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Multiproxy analysis of a new terrestrial and a marine Cretaceous-Paleogene (K-

Pg) boundary site from New Zealand 
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An integrated study of palynology, Mössbauer spectroscopy, mineralogy and osmium 

isotopes has led to the detection of the first K-Pg boundary clay layer in a Southern 

Hemisphere terrestrial setting. The K-Pg boundary layer was independently identified at 

centimetre resolution by all the above mentioned methods at the marine K-Pg boundary site of 

mid-Waipara and the terrestrial site of Compressor Creek (Greymouth coal field), New 

Zealand. Mössbauer spectroscopy shows an anomaly of Fe-containing particles in both K-Pg 

boundary sections: jarosite at mid-Waipara and goethite at Compressor Creek. This anomaly 

coincides with a turnover in vegetation indicated by an interval dominated by fern spores and 

extinction of key pollen species in both sections. In addition to the terrestrial floristic changes, 

the mid-Waipara section reveals a turnover in the dinoflagellate assemblages and the 

appearance of global earliest Danian index species. Geochemical data reveal relatively small 

iridium enrichments in the boundary layers of 321 pg/g at mid-Waipara and 176 pg/g at 

Compressor Creek. Unradiogenic 187Os/188Os values of the boundary clay reveal the presence 

of a significant extraterrestrial component. We interpret the accumulation of Fe nano-phases 

at the boundary as originating from both the impactor and the crystalline basement target 

rock. The goethite and jarosite are interpreted as secondary phases formed by weathering and 

diagenesis. The primary phases were probably controlled by the initial composition of the 

vapor plume and condensation kinetics rather than condensation thermodynamics. This 

investigation indicates that identification of Fe in nano-phases by Mössbauer spectroscopy is 

an accurate and cost-effective method for identifying impact event horizons and it efficiently 

complements widely used biostratigraphic and geochemical methods. 

 

1. INTRODUCTION 
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Geochemical, mineralogical, morphological, and paleontological evidence has now shown 

that the impact of a celestial body in what is now the Yucatán Peninsula in Mexico caused a 

sudden, dramatic, and global ecological perturbation ~65.5 million years ago (Ma) (Kring, 

2007). This event left its imprint as a global clay layer, the so-called Cretaceous-Paleogene 

(K-Pg) boundary layer (Alvarez et al., 1980; Smit, 1999; Kring, 2007; Schulte et al., 2010). 

Evidence strongly supporting an impact is provided by the global presence of iridium and 

other platinum group element (PGE) anomalies (e.g. Alvarez et al., 1980; Kyte, 2002; Claeys 

et al., 2002; Schulte et al., 2009), the occurrence of high T and high P phases of shocked 

quartz (Bohor et al., 1984, 1987; Izett, 1990; Claeys et al., 2002), the abundance of tektites 

and impact related glasses (Izett, 1991; Sigurdsson et al., 1991a, 1991b), and the findings of 

Ni-rich spinels in the uppermost clay layer that separates the Cretaceous from the Paleogene 

(Smit and Kyte, 1984; Kyte and Smit, 1986; Robin et al., 1992). 
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Detailed biostratigraphic studies of New Zealand sediments spanning the K-Pg boundary 

have been carried out over the last decade (Cooper, 2004, and references therein). The spores 

and pollen grains produced by land plants are the primary biostratigraphic tools employed to 

locate the K-Pg boundary in terrestrial settings, whilst transported spores, pollen and in-situ 

organic-walled dinoflagellate cysts permit identification of the boundary in the shallow 

marine setting of the mid-Waipara section. The K-Pg boundary in the New Zealand sections 

is characterized biostratