. Moreover, 8"°C values
of otolith AAs provided a purely dietary signature that avoided many of the challenges
associated with conventional bulk otolith SIA, including dilution of dietary 8"°C
signatures by dissolved inorganic carbon and variable metabolic carbon contribution to
otolith §"°C values. Otolith AAs provided a robust tracer of 8'°C values at the base of the
food web, making compound-specific SIA a powerful tool for dietary reconstructions and

tracking the movement of fishes across isoscapes.

INTRODUCTION
The use of geochemical signatures in animal tissues as tags to track movement
patterns of animals across isotope gradients (isoscapes) in the environment has become

increasingly popular in terrestrial and aquatic systems (West et al. 2010). These studies
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have conducted bulk stable isotope analyses (SIA) on a variety of tissues, including bird
feathers, whale baleen and fish scales (Hobson 1999; Rubenstein and Hobson 2004).
Some of the most comprehensive examples of this new approach have been conducted
using fish otoliths to address questions of habitat residency, migration and population
connectivity (reviewed by Campana and Thorrold 2001, Elsdon et al. 2008). To date,
studies have focused almost exclusively on the inorganic aragonite fraction of otoliths to
provide information on the environment inhabited by individuals at different life history
stages (Secor et al. 1995; Thorrold et al. 2001; Kennedy et al. 2002; Rooker et al. 2006).
Recent work has suggested that the bulk carbon isotope composition of otoliths may also
record a significant dietary signature (Elsdon et al. 2010). These results raise the
intriguing possibility of using otolith geochemistry to retrospectively identify both
lifetime movement patterns and diets of fishes.

Despite considerable promise, interpreting carbon isotope signatures in otoliths
remains a difficult proposition. The carbon deposited in otoliths comes from dissolved
inorganic carbon (DIC) and metabolic sources in the form of respired CO, and dietary-
derived protein. These two sources have 8"°C values that may differ by as much as 20%o.
Most studies have found that DIC contributes the majority of carbon to otolith (Kalish
1991; Thorrold et al. 1997; Tohse and Mugiya 2004; Solomon et al. 2006) and therefore
dietary signatures in otoliths are inevitably diluted by DIC. More importantly, there is no
consensus regarding the exact contributions of these two end members, making it
difficult to mathematically correct for the DIC dilution effect. Indeed, variations in bulk

otolith 8'"°C appear to reflect a number of factors, including metabolism (Kalish 1991;
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Weidman and Millner 2000; Stephenson et al. 2001), diet 8'°C and trophic position
(Gauldie 1996; Begg and Wiedman 2001), DIC §"°C (Schwarcz et al. 1998) and
environmental conditions (Mulcahy et al. 1979; Kalish 1991). It remains, therefore,
difficult to determine an unambiguous dietary 8'°C signature from bulk analysis of
otoliths.

One potential method for avoiding the confounding effect of DIC-derived carbon
on otolith 8'°C values is to focus on otolith protein that may constitute up to 10% (by
weight) of a fish otolith (Degens et al. 1969; Morales-Nin 1986a, 1986b; Sasagawa and
Mugiya 1996; Murayama et al. 2002). Analyzing otolith proteins (e.g. Otolin_1, Otolith
Matrix Protein 1, Sparc [Degens et al. 1969; Sasagawa and Mugiya 1996, Murayama et
al. 2002]) may provide a purely dietary signature that avoids both the effect of DIC
dilution and variable metabolic carbon contribution. This protein signature represents a
mixture of amino acids (AAs) directly routed from dietary protein and AAs
biosynthesized from a bulk carbon pool consisting of dietary protein, lipids and
carbohydrates (Schwarcz 1991; Ambrose and Norr 1993; Jim et al. 2006; McMahon et al.
2010). Bulk protein SIA is not, however, without challenges. For instance, it can be
difficult to distinguish between changes in 8"°C associated with diet or trophic shifts
versus changes due to movement among habitats with different §'°C values at the base of
the food web (8'°Cpase; Post 2002). This is particularly true when tracking the ontogenetic
shifts of highly migratory fishes, where juveniles and adults often occupy different
habitats and different trophic levels (Cocheret de la Moriniere et al. 2003; Graham et al.

2007).
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Compound-specific SIA is a more powerful tool for examining diet and habitat
use than conventional bulk SIA alone (Fantle et al. 1999; Popp et al. 2007; McMahon et
al. 2010). Targeting essential AAs, which exhibit little to no fractionation between diet
and consumer, provides tracers of 813CBaSe without the confounding influence of trophic
fractionation (Hare et al. 1991; Howland et al. 2003; Jim et al. 2006; McMahon et al.
2010). Conversely, non-essential AAs 8'°C values reflect metabolic processing and
correlate with diet quality and composition. The compound-specific SIA technique has
recently been applied to fish muscle to assess diet and habitat use (Popp et al. 2007;
McMahon et al. 2010), and several other biominerals, including egg shells (Johnson et al.
1993; Johnson et al; 1998), mollusk shells (Silfer et al. 1994; Engel et al. 1994;
O’Donnell et al. 2007), bones (Hare et al. 1991; Howland et al. 2003) and teeth (Bada et
al. 1990) to reconstruct past climates, examine diagenesis and assess seasonal or
ontogenetic shifts in consumer diet. Researchers have yet to apply compound-specific
analyses to accretionary tissues in fishes, such as otoliths, that would allow for
retrospective analyses of diet and movement.

Here, we present a method for stable carbon isotope analysis of AAs in otoliths.
To test the method, we compared conventional bulk muscle and otolith 8'°C values with
individual AA 8"C values from wild caught snapper, Lutjanus ehrenbergii, from three
isotopically distinct habitats near Al Lith, Saudi Arabia in the Red Sea. We hypothesized
that the 8"°C values of otolith AAs would be strongly correlated with those of muscle
AAs, providing access to dietary signatures in otoliths that avoid the DIC dilution effect

observed in bulk otolith SIA. We also hypothesized that otolith AA 8"*C values would
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also provide a reliable tracer of residence in isotopically distinct habitats. Our study will
provide ecologists with a new tool for reconstructing dietary histories and establishing

613C3ase values to track fish movement through isotopically distinct food webs.

METHODS AND MATERIALS
Field collections

Ehrenberg’s snapper, L. ehrenbergii (Peters 1869), were collected from three
locations along a cross-shelf transect from Al Lith, Saudi Arabia in the Red Sea in March
2009 (Fig. 3.1). L. ehrenbergii are coral reef-associated fish as adults that are abundant as
juveniles in coastal wetland habitats, making them model species for examining residence
along an isotopic gradient. Juvenile L. ehrenbergii (total length [TL] = 77 + 6 mm) were
collected from seagrass beds in Al Lith Bay using cast nets. Adult L. ehrenbergii were
speared from a coastal reef 2 km from the entrance of Al Lith Bay (Coast Guard Reef, TL
=209 + 48 mm) and from a shelf reef approximately 14 km off the coast of Al Lith
(Ron’s Reef, TL =232 + 5 mm). Sagittal otoliths and white muscle tissue were dissected
from each fish in the field. Otoliths were cleaned of residual surface tissue with water and
stored dry in 1.5 ml vials. White muscle samples from the dorsal surface of each fish
were frozen on the boat prior to transport to an onshore laboratory. In the lab, white
muscle samples were frozen at -20°C and then lyophilized (freeze-dried) for 48 hours.
Paired otoliths and freeze-dried muscle samples were transferred back to the Woods Hole
Oceanographic Institution, Woods Hole, MA, USA for further preparation and analysis.

Seventy-three fish were analyzed for paired bulk otolith and muscle 8'°C values. Of those
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fish, five were randomly selected per location for paired compound-specific SIA of

otoliths and muscle.

Sample preparation

A single sagittal otolith was randomly selected from each fish. All otoliths were
scrubbed and rinsed in ultra-pure water, cleaned ultrasonically for 5 min in ultra-pure
water and then air-dried under a class-100 positive-flow fume hood for 24 hrs. Whole
otoliths from juvenile L. ehrenbergii were used for SIA. For adult L. ehrenbergii, we
extracted otolith powder after the last annulus, corresponding to the most recent several
months of growth, using a Merchantek MicroMill with a Leica GZ6 microscope (Electro
Scientific Industries, Portland, OR, USA) to provide the closest temporal match possible
between muscle and otolith material.

Otolith material was homogenized with a mortar and pestle and then subdivided
into two portions for bulk inorganic and compound-specific SIA. Approximately 50 ug of
otolith material was analyzed for bulk 8"°C analysis on a Thermo Finnigan Mat 253
isotope ratio monitoring-mass spectrometer (irm-MS) with a Kiel III carbonate device at
the Woods Hole Oceanographic Institution, Woods Hole, MA, USA following the
methods of Ostermann and Curry (2000). External precision of the mass spectrometer for
8'°C measurements in carbonate standards was % 0.03%o. Approximately 10 mg of otolith
material from each fish was processed for compound-specific SIA. Samples of
homogenized otolith powder were acid hydrolyzed in 4 ml Teflon-lined screw cap vials

with 0.1 ml of 6 N HCI mg™' otolith under an atmosphere of N at 110°C for 20 hrs,
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Samples were neutralized with ultra-pure water and evaporated to dryness under a gentle
stream of N, to remove HCI. Samples were stored frozen until they were derivatized just
prior to compound-specific SIA.

Freeze-dried, homogenized white muscle samples from each fish were also
subdivided into two portions. Approximately 1 mg of muscle for each sample was
weighed into a tin cup and analyzed for bulk 8'"°C values using a Europa Hydra 20/20
irm-MS at the UC Davis Stable Isotope Facility, Davis, CA, USA. A second portion of
each sample (approx. 500 ug) was acid hydrolyzed with 1 ml of 6 N HCl mg™' freeze-
dried muscle tissue as described above for the otolith samples. Dried, neutralized samples

were also stored frozen until derivatization.

Compound-specific stable isotope analysis

Acid hydrolyzed otolith and muscle samples were derivatized prior to compound-
specific SIA according to the following procedure, as modified from Silfer et al. (1991)
and Johnson et al. (1998). First, each sample underwent an acid-catalyzed esterification
using 0.8 ml of 2-propanol and acetyl chloride (4:1 by volume) under an atmosphere of
Ny at 110°C for 1 hr. The reactions were quenched in an ice bath, and the otolith samples
were quantitatively transferred to new 4 ml vials using dichloromethane (DCM), leaving
behind salts associated with the acid hydrolysis of carbonate. All samples were dried
under a gentle stream of N». To remove any remaining acidified iso-propanol, samples
were brought up in 0.5 ml of DCM and dried under N, three times. Each sample was then

acylated with 0.5 ml of triflouroacetic anhydride (TFAA) and 0.5 ml of DCM under an
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atmosphere of N, at 110°C for 10 min. Again, reactions were quenched in an ice bath,
and excess TFAA was removed as described above using three rinses of DCM. An AA
standard was created to correct for the introduction of exogenous carbon and potential
kinetic fractionation during derivatization. The 8"°C values of the eleven AAs in the
standard spanned the full range in 8'"°C values expected from our samples. The AA
standard was derivatized concurrently with each batch of samples.

Samples were brought up in DCM and injected on column in splitless mode at
220°C and separated on an HP Ultra-1 column (50 m length, 0.32 mm inner diameter and
0.5 um film thickness; Hewlett Packard, Wilmington, Delaware, USA) in a Agilent
6890N Gas Chromatograph (GC) at the Woods Hole Oceanographic Institution, Woods
Hole, MA, USA. Sample concentrations were adjusted to achieve a minimum 2 V output
for all AAs. Gas chromatography conditions were set to optimize peak separation and
shape as follows: initial temperature 75°C held for 2 min; ramped to 90°C at 4°C min™,
held for 4 min.; ramped to 185°C at 4°C min'l, held for 5 min.; ramped to 250°C at 10 °C
min”’, held 2 min.; ramped to 300°C at 20°C min™, held for 8 min. The separated AA
peaks were combusted online in a Finnigan gas chromatography-combustion (GC-C)
continuous flow interface at 930°C, then measured as CO, on a Thermo Finnigan Mat
253 irm-MS (hereafter GC-C-irm-MS). Standardization of runs was achieved using
intermittent pulses of a CO; reference gas of known isotopic composition. All compound-
specific SIA samples were analyzed in duplicate along with AA standards of known
isotopic composition. We assigned AAs as non-essential or essential according to

Karasov and Martinez del Rio (2007). The glutamic acid and aspartic acid peaks
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contained unknown contributions from glutamine and asparagine, respectively, due to
conversion to their dicarboxylic acids during acid hydrolysis. The relative abundance (%)
of individual AAs in otoliths and muscle were calculated from mass 44 peak area based

upon standards of known concentration.

Data analysis

Stable isotope ratios were expressed in standard delta (6) notation:

1 3 /
C xampl(
X(IHI])[L 13 C/
C std

where the standard for carbon was VPDB. We compared 8'°C values in bulk muscle and

8°C —-1[*1000

otoliths from 73 fish collected at the three locations using linear regression and tested for
differences in 8'°C of bulk muscle and otoliths among locations using separate one-way
analyses of variance (ANOV As) and Tukey’s honestly significant difference (HSD) post-
hoc tests (= 0.05). The relationships between 8'°C values of individual AAs from
otoliths and muscle were determined by linear regression analysis (n = 11 AAs per fish,
five fish per site, three sites). Differences in 8'°C values of non-essential AAs (6 AAs per
fish) and essential AAs (5 AAs per fish) across individual AAs and among sites were
analyzed using separate model I (location and AA were fixed factors) two-way ANOVAs
and Tukey’s HSD post-hoc tests (a = 0.05, n =5 fish per site).

We determined minimum sample sizes necessary for compound-specific SIA of

otolith and muscle by extrapolation of sample sizes used in this study down to the GC-C-
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irm-MS lower limit of detection for the least abundant AAs. Three aliquots of the same
AA standard were derivatized at the same time under the same reaction conditions (for
within-batch variability) on three separate days (for among-batch variability). To
examine the variability in AA 8"C values within and among derivatization batches, the
mean relative standard deviation (RSD) within batch and among batch was calculated
across all eleven AAs. The desktop stability of derivatives was assessed by analyzing
three aliquots of the same AA standard a total of twenty times each over the course of
nine days. Overall external precision of the 8'°C measurements after correcting for the
fractionation associated with derivatization was 0.80 = 0.96%o (mean = SD), averaged

across all AAs.

RESULTS

Ehrenberg’s snapper, L. ehrenbergii, collected from three locations near Al Lith,
Saudi Arabia had distinct §'°C values for bulk otoliths (one-way ANOVA, df =2, 14, F =
13.3, p <0.05) and bulk muscle (one-way ANOVA, df =2, 14, F = 58.9, p <0.05). Only
L. ehrenbergii from Coast Guard Reef and Ron’s Reef had statistically similar otolith
8'°C values, with p < 0.05 for all other pairwise comparisons (Fig. 3.2). There was a
significant linear relationship between bulk muscle and bulk otolith "°C values (linear
regression, y = 0.38x + 3.31, R* = 0.83; Fig. 3.2). However, the overall range in §'"°C
values among locations was much larger for bulk muscle (7.2%o) than it was for bulk
otolith (2.6%o). L. ehrenbergii from seagrass habitats in Al Lith Bay had the most

enriched 8"°C values for muscle (mean = SD -10.3 = 1.0%o) and otoliths (-0.7 = 0.6%o),
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while the fish from the offshore shelf reef had the most depleted 8'°C values for muscle (-
17.5 £ 0.8%0) and otoliths (-3.3 = 1.1%o). Fish from the coastal reef adjacent to Al Lith
Bay had intermediate 8"°C values for muscle (-14.6 = 1.2%o) and otoliths (-2.3 = 0.6%o).
Eleven individual AAs were identified and analyzed for 8"°C using a GC-C-irm-
MS (Fig. 3.3). Glutamic acid was the most abundant AA in fish muscle and otolith
followed by aspartic acid, while leucine and threonine were the most abundant essential
AAs in muscle and otoliths, respectively (Table 3.1). Based upon the least abundant AA
in our analyses, isoleucine for otoliths and proline for muscle, and the lower limit of
detection (250 mV signal output) for the MAT 253 irm-MS, we calculated a theoretical
minimum sample size of 10-15 ug of muscle tissue and 500 - 1000 ug of bulk otolith
necessary for compound-specific SIA. However, it should be noted that otolith organic
content can range from less than 1 to 10% depending upon species and life history stage
(Degens et al. 1969; Morales-Nin 1986a; Payan et al. 2004; Jolivet et al. 2008). The
derivatization process lowered the 8'°C values of the AAs in the standard, although the
shifts were not uniform among AAs. Variability in the §'°C values of derivatized AA
standards was much smaller within derivatization batches (mean RSD + SD = 0.8 =
0.2%) than among batches (2.2 = 1.6%). Repeated injections of the same derivatized
standard were very consistent, showing low variability (mean SD for all AAs =0.35 =
0.14%o0 SD) for the first 160 hours post-derivatization (Fig. 3.4). After approximately 160
hours the 8"°C values of AAs in the standard became significantly more variable (1.25 =

0.57%o) and tended to become more positive with time. The shift was not consistent
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among AAs, with serine and threonine typically becoming unstable first. Similar patterns
were also observed in the fish muscle samples.

We found a strong linear relationship between individual otolith and muscle AA
8"C values (linear regression, y = 1.00x + 0.52, R* = 0.96) in L. ehrenbergii (Fig. 3.5).
Mean differences in 8'"°C values between muscle and otolith AAs averaged 0.89 %o (=
0.34%o SD), and the difference between otolith and muscle essential AAs 8"°C values
(0.75 £ 0.27%0 SD) was smaller than that for non-essential AAs (1.01 = 0.36%o0 SD).
Otolith AA §"C values generally tracked the patterns observed in the bulk muscle and
otoliths, although the otolith AA 8"°C range was closer to the bulk muscle range,
particularly for several of the essential AAs (Fig. 3.6). Individual AAs from otoliths of
fish collected in Al Lith Bay had the highest 8"°C values and those from the shelf reef
typically had the lowest §'°C values, with otolith AA §"°C values from fish collected in
the coastal reef adjacent to Al Lith Bay intermediate (Fig. 3.6). We found significant
differences in otolith "°C values among habitats (two-way ANOVA, df =2, 132, F =
89.7, p < 0.05) and among individual AAs (two-way ANOVA, df =10, 132, F =396.3, p
<0.05). However, variability in 8"°C values of the AAs was not consistent among

habitats, generating a significant interaction between the habitat and AA terms (two-way

ANOVA, df =20, 132, F = 10.1, p < 0.05).

DISCUSSION

Stable isotope analysis (SIA) of AAs in otolith protein may provide a new way to

retrospectively address questions of diet, habitat use and migration in fishes. The otolith
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AA 8"C method avoids many of the complications associated with conventional bulk
SIA of fish otoliths, including DIC dilution of dietary signatures and variable metabolic
carbon contribution to otolith 8'°C values. We tested this new approach by sampling
muscle and otoliths from Ehrenberg’s snapper, L. ehrenbergii, along a carbon isotope
gradient from coastal seagrass habitats to offshore coral reefs. Fish from Al Lith Bay had
the most enriched muscle 8'°C values (-10.4%o), likely reflecting the carbon contribution
of C4 seagrasses with 8'"°C values of between -8 to -12%o at the the base of the food web
(Hemminga and Mateo 1996). In contrast, L. ehrenbergii muscle tissue from the shelf
reef 14 km offshore had the most depleted 8"°C values (-17.5%o), reflecting a marine
phytoplankton §'*Cgas. signature that typically ranges between -17 to -21%o (Descolas-
Gros and Fontungne 1990). Fish from the coastal reef adjacent to Al Lith Bay had
intermediate 8'">C values for muscle (-14.6%o) that presumably indicated carbon inputs
from both seagrasses and phytoplankton sources. The observed 8'"°C isoscape proved an
ideal system for testing the ability of AAs in otoliths to accurately record 8"°C signatures
of metabolic carbon from individual fish.

We found that bulk otolith 8"°C values were significantly different among the
three habitats, and significantly correlated with bulk muscle §'°C values. Several recent
studies have also suggested that bulk otolith records some dietary information even
though most of the carbon comes from DIC in the ambient water (Dufour et al. 2007,
Mateo et al. 2009, Elsdon et al. 2010). However, otoliths recorded less than half of the
8'C range seen in muscle tissue. As a result, the ability to discriminate among habitats

using the bulk otolith data was reduced compared to muscle 8'°C values. This was
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particularly true when comparing fish from the coastal and shelf reefs, where muscle 8"°C
values showed significantly larger differences between habitats (~3%o) than otolith §'°C
values (~1%o).

Bulk otolith 8'°C values were unable to capture the range of §'°C values in
muscle; however, this was not the case for individual AAs in otoliths. Muscle AA §"C
values accounted for 96% of the observed variation in otolith AA 8"°C values, with a
slope indistinguishable from 1. Otolith AAs were, therefore, recording identical dietary
information to that of muscle AAs. This is perhaps not surprising considering both
muscle and otoliths likely receive AAs for protein synthesis from a common AA pool in
the blood. Our results also suggest that any fractionation during transport of AAs from
blood to the site of protein synthesis and subsequent release from the macula (Murayama
2000; Murayama et al. 2004) was negligible. As such, 8"°C analysis of otolith AAs
should provide an archival record of fish diet that has previously been inaccessible with
conventional inorganic otolith SIA.

Stable isotope analysis of individual AAs has greatly improved the study of diet
(Fantle et al. 1999; Fogel and Tuross 2003), habitat use (Popp et al. 2007) and the sources
of complex mixtures of organic matter (Uhle et al. 1997; McCarthy et al. 2004) for a
number of terrestrial and aquatic taxa. Most recently, McMahon et al. (2010) showed in a
controlled feeding experiment that essential AAs in fish muscle recorded the 8'"°C values
of diet with little to no trophic fractionation, thereby providing an accurate recorded
8"’ Chpase signatures. This result should be particularly valuable when comparing

populations of fish from different habitats or examining the migration of individuals
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through distinct isoscapes, as it can be challenging with bulk SIA to distinguish changes
in 8"°C due to shifts in trophic level versus changes in 8" Cpase.

O’Donnell et al. (2007) examined 8'"°C values of AAs from modern and fossil
Mercenaria shells to look at preservation of AAs in biominerals and examine regional
and ontogenetic variability in 8"°C values. The authors concluded that the range of §'°C
values in AAs from modern Mercenaria collected from coastal Virginia and Florida
suggested the preservation of a dietary signal in the bivalve shells. In addition, the
authors showed significant variation in Mercenaria shell AA 8"°C values within and
among years, likely reflecting a shift in the relative contribution of primary producers at
the base of the food web. Similar work by Johnson et al. (1998) provides another
example of using AA SIA of biominerals to examine diet and local habitat use. These
authors showed that AA 8"°C values from ostrich egg shells reflected the diet of ostrich at
the time of egg formation and could be used to reconstruct local climate and vegetation
conditions. Our data, in concert with these studies, suggest that compound-specific SIA
of otoliths will be a valuable new tool to retrospectively examine diet and movement of
fishes.

In addition to determining E)BCBase signatures, AA 8'3C values in otoliths may
record other valuable information about diet that was previously difficult to assess with
conventional bulk otolith SIA. McMahon et al. (2010) found that non-essential AAs in
fish muscle showed diet-specific evidence of de novo biosynthesis and direct isotopic
routing from dietary protein. Both the AA composition and lipid to carbohydrate ratio of

the diet appeared to play a role in determining the 8'*C value of muscle non-essential
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AAs. The mechanisms driving non-essential AA 8'°C variability remain unknown and
deserve further investigation. However, our work supports previous research on other
biominerals, including bones of pigs and rats (Hare et al. 1991; Howland et al. 2003; Jim
et al. 2006), suggesting that non-essential AA 8'°C values contain valuable information
about diet and food quality.

In conclusion, 8'°C analysis of AAs in otoliths provides a powerful new tool for
retrospective analysis of diet and movement patterns of fishes. Otolith AA 8"°C
signatures were highly correlated with muscle values and provided a purely dietary
signature that avoided the confounding factors of DIC dilution and variable metabolic
carbon contribution found in bulk otolith 8'"°C analysis. Although the sample size
necessary for compound-specific analyses using GC-C-irm-MS work is larger than that
necessary for bulk otolith 8"°C measurements, 8'"°C values of otolith AAs contain a
wealth of information not available from conventional bulk analyses. Otolith essential
AAs provided a valuable tracer of residence in isotopically distinct habitats, which will
greatly increases our ability to track the movement of migratory fish or determine the
8" Cpase values for resident fish. Conversely, non-essential AAs may provide access to
important archived information about fish diet that is difficult to interpret from bulk
otolith SIA. The application of compound-specific SIA to otolith research is still in its
infancy and the potential applications are broad and diverse. It will be exciting to see

where this compound-specific SIA technique is taken in the future.
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Table 3.1. The relative abundance (mean % + SD) of eleven individual amino acids in
otolith and muscle of Lutjanus ehrenbergii calculated from mass 44 peak area and
standards of known concentration (n = 3 sites, 5 fish per site).

Amino acids Otolith Muscle

Gylcinet 7.2+0.6 5.8+0.2
Serinef 9.2+0.5 5.1x0.6
Aspartic acidf 16.5+ 1.0 16.6 £ 0.3
Glutamic acidf 270+ 1.2 26.1 1.2
Prolinet 9.8+1.5 4.6+25
Alaninet 6.6 +0.8 7.5+0.3
Threonine* 6.6 £0.8 54+0.1
Isoleucine* 32+09 5.1+0.1
Valine* 4.0+0.3 56+0.2
Phenylalanine* 40+03 53+0.1
Leucine* 59=x0.5 13.0+04

T = non-essential amino acids, * = essential amino acids
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Figure 3.1. Ehrenberg’s snapper, Lutjanus ehrenbergii, collection sites from three sites
near Al Lith, Saudi Arabia in the Red Sea in March 2009. Juvenile L. ehrenbergii were
collected from seagrass beds (Al Lith Bay) and adult L. ehrenbergii were collected from
a coastal reef adjacent to Al Lith Bay (Coast Guard Reef) and a shelf reef 14 km offshore
(Ron’s Reef).
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Figure 3.2. Linear relationship between bulk otolith and muscle 8"°C values from
Lutjanus ehrenbergii collected from three isotopically distinct habitats near Al Lith,
Saudi Arabia in the Red Sea: Al Lith Bay (square; n = 26 fish), Coast Guard Reef (circle,
n =23 fish) and Ron’s Reef (triangle; n = 24 fish). Individual fish are represented by
open symbols and means + SD for each site are represented by filled symbols.
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Figure 3.4. Amino acid 8"°C values of a derivatized standard analyzed 20 times over the
course of nine days via gas chromatography-combustion-isotope ratio monitoring-mass
spectrometry. Ala: alanine, Gly: glycine, Thr: threonine, Ser: serine, Val: valine, Leu:
leucine, Ile: isoleucine, Pro: proline, Asp: aspartic acid, Glu: glutamic acid and Phe:
phenylalanine.
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Figure 3.5. Linear relationship between individual amino acid 8'"°C values of otoliths and
muscle from Lutjanus ehrenbergii collected from three isotopically distinct habitats near
Al Lith, Saudi Arabia in the Red Sea (black circles = (6) non-essential amino acids; gray
squares = (5) essential amino acids) (n = 11 amino acids per fish, five fish per site, three
sites).
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Figure 3.6. Bulk muscle and otolith 8'°C values (mean + SD) and otolith non-essential
and essential amino acid 8"°C values (mean = SD) from Lutjanus ehrenbergii collected
from three isotopically distinct habitats: Al Lith Bay (black squares), Coast Guard Reef
(light gray circles) and Ron’s Reef (dark gray triangles) near Al Lith, Saudi Arabia in the
Red Sea (n = 5 fish per site).
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ABSTRACT

We explored the potential for geochemical signatures in otoliths of snapper
(Family: Lutjanidae) to act as natural tags of residency in juvenile nursery habitats with
distinctive carbon isotope signatures. We compared conventional bulk otolith 8'°C and
880 analysis with essential amino acids (AA) 8'°C analysis of snapper collected from
seagrass beds, mangroves and coral reefs in the Red Sea, Caribbean Sea, and Eastern
Pacific Ocean. We found a strong linear relationship between otolith and muscle essential
AA 8"C values regardless of species, geographic region or habitat type, indicating that
otolith AAs recorded the same dietary information as muscle AAs. Our results revealed
that detrital carbon was an important component of the food webs supporting snapper
production in coastal reefs of the Red Sea. Essential AA 8'°C values in otoliths varied as
a function of habitat type and provided a better tracer of residence in unique juvenile
nursery habitats than conventional bulk stable isotope analysis alone. Juvenile snapper in
the Red Sea sheltered in mangroves but fed in seagrass beds, while snapper from the
Caribbean Sea and Eastern Pacific Ocean showed much greater reliance on mangrove-
derived carbon. The development of robust juvenile nursery residence tracers in this
study will be crucial for reconstructing ontogenetic migration patterns of fishes among
coastal wetlands and coral reefs. This information is important for determining the
importance of nursery habitats to coral reef fish populations and can provide valuable

scientific support for the design of networked marine protected areas.
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INTRODUCTION

Many commercially and ecologically important coral reef fishes, including
species of Lutjanidae (snappers), Serranidae (grouper), Haemulidae (grunts) and Scaridae
(parrotfish), are thought to use coastal mangroves and seagrass beds as juvenile nursery
areas before migrating to coral reef habitats as adults (see reviews by Beck et al. 2001;
Adams et al. 2006; Faunce and Serafy 2006; Nagelkerken et al. 2008a). Nearshore
habitats can provide a number of benefits to resident juvenile reef fishes, including an
abundance of food, refuge from predators and shelter from physical disturbance
(Laegdsgaard and Johnson 2001; Cocheret de al Moriniere et al. 2004; Manson et al.
2005; Verweij et al. 2006). These benefits may result in higher growth and survival rates
leading to locally elevated juvenile densities within habitats and, presumably, the
movement of significant numbers of individuals from these nursery areas to adult habitats
(Beck et al. 2001; Sheridan and Hays 2003; Adams et al. 2006).

Few would argue against the idea that mangroves and seagrass beds typically
harbor higher densities of many juvenile reef fish species compared to reef habitats
(Jackson et al. 2001b; Manson et al. 2005). However, do juveniles within these coastal
habitats successfully recruit to the adult populations on reefs? Most studies to date have
either assumed successful migration from nursery habitats to reef environs or inferred
movements based upon differential size class distributions among habitats (Nagelkerken
2007). Only a handful of studies have provided direct evidence for such ontogenetic

movements (Chittaro et al. 2004; Nakamura et al. 2008; Mateo et al. 2010), and even
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fewer have quantified the relative contribution of different juvenile habitats to adult
populations on coral reefs.

Tracking movement of fishes between juvenile and adult habitats requires the
ability to either follow individuals between habitats over long time scales or
retrospectively identify juvenile habitat associations in adult fishes. Conventional mark-
recapture approaches suffer a number of limitations when applied to early life history
stages of marine fishes including tagging effects on mortality and behavior, difficulties
tagging a high proportion of the individuals within a location and low recapture rates of
tagged fish (Thorrold et al. 2002). More recently, fish ecologists have used geochemical
signatures in otoliths to overcome many of the problems associated with conventional
tagging (reviewed by Elsdon at al. 2008). Otoliths are paired aragonite structures
deposited on a proteinaceous matrix in daily and annual bands throughout the life of a
fish (Campana 1999). As such, otoliths preserve a chronological record of the fish’s
metabolic activity and the physical and chemical characteristics of the water in which the
fish resided during the time of deposition (Campana 1999). In regions of the ocean where
different habitats have unique base-of-the-food-web isotopic signatures (8'*Cgase), stable
isotope analysis (SIA) of otoliths may be used to retrospectively identify periods of
residence in habitats with distinctive isoscapes (isotope landscapes [West et al. 2010]).
For instance, mangroves, coral reefs, and seagrass beds have unique 8'*Cpgage signatures
resulting from the distinct 8'°C values of the dominant primary producers in those
locations (Marguillier et al. 1997; Layman 2007). Similarly, estuarine environments often

exhibit unique dissolved inorganic carbon (DIC) §"°C and §'*0 values of ambient water
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(8]80H20) associated with freshwater inputs that have distinctive isotopic compositions

(Dansgaard 1964; Siegenthaler and Oeschger 1980; Stewart and Taylor 1981).

We have recently developed a technique for analyzing §'"°C values of essential
amino acids (AAs) in otoliths that may provide a new source of information on habitat
use by juvenile reef fishes (McMahon et al. 2010; McMahon et al. Chapter 3 this thesis).
Essential AAs are excellent tracers of dietary carbon sources because most animals
cannot synthesize essential amino acids de novo but rather incorporate them into tissues
directly from their diet with little to no isotope fractionation (Hare et al. 1991; Howland
et al. 2003; Jim et al. 2006; McMahon et al. 2010). Therefore 8'3C values in essential
AAs of otoliths provide a way of distinguishing among habitats with different 8'*Cpagc
values. The approach is complementary to traditional bulk analysis of " °C and 8'*0 in
otolith aragonite where isotope values are a function of physico-chemical properties of
ambient water (McMahon et al. Ch 3 this thesis).

Here, we explore the potential for geochemical signatures in otoliths from snapper
(Family: Lutjanidae) to act as natural tags of residency in juvenile nursery habitats with
distinctive 8" Cpgage values. We compared bulk 8"°C and 8'°0 signatures in otoliths of
juvenile Lutjanus ehrenbergii with essential AA 8"°C values among three coastal
wetlands sites along the Red Sea coast of Saudi Arabia. A common species of snapper in
the Indo-west Pacific, L. ehrenbergii is abundant as juveniles in coastal wetlands and as
adults on coral reefs (Unsworth et al. 2009). To examine the generality of these results,
we analyzed otoliths from juvenile schoolmaster snapper (L. apodus) collected in

seagrass beds and mangrove lagoons around the islands of St. Croix and Puerto Rico in
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the Caribbean Sea and juvenile yellow snapper (L. argentiventris) sampled from
mangrove lagoons along the west coast of Panama. We hypothesized that essential AA
8'C values in otoliths would vary as a function of habitat type while bulk 8"°C and §'°0
would vary regionally due to unique coastal water mass properties at each of the locations
but not at smaller spatial scales within locations. Successful demonstration of habitat-
specific stable isotope signatures in the organic component of otoliths would, in turn,
allow for definitive studies of the importance of coastal wetland habitats to coral reef

fisheries.

METHODS AND MATERIALS
Field collections

Ehrenberg’s snapper, L. ehrenbergii (Peters 1869), were collected at five
locations along the coast of Saudi Arabia in the Red Sea in November 2008, March 2009,
and June 2010 (Fig. 4.1). Juvenile L. ehrenbergii (total length [TL] 85 £ 17 mm) were
collected with cast nets from three different coastal wetland systems along the coast of
central Saudi Arabia. Khor Al Kharrar Bay is a large, shallow semi-enclosed bay that is
dominated by ribbon seagrass, Halodule uninervis, with fringing white mangroves,
Avicennia marina. Al Lith Bay is a smaller shallow semi-enclosed bay with a similar
distribution of H. uninervis, but a sparser coverage of A. marina. Cape Al-Askar Bay is a
coastal seagrass embayment with significantly more A. marina than the other two bays
and 1s protected by fringing coral patch reefs. Adult L. ehrenbergii were speared from a

coastal reef adjacent to the entrance of Al Lith Bay (Coast Guard Reef; fish TL = 188 =
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41 mm) and a shelf reef approximately 14 km off the coast of Al Lith (Ron’s Reef; fish
TL =217 = 18 mm) to characterize 8"°C signatures of reef residence, as we observed no
juvenile L. ehrenbergii on any reefs outside of Al Lith Bay. To constrain 8'>Cg,g. values
of coastal food webs, we collected seagrass blades (H. uninervis) and mangrove leaves
(A. marina) by hand from Al Lith Bay. Detritus feeding crabs, a major component of L.
ehrenbergii diet, were collected from Al Lith Bay (Metopograpsus thukuhar), Coast
Guard Reef (Trapezia tigrina) and Ron’s Reef (7. tigrina) by hand. Zooplankton
samples, consisting predominantly of calenoid copepods, were collected with a 1 m
diameter, 333 wm mesh net in Al Lith Bay, and in open water adjacent to Coast Guard
Reef and Ron’s Reef. Crab and zooplankton samples served as proxies for detritus and
phytoplankton food web end members in the system, respectively. Triplicate samples
were collected for all food web samples.

Juvenile snapper in the genus Lutjanus were also collected from two islands in the
Caribbean Sea and along the Pacific coast of Panama to examine regional variability in
juvenile nursery habitat signatures. Juvenile schoolmaster snapper, L. apodus (Walbaum
1792) (fish TL = 75 = 40 mm), were collected with seine nets and wire traps at two
mangrove sites in Puerto Rico (N 17° 59 277, W 66° 45° 10”; N 17° 57° 49”, W 66° 59°
08), a mangrove site in St. Croix (N 17° 46’ 307, W 64° 45° 36”) and a seagrass site in
St. Croix (N 17° 43; 23”, W 64° 38’ 45”). Juvenile yellow snapper, L. argentiventris
(Peters 1869) (fish TL = 83 + 7 mm), were collected with seine nets from three mangrove
sites near Bahia Honda, Panama (N 7° 45° 50, W 81° 32° 56”; N 7° 45° 56”, W 81° 30’

46”; N 7° 44’ 557, W 81° 29’ 55”) in the Eastern Pacific Ocean.
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Sagittal otoliths and white muscle tissue were dissected from each fish in the
field, with the exception of L. argentiventris, where only otoliths were retained. Otoliths
were cleaned of residual surface tissue with water and stored dry in 1.5 ml vials. White
muscle samples from the dorsal surface of each fish as well as food web samples were
frozen on the boat prior to transport to an onshore laboratory. In the lab, white muscle
and food web samples were frozen at -20°C and then lyophilized (freeze-dried) for 48
hrs. Samples were transferred to the Woods Hole Oceanographic Institution, Woods
Hole, MA, USA for further preparation and analysis. Ten L. ehrenbergii were collected
from each of the five sites in the Red Sea, four L. apodus were collected from each of the
four sites in the Caribbean Sea and five L. argentiventris were collected from each of the

three sites on the west coast of Panama.

Sample preparation and analysis

A single, randomly selected, sagittal otolith from each fish was used for bulk and
compound-specific SIA. All otolith samples were scrubbed and rinsed in ultra-pure
water, cleaned ultrasonically for 5 min in ultra-pure water and then air-dried under a
class-100 positive-flow fume hood for 24 hrs. Whole otoliths from juvenile Lutjanus spp.
were used for SIA. For adult L. ehrenbergii, we extracted otolith powder after the last
annulus, corresponding to the most recent several months of growth, using a Merchantek
MicroMill with a Leica GZ6 microscope (Electro Scientific Industries, Portland, OR,

USA) to isolate the stable isotope signature of the most recent location of residence.
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Otolith material was homogenized with a mortar and pestle and then subdivided
into two portions for bulk inorganic and compound-specific SIA. Approximately 50 ug of
otolith material was analyzed for bulk 8"°C and 8'*0 on a Thermo Finnigan Mat 253
isotope ratio monitoring-mass spectrometer (irm-MS) with a Kiell III carbonate device at
the Woods Hole Oceanographic Institution, Woods Hole, MA, USA following the
methods of Ostermann and Curry (2000). External precision of the mass spectrometer for
8'°C measurements in carbonate standards was % 0.03%o. Approximately 10 mg of otolith
material from each fish was acid hydrolyzed to isolate individual AAs according to
McMahon et al. (Chapter 3 this thesis).

Freeze-dried, homogenized white muscle samples from each fish and food web
samples from the Red Sea were also subdivided into two portions. Approximately 1 mg
of each sample was weighed into a tin cup and analyzed for bulk 8"°C and 8"°N values
using a Europa Hydra 20/20 irm-MS at the UC Davis Stable Isotope Facility, Davis, CA,
USA. A second portion of each sample (approx. 500 ug for muscle and 1 mg for plant
matter) was acid hydrolyzed in the same manner as the otolith samples for AA §"°C
measurements.

Acid hydrolyzed otolith, muscle and food web samples were derivatized prior to
SIA according to McMahon et al. (Chapter 3 this thesis) as modified from Silfer et al.
(1991) and Johnson et al. (1998). Samples were brought up in dichloromethane (DCM)
and injected on column in splitless mode at 260°C and separated on a forte SolGel-1ms
column (60 m length, 0.25 mm inner diameter and 0.25 um film thickness; SGE

Analytical Science, Sydney, Australia) in a Agilent 6890N Gas Chromatograph (GC) at
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the Woods Hole Oceanographic Institution, Woods Hole, MA, USA. The separated AA
peaks were combusted online in a Finnigan gas chromatography-combustion continuous
flow interface at 1030°C, then measured as CO, on a Thermo Finnigan Mat 253 irm-MS
(hereafter GC-C-irm-MS). Standardization of runs was achieved using intermittent pulses
of a CO; reference gas of known isotopic composition. All compound-specific STA
samples were analyzed in duplicate along with AA standards of known isotopic
composition. We focused on five essential AAs with sufficient peak size and baseline GC

separation: threonine, isoleucine, valine, phenylalanine and leucine.

Data analysis

Stable isotope ratios were expressed in standard delta (6) notation:

13
o/
61 3 C _ C sample

sample ~— 13 C
12 C
std

where the standard for carbon was VPDB. Differences in bulk otolith 8'*C and 8'%0

—-1|*1000

b

values and bulk muscle 8'"°C and 8"°N values among L. ehrenbergii from different
habitats were assessed using separate one-way analyses of variance (ANOV As), with
Tukey’s honestly significant difference (HSD) post-hoc tests (o = 0.05). We visualized
differences in essential AA signatures from L. ehrenbergii and food web components
using principal component analysis (PCA). The relationships between d'"°C values of
individual essential AAs from paired otolith and muscle samples were determined by

linear regression analysis for L. ehrenbergii and L. apodus, separately. We calculated
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95% confidence ellipses for the bulk otolith 8"°C and 8'*0 values from fish collected in

the Red Sea, the Caribbean Sea and the west coast of Panama.

RESULTS

Ehrenberg’s snapper, L. ehrenbergii, collected from five sites along the coast of
Saudi Arabia differed significantly in bulk otolith '°C values (one-way ANOVA, df = 4,
48, F = 38.2, p < 0.05) and bulk muscle §"°C values (one-way ANOVA, df =4, 48, F =
163.4, p <0.05) (Table 4.1). L. ehrenbergii from the three coastal wetland sites, Khor Al
Kharrar Bay, Al Lith Bay and Cape Al-Askar Bay, had statistically similar bulk muscle
and otolith 8"°C values that were higher than either Coast Guard Reef or Ron’s Reef.
Bulk otolith 8'*0 values were similar among sites, with the exception of L. ehrenbergii
from Khor Al Kharrar Bay (one-way ANOVA, df =4, 48, F = 3.8, p <0.05). Bulk
muscle 8"°N values were similar among sites with the exception of L. ehrenbergii from
Khor Al Kharrar Bay and Cape Al-Askar Bay, which had significantly lower §'°N values
than fish from the other sites (one-way ANOVA, df =4, 48, F =23.3, p <0.05) (Table
4.1). There were significant differences in zooplankton bulk 8'°C values (one-way
ANOVA, df =2, 8, F = 19.5, p < 0.05) and bulk '°N (one-way ANOVA, df=2, 8, F =
5.4, p <0.05) among sites (Table 4.1, Fig 4.2). There were also significant differences in
crab bulk 8"°C values (one-way ANOVA, df =2, 8, F = 205.9, p < 0.05) but not bulk
8'°N (one-way ANOVA, df =2, 8, F = 1.7, p < 0.05) among sites (Table 4.1, Fig. 4.2).

Almost all the variation in §'°C values of five essential AAs in L. ehrenbergii

muscle and food web components was captured in principal components one (92%) and
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two (5%) of the PCA analysis (Fig. 4.3). The first principal component (PC) clearly
separated carbon produced by mangroves, zooplankton (a proxy for phytoplankton) and
seagrass from each other. Alternatively, PC 2 distinguished detritivores from signatures
of the primary producers and their proxies. Variate loadings for the first PC were all
positive and of similar magnitude for all five essential AAs. However, loadings for the
second PC were positive for isoleucine (0.50) and leucine (0.47), and negative for valine
(-0.67), threonine (-0.26) and phenylalanine (-0.05).

Essential AA 8"°C values from L. ehrenbergii muscle samples were generally
within the PC coordinate space delineated by zooplankton, detritivores and seagrass (Fig.
4.3). Juvenile L. ehrenbergii in the coastal wetland habitats fell along a continuum
between seagrass on one side and either zooplankton or detritivores on the other side.
Conversely, adult L. ehrenbergii had principal component values similar to local detritus-
feeding crabs, which were quite different from those of the juvenile L. ehrenbergii in the
coastal wetlands. L. ehrenbergii muscle essential AA 8"°C values had much greater
variability in the second principal component (mean relative standard deviation [RSD =
SD] =67.9 = 64.0) than the first principal component (21.1 = 7.9).

While bulk otolith "°C and 8'°0 values varied little among sites in the Red Sea,
we found large differences in values among congeneric snapper species from the Red
Sea, Caribbean Sea and west coast of Panama locations (Fig. 4.4). Locations were clearly
separated in isotope space; however, L. apodus samples from seagrass and mangrove
sites in the Caribbean Sea were not significantly different. Essential AA 8"°C from the

same samples showed a very different pattern. First, we found a strong linear relationship
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between individual otolith and muscle essential AA 8"°C values for L. ehrenbergii (y =
0.99x + 0.35, R* = 0.97) and L. apodus (y = 0.97x — 2.39, R* = 0.98) (Fig. 4.5). Slopes of
the linear regressions were the same for both species and not significantly different from
1, however the y-intercepts had non-overlapping 95% confidence intervals at o = 0.05.
Unlike the bulk otolith 8"°C and 8'*O results, essential AA signatures distinguished
between samples from mangrove and seagrass habitats regardless of the species or

location (Fig. 4.6).

DISCUSSION

A number of species, including many examples from the family Lutjanidae
(snapper), are thought to use coastal wetlands as nursery habitats prior to moving
offshore to join adult populations on coral reefs. Functional connectivity between
juvenile and adult habitats (i.e. the degree to which the landscape configuration affects
movement among habitat patches [Taylor et al. 1993]), therefore, likely plays a crucial
role in structuring these populations. However, in order to determine the importance of
wetland nurseries, we must be able to quantify habitat use by juveniles that successfully
recruit to adult populations. Using 8'"°C values in essential AAs from otoliths, we were
able to distinguish residence of juvenile snappers in mangroves versus seagrass beds
where conventional 8"°C and §'*0 analyses in otolith aragonite were inconclusive.
Analysis of 8'°C signatures in essential AAs from otoliths provides a powerful new tool
for reconstructing ontogenetic migration patterns that should be widely applicable in reef

ecosystems around the world.
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We found that juvenile L. ehrenbergii in coastal wetland habitats had essential AA
8'°C signatures that were very different from adult L. ehrenbergii on coastal and shelf
reefs. The distinction was clear even when comparing L. ehrenbergii from Al Lith Bay
and Coast Guard Reef, which were only 2 km apart. This is in agreement with earlier
research suggesting that while mangroves and adjacent seagrass beds were tightly
coupled in terms of particulate organic matter flux, adjacent coral reefs appeared to be
relatively isolated from the carbon exchange (Rodelli et al. 1984; Hemminga et al. 1994).
Furthermore, our data imply that adult L. ehrenbergii do not migrate into the coastal
wetlands to feed. Nagelkerken et al. (2008b) showed that grunts on coral reefs near semi-
enclosed bays had significantly depleted 8'°C values compared to grunts on reefs
adjacent to open bays. The authors suggested that the restricted width and depth of
channels connecting coral reefs to lagoons reduced the likelihood of reef fish entering the
seagrass beds compared to open seagrass systems. At our study location, coastal wetland
8'°C signatures from essential AAs appeared to be both unique and localized, providing
an excellent tracer of residence in wetlands compared to coral reefs.

The unique habitat signatures in coastal wetlands and coral reefs can be traced to
the local food web signatures in those habitats. All L. ehrenbergii juveniles fell within the
detritivore-zooplankton-seagrass signature space, despite being collected within
mangrove prop roots during the day. Mangrove carbon contributed little to the 8'°C
values of L. ehrenbergii in any of the wetland sites we sampled along the coast of Saudi
Arabia. Our data support previous research on a variety of fish and invertebrate species

(Sheaves and Molony 2000; Bouillon et al. 2002; Kieckbush et al. 2004; Abed-Navandi
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and Dworschak 2005) indicating the limited role of mangrove carbon as a direct and
significant source of carbon for these fauna. Many coastal wetland species that use
mangroves as daytime shelter have been shown to vacate the security of mangroves in
favor of more food-rich seagrass beds at night (Rooker and Dennis 1991; Nagelkerken et
al. 2000; Dorenbosch et al. 2004b; Luo et al. 2009).

While seagrass was an important contributor to the 8"°C signature of juvenile L.
ehrenbergii in the coastal wetlands, fresh seagrass carbon was not the only carbon source
supporting L. ehrenbergii production. Bulk tissue SIA suggested that zooplankton and
crabs were potentially important dietary components of juvenile L. ehrenbergii.
However, the relative importance of a water column-based phytoplankton food web
versus a benthic detrital food web was difficult to tease apart with bulk muscle 8'°C and
8'°N values alone. Compound-specific 8'°C analyses, on the other hand, clearly
distinguished zooplankton and crab contributions to juvenile L. ehrenbergii diets.
Detritivorous crabs, or at least food web components with similar 8'"°C signatures,
appeared to be the dominant food source for both juvenile and adult L. ehrenbergii in our
system.

The distinction between zooplankton and detritivorous crabs likely represented the
impact of microbial processing on the 8'°C signature of essential AAs. Microorganisms
with the enzymatic capabilities to break down the fibrous, often refractory, components
of seagrass and mangrove leaves play a crucial role in making the carbon from these
dominant primary producers bioavailable (Zieman et al. 1984). In particular, the isotopic

signature of valine provides a valuable tool for assessing the contribution of microbial
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reworking in the detrital pathway. Plants use acetolactetate mutase during the first step in
the biosynthesis of valine while bacteria use acetohydroxy acid synthase (Gottschalk
1988; Rawn 1989). As a result, valine synthesized by bacteria shows depleted 8'°C
values compared to valine produced by plants. Valine 8"°C values have been used to
examine microbial reworking of particulate organic matter in the aquatic environment
(Fogel and Tuross 1999; Keil and Fogel 2001; Ziegler and Fogel 2003; McCarthy et al.
2004). We found depleted 8"°C valine values in L. ehrenbergii on both the coastal and
shelf reefs compared to mangroves, seagrasses and zooplankton. Thus it appears that the
microbially-mediated detrital carbon pool was an important source of carbon for higher
trophic levels in these reef systems.

Essential AA 8"°C values in fish muscle provided an accurate tracer of residence
in coastal wetlands and coral reefs with unique food web 8'°Cgas. signatures. However,
due its rapid turnover rate, particularly in fast-growing juvenile fish, muscle is not an
ideal tissue for tracking ontogenetic migration of coral reef fish from juvenile nursery
habitats to coral reefs over the potentially long temporal scales of such migrations
(Herzka 2005). As a result, previous studies have attempted to use bulk otolith §'°C and
880 values to examine the relative contributions of mangroves and seagrass beds as
nursery habitats for coral reef fishes (Dorval et al. 2005; Huxham et al. 2007; Verweij et
al. 2008; Mateo et al. 2010). Bulk otolith 8"°C and 8'*0 values differed significantly
between seagrass-dominated Red Sea coastal wetlands and the mangrove-dominated sites
on the west coast of Panama. This was likely due to regional variability in coastal water

mass properties impacting DIC 8"°C and water 8'*0 values (Dufour et al. 1998). Mateo et
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al. (2010) were able to show small separations in bulk otolith 8'"°C values between L.
apodus residing in mangroves and seagrass beds for some sites in the Caribbean Sea.
However, in our study, this was not the case, as 8"3C values from L. apodus collected in
the mangroves and seagrass beds in Puerto Rico and St. Croix were not significantly
different. Otolith essential AA 8'°C values, on the other hand, were able to clearly
distinguish residence in Caribbean mangroves versus seagrass beds. Otolith essential
AAs thus provided a reliable tracer of residence in mangroves and seagrass beds
regardless of species or region.

We have expanded the relationship between muscle and otolith AA 8"°C values
first presented by McMahon et al. (Chapter 3 this thesis) to include two species of
Lutjanid snapper (L. ehrenbergii and L. apodus) in mangroves, seagrass beds, coastal
reefs and shelf reefs from the Red Sea and Caribbean Sea. Linear regressions between
muscle and otolith essential AA 8"°C values had a slope of 1 in both locations, indicating
that otolith essential AAs provide an excellent tracer of dietary signature in an archival
tissue. Interestingly, the regression intercept for L. ehrenbergii in the Red Sea data was
approximately 2 %o higher than that for L. apodus from the Caribbean Sea. We remain
unsure of the mechanism generating this difference but it was likely sufficiently small to
have few, if any, ecological implications.

Essential AA 8"°C values from L. apodus and L. argentiventris residing in
mangrove habitats were significantly lower than L. apodus and L. ehrenbergii from
seagrass habitats regardless of region. The most parsimonious reason for this difference

among locations is the limited extent of fringing mangroves at our Red Sea study sites
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compared to Puerto Rico, St. Croix and the west coast of Panama. Frequent exposure of
mangroves during low tide in the Red Sea also reduces the foraging time of L.
ehrenbergii in mangroves. Lugendo et al. (2007) found that the 8'°C values of fishes
from mangrove-lined creeks that retained water during low tide indicated feeding within
the mangrove habitat, while fish from fringing mangroves that drain completely during
low tide had significantly more enriched 8'°C values. Although there is some notable
variability in essential AA 8"°C values across mangrove species and regions (Smallwood
et al. 2003), our data suggest that the differences in AA 8'"°C within habitat types is small
relative to the differences between mangrove and seagrasses.

In this study we showed that §'°C values in essential AAs from otoliths provide
an accurate tracer of residence in different juvenile habitat types. Further, our approach
was better able to better distinguish habitat use and 5t Cpase contributions of congeneric
snapper species than conventional bulk SIA alone. We found that while juvenile L.
ehrenbergii in the Red Sea used mangroves as daytime shelter, they likely fed in seagrass
beds at night. This pattern was not universal, as snapper from the Caribbean Sea and west
coast of Panama showed much greater reliance on mangrove-derived carbon. The unique
habitat signatures illustrated in this study can be used to reconstruct ontogenetic
migration pathways and examine functional connectivity between coastal wetlands and
coral reefs. This information is crucial for determining the importance of nursery habitats
to coral reef fish populations and can provide valuable scientific support for incorporating
connectivity into the design of networked marine protected areas (Grober-Dunsmore et

al. 2007; McCook et al. 2009).
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Table 4.1: Bulk otolith §'"°C and 8'*0 values (mean = 1 SD) and bulk tissue 8'°C and
8'°N values (mean + 1 SD) of Lutjanus ehrenbergii and selected food web components
collected from coastal wetlands (Khor Al Kharrar Bay, Al Lith Bay and Cape Al-Askar
Bay), a coastal coral reef (Coast Guard Reef) and a shelf coral reef (Ron’s Reef) along
the coast of Saudi Arabia in the Red Sea. Means with the same superscript letter were not
significantly different from one another by one-way ANOVA and Tukey’s HSD post-hoc
test (o = 0.05). (n =10 L. ehrenbergii per site except for Al Lith Bay* where n =9, and n
= 3 for food web components).

Bulk Otolith Bulk Muscle

Lutjanus ehrenbergii d"C 8'%0 dC SN

Khor Al Kharrar Bay -0.5 £ 0.6 -0.2+04" -102+0.3" 7.0+0.3"

Al Lith Bay* 0.7+0.6° -08+04" -105+08 8.6x0.5"

Cape Al-Askar Bay -14+0.7°  -05=04" -10.6=0.6"° 82=%0.5"

Coast Guard Reef ~ -2.6=0.5" -0.7+02° -149x08" 8.6x0.6°

Ron’s Reef 38+09°  -05x03 -169=1.1° 83x04°
Ribbon Seagrass (Halodule uninervis)

Al Lith Bay -7.9 = 0.7 -03=+1.5
White Mangrove (Avicennia marina)

Al Lith Bay -27.7 0.6 1.4+0.6
Zooplankton

Al Lith Bay -18.8+0.3* 5.1+0.5°

Coast Guard Reef 169+ 1.0° 4.6+04*

Ron’s Reef 200+ 02"  4.1x0.1°
Crab

Al Lith Bay (Metopograpsus thukuhar) -12.8 04" 5.0+0.2°

Coast Guard Reef (Trapezia tigrina) -152+02° 57+0.8°

Ron’s Reef (Trapezia tigrina) -17.5+£02° 5.7+0.5°
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Figure 4.1. Ehrenberg’s snapper, Lutjanus ehrenbergii, collection sites from three coastal
wetland habitats (Khor Al Kharrar Bay, Al Lith Bay and Cape Al-Askar Bay), a coastal
coral reef (Coast Guard Reef) and a shelf coral reef (Ron’s Reef) near Al Lith, Saudi
Arabia in the Red Sea.
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Figure 4.2. Bulk tissue 8°C and 8'°N values (mean + SD) of Lutjanus ehrenbergii
(square symbols, n = 10 fish per site except Al Lith Bay where n = 9), crabs (circles, n =
3), zooplankton (diamonds, n = 3), seagrass blades (inverted triangles, n = 3) and
mangrove leaves (triangles, n = 3) collected from three coastal wetland habitats: Khor Al
Kharrar Bay (Cyan), Al Lith Bay (white) and Cape Al-Askar Bay (yellow), a coastal
coral reef: Coast Guard Reef (magenta) and a shelf coral reef: Ron’s Reef (black) near Al

Lith, Saudi Arabia in the Red Sea.
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Figure 4.3. First and second principal components generated from a principal component
analysis of five essential amino acid 8'°C values from Lutjanus ehrenbergii (square
symbols, n = 10 fish per site except Al Lith Bay where n = 9), crabs (circles, n = 3),
zooplankton (diamonds, n = 3), seagrass blades (inverted triangles, n = 3) and mangrove
leaves (triangles, n = 3) collected from three coastal wetland habitats: Khor Al Kharrar
Bay (Cyan), Al Lith Bay (white) and Cape Al-Askar Bay (yellow), a coastal coral reef:
Coast Guard Reef (magenta) and a shelf coral reef: Ron’s Reef (black) near Al Lith,
Saudi Arabia in the Red Sea.
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Figure 4.4. Bulk otolith 8"°C and 8'®O values (with 95% confidence ellipses) from
Lutjanus ehrenbergii collected from seagrass bays (black square symbols, n = 29 fish) in
the Red Sea, L. apodus collected from seagrass bays (black circles, n = 4 fish) in the
Caribbean Sea, mangrove lagoons (white circles, n = 12 fish) in the Caribbean Sea and L.
argentiventris collected from mangrove lagoons (white diamonds, n = 15 fish) on the
west coast of Panama.
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Figure 4.5. Linear relationship between individual essential amino acid 8'"°C values of
otoliths and muscle from Lutjanus ehrenbergii collected from the Red Sea (filled circle
symbols, n =43 fish, 5 amino acids per fish) and L. apodus collected from the Caribbean
Sea (open circles, n = 16 fish, five amino acids per fish). Threonine = cyan symbols,
isoleucine = yellow, valine = magenta, phenylalanine = green and leucine = black.
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Figure 4.6. Essential amino acid 8"°C values from Lutjanus ehrenbergii collected from
seagrass bays (black square symbols, n = three sites, 10 fish per site) in the Red Sea, L.
apodus collected from seagrass bays (black circles, n = four fish) and mangrove lagoons
(white circles, n = three sites, four fish per site) in the Caribbean Sea, and L.
argentiventris collected from mangrove lagoons (white diamonds, n = three sites, four
fish per site) on the west coast of Panama.
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ABSTRACT

Many commercially and ecologically important coral reef fishes, including species from
the family Lutjanidae (snappers), are thought to use mangroves and seagrass beds as
juvenile nursery areas before migrating to coral reef habitats as adults. However, few
studies have examined the functional connectivity of coral reef fish in tropical seascape.
This study presents the first application of a new method for tracking fish migration in
the marine environment using otolith essential amino acid §'°C analysis. We quantified
the relative contribution of coastal wetland and reef habitats to Lutjanus ehrenbergii
populations on coastal, shelf and oceanic coral reefs in the Red Sea. Coastal wetlands
were important nurseries for L. ehrenbergii; however, there was significant plasticity in
L. ehrenbergii juvenile habitat requirements. Our data indicate that a habitat can still be a
valuable juvenile nursery even if juveniles are not visually abundant in that habitat,
indicating that caution must be taken when interpreting juvenile habitat importance from
visual surveys of abundance alone. Seascape configuration played an important role in
determining the functional connectivity of L. ehrenbergii populations in the Red Sea. Our
results provided the first direct evidence of a remarkable migration by juvenile snapper
from coastal wetlands to coral reefs at least 30 km from the coast and across deep open
water. We found the current paradigm of a simple linear ontogenetic migration from
coastal wetlands to offshore reefs is likely a gross oversimplification of the migratory
capabilities of coral reef fishes. This study highlights the need to identify essential
habitats and preserve functional linkages among these habitats to promote ecosystem

health and sustainable fisheries on coral reefs.
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INTRODUCTION

The ecological integrity of tropical habitats, including mangroves, seagrass beds
and coral reefs, is coming under increasing pressure from human activities (Hughes 1994;
Jackson et al. 2001a; Pandolfi et al. 2003; Cote et al. 2005). Habitat destruction and
unsustainable exploitation has lead to a decline in the function and resilience of these
ecosystems and the fisheries they support on a global scale (Mumby and Hastings 2008).
Efforts to promote ecological integrity and sustainable harvest from coral reefs have
traditionally focused solely on protecting coral reefs. More recently, attention has been
directed at the issue of preserving critical seascape functions as well as habitat types, with
particular emphasis on connectivity (McCook et al. 2009). For instance, many
commercially and ecologically important coral reef fishes, including species of
Lutjanidae (snappers), Serranidae (grouper) and Scaridae (parrotfish), are thought to use
mangroves and seagrass beds as juvenile nursery areas before migrating to coral reef
habitats as adults (see reviews by Beck et al. 2001; Adams et al. 2006; Faunce and Serafy
2006; Nagelkerken et al. 2008a). These productive coastal wetlands provide a number of
benefits to juvenile coral reef fishes, including an abundance of food, refuge from
predators and shelter from physical disturbance (Laegdgaard and Johnoson 2001;
Cocheret de la Moriniere et al. 2004; Manson et al. 2005; Verweij et al. 2006). These
benefits can enhance local growth and survival rates, which may, in turn, lead to locally
elevated juvenile densities and an increased likelihood of successful movement to adult

habitats (Beck et al. 2001; Sheridan and Hays 2003; Adams et al. 2006).
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Identifying essential juvenile habitats for coral reef fish has been a difficult
proposition. Studies identifying mangroves and seagrass beds as nurseries have typically
noted higher densities of juvenile fishes in those habitats relative to other habitats where
juveniles could reside (Nagelkerken et al. 2000; Cocheret de la Moriniére et al. 2002;
Lecchini and Poignonec 2009; Jones et al. 2010). It is typically assumed that this juvenile
biomass is successfully transferred to the adult population on coral reefs. However, if
juveniles from these coastal wetlands do not successfully recruit to the adult population,
then these habitats are not functioning as productive nurseries regardless of the juvenile
densities they support. The current paradigm of ontogenetic migration of coral reef fish is
a simple linear progression from coastal wetlands to offshore coral reefs (Nagelkerken
2007). Yet surprisingly few studies have directly measured the ontogenetic movement of
coral reef fishes between coastal nurseries and coral reefs and the resulting functional
connectivity of the tropical seascape (Beck et al. 2001; Nagelkerken 2007). Functional
connectivity is the movement of individuals among spatially separated habitats within a
population resulting from interactions between behavioral processes and the seascape
configuration (adapted from the landscape ecology literature [Taylor et al. 1993]).
Preserving functional connectivity in the tropical seascape is likely necessary to promote
ecosystem resilience and integrity as well as sustainable fisheries on coral reefs. In order
for managers to enact measures to this end, however, it is necessary to understand the
relative contributions of each potential juvenile nursery habitat to adult populations. Our

current understanding of this type of functional connectivity is severely hindered by a
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lack of empirical data stemming from methodological deficiencies in tracking movement
of juvenile coral reef fish.

Determining movements of fishes between juvenile and adult habitats requires the
ability to either track individuals between habitats or retrospectively identify juvenile
habitat associations in adult fishes. Tracking animal migration has historically been
accomplished using mark-recapture techniques with extrinsic markers (Seber 1982;
Hobson and Norris 2008). While extrinsic markers provide some of the most direct
measures of movement patterns of mobile fishes, not all species or life stages are
amenable to archival or acoustic tags (reviewed by Thorrold et al. 2002).

Ecogeochemistry provides an appealing alternative for reconstructing movement
patterns of fish, relying on spatial variations in the stable isotope values (isoscapes [West
et al. 2010]) that are recorded in the chemical composition of tissues as an animal lives
and feeds in different habitats (Hobson et al. 2010). Fish otoliths have several properties
that make them an ideal tissue for retrospective analysis of ontogenetic migration
(Campana and Neilson 1985; Campana 1999; Campana and Thorrold 2001). Otoliths
accurately record information about the fish’s metabolic activity and the local isoscape
signature of the habitat in which the fish resides (Thorrold et al. 1997). Once this
signature has been deposited, it is no longer metabolically reworked, providing an
archival record of geochemical signatures from the habitats in which that fish has resided
(Degens et al. 1969; Campana 1999). In addition, otoliths grow continuously throughout

by means of successive addition of daily and annual growth bands of aragonite on a
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proteinaceous matrix. As such, otolith provide an archival, chronological record of the
past diet and residence of fish throughout the life of a fish.

Bulk analysis of 8"°C and 8'*0 values in otoliths has been used to assess stock
structure, habitat use, and migration of fish for decades (reviewed by Campana and
Thorrold 2001, Elsdon et al. 2008). Stable isotope analysis (SIA) of otoliths is a
particularly useful approach for tracking ontogenetic migration of fish from coastal
wetland nurseries to coral reefs because there is a distinct carbon isotope gradient at the
base of the food web (8'°Cpase) along the mangrove-coral reef-seagrass continuum
(Marguiller et al. 1997; Lugendo et al. 2006; Nagelkerken et al. 2008a). However, bulk
otolith SIA is not without problems. In particular, the dietary signature in otoliths is
inevitably diluted by dissolved inorganic carbon (DIC), making it challenging to track
fish movement among isoscapes. We recently described a method for quantifying 8'°C in
essential amino acids (AAs) extracted from otolith material that avoids many of the
challenges associated with conventional bulk otolith SIA (McMahon et al. 2010;
McMahon et al. Chapter 3 this thesis). Using this method, McMahon et al. (Chapter 4 this
thesis) were able to distinguish residence of juvenile snapper (Family Lutjanidae) in a
number of different coastal wetlands and coral reefs. Because otoliths are archival tissues,
the essential AA technique allows for retrospective analysis of juvenile nursery habitat
use of individuals that have successfully recruited to adult populations on coral reefs.

Here, we evaluate the relative contribution of individual Ehrenberg’s snapper
(Lutjanus ehrenbergii, Peters 1869) from wetland and reef habitats to adult populations

on coastal, shelf and oceanic coral reefs in the Red Sea. We assigned adult L. ehrenbergii
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from reefs at six distances offshore along a 50 km cross-shelf transect to five potential
juvenile habitats based on essential AA §'"°C signatures in otolith cores. At our study site,
juvenile L. ehrenbergii were only observed in coastal mangrove and seagrass habitats,
while adults were abundant on offshore coral reefs (M. Berumen, pers. comm.). We
therefore hypothesized that coastal wetlands would be the dominant nursery source of
individuals to adult populations on coral reefs in the region. Our study provides a first
glimpse into the role that seascape configuration plays in determining functional
connectivity of a reef fish species that is both ecologically and commercially important in

the region.

METHODS AND MATERIALS
Field Collections

Ehrenberg’s snapper, L. ehrenbergii, were collected from five distinct habitats, 1)
coastal wetlands, 2) coastal reefs, 3) shelf reefs, 4) offshore island patch reefs and 5)
oceanic reefs, along a 50 km cross-shelf transect from coastal Saudi Arabia in the Red
Sea in November 2008, March 2009 and June 2010 (Fig. 5.1). Al Lith Bay and Cape Al-
Askar Bay are shallow, semi-enclosed bays that are dominated by ribbon seagrass,
Halodule uninervis, with fringing white mangroves, Avicennia marina. The offshore
island, Abu Latt Island, is a partially vegetated island located approximately 24 km
offshore at the edge of the continental shelf that is fringed by patch reefs and seagrass
lined channels. The oceanic reefs are primarily steep vertical walls surrounded by open

water greater than 300 m deep (Fig. 5.1). Juvenile L. ehrenbergii (total length [TL] =75
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+ 11 mm, Fig. 5.2) were collected with cast nets from two coastal wetland systems near
Al Lith, Saudi Arabia. Adult L. ehrenbergii (TL =195 + 32 mm, Fig. 5.2) were speared
from 11 reef systems at six distances along the 50 km cross-shelf transect near Al Lith,
Saudi Arabia: 1) coastal reefs within 2 km of shore: Coast Guard Reef and Cape Al-
Askar Reef, 2) shelf reefs 16 km offshore: Ron’s Reef and LJ’s Reef 3) an offshore island
24 km offshore: Abu Latt Island, 4) shelf reefs 32 km offshore: Saut Reef and Brown
Reef, 5) oceanic reefs 40 km offshore: Canyon Reef and Shi’b Sulaym Reef and 6)
oceanic reefs 50 km offshore: MarMar Reef and Dohra Reef.

Sagittal otoliths and white muscle tissue were dissected from each fish in the field.
Otoliths were cleaned of residual surface tissue with water and stored dry in 1.5 ml vials.
White muscle samples from the dorsal surface of each fish were frozen on the boat prior
to transport to an onshore laboratory. In the lab, white muscle samples were frozen at -
20°C and then lyophilized (freeze-dried) for 48 hours. Samples were transferred to the
Woods Hole Oceanographic Institution, Woods Hole, MA, USA for further preparation
and analysis. Muscle tissue from L. ehrenbergii at each site was used to identify local
habitat signatures because muscle has a very fast turnover rate and its isotopic signature
represented the most recent residence signature. We did not find any juvenile L.
ehrenbergii on offshore coral reefs; however, we wanted to know the potential
contribution of individuals from these coral reefs to the adult population. Therefore,
muscle samples from adult L. ehrenbergii were used to characterize the habitat signatures
of the offshore reefs where no juveniles were collected. We justified this in two ways.

Despite a large range in TL across juvenile and adult L. ehrenbergii in this study, there
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was no significant trend in muscle '°N values with TL (y = 0.004x + 8.04, R* = 0.15;
Fig. 5.2). This indicates that juvenile and adult L. ehrenbergii were feeding at the same
trophic level. In addition, detritivore crabs are a significant component of both juvenile
and adult L. ehrenbergii diet (McMahon et al. Chapter 4 this thesis), suggesting no
ontogenetic dietary shift for L. ehrenbergii in this region. Thus, we are confident that
adult muscle signatures provided an accurate reflection of juvenile muscle signatures in

the same habitat.

Sample preparation and analysis

Approximately 1 mg of freeze-dried, homogenized white muscle tissue from each
fish was weighed into a tin cup and analyzed for bulk §'°N with a Europa Hydra 20/20
isotope ratio monitoring-mass spectrometer (irm-MS) at the UC Davis Stable Isotope
Facility, Davis, CA, USA. A second portion of each muscle sample (~1 mg) was acid
hydrolyzed to isolate free AAs by refluxing samples in 6N HCl at 110°C for 20 hrs,
neutralizing in ultra-pure water and evaporating to dryness under a gentle stream of N,
gas. These samples were used to characterize the geochemical signature of the five
juvenile habitats (discussed below). In order to retrospectively identify where each adult
L. ehrenbergii spent its juvenile period, we isolated the juvenile core of adult L.
ehrenbergii otoliths (Fig. 5.3) from fish collected on reefs at six distances offshore along
a 50 km cross-shelf transect. A single, randomly selected, sagittal otolith from each adult
L. ehrenbergii was scrubbed and rinsed in ultra-pure water, cleaned ultrasonically for 5

min in ultra-pure water, and then air-dried under a class-100 positive-flow fume hood for
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24 hrs. Then, we isolated a core from each adult otolith, representing the first year of
growth. To do this, we cut along the first annulus using a Buehler Isomet Low Speed Saw
with a diamond wafering blade (Buehler, Lake Bluff, Illinois, USA) and then ground
down the resulting core from the top and bottom with a Buehler Ecomet3 variable speed
grinder-polisher to remove post first year material deposited in the vertical plane. Next,
we contoured the shape of the juvenile core to match the mean 3D shape (4 to 5 mm by 2
to 3 mm) and mass (10 to 15 mg) of otoliths from juvenile L. ehrenbergii (TL ~75 mm)
collected in the coastal wetlands using a Buehler Ecomet3 variable speed grinder-
polisher. Each juvenile core was homogenized with a mortar and pestle and acid
hydrolyzed in the same manner as the muscle samples.

Acid hydrolyzed samples were derivatized prior to SIA according to McMahon et
al. (Chapter 3 this thesis) as modified from Silfer et al. (1991) and Johnson et al. (1998).
Samples were brought up in dichloromethane (DCM) and injected on column in splitless
mode at 260°C and separated on a forte SolGel-1ms column (60 m length, 0.25 mm inner
diameter and 0.25 um film thickness; SGE Analytical Science, Sydney, Australia) in a
Agilent 6890N Gas Chromatograph (GC) at the Woods Hole Oceanographic Institution,
Woods Hole, MA, USA. The separated AA peaks were combusted online in a Finnigan
gas chromatography-combustion (GC-C) continuous flow interface at 1030°C, then
measured as CO; on a Thermo Finnigan Mat 253 irm-MS. Standardization of runs was
achieved using intermittent pulses of a CO, reference gas of known isotopic composition.
All compound-specific SIA samples were analyzed in duplicate along with AA standards

of known isotopic composition. We focused on five essential AAs with sufficient peak
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size and baseline GC separation: threonine, isoleucine, valine, phenylalanine, and

leucine.

Data analysis

Stable isotope ratios were expressed in standard delta (6) notation:

13 C/
12
C sample

8°C = —-1[*1000

sample ~— 13 C
12 C
std

where the standard for carbon was VPDB. Differences in total length of L. ehrenbergii

b

among the five potential juvenile habitat regions were assessed using a one-way analysis
of variance (ANOVA), with Tukey’s honestly significant difference (HSD) post-hoc test
(a0 < 0.05). The relationship between TL and bulk muscle 8"°N values was determined by
linear regression. We visualized the separation of potential juvenile habitats using a
discriminant function analysis (DFA) on the muscle essential AA 8"°C data of L.
ehrenbergii grouped into five regions according to their collection location across the
continental shelf. These were as follows: coastal wetlands (n = 2 sites), coastal reefs (n =
2), shelf reefs (n = 4), Abu Latt Island (n = 1) and oceanic reefs (n = 4). The jackknife
reclassification success rate of the DFA was evaluated by leave-one-out cross-validation
and compared to the 1/g reclassification success expectation, where g was the number of
groups analyzed (White and Ruttenberg 2007). We used a maximum likelihood estimator
(MLE [Millar 1990]) to calculate the relative contribution of each of the five potential
juvenile habitat regions to the adult populations on coral reefs at six distances (2 km, 16

km, Abu Latt Island at 24 km, 32 km, 40 km and 50 km) along the 50 km cross-shelf
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transect from Al Lith, Saudi Arabia. McMahon et al. (Chapter 4 this thesis) showed that
muscle and otolith essential AA °C values had a strong 1:1 correlation and could be used
interchangeably. Thus the training data set was comprised of muscle essential AA 8"°C
data from each potential juvenile habitat region. The otolith essential AA 8'°C data from
juvenile cores of adult L. ehrenbergii were treated as unknowns to be classified by the
training data set. We identified juvenile nurseries as any juvenile habitat that contributed

more than the average if all five juvenile habitats had contributed to the adult population

evenly (20%). Note

RESULTS

We collected L. ehrenbergii spanning a range in total length (TL) from 51 mm to
248 mm, with a trimodal distribution (Fig. 5.2). Mean lengths (TL + SD) of fish from the
coastal wetlands were significantly smaller (75 + 11 mm) than fish from coastal reefs
(167 = 37 mm), Abu Latt Island (156 = 17 mm) and offshore coral reefs (210 + 16 mm)
(one-way ANOVA, df =2, 122, F =208.8, p <0.05). L. ehrenbergii from the coastal
reefs (97 to 248 mm) occupied a much larger range in total length than L. ehrenbergii
from the coastal wetlands (51 to 94 mm), Abu Latt Island (125-184 mm) or the offshore
coral reefs (165 to 238 mm). Despite the large range in fish length both among and within
the habitats, there was no significant trend in 8'°N with total length (y = 0.004x + 8.04,
R*=0.15; Fig. 5.2).

Discriminant function analysis (DFA) on the muscle essential AA §'°C data of L.

ehrenbergii showed that each of the five regions was clearly separated in multivariate
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space (Fig. 5.4). The first discriminant function identified a gradient from coastal
wetlands to oceanic reefs, while the second discriminant function separated coastal
wetlands from the shelf island habitat of Abu Latt Island. Moreover, we were able to
assign individuals to each of these habitats with a high degree of accuracy based on the
multivariate essential AA 8"°C signatures. Jackknifed reclassification success rate to each
potential juvenile habitat averaged 95% compared to a random reclassification success
expectation of 20%.

All of the potential juveniles habitats we identified appeared to have been used by
at least some of the adult L. ehrenbergii on coral reefs, however, the relative contribution
of each habitat to the adult populations on offshore reefs varied considerably throughout
the seascape (Fig. 5.5). One obvious pattern in the data was that the contribution of
juveniles from coastal wetlands habitats to the adult populations on coral reefs decreased
with increasing distance offshore. Most adults L. ehrenbergii (72%) on coastal reefs,
within a few km of shore, spent their juvenile period in coastal wetlands, and nearly all
fish (96%) came from either wetlands or coastal reefs. However, at shelf reefs
approximately 32 km from the coast only 18% of the adult L. ehrenbergii used coastal
wetlands as juvenile nursery habitat. Most of the adult L. ehrenbergii on these reefs either
used Abu Latt Island on the edge of the continental shelf as a juvenile nursery (46%), or
directly settled on shelf reefs (18%). Adults on fringing reefs adjacent to Abu Latt Island
showed no evidence of extensive juvenile movements as all individuals were assigned to
the local habitat type around the island. Finally, L. ehrenbergii on reefs off the

continental shelf (Fig. 5.1) showed a very different juvenile residence pattern to those on
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the shelf. We found little evidence for significant off-shelf movements, with the majority
of adult L. ehrenbergii on oceanic reefs (75-80%) residing on oceanic reefs as juveniles.
A smaller but still significant number of fish (25%) had moved a distance of up to 30 km

from juvenile habitats around Abu Latt Island to the oceanic reefs.

DISCUSSION

Coastal wetland habitats have long been hypothesized to be valuable juvenile
nurseries for many ecologically and commercially important coral reef fish species.
Based on 8'"°C analysis of AAs in otoliths, we showed that some Lutjanus ehrenbergii
resided in wetlands as juveniles before making long distance migrations to join adult
populations on coral reefs. However, the use of seagrass and mangrove habitats was
facultative, with many individuals appearing to have settled directly into reef habitats.
Connectivity among habitats appeared to be dependent upon the arrangement of wetlands
and coral reefs within the seascape (Dorenbosch et al. 2007). While juveniles apparently
were able to migrate from wetland habitats to reefs on the edge of the continental shelf,
we found no evidence of wetland use in fish on oceanic reefs. Our study provides direct
support for calls to conserve both coastal nursery habitats and offshore coral reefs to
promote resilience of coral reefs (e.g. McCook et al. 2009), particularly in light of this
previously unconfirmed level of seascape connectivity via ontogenetic migration.

Analysis of 8'°C values in essential AAs provided an accurate method for
tracking ontogenetic migration of snapper between juvenile nursery habitats and coral

reefs. The approach is predicated on the observation that essential AAs of fishes are
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transferred through food webs without "*C fractionation (McMahon et al. 2010). We
documented in earlier work that L. ehrenbergii residing in coastal wetlands had more "*C-
enriched essential AA values than fish on coastal reefs (McMahon et al. Chapter 4 this
thesis). Interestingly, most of the carbon in essential AAs from fish collected on reefs
appeared to have passed through detrital pathways rather than having come directly from
pelagic phytoplankton production. While the details of the mechanisms underlying the
habitat-specific signatures deserve future investigation, the source of carbon in these
habitats is irrelevant to the current application provided that isotope signatures were able
to accurately identify juvenile habitats used by adults residing on reefs.

We only found juvenile L. ehrenbergii in coastal wetlands, and thus hypothesized
that coastal wetlands would be the dominant juvenile nursery for L. ehrenbergii on coral
reefs around Al Lith, Saudi Arabia in the Red Sea. However, there was clearly significant
plasticity in the nursery habitat requirements of L. ehrenbergii at our study site. All five
potential juvenile habitats were used by at least some juvenile L. ehrenbergii before
making ontogenetic migrations to join the adult population on offshore coral reefs. The
facultative use of coastal wetlands has been hypothesized for other snapper species as
well. For instance, Nagelkerken et al. (2002) suggested that juvenile Lutjanus mahogoni
showed a preference for, but not a dependence on, mangroves and seagrass beds as
nurseries. This is not to say that coastal wetlands were not an important nursery for L.
ehrenbergii.

While L. ehrenbergii were apparently not obligated to use mangroves and

seagrass beds as nurseries, a significant portion of the adults on the continental shelf
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came from coastal wetlands. In our study, the contribution of individuals from wetland
habitats was highest on coastal reefs and decreased with distance offshore. It is
interesting to note that reefs with the highest connectivity to coastal wetlands also had the
highest adult L. ehrenbergii densities. Densities of adult L. ehrenbergii on coastal reefs
were seven fold higher than those on the outer shelf and oceanic reefs (Thorrold et al.,
unpubl. data). This correlation support previous studies showing higher adult abundance
of nursery species on coral reefs closer to nursery sources (Nagelkerken et al. 2002;
Dorenbosch et al. 2004b, 2007; Mumby et al. 2004; Aburto-Oropeza et al. 2008). While
these relationships are correlative, they suggest that connectivity to coastal wetlands
might facilitate larger adult populations on adjacent reefs compared to locations relying
on direct settlement of larvae into reefs. The approach we used provided a measure of the
relative importance of juvenile habitats to adults at each of the reef locations we sampled.
However, a quantitative estimate of the total juvenile production that entered reef
populations from different habitats would require knowledge of the total abundance of
adults within the study population and the migration-associated mortality rates along with
the data on juvenile habitat use that we have provided here

Our data indicate that a habitat can still be a valuable juvenile nursery and
contribute individuals to the adult population even if juveniles were not visually abundant
in that habitat. Notably, we have never seen juvenile L. eirenbergii on oceanic reefs near
Al Lith, despite several years of regular work on these reefs; yet, isotope signatures in
otoliths revealed that many individuals had settled directly into these reef habitats. Given

higher predation rates on coral reefs compared to coastal wetlands (Dorenbosch et al.
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2009), it is possible that juvenile L. ehrenbergii on coral reefs reside in highly cryptic
habitats (e.g. inside the reef matrix itself or beyond the depth limitations of typical
SCUBA-based surveys). L. ehrenbergii on offshore reefs appeared to rely heavily on
detrital pathways, which may allow juvenile L. ehrenbergii to remain benthic while
feeding and avoid exposure in the water column until they reach sufficient size to reduce
their predation risk (Mclvor and Odum 1988). Regardless of the reason for not seeing
juvenile L. ehrenbergii on offshore reefs, we suggest that caution must be taken when
inferring nursery function based upon visual surveys of fish density alone, as that could
lead to misrepresentation of juvenile habitat importance and potentially miss essential
nurseries completely.

Juvenile habitat use by L. ehrenbergii and subsequent functional connectivity to
adult populations on coral reefs showed several interesting patterns in the context of the
seascape configuration. Little is known about the regulatory processes that affect
ontogenetic migration of coral reef fish (Mumby and Harborne 2006). Our results
provided the first direct measurements of a remarkable migration by juvenile snapper
from coastal wetlands to coral reefs at least 30 km from the coast and from a shelf island
across deep open water to off-shelf oceanic reefs some 25 km away. Coastal and shelf
reefs appeared to have greater functional connectivity within the seascape than Abu Latt
Island and the oceanic reefs. At least three different juvenile source regions, likely
consisting of multiple individual reefs, contributed to adult L. ehrenbergii populations
coastal and shelf reefs. Conversely, Abu Latt Island appeared to be 100% self-recruiting

and the oceanic reefs were primarily locally recruiting with only small contributions from

125



Abu Latt Island. As a result, the coastal and shelf reef habitats may have a greater source
redundancy and thus be less vulnerable to fluctuations in juvenile supply from individual
habitats. Perhaps the shallow continental shelf, typically less than 50 m deep, facilitated
enhanced inter-reef movement compared to the deep open water between oceanic reefs.
The consequences of a lack of functional redundancy on Abu Latt Island and the oceanic
reefs are currently unknown, and would be difficult to examine experimentally. It should
be noted, however, that there are many similar offshore reefs in this region, and
ontogenetic movement among these reefs may occur undetected by our method. This
would increase the source redundancy of these oceanic reefs. Abu Latt Island is a very
unique habitat in our study site, as there are no other islands similar to Abu Latt within
100 km. Abu Latt is a large, partially vegetated island that has fringing patch reefs and
seagrass lined channels. Juvenile L. ehrenbergii from Abu Latt Island likely fed on the
patch reefs used as shelter during the day and foraged in seagrass lined channels at night,
analogous to the mangrove-seagrass diel migrations taking place in the coastal wetlands.
As such, L. ehrenbergii from Abu Latt Island had essential AA 8"°C values that plotted in
between the coastal wetlands and offshore coral reefs in DFA canonical space.
Assignments to this unique habitat carry a greater degree of spatial certainty than the
other habitats in this system.

We found no evidence that adult L. ehrenbergii from oceanic reefs used coastal
wetlands or reefs as juveniles. Juveniles from nearshore areas did not move beyond shelf
reefs for reasons on which we could only speculate at this point. In contrast, juveniles

that settled into habitats surrounding Abu Latt Island on the shelf edge apparently were
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able to swim across open water in excess of 300 m depth to settle on the oceanic reefs.
There is little movement data on juvenile coral reef fishes to compare with our results due
to the difficulties associated with tagging small fish (Gillanders et al. 2003). Acoustic
tracking of adult coral reef fishes has revealed within-reef migrations to spawning
aggregation sites over distances of up to 20 km (Starr et al. 2007) and inter-reef
movements up to 16 km (Chateau and Wantiez 2009). However, it is often assumed that
large expanses of unsuitable habitat, such as deep open water, are migration barriers for
coral reef fishes (Bernardi 2000; Chapman and Kramer 2000; Rocha et al. 2002;
Dorenbosch et al. 2007). The fact that significant numbers of juvenile L. ehrenbergii
were migrating up to 30 km among reefs and across deep oceanic waters highlights how
little we know about the migration capabilities of coral reef fishes.

We were able to show that L. ehrenbergii were capable of long distance
movements from juvenile habitats to coral reefs over 30 km away. It remains to be seen
whether L. ehrenbergii made these impressive ontogenetic movements as single, long
distance migrations from juvenile nurseries to offshore reefs, or as a series of stepping
stone migrations over shorter distances before eventually settling some 30 km away.
Previous studies have used spatial patterns in size distribution of fish among habitats to
infer stepping stone migrations (Cocheret de la Moriniére et al. 2002; Nagelkerken et al.
2002). Our size distribution data suggest at least some stepwise post-settlement
migration, as the smallest individuals were found in the coastal wetlands, intermediate
sized individuals were typically found on the coastal reefs and island patch reefs and the

largest individuals were most common on the offshore coral reefs. Analysis of AA §'°C
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values in otoliths may provide a more direct assessment of movement among these
habitats throughout the ontogeny of a fish. In our study, we examined the juvenile core of
adult otoliths to determine juvenile residence patterns. However, future work could
subsample across otoliths at finer spatial resolutions that may, in turn, allow us to address
this question of stepwise versus long distance post-settlement migration. Fishes that use a
stepwise migration among several transition habitats would presumably have several
distinct habitat signatures going from the juvenile core to the subadult and finally adult
otolith material. As instrument sensitivity improves and sample size requirements
decrease, our ability to track ontogenetic fish migration among habitats with greater
spatial and temporal resolution should accordingly improve. This would greatly improve
our understanding of the timing of ontogenetic migrations.

Identifying essential juvenile habitats has been a tricky proposition in the past,
primarily relying on visual surveys of juvenile fish abundance and assuming successful
migrations to offshore reefs. However, we showed that habitats could be important
juvenile nurseries, even if juveniles were not visually abundant in those habitats. Using
otolith amino acid ecogeochemistry, we found that L. ehrenbergii made long distance
ontogenetic migrations, upwards of 30 km, from nursery habitats to coral reefs. Coastal
wetlands were an important nursery habitat for L. ehrenbergii, and connectivity to coastal
wetlands by ontogenetic migration may facilitate larger adult populations than reefs
relying on direct settlement. However, L. ehrenbergii were not obligated to use seagrass
beds and mangrove as juvenile nurseries, and seascape configuration played an important

role in determining the functional connectivity among essential habitats. The current
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paradigm of a simple linear migration from coastal wetlands to offshore reefs is likely a
gross oversimplification of the migratory capabilities of coral reef fishes. Factors
including habitat type, distance among habitats and proximity to seascape features such
as the continental shelf break and deep open water, all played important roles in
determining ontogenetic migration pathways of L. ehrenbergii. Given the high degree of
functional connectivity within this tropical seascape, our data suggest that stress on one
inter-connected habitat may have cascading effects on abundances of coral reef fish in
other habitats within the seascape. Management plans for tropical coastal habitats and
their associated fisheries should aim to preserve coastal wetlands and coral reefs in their

natural configuration to promote sustainable fisheries and healthy ecosystem functions.
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Figure 5.1. A) Ehrenberg’s snapper, Lutjanus ehrenbergii, collection sites from two
coastal wetlands (Al Lith Bay and Cape Al-Askar Bay), two coastal reefs (Coast Guard
Reef and Cape Al-Askar Bay Reef), four shelf reefs (Ron’s Reef, LJ’s Reef, Saut Reef
and Brown Reef), an offshore Island (Abu Latt) and four oceanic reefs (Shi’b Sulaym
Reef, Canyon Reef, MarMar Reef and Dohra Reef) near Al Lith, Saudi Arabia in the Red
Sea. Inset a) the study site location within the Red Sea and b) an enlarged view of Abu
Latt Island. B) Study site bathymetry map. Color contours represent one arc-minute
gridded bathymetry data for the study region, with gray representing land and white
indicating no data (General Bathymetric Chart of the Oceans:
http://www.gebco.net/data_and_products/gridded bathymetry data/)
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Figure 5.3. A) The otolith of an adult Lutjanus ehrenbergii (total length [TL] = 230 mm)
measuring 9.6 by 5.6 mm and weighing 125 mg, B) a juvenile L. ehrenbergii otolith (TL
=75 mm) measuring 4.1 by 2.4 mm and weighing 8 mg, and C) the juvenile core isolated
from the adult otolith and contoured to match the mean size and mass of otoliths from
juvenile L. ehrenbergii (fish total length ~75 mm).
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Figure 5.4. Juvenile habitat signature separation in canonical space with 95% confidence
ellipses visualized by discriminant function analysis of muscle essential amino acid 8"°C
values from Lutjanus ehrenbergii collected from five potential juvenile habitats: coastal
wetlands (squares: n = 19 fish), coastal reefs (circles: n = 15 fish), Abu Latt Island patch
reefs (triangles: n = 10 fish), shelf reefs (diamonds: n = 25 fish) and oceanic reefs
(crosses: n = 20 fish) in the Red Sea.
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Figure 5.5. Relative contribution of Lutjanus ehrenbergii
from five potential juvenile habitats to the adult
populations on reefs at six distances along a 50 km cross-
shelf transect from Al Lith, Saudi Arabia in the Red Sea:
2 km reefs (n = 25 fish), 16 km reefs (n = 20 fish), Abu
Latt Island 24 km (n = 10 fish), 32 km reefs (n = 11 fish),
40 km reefs (n = 20 fish) and 50 km reefs (n = 20 fish).
Horizontal dashed lines represent 20% contribution from
all five juvenile habitats
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CHAPTER SIX

CONCLUSION
Thesis summary

Ontogenetic migration is an important step in the lives of many coral reef fish
species. The ecological consequences of such movements are, however, only beginning
to be understood. A significant implication of this functional connectivity is that coral
reef ecosystem functions, including productivity, diversity and sustainable harvest levels,
are not localized phenomena, but rather dependent on the spatial configuration of the
seascape. This thesis presents the development and application of compound-specific
stable isotope analysis (SIA) to small amounts of otolith material using gas
chromatography-combustion-isotope ratio monitoring-mass spectrometry (GC-C-irm-
MS). The analysis of otolith amino acid (AA) §"°C values provides, for the first time, a
robust tracer of baseline isoscape signatures (8'*Cpgage) in an accretionary fish tissue. The
approach will greatly improve our ability to track the movement of fish through marine
1soscapes, particularly for species and life-stages not amenable to conventional tagging
techniques. Amino acid 8"°C signatures in otoliths of snapper (Family: Lutjanidae) acted
as natural tags of residency in seagrass beds, mangroves and coral reefs. This allowed us
to quantify the relative contribution of potential juvenile nursery habitats to adult
populations of Lutjanus ehrenbergii in a coral reef seascape in the Red Sea.

In chapter two, Fundulus heteroclitus were reared on four isotopically distinct
diets to examine individual AA trophic fractionation (A"’Cc.p) variability in fish muscle

(McMahon et al. 2010). Essential AAs showed little to no A”*Cc.p, and their §'°C values
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accurately reflected dietary signatures regardless of diet type. Our data support previous
research indicating that essential AA 8"°C values are excellent tracers of 8'°Cp,g. across a
wide range of taxa and tissue types (Hare et al. 1991; Fantle et al. 1999; Howland et al.
2003; O’Brien et al. 2003; Jim et al. 2006). This multivariate ecogeochemistry approach
greatly improved our ability to track movement of fish through the mangrove-coral reef-
seagrass isoscape in subsequent chapters. The patterns from non-essential AA A”Cc.p
values were less clear, but did show evidence of both de novo biosynthesis and direct
isotopic routing from dietary protein. Variability in non-essential AA 8'°C values
appeared to be correlated with protein content and AA composition of the diet as well as
differential utilization of dietary constituents contributing to the bulk carbon pool. Our
work confirms that organisms feeding on apparently homogeneous diets can exhibit
substantially different 8'°C values when routing of dietary components and alterations of
available carbon pool 8"°C values become important (e.g. O’Brien et al. 2002; O’Brien,
et al. 2003; Jim et al. 2006). The results also illustrated the complicated impacts of
metabolism on consumer tissue 8'°C values and suggest caution must be taken with the
assumptions used to interpret bulk stable isotope data in dietary studies. Further research
to constrain the mechanisms controlling non-essential AA A"’Cc.p variability will be
necessary to fully realize the potential of this technique for refining dietary and trophic
dynamic studies (see Future Directions section below).

In this thesis, we described the application of compound-specific SIA to fish
ecology using AA 8"°C values from small amounts (<1 mg) of otolith and muscle tissue.

We targeted five essential AAs with sufficient peak size and baseline separation:
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threonine, valine, isoleucine, phenylalanine, and leucine. We found that 8!3C values in
otolith and muscle AAs were highly correlated in a 1:1 relation regardless of species,
geographic region or habitat type. While bulk otolith 8"°C and 8'*0 values could not
distinguish snapper residence in mangroves and seagrass beds in the Caribbean Sea,
otolith AA §"°C values showed excellent separation between habitats. Analysis of AA
8'"C values in otoliths avoided many of the complications associated with conventional
bulk otolith SIA, including the dissolved inorganic carbon (DIC) dilution effect and
variable metabolic carbon contribution to otolith °C values. The sample sizes necessary
for compound-specific SIA using GC-C-irm-MS is currently larger than that necessary
for bulk otolith '"°C measurements. However, otolith AA 8"°C values provided a wealth
of information not available from conventional bulk SIA. As instrument sensitivity
continues to improve, the sample sizes required to conduct compound-specific SIA on
otoliths will likely decrease in the future. This, in turn, will allow us to analyze otoliths
from smaller fish and subsample across otoliths at finer spatial scales, expanding the
potential applications of our otolith AA approach (see Future Directions section below).
Many ecologically and economically important coral reef fish species are thought
to use coastal wetlands as nurseries prior to moving offshore to join adult populations on
coral reefs (e.g. Nagelkerken et al. 2000; Dorenbosch et al. 2004b). Functional
connectivity between juvenile and adult habitats, therefore, plays a crucial role in
structuring these reef fish populations (Dorenbosch et al. 2007; Turgeon et al. 2010) and
must be understood to properly manage these species. While a handful of studies have

provided direct evidence of ontogenetic movement of reef fishes between coastal
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nurseries and reef habitats (Chittaro et al. 2004; Nakamura et al. 2008; Mateo et al.
2010), very few studies have quantified the relative contribution of different juvenile
habitats to adult populations on coral reefs (Nagelkerken et al. 2007).

We quantified, for the first time, the relative contribution of coastal wetlands,
coastal reefs and offshore coral reefs to adult L. ehrenbergii populations in a tropical
seascape in the Red Sea. We only found juvenile L. ehrenbergii in coastal wetlands,
however, our ecogeochemical data indicated that all five potential juvenile habitats were
used by at least some juvenile L. ehrenbergii before making ontogenetic migrations to
join the adult population on offshore coral reefs. This raised two important conclusions.
First, our data showed that a habitat can still be a valuable juvenile nursery, even if
juveniles were not visually abundant in that habitat. This suggests that caution must be
taken when inferring nursery function based upon visual surveys of fish density alone, as
that could lead to misrepresentation of juvenile habitat importance and potentially miss
essential nurseries completely. Second, coastal wetland habitat use was facultative and
seascape configuration played an important role in determining the connectivity of L.
ehrenbergii populations among essential habitats. Although we found substantial
plasticity in the juvenile habitat use of L. ehrenbergii, coastal wetlands still appeared to
be an important nursery habitat, especially for reefs on the continental shelf. Our data
support previous work suggesting that that connectivity to coastal wetlands might
facilitate larger adult populations on adjacent reefs compared to locations relying on
direct settlement of larvae into reefs (Nagelkerken et al. 2002; Dorenbosch et al. 2004b,

2007; Mumby et al. 2004; Aburto-Oropeza et al. 2008).
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We found that L. ehrenbergii made long distance ontogenetic migrations,
ultimately traveling more than 30 km from nursery habitats to coral reefs. While some
temperate species are capable of long distance movements between juvenile and adult
habitats (Gillanders 2005), this migration distance and subsequent functional connectivity
has seldom been shown in coral reef fishes (Adams et al. 2006). Even more surprising
was the fact that juvenile L. ehrenbergii from Abu Latt Island on the shelf edge appeared
to have successfully navigated through at least 10 km of deep open water to settle on
oceanic reefs. Large expanses of unsuitable habitat (e.g. bare sand and deep open water)
are typically considered to be migration barriers for coral reef fishes (Bernardi 2000;
Chapman and Kramer 2000; Rocha et al. 2002; Dorenbosch et al. 2007). It remains to be
seen how and why L. ehrenbergii from Abu Latt Island made such migrations through
deep open water. On the other hand, no juvenile L. ehrenbergii from coastal wetlands
appeared to settle on reefs beyond the continental shelf break. The reason for this
disparity in migration patterns is currently unknown, but could have important
implications for local reef fish population resilience to disturbance.

This thesis introduces an otolith AA SIA approach that will open new doors for
the exploration of diet and movement of fish in the marine environment. The first
application of this approach expanded our knowledge of migration patterns and
functional connectivity of snapper in a coral reef seascape. L. ehrenbergii were able to
make long distance migrations from coastal wetlands to coral reefs some 30 km away and
across habitats previously assumed to be migration barriers for coral reef fish. We found

that habitat type, distance among habitats and proximity to seascape features such as the
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continental shelf break and deep open water, all played an important role in determining
ontogenetic migration pathways of L. ehrenbergii. This work indicates that the current
paradigm of a simple linear migration from coastal wetlands to offshore coral reefs is
likely a gross oversimplification of the migration capabilities of coral reef fishes.

Our data suggests that stress on one inter-connected habitat may have cascading
effects on population structure of coral reef fishes in other habitats within the seascape.
For L. ehrenbergii in the Red Sea, protecting coastal wetlands and offshore coral reefs is
likely an important first step to successful management of coral reef ecosystems and the
fisheries they support. However, conservation of these habitats alone may not be
sufficient to adequately protect all of the coral reef fish populations in tropical seascapes.
Clearly, seascape configuration coupled with species-specific behavior and migratory
capabilities plays an important role in determining migration pathways of coral reef fish,
and will ultimately affect the connectivity of habitats and subpopulations within the
seascape. Conventional metrics for identifying important juvenile nurseries and their
connectivity to adult populations, including juvenile abundance data and inter-habitat
distances are not sufficient to capture the full complexity of functional connectivity in
these systems. The otolith AA SIA method now provides a valuable new tool for

assessing functional connectivity of coral reef fish populations at the seascape level.

Future directions

As is often the case with scientific inquiry, this thesis has generated many

additional questions that warrant investigation. Two important questions generated from
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the chapter two feeding experiment were: what drives non-essential AA A”Cc.p
variability, and how can non-essential AA 8"°C values aid in the study of diet and
movement in marine fish? We chose diets that ranged from solely plant matter to solely
animal matter in order to examine potential variability in AA A*Cc.p. However, there
were a number of confounding variables, including diet type, protein content and AA
composition that made it challenging to identify mechanisms driving non-essential AA
APCc.p values. The next step will be to identify the mechanisms behind the high, diet-
specific variability in A”Cc.p and determine what information non-essential AA §'"°C
values hold about consumer diet and metabolic history. This calls for targeted feeding
experiments that track the fractionation of isotopically labeled dietary constituents,
including lipids, proteins and carbohydrates, as they are metabolically processed through
the TCA cycle and incorporated into consumer AAs. This would allow us to better
predict how precursor 8'°C signatures are manifested in product AA 8"°C values.
Constraining the mechanisms behind non-essential AA fractionation would greatly
improve our understanding of the biochemical and physiological underpinnings of stable
isotope values used in diet and food web studies.

In chapter four we suggested that the distinction between zooplankton and
detritivorous crabs, based upon compound-specific SIA, likely represented the impact of
microbial processing on the 8"°C signature of essential AAs. This was not surprising
given the roll microorganisms play in reworking seagrass and mangrove carbon into more
bioavailable forms (Zieman et al. 1984). This distinction was a major driver of the

variability in habitat signatures across the tropical seascape. However, the detrital
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contribution to coral reef food webs was not apparent with conventional bulk SIA. Thus,
a more detailed investigation into the food web structure of coastal wetlands and coral
reefs would better constrain these habitat signatures. Incorporation of non-essential AA
8"C values into a food web study may provide valuable information about diet type and
quality. The extent to which microbially-mediated detritus supports higher trophic level
production on coral reefs is currently unclear. This approach may provide greater insight
into the carbon sources fueling higher trophic levels on coral reefs than was previously
available with conventional bulk SIA. Furthermore, understanding carbon flow within a
coral reef ecosystem, particularly if detritus and phytoplankton sources can be uniquely
identified, will significantly enhance the use of compound-specific SIA to track
movement within tropical seascapes.

In chapter five, we showed that L. ehrenbergii traveled at least 30 km between
coastal wetlands and offshore coral reefs. It remains unclear whether L. ehrenbergii from
coastal wetlands made single, long distance migrations from juvenile nurseries to
offshore reefs, or a series of stepping stone movements over shorter distances.
Subsampling AA 8"C values across otoliths at finer spatial resolutions would allow us to
address the question of stepwise versus long distance post-settlement migration.
However, if fish reside in isotopically indistinguishable habitats, or move through
habitats faster than the habitat signature is recorded, then the otolith AA SIA approach
may not identify residence in all intermediate habitats. This will also be true when
applying this technique to other species or systems. Analyzing additional isotopes with

unique distributions will increase habitat signature separation, and improve the accuracy
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of habitat use classifications. This will be particularly important for tracking fish
movement in open ocean systems that typically have smaller stable isotope gradients than
coastal tropical seascapes. As instrument sensitivity improves and sample size
requirements decrease, we will be able to distinguish residence in isotopically distinct
habitats at shorter spatial scales. This type of data will greatly improve our knowledge of
the timing of ontogenetic migration. Thus, while caution must taken when applying the
otolith AA SIA approach to other systems, this technique should improve our ability to
track ontogenetic fish migration among habitats and validate hypotheses generated from
correlations between sizes of fish and their location in the seascape

Management of coral reefs and the juvenile habitats that supply them will be a
valuable step towards promoting healthy ecosystem function and sustainable fisheries on
coral reefs. This thesis presented the first application of our otolith AA technique to
quantify the contribution of juvenile nurseries to L. ehrenbergii populations on coral reefs
in the Red Sea. While the patterns found in this thesis are likely to be species or seascape
configuration specific, the otolith AA SIA method presented here provides an empirical
tool to assess ontogenetic migration for other species and seascapes. The next step will be
to apply this technique to other species and systems. For instance, we found that the
continental shelf break appeared to offer a partial connectivity barrier, preventing
juvenile L. ehrenbergii in coastal wetlands, but not Abu Latt Island, from migrating to
oceanic reefs. Would L. ehrenbergii from coastal wetlands migrate through open water to
oceanic reefs if the continental shelf break was only 15 km offshore? Do such

connectivity barriers exist for other species or in other regions with potentially different
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seascape configurations? This thesis presented one application of the otolith AA SIA
method; however, the field is still in its infancy and the potential applications are broad

and diverse.
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APPENDIX I

Table Al.1. Bulk tissue 8'°N and 8"°C values of diet from four dietary treatments (Vegi-
Pro, Bio-Vita, squid, and clam) (Chapter 2).

3"N 8°C
Vegi-Pro R1 1.15 -22.82
Vegi-Pro R2 0.94 -23.13
Vegi-Pro R3 1.00 -23.34
Vegi-Pro R4 0.54 -23.67
Vegi-Pro RS 1.23 -23.60
Bio-Vita R1 11.75 -20.10
Bio-Vita R2 12.31 -20.01
Bio-Vita R3 11.40 -20.36
Bio-Vita R4 11.78 -20.19
Bio-Vita RS 11.66 -20.14
Squid R1 13.28 -18.49
Squid R2 14.06 -18.50
Squid R3 13.69 -18.76
Squid R4 13.46 -18.55
Squid RS 13.76 -18.47
Clam R1 11.51 -17.82
Clam R2 11.36 -17.93
Clam R3 11.46 -17.83
Clam R4 11.09 -18.05
Clam R5 11.67 -17.82
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APPENDIX II

Table A2.1. Bulk muscle and otolith '°C values of Lutjanus ehrenbergii collected from
a) Al Lith Bay, b) Coast Guard Reef and c) Ron’s Reef near Al Lith, Saudi Arabia in the
Red Sea (Chapter 3). Whole otoliths were analyzed for juvenile L. ehrenbergii from Al
Lith Bay, and the outer edge of otoliths were analyzed for adult L. ehrenbergii from
Coast Guard Reef and Ron’s Reef.

a) AlLith Bulk muscle Bulk otolith b) Coast Bulk muscle Bulk otolith
Bay 3°c NE Guard Reef d"°C d"c
L.ehr48 -11.61 -1.54 L.ehr73 -13.24 -1.81
L.ehr49 -10.78 -0.38 L.ehr74 -13.80 -1.22
L.ehr50 -10.45 -1.16 L.ehr75 -12.11 -1.00
L.ehr51 -9.90 -0.58 L.ehr169 -14.49 -1.98
L.ehr53 -11.87 -0.76 L.ehr170 -13.58 -1.94
L.ehr54 -11.69 -0.84 L.ehrl171 -15.59 -2.26
L.ehr55 -10.57 -0.07 L.ehr172 -15.18 -3.08
L.ehr56 -10.14 -0.87 L.ehr173 -14.73 -1.80
L.ehr57 -9.66 -0.89 L.ehr174 -13.83 -1.82
L.ehr58 -8.23 -0.02 L.ehr175 -14.12 -2.82
L.ehr59 -10.40 -0.22 L.ehr176 -14.44 -3.00
L.ehr60 -9.49 -0.11 L.ehr177 -14.30 -2.15
L.ehr100 -10.07 -1.19 L.ehr178 -13.44 -2.40
L.ehr101 -8.97 -0.55 L.ehr199 -14.07 -3.48
L.ehr150 -8.83 -0.04 L.ehr200 -12.71 -1.42
L.ehr151 -10.21 -1.27 L.ehr201 -13.49 -1.81
L.ehr152 -11.21 -1.30 L.ehr202 -13.15 -2.24
L.ehr153 -10.84 -0.02 L.ehr203 -15.29 -2.32
L.ehr154 -11.21 -0.85 L.ehr204 -14.38 -2.22
L.ehr429 -10.81 -1.03 L.ehr205 -11.99 -1.41
L.ehr430 -10.31 -0.68 L.ehr206 -15.87 -2.86
L.ehr431 -9.78 0.29 L.ehr207 -15.47 -2.59
L.ehr432 -9.57 -0.24 L.ehr208 -15.07 -3.60
L.ehr433 -9.38 -0.61
L.ehr434 -9.97 -0.48
L.ehr435 -9.72 0.09
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Table A2.1 (cont.). Bulk muscle and otolith 8'°C values of Lutjanus ehrenbergii collected
from a) Al Lith Bay, b) Coast Guard Reef and c¢) Ron’s Reef near Al Lith, Saudi Arabia
in the Red Sea (Chapter 3). Whole otoliths were analyzed for juvenile L. ehrenbergii
from Al Lith Bay, and the outer edge of otoliths were analyzed for adult L. ehrenbergii
from Coast Guard Reef and Ron’s Reef.

c) Ron's Bulk muscle Bulk otolith
Reef 8" C 3" C
L.ehr189 -15.99 -3.41
L.ehr190 -15.60 -4.17
L.ehr191 -18.63 -3.18
L.ehr192 -17.94 -2.87
L.ehr193 -17.30 -4.43
L.ehr194 -17.58 -4.04
L.ehr195 -15.97 -2.20
L.ehr196 -17.43 -4.31
L.ehr197 -15.74 -4.61
L.ehr198 -16.92 -5.02
L.ehrd16 -19.00 -4.95
L.ehr417 -18.54 -4.49
L.chr418 -18.22 -3.46
L.chr419 -17.21 -2.85
L.ehr420 -18.77 -4.08
L.echr421 -18.39 -3.70
L.ehr422 -18.02 -4.20
L.chr423 -17.74 -2.58
L.chr424 -16.98 -2.45
L.chr425 -16.79 -3.59
L.ehrd26 -16.65 -2.90
L.chr427 -16.28 -3.62
L.ehr428 -16.42 -2.51
L.ehr429 -16.73 -2.23
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Table A2.3. Individual amino acid 8"°C values of Lutjanus ehrenbergii muscle from a) Al

Lith Bay, b) Coast Guard Reef and c) Ron’s Reef (Chapter 3).

a) Al Lith Bay L.ehr48 L.ehr49 L.ehr50 L.ehr51 L.ehr150
Alanine -7.22 -6.12 -7.24 -7.90 -6.81
Glycine -0.39 1.15 -0.31 -1.38 0.78
Threonine -2.10 -3.11 -4.82 -4.00 -2.64
Serine -2.61 -1.03 -2.43 -3.56 -1.70
Valine -13.51 -12.49 -13.40 -13.56 -13.26
Leucine -16.75 -17.88 -16.65 -15.00 -17.64
Isoleucine -13.20 -11.04 -11.36 -10.02 -10.88
Proline -5.92 -4.58 -5.76 -6.87 -5.89
Aspartic Acid -8.94 -7.73 -8.77 -9.77 -8.55
Glutamic Acid -7.85 -6.12 -7.43 -8.84 -7.89
Phenylalanine -17.81 -17.96 -18.28 -19.67 -18.37
b) Coast Guard Reef  L.ehr171  L.ehr172 L.ehr173 L.ehr174 L.ehr178
Alanine -12.43 -13.18 -12.74 -12.60 -12.05
Glycine -3.32 -4.15 -4.04 -3.86 -4.14
Threonine -5.30 -6.90 -6.76 -5.04 -6.16
Serine -2.31 -2.93 -1.24 -2.40 -2.66
Valine -13.95 -14.26 -14.73 -14.33 -14.05
Leucine -22.47 -21.02 -22.71 -22.49 -23.01
Isoleucine -16.12 -17.56 -18.20 -16.04 -16.56
Proline -11.00 -9.36 -9.85 -10.29 -10.44
Aspartic Acid -10.33 -9.96 -9.26 -11.11 -10.46
Glutamic Acid -11.75 -10.47 -10.10 -11.69 -11.35
Phenylalanine -19.95 -19.70 -20.40 -20.38 -20.63
c) Ron's Reef L.ehr191 L.ehr192 L.ehr193 L.ehr194 L.ehr196
Alanine -10.77 -11.89 -10.80 -8.45 -10.30
Glycine -8.44 -6.72 -7.48 -4.27 -5.79
Threonine -9.69 -10.49 -9.19 -8.26 -7.84
Serine -4.89 -3.90 -4.27 -1.09 -1.87
Valine -16.31 -16.58 -15.95 -14.87 -15.45
Leucine -24.03 -23.08 -23.73 -23.26 -22.36
Isoleucine -17.45 -17.55 -16.46 -15.69 -15.04
Proline -9.38 -11.41 -9.47 -8.13 -8.11
Aspartic Acid -9.09 -10.54 -9.29 -6.39 -7.30
Glutamic Acid -11.84 -12.36 -11.47 -9.34 -11.05
Phenylalanine -21.59 -22.17 -20.95 -20.80 -20.76
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Table A2.4. Individual amino acid 8"°C values of Lutjanus ehrenbergii otoliths from a)
Al Lith Bay, b) Coast Guard Reef and ¢) Ron’s Reef (Chapter 3). Whole otoliths were
analyzed for juvenile L. ehrenbergii from Al Lith Bay, and the outer edge of otoliths
were analyzed for adult L. ehrenbergii from Coast Guard Reef and Ron’s Reef.

a) Al Lith Bay L.ehr48 L.ehr49 L.ehr50 L.ehr51 L.ehr150
Alanine -5.73 -5.56 -7.55 -5.41 -5.65
Glycine 2.03 4.73 1.40 0.61 0.11
Threonine -3.65 -6.19 -5.79 -5.68 -1.88
Serine -4.23 -1.30 -4.51 -6.28 -0.33
Valine -12.57 -13.92 -16.10 -12.81 -12.86
Leucine -18.17 -16.34 -16.23 -17.46 -17.56
Isoleucine -9.65 -11.82 -10.02 -10.36 -9.92
Proline -5.91 -5.05 -3.30 -5.30 -5.98
Aspartic Acid -5.44 -7.08 -7.05 -9.69 -9.57
Glutamic Acid -8.47 -9.75 -8.73 -11.61 -8.51
Phenylalanine -19.08 -17.71 -18.56 -19.63 -18.91
b) Coast Guard Reef  L.ehr171 L.ehr172 L.ehr173 L.ehr174 L.ehr178
Alanine -11.55 -12.02 -12.20 -12.27 -11.83
Glycine -2.46 -3.43 -3.54 -3.13 -3.78
Threonine -4.10 -5.23 -6.19 -3.97 -5.73
Serine -0.95 -1.84 -1.08 -0.47 -2.04
Valine -13.62 -13.60 -13.75 -13.30 -13.95
Leucine -21.43 -20.69 -22.20 -22.11 -21.97
Isoleucine -16.35 -17.50 -16.93 -15.50 -15.31
Proline -10.37 -9.26 -8.46 -9.01 -9.70
Aspartic Acid -9.96 -8.48 -8.46 -10.46 -9.60
Glutamic Acid -11.01 -9.97 -9.49 -11.15 -10.73
Phenylalanine -19.20 -19.50 -19.71 -18.90 -20.53
c) Ron's Reef L.ehr191 L.ehr192 L.ehr193  L.ehr194 L.ehr196
Alanine -10.22 -10.79 -10.21 -8.06 -9.32
Glycine -6.00 -5.76 -7.02 -3.84 -4.36
Threonine -8.98 -10.21 -9.07 -7.11 -6.74
Serine -4.45 -2.95 -3.72 -0.17 -0.84
Valine -15.47 -15.60 -14.96 -13.89 -14.68
Leucine -23.21 -22.02 -22.55 -22.44 -21.47
Isoleucine -16.24 -16.33 -15.91 -14.71 -14.36
Proline -8.05 -10.22 -8.63 -7.02 -7.73
Aspartic Acid -6.76 -9.74 -7.75 -5.30 -6.13
Glutamic Acid -10.92 -11.52 -10.36 -7.89 -9.77
Phenylalanine -20.56 -21.98 -20.61 -19.46 -18.91
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APPENDIX III

Table A3.1. Bulk otolith 8"°C and §'*0 values from Lutjanus ehrenbergii collected in a)
Al Lith Bay, b) Khor Al Kharrar Bay, c) Cape Al-Askar Bay, d) Coast Guard Reef and e)
Ron’s Reef along the coast of Saudi Arabia in the Red Sea (Chapter 4). Whole otoliths
were analyzed for juvenile L. ehrenbergii from sites a, b, and ¢, and the outer edge of
otoliths were analyzed for adult L. ehrenbergii from d and e.

Otolith Otolith d) Coast Otolith Otolith

a) Al Lith Bay d"*C 80 Guard Reef d"C 30

L.ehr48 -1.54 -0.75 L.ehr171 -2.26 -0.79

L.ehr49 -0.38 -1.16 L.ehr172 -3.08 -0.72

L.ehr50 -1.16 -0.65 L.ehr173 -1.80 -0.65

L.ehr51 -0.58 -0.46 L.ehr174 -1.82 -0.55

L.ehr150 -0.04 -1.22 L.ehr178 -2.40 -0.75

L.ehrl51 -1.27 -1.19 L.ehr199 -3.48 -0.90

L.ehr152 -0.15 -0.23 L.ehr203 -2.32 -0.34

L.ehr153 -0.02 -0.16 L.ehr206 -2.86 -0.52

L.ehr154 -1.30 -1.05 L.ehr207 -2.59 -0.52
L.ehr208 -3.60 -0.84

b) Khor Al Otolith Otolith ¢) Ron's Otolith Otolith

Kharrar Bay d"C 80 Reef d"C 30

L.ehr20 -1.36 -0.10 L.ehr189 -3.41 -0.24

L.ehr21 -0.60 -0.08 L.ehr190 -4.17 -0.68

L.ehr25 0.30 0.19 L.ehr191 -3.18 -0.85

L.ehr31 0.29 -0.05 L.ehr192 -2.87 -0.65

L.ehr32 -1.16 -0.29 L.ehr193 -4.43 -0.20

L.ehr33 -1.02 -0.02 L.ehr194 -4.04 -0.37

L.ehr34 -0.11 -0.10 L.ehr195 -2.20 -1.03

L.ehr35 0.09 0.11 L.ehr196 -4.31 -0.22

L.ehr36 -0.58 -0.17 L.ehr197 -4.61 -0.33

L.ehr37 -1.18 -1.29 L.ehr198 -5.02 -0.44

c) Cape Al- Otolith Otolith

Askar Bay d"*C 80

L.chrd04 2.53 -1.06

L.ehr405 -1.04 0.73

L.chr406 123 091

L.chr407 -0.88 0.12

L.ehr408 261 0.02

L.ehr409 -1.54 0.23

L.ehrd11 143 -0.81

L.ehr412 -1.24 0.14

L.chrd13 -1.00 -0.28

L.chrd14 -0.34 -0.97
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Table A3.2 Bulk otolith "°C and 8'*0 values from Lutjanus apodus collected in a) Great
Pond, St. Croix, b) Salt River, St. Croix, ¢) Montalva Bay, Puerto Rico and d) Punta
Guayanilla, Puerto Rico in the Caribbean Sea (Chapter 4). Whole otoliths were analyzed
for all juvenile L. apodus samples.

a) Great Pond, St. Otolith Otolith
Croix e Ke)
GPS1 -2.01 -1.10
GPS2 -3.11 -1.07
GPS3 -1.34 -0.82
GPS4 -3.41 -1.28
b) Salt River, St. Otolith Otolith
Croix e Ke)
SRS1 -2.17 -0.92
SRS2 -2.02 -0.73
SRS3 -3.52 -0.98
SRS4 -4.17 -0.54
¢) Montalva Bay, Otolith Otolith
Puerto Rico d"*C d"%0
MOSI1 -7.03 -0.84
MOS2 -5.72 -1.16
MOS3 -1.32 -1.25
MOS4 -1.17 -0.90

d) Punta Guayanilla, Otolith Otolith

Puerto Rico d"C 8"%0
GUS2 4.87 -1.80
GUS3 421 -1.34
GUSS -4.61 -1.68
GUS6 -4.83 -1.52
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Table A3.3 Bulk otolith 8"°C and 8'*0 values from Lutjanus argentiventris collected in a)
Rio Luis, b) Rio Is Letta and c) Loraine along the west coast of Panama in the Eastern
Pacific Ocean (Chapter 4). Whole otoliths were analyzed for all juvenile L. argentiventris
samples.

a) Rio Luis Otolith §"°C Otolith 8'*0
LA288 -7.32 -3.14
LA292 -6.48 -2.78
LA300 -6.99 -2.38
LA301 -6.63 -3.48
LA302 -7.23 -2.74
b) Rio Is Letta Otolith 8"°C Otolith 8'*0
LA256 -8.10 -3.31
LA258 -8.46 -3.80
LA259 -6.64 2.77
LA262 -7.44 2.27
LA263 -7.00 -2.54
¢) Loraine Otolith 8"°C Otolith 8'°0
LA137 -5.67 -2.34
LA138 -6.42 -2.52
LA139 -5.48 -3.27
LA141 -5.73 2.47
LA142 -6.21 -3.44
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Table A3.4 Bulk muscle 8"°C and 8"°N values from Lutjanus ehrenbergii collected in a)
Al Lith Bay, b) Khor Al Kharrar Bay, ¢) Cape Al-Askar Bay, d) Coast Guard Reef and ¢)
Ron’s Reef along the coast of Saudi Arabia in the Red Sea (Chapter 4).

Muscle Muscle d) Coast Muscle ~ Muscle

a) Al Lith Bay d"c 3"N Guard Reef  8°C 8"N

L.ehr48 -11.61 8.53 L.ehr171 -15.59 7.82

L.ehr49 -10.78 7.63 L.ehr172 -15.18 8.69

L.ehr50 -10.45 8.46 L.ehr173 -14.73 8.58

L.ehr51 -9.90 8.93 L.ehr174 -13.83 8.53

L.ehr150 -8.83 8.94 L.ehr178 -13.44 9.07

L.ehr151 -10.21 8.00 L.ehr199 -14.07 9.15

L.ehr152 -11.02 8.89 L.ehr203 -15.29 8.60

L.ehr153 -10.84 8.74 L.ehr206 -15.87 891

L.ehr154 -11.21 9.30 L.ehr207 -15.47 9.40
L.ehr208 -15.07 7.57

b) Khor Al Muscle Muscle e) Ron's Muscle ~ Muscle

Kharrar Bay 3" C 8N Reef d"C 8N

L.ehr20 -10.34 7.46 L.ehr189 -15.99 8.88

L.ehr21 -9.98 6.54 L.ehr190 -15.60 8.62

L.ehr25 -10.13 7.02 L.ehr191 -18.63 8.14

L.ehr31 -9.58 6.91 L.ehr192 -17.94 7.94

L.ehr32 -10.43 6.82 L.ehr193 -17.30 8.42

L.ehr33 -10.56 6.97 L.ehr194 -17.58 8.98

L.ehr34 -10.04 7.19 L.ehr195 -15.97 8.25

L.ehr35 -10.12 7.11 L.ehr196 -17.43 7.48

L.ehr36 -10.48 6.96 L.ehr197 -15.74 8.39

L.ehr37 -10.27 6.59 L.ehr198 -16.92 8.21

c) Cape Al- Muscle Muscle

Askar Bay 3" C 8N

L.ehr404 -11.46 8.57

L.ehr405 -10.64 8.13

L.ehr406 -9.40 8.28

L.ehr407 -11.23 7.29

L.ehr408 -10.68 8.14

L.ehr409 -10.66 8.88

L.ehr411 -10.98 8.42

L.ehr412 -9.88 7.38

L.ehr413 -10.37 8.77

L.ehr414 -10.43 8.04
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Table A3.5. Bulk tissue 8"°C and 8"°N values from selected food web components
collected in a) Al Lith Bay, b) Coast Guard Reef and c¢) Ron’s Reef along the coast of
Saudi Arabia in the Red Sea (Chapter 4).

a) Al Lith Bay Bulk 8"°C Bulk 8N
Ribbon seagrass (Halodule uninervis) H.unil -7.08 -1.98
Ribbon seagrass (Halodule uninervis) H.uni2 -8.08 1.03
Ribbon seagrass (Halodule uninervis) H.uni3 -8.43 -0.01
White mangrove (Avicennia marina) A.marl -27.04 1.03
White mangrove (Avicennia marina) A.mar2 -28.29 2.09
White mangrove (Avicennia marina) A.mar3 -27.81 1.11
Zooplankton PT1 -18.52 5.01
Zooplankton PT2 -18.79 4.68
Zooplankton PT3 -19.15 5.56
Crab (Metopograpsus thukuhar) M.thul -12.34 4.83
Crab (Metopograpsus thukuhar) M.thu2 -12.81 4.93
Crab (Metopograpsus thukuhar) M.thu3 -13.16 5.20
b) Coast Guard Reef Bulk 8"*C Bulk 8"°N
Zooplankton PT4 -17.26 5.11
Zooplankton PT5 -17.70 4.24
Zooplankton PT6 -15.74 4.56
Crab (Trapezia tigrina) T.tigl -15.37 5.02
Crab (Trapezia tigrina) T.tig2 -15.11 5.57
Crab (Trapezia tigrina) T.tig3 -15.01 6.62
¢) Ron's Reef Bulk 8"°C Bulk 8"°N
Zooplankton PT7 -19.89 4.24
Zooplankton PT8 -19.95 4.12
Zooplankton PT9 -20.26 4.02
Crab (Trapezia tigrina) T.tigd -17.57 5.16
Crab (Trapezia tigrina) T.tig5 -17.73 6.12
Crab (Trapezia tigrina) T.tig6o -17.29 5.85
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Table A3.7. Individual amino acid 8'°C values from Lutjanus apodus muscle collected in
a) Great Pond, St. Croix, b) Salt River, St. Croix, ¢) Montalva Bay, Puerto Rico and d)
Punta Guayanilla, Puerto Rico in the Caribbean Sea (Chapter 4).

a) Great Pond, St. Croix GPS1 GPS2 GPS3 GPS4
Alanine -10.27 -13.73 -12.71 -13.18
Glycine 3.03 0.61 7.90 4.18

Threonine -0.50 -4.35 -1.08 -0.63

Serine 5.91 0.45 5.96 2.44

Valine -10.94 -11.71 -10.38 -11.20
Leucine -13.60 -17.09 -11.74 -13.51
Isoleucine -8.46 -8.61 -6.96 -8.88

Proline -4.92 -4.71 -4.75 -6.38

Aspartic Acid -2.90 -6.09 -2.71 -3.66
Glutamic Acid -6.24 -9.45 -7.29 -8.82
Phenylalanine -15.57 -17.29 -15.09 -15.83
b) Salt River, St. Croix SRS1 SRS2 SRS3 SRS4
Alanine -16.54 -18.08 -19.14 -19.05
Glycine -4.12 -4.74 -7.30 -12.06
Threonine -12.32 -14.19 -11.97 -13.60
Serine -4.52 -8.13 -6.41 -12.15
Valine -20.40 -18.50 -20.63 -22.07
Leucine -22.03 -22.11 -23.59 -25.03
Isoleucine -15.97 -15.27 -16.28 -18.41
Proline -13.97 -13.11 -15.47 -16.12
Aspartic Acid -17.88 -15.56 -17.01 -16.03
Glutamic Acid -13.37 -15.40 -18.80 -17.38
Phenylalanine -21.73 -22.08 -22.01 -21.21
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Table A3.7 (cont.). Individual amino acid 8"°C values from Lutjanus apodus muscle
collected in a) Great Pond, St. Croix, b) Salt River, St. Croix, ¢c) Montalva Bay, Puerto
Rico and d) Punta Guayanilla, Puerto Rico in the Caribbean Sea (Chapter 4).

c) Montalva Bay, Puerto Rico MOSI1 MOS2 MOS3 MOS4
Alanine -20.58 -16.77 -11.23 -8.75
Glycine -9.52 -8.09 1.53 2.73
Threonine -17.99 -16.31 -6.13 -5.88
Serine -7.01 1.29 1.29 2.44
Valine -24.12 -22.41 -18.28 -17.02
Leucine -25.28 -24.21 -18.90 -16.48
Isoleucine -19.29 -18.83 -11.42 -10.35
Proline -14.92 -12.19 -4.76 -4.74
Aspartic Acid -21.96 -17.67 -5.95 -5.74
Glutamic Acid -19.24 -15.52 -7.97 -5.40
Phenylalanine -24.41 -23.53 -17.29 -17.19

d) Punta Guayanilla, Puerto Rico ~ GUS2 GUS3 GUSS5 GUS6

Alanine -14.64 -17.72 -18.98 -16.95
Glycine -5.47 -4.31 -5.33 -3.59
Threonine -9.07 -12.97 -13.37 -13.99
Serine -2.69 -2.27 -6.47 -4.62
Valine -24.67 -24.20 -24.66 -24.53
Leucine -23.70 -24.74 -24.06 -23.76
Isoleucine -13.82 -15.66 -16.25 -16.68
Proline -12.21 -12.29 -15.45 -15.41
Aspartic Acid -11.47 -12.90 -10.74 -12.38
Glutamic Acid -10.12 -13.64 -14.81 -13.45
Phenylalanine -23.38 -22.20 -21.67 -20.47
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Table. A3.10. Individual amino acid 8"°C values from Lutjanus apodus otolith collected
in a) Great Pond, St. Croix, b) Salt River, St. Croix, ¢) Montalva Bay, Puerto Rico and d)
Punta Guayanilla, Puerto Rico in the Caribbean Sea (Chapter 4). Whole otoliths were
used for all L. apodus samples.

a) Great Pond, St. Croix GPS1 GPS2 GPS3 GPS4
Alanine -12.32 -15.76 -13.93 -15.25
Glycine 0.80 -1.84 4.29 2.57

Threonine -3.31 -6.67 -2.61 -4.13

Serine 2.29 -3.23 3.48 1.63

Valine -13.06 -14.22 -11.25 -12.25
Leucine -15.81 -18.79 -13.65 -14.56
Isoleucine -10.18 -10.82 -8.14 -9.05

Proline -6.33 -7.63 -6.82 -7.82
Aspartic Acid -4.89 -7.27 -2.92 -4.44
Glutamic Acid -1.77 -10.09 -8.74 -10.05
Phenylalanine -17.24 -18.26 -15.62 -16.40
b) Salt River, St. Croix SRS1 SRS2 SRS3 SRS4
Alanine -18.89 -20.10 -21.93 -23.20
Glycine -9.95 -9.26 -12.55 -15.52
Threonine -14.75 -15.67 -16.11 -17.90
Serine -11.29 -12.34 -11.75 -14.65
Valine -21.73 -21.16 -23.15 -24.38
Leucine -23.34 -23.84 -26.14 -26.83
Isoleucine -17.17 -17.59 -18.85 -20.04
Proline -16.47 -15.17 -17.06 -17.92
Aspartic Acid -19.43 -19.50 -19.62 -20.16
Glutamic Acid -16.60 -18.19 -19.59 -20.51
Phenylalanine -23.31 -23.62 -23.18 -23.78
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Table. A3.10 (cont.). Individual amino acid 8"°C values from Lutjanus apodus otolith
collected in a) Great Pond, St. Croix, b) Salt River, St. Croix, ¢c) Montalva Bay, Puerto
Rico and d) Punta Guayanilla, Puerto Rico in the Caribbean Sea (Chapter 4). Whole
otoliths were used for all L. apodus samples.

¢) Montalva Bay, Puerto Rico MOSI MOS?2 MOS3 MOS4
Alanine -20.45 -20.07 -13.12 -10.43
Glycine -11.57 -13.23 -1.90 -0.78
Threonine -21.35 -19.14 -8.17 -8.13
Serine -9.53 -2.40 -2.40 -1.32
Valine -26.47 -25.26 -19.67 -18.44
Leucine -26.91 -26.18 -19.83 -19.30
Isoleucine -20.99 -20.47 -13.52 -12.57
Proline -16.23 -15.23 -6.92 -6.29
Aspartic Acid -21.49 -19.22 -8.05 -7.08
Glutamic Acid -19.92 -18.23 -9.41 -8.64
Phenylalanine -26.27 -25.16 -18.86 -18.49
d) Punta Guayanilla, Puerto Rico GUS2 GUS3 GUSS GUS6
Alanine -16.53 -19.13 -18.12 -19.12
Glycine -6.60 -6.57 -8.64 -8.03
Threonine -14.57 -14.24 -15.50 -16.89
Serine -7.95 -6.33 -9.90 -8.78
Valine -25.60 -27.12 -27.14 -26.46
Leucine -24.86 -25.92 -25.65 -25.28
Isoleucine -16.34 -17.32 -17.53 -18.56
Proline -14.58 -14.53 -17.65 -17.72
Aspartic Acid -15.31 -15.43 -14.39 -14.13
Glutamic Acid -14.48 -17.10 -16.69 -15.75
Phenylalanine -24.72 -24.06 -22.64 -22.45
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Table A3.11. Individual amino acid 8"°C values from Lutjanus argentiventris collected in
a) Rio Luis, b) Rio Is Letta and c) Loraine along the west coast of Panama in the Eastern
Pacific Ocean (Chapter 4). Whole otoliths were analyzed for all juvenile L. argentiventris
samples.

a) Rio Luis LA288 LA292 LA300 LA301 LA302
Alanine -21.33 -20.85 -22.46 -20.76 -20.84
Glycine -10.31 -8.58 -10.14 -8.73 -9.87

Threonine -15.33 -14.56 -15.82 -15.61 -15.54
Serine -15.82 -12.40 -13.83 -12.84 -12.96
Valine -25.95 -24.33 -25.21 -24.24 -24.65
Leucine -29.76 -29.99 -31.31 -29.72 -31.20
Isoleucine -19.10 -19.54 -18.13 -19.05 -19.16
Proline -16.78 -17.23 -15.45 -19.33 -17.70
Aspartic Acid -16.38 -15.32 -20.00 -18.09 -18.16
Glutamic Acid -17.74 -17.70 -18.23 -20.89 -21.79
Phenylalanine -27.01 -27.47 -27.99 -27.62 -28.19
b) Rio Is Letta LA256 LA258 LA259 LA262 LA263
Alanine -20.50 -23.99 -20.39 -21.66 -22.23
Glycine -10.92 -10.73 -9.59 -9.04 -11.60
Threonine -16.31 -15.36 -16.33 -16.60 -16.61
Serine -9.76 -10.15 -10.57 -9.37 -9.46

Valine -26.94 -25.68 -27.59 -27.87 -25.67
Leucine -32.10 -32.11 -30.38 -30.34 -31.02
Isoleucine -20.47 -19.60 -19.52 -18.73 -18.89
Proline -18.22 -16.81 -19.42 -19.07 -18.75
Aspartic Acid -18.81 -21.48 -21.66 -19.87 -20.34
Glutamic Acid -17.43 -19.88 -20.55 -18.58 -19.47
Phenylalanine -27.79 -26.45 -25.21 -26.09 -25.75
c) Loraine LA137 LA138 LA139 LA141 LA142
Alanine -19.19 -20.25 -21.14 -19.84 -19.97
Glycine -13.09 -12.43 -13.80 -12.98 -12.11
Threonine -14.70 -15.14 -14.51 -13.53 -15.19
Serine -11.38 -10.85 -11.41 -10.28 -10.12
Valine -24.01 -23.51 -22.91 -23.60 -23.57
Leucine -27.15 -27.22 -26.54 -26.41 -26.79
Isoleucine -17.41 -17.07 -17.53 -16.94 -16.76
Proline -16.16 -15.62 -16.11 -15.82 -16.02
Aspartic Acid -16.30 -17.87 -19.64 -17.45 -18.49
Glutamic Acid -17.40 -18.92 -18.63 -17.83 -18.67
Phenylalanine -23.09 -23.67 -23.71 -23.73 -23.97
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APPENDIX IV

Table A4.1. Total Length (mm) and muscle 8'°N values of Lutjanus ehrenbergii collected

from coastal wetlands and coral reefs along a 50 km cross-shelf transect from Al Lith,
Saudi Arabia in the Red Sea (Chapter 5).

a) Al Lith Bay Length (mm) Muscle §"°N
L.ehr48 72 8.53
L.ehr49 74 7.63
L.ehr50 80 8.46
L.ehr51 87 8.93
L.ehr150 72 8.94
L.ehr151 74 8.00
L.ehr152 80 8.89
L.ehr153 61 8.74
L.ehr154 87 9.30

b) Cape Al-Askar Bay Length (mm) Muscle §"°N

L.ehr404 62 8.57
L.ehr405 63 8.13
L.ehr406 67 8.28
L.ehr407 51 7.29
L.ehr408 88 8.14
L.ehr409 85 8.88
L.ehr411 94 8.42
L.ehr412 85 7.38
L.ehr413 77 8.77
L.chr414 72 8.04

c) Cape Al-Askar Reef Length (mm) Muscle §"°N

L.ehr399 164 8.90
L.ehr400 117 8.78
L.ehr401 120 8.79
L.ehr402 97 8.73
L.ehr403 125 8.80
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Table A4.1 (cont.). Total Length (mm) and muscle 8'°N values of Lutjanus ehrenbergii

collected from coastal wetlands and coral reefs along a 50 km-cross shelf transect from
Al Lith, Saudi Arabia in the Red Sea (Chapter 5).

d) Coast Guard Reef Length (mm) Muscle §"°N

L.ehr169 179 7.95
L.ehr170 183 8.52
L.ehrl71 159 7.82
L.ehr172 154 8.69
L.ehr173 246 8.58
L.ehr174 248 8.53
L.ehr175 163 8.41
L.ehr176 187 8.79
L.ehr177 154 9.18
L.ehr178 236 9.07
L.ehr199 176 9.15
L.ehr200 156 9.26
L.ehr201 163 9.06
L.ehr202 181 9.21
L.ehr203 149 8.60
L.ehr204 149 9.42
L.ehr205 170 9.84
L.ehr206 187 8.91
L.ehr207 175 9.40
L.chr208 146 7.57
e) Ron's Reef Length (mm) Muscle §"°N
L.ehr189 206 8.88
L.ehr190 218 8.62
L.ehr191 227 8.14
L.ehr192 238 7.94
L.ehr193 237 8.42
L.ehr194 230 8.98
L.ehr195 200 8.25
L.ehr196 230 7.48
L.ehr197 189 8.39
L.ehr198 196 8.21
f) LI's Reef Length (mm) Muscle §"°N
L.ehr156 179 9.74
L.ehr157 218 9.44
L.ehr158 225 9.87
L.ehr160 217 9.12
L.ehrl61 235 9.32
L.ehr162 230 9.64
L.ehr163 191 9.83
L.ehr164 210 8.98
L.ehr165 198 9.57

200



Table A4.1 (cont.). Total Length (mm) and muscle 8'°N values of Lutjanus ehrenbergii

collected from coastal wetlands and coral reefs along a 50 km cross-shelf transect from
Al Lith, Saudi Arabia in the Red Sea (Chapter 5).

g) Abu Latt Island Length (mm) Muscle §"°N
L.ehr139 149 7.88
L.ehr140 166 8.69
L.ehr141 154 8.23
L.ehr142 125 9.35
L.ehr143 164 7.63
L.ehr144 184 8.78
L.ehr145 165 8.31
L.ehr146 172 10.16
L.ehr147 141 8.02
L.ehr148 142 8.66

h) Saut Reef Length (mm) Muscle §"°N
L.ehrl16 230 8.70
L.ehr117 196 8.36
L.ehr118 219 9.71
L.ehr119 227 9.95
L.ehr120 201 10.07

i) Brown Reef Length (mm) Muscle §"°N
L.ehr209 225 9.41
L.ehr210 216 9.19
L.ehr211 203 9.68
L.ehr212 195 9.47
L.ehr213 179 8.90
L.ehr214 185 8.87

j) Shi'b Sulaym Reef Length (mm) Muscle §"°N

L.ehr128 215 8.28
L.ehr129 215 8.95
L.ehr130 218 8.54
L.ehr131 220 8.33
L.ehr132 197 8.64
L.ehr133 198 8.71
L.ehr134 200 8.92
L.ehr135 214 8.73
L.ehr136 213 8.99
L.ehr137 185 9.06
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Table A4.1 (cont.). Total Length (mm) and muscle 8'°N values of Lutjanus ehrenbergii

collected from coastal wetlands and coral reefs along a 50 km cross-shelf transect from
Al Lith, Saudi Arabia in the Red Sea (Chapter 5).

k) Canyon Reef Length (mm) Muscle §"°N

L.ehr179 189 8.80
L.ehr180 211 9.80
L.ehr181 220 9.67
L.ehr182 211 9.45
L.ehr183 227 9.09
L.ehr185 210 9.74
L.ehr186 221 9.28
L.ehr187 188 9.02
L.ehr188 223 9.82
L.ehr189 209 9.84

1) MarMar Reef Length (mm) Muscle §"°N

L.ehr102 204 9.17
L.ehr103 218 9.26
L.ehr104 228 9.49
L.ehr105 216 8.93
L.ehr106 220 9.98
L.ehr107 214 8.42
L.ehr108 220 10.10
L.ehr109 187 9.13
L.ehrll1 224 8.96
L.ehr112 187 9.13
L.ehr113 196 9.51
L.ehr114 165 8.68
L.ehrll5 189 9.23

m) Dohra Reef Length (mm) Muscle §"°N

L.ehr121 233 9.07
L.ehr122 231 9.06
L.ehr123 223 9.04
L.ehr124 215 9.02
L.ehr125 216 9.03
L.ehr126 192 8.97
L.ehr127 214 9.02
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Table A4.2 (cont.). Individual amino acid 8"°C values of Lutjanus ehrenbergii muscle
from coastal wetlands (a and b), coastal reefs (c and d), shelf reefs (e, f, h, and 1), a shelf
island (g) and oceanic reefs (j to m) along 50 km cross-shelf transect from Al Lith, Saudi
Arabia in the Red Sea (Chapter 5).

i) Brown Reef L.ehr209 L.ehr210 L.ehr211 L.ehr212 L.ehr213
Alanine -11.87 -9.57 -9.41 -10.65 -11.59
Glycine -7.86 -7.16 -6.90 -6.79 -6.57
Threonine -7.10 -6.29 -8.10 -9.50 -9.08
Serine -4.20 -3.35 -3.79 -4.24 -5.29
Valine -15.24 -14.55 -14.73 -14.08 -15.16
Leucine -23.65 -22.97 -23.59 -24.46 -25.06
Isoleucine -16.64 -16.20 -16.31 -16.24 -15.93
Proline -9.92 -10.53 -9.81 -9.64 -11.43
Aspartic Acid -11.95 -9.29 -9.66 -9.64 -7.47
Glutamic Acid -11.85 -10.73 -10.61 -10.36 -10.70
Phenylalanine -20.29 -19.70 -19.76 -19.51 -19.42

j) Shi'b Sulaym Reef L.ehr128 L.ehr129 L.ehr130 L.ehr131 L.ehr132

Alanine -11.19 -11.53 -12.54 -11.33 -8.85
Glycine -9.40 -10.56 -9.96 -9.21 -10.05
Threonine -10.07 -10.97 -11.07 -9.11 -9.02
Serine -5.36 -7.43 -6.90 -4.28 -7.06
Valine -14.75 -15.80 -16.11 -15.65 -14.27
Leucine -25.33 -26.24 -25.65 -25.11 -24.27
Isoleucine -17.13 -17.94 -18.20 -18.03 -15.97
Proline -10.85 -9.26 -9.98 -10.15 -8.36
Aspartic Acid -11.43 -11.07 -10.20 -10.91 -8.59
Glutamic Acid -12.35 -12.82 -12.32 -12.59 -10.93
Phenylalanine -21.74 -21.10 -20.28 -21.31 -18.99
k) Canyon Reef L.ehr179 L.ehr180 L.ehr181 L.ehr182 L.ehr183
Alanine -11.25 -12.73 -10.76 -8.89 -13.52
Glycine -7.24 -7.54 -6.82 -8.57 -6.94
Threonine -8.67 -7.75 -9.82 -8.59 -9.12
Serine -1.93 -4.34 -2.23 -5.71 -4.82
Valine -14.98 -14.57 -13.38 -12.93 -14.04
Leucine -25.48 -26.13 -24.14 -23.45 -24.73
Isoleucine -17.34 -16.72 -15.78 -15.81 -17.56
Proline -10.45 -10.43 -7.55 -8.31 -10.89
Aspartic Acid -10.43 -11.39 -8.82 -8.86 -11.94
Glutamic Acid -11.24 -13.28 -10.25 -10.35 -12.70
Phenylalanine -19.12 -20.05 -18.04 -18.28 -20.43
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Table A4.2 (cont.). Individual amino acid 8"°C values of Lutjanus ehrenbergii muscle
from coastal wetlands (a and b), coastal reefs (c and d), shelf reefs (e, f, h, and 1), a shelf
island (g) and oceanic reefs (j to m) along 50 km cross-shelf transect from Al Lith, Saudi
Arabia in the Red Sea (Chapter 5).

1) MarMar Reef =~ L.ehr102 L.ehr103 L.ehr104 L.ehrl05 L.ehr106

Alanine -8.05 -7.88 -10.24 -9.86 -7.97
Glycine -4.89 -2.94 -6.62 -7.50 -5.52
Threonine -8.14 -8.73 -1.75 -9.34 -8.85
Serine -1.77 -0.24 -3.19 -3.96 -3.47
Valine -12.62 -13.30 -13.51 -13.56 -12.52
Leucine -22.29 -22.81 -23.75 -24.69 -23.34
Isoleucine -14.04 -14.46 -14.78 -15.21 -14.08
Proline -8.46 -9.24 -10.14 -8.42 -6.95
Aspartic Acid -7.56 -8.45 -9.35 -7.55 -5.73
Glutamic Acid -10.06 -10.93 -10.58 -10.98 -9.21
Phenylalanine -16.76 -17.77 -18.18 -19.07 -16.54

m) Dohra Reef L.ehr121 L.ehr122 L.ehr123 L.ehr124 L.ehrl125

Alanine -11.14 -9.06 -5.24 -7.03 -8.35
Glycine -4.98 -4.15 -5.13 -5.16 -7.37
Threonine -10.00 -8.22 -7.71 -7.89 -8.31
Serine -1.10 -1.18 -1.05 -2.40 -4.46
Valine -14.02 -12.09 -12.95 -13.20 -12.94
Leucine -24.52 -22.39 -23.51 -24.03 -23.59
Isoleucine -15.75 -14.90 -14.49 -15.03 -14.51
Proline -10.26 -9.50 -7.38 -7.60 -9.67
Aspartic Acid -9.60 -8.13 -6.76 -5.09 -8.63
Glutamic Acid -11.20 -10.44 -8.25 -8.55 -11.52
Phenylalanine -18.85 -17.03 -19.02 -17.72 -17.96
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Table A4.3 (cont.). Individual amino acid §'°C values from juvenile cores of otoliths of

adult Lutjanus ehrenbergii collected from coastal reefs (a and b), shelf reefs (c, d, f, and
g), a shelf island (e) and oceanic reefs (h to k) along 50 km cross-shelf transect from Al
Lith, Saudi Arabia in the Red Sea (Chapter 5).

f) Saut Reef L.ehr116 L.ehr117 L.ehr118 L.ehr119 L.ehr120
Alanine -7.20 -9.27 -8.20 -7.00 -7.21
Glycine 2.13 -4.97 -6.83 3.16 1.68
Threonine -4.97 -7.60 -7.26 -3.92 -4.17
Serine 4.89 -4.28 -4.92 -1.12 3.72
Valine -10.92 -13.50 -13.22 -12.56 -11.32
Leucine -16.41 -21.26 -20.97 -15.48 -15.12
Isoleucine -12.31 -14.10 -13.90 -11.63 -12.08
Proline -7.88 -6.88 -6.00 -5.88 -6.99
Aspartic Acid -5.43 -7.05 -7.42 -8.38 -4.30
Glutamic Acid -5.70 -8.51 -7.78 -10.87 -2.62
Phenylalanine -16.72 -18.45 -18.21 -16.57 -16.47

g) Brown Reef = L.ehr209 L.ehr210 L.ehr211 L.ehr212 L.ehr213 L.ehr214

Alanine -8.51 -12.24 -4.72 -4.31 -4.83 -5.91

Glycine -7.80 -7.56 1.06 2.51 1.64 1.42

Threonine -7.66 -8.28 -5.53 -4.80 -4.50 -5.00
Serine -2.69 -5.89 5.42 4.78 3.63 -5.26
Valine -14.58 -14.60 -11.08 -10.48 -10.59 -13.10
Leucine -23.14 -24.43 -15.04 -14.67 -14.51 -17.00
Isoleucine -15.71 -15.17 -11.91 -11.33 -11.55 -12.20
Proline -9.58 -11.74 -6.45 -6.18 -4.96 -7.09
Aspartic Acid -9.07 -7.80 -5.72 -3.64 -3.19 -6.03
Glutamic Acid -9.83 -11.64 -5.43 -3.73 -3.19 -7.71

Phenylalanine -19.59 -18.72 -16.72 -15.96 -16.11 -17.89
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Table A4.3 (cont.). Individual amino acid §'°C values from juvenile cores of otoliths of
adult Lutjanus ehrenbergii collected from coastal reefs (a and b), shelf reefs (c, d, f, and
g), a shelf island (e) and oceanic reefs (h to k) along 50 km cross-shelf transect from Al
Lith, Saudi Arabia in the Red Sea (Chapter 5).

j) MarMar Reef = L.ehr102 L.ehrl03 L.ehr104 L.ehrl05 L.ehrl06 L.ehr107 L.ehr108

Alanine -6.19 -8.11 -5.01 -9.16 -5.34 -9.46 -8.87
Glycine 5.19 -2.14 2.89 -3.44 3.18 -4.50 -7.90
Threonine -3.90 -7.97 -5.55 -9.08 -4.84 -10.49 -7.85
Serine 7.63 1.28 6.79 -0.92 6.61 -1.52 -4.84
Valine -9.94 -12.81 -11.48 -13.68 -10.61 -15.12 -12.26
Leucine -14.44 -22.13 -15.26 -23.43 -14.81 -24.33 -22.78
Isoleucine -10.56 -13.88 -11.78 -14.55 -11.11 -15.99 -14.85
Proline -7.13 -8.56 -5.16 -9.45 -3.99 -10.28 -7.27
Aspartic Acid -4.01 -6.51 -1.97 -9.17 -0.86 -9.37 -7.75
Glutamic Acid -5.28 -11.02 -1.55 -11.11 -1.08 -12.44 -9.44
Phenylalanine -16.30 -17.20 -15.66 -18.51 -15.15 -19.29 -17.18

j) MarMar Reef L.ehr109 L.ehrlll L.ehr112 L.ehr113 L.ehr114 L.ehrll5

Alanine -8.27 -8.90 -9.87 -10.62 -10.38 -8.86
Glycine -6.47 -5.60 -6.13 -6.70 -7.02 -6.61
Threonine -7.33 -8.79 -9.77 -7.90 -8.37 -9.92
Serine -3.73 -2.89 -4.02 -2.81 -3.81 -4.32
Valine -11.60 -13.23 -13.86 -13.53 -14.13 -13.65
Leucine -22.06 -23.12 -23.76 -24.23 -24.83 -24.43
Isoleucine -14.15 -14.74 -15.32 -14.94 -15.65 -15.24
Proline -6.67 -9.62 -10.33 -10.75 -10.33 -8.37
Aspartic Acid -7.29 -8.85 -10.26 -9.36 -9.85 -6.21
Glutamic Acid -8.81 -11.26 -12.18 -10.89 -10.73 -11.08
Phenylalanine -16.79 -17.93 -18.40 -19.00 -19.33 -17.91

k) Dohra Reef L.ehr121 L.ehr122 L.ehr123 L.ehr124 L.ehrl25 L.ehr126 L.ehr127

Alanine -10.21 -10.58 -8.86 -7.01 -9.79 -10.56 -6.80
Glycine -4.59 -3.46 -8.22 2.67 -4.64 -5.32 -5.84
Threonine -9.69 -8.40 -8.61 -6.03 -8.60 -9.58 -7.75
Serine -1.36 0.87 -5.28 6.11 -1.22 -1.16 -2.12
Valine -13.60 -12.96 -13.36 -11.22 -12.41 -13.58 -12.61
Leucine -23.66 -23.30 -24.17 -15.80 -22.96 -23.28 -23.21
Isoleucine -14.75 -14.32 -14.82 -12.25 -15.44 -16.09 -13.92
Proline -9.70 -8.78 -10.81 -7.46 -10.58 -9.66 -7.43
Aspartic Acid -8.71 -7.31 -9.96 -5.46 -8.63 -9.92 -7.33
Glutamic Acid -11.23 -9.69 -11.88 -6.57 -11.11 -12.10 -8.86
Phenylalanine -18.26 -17.77 -18.49 -17.78 -17.41 -18.71 -17.42
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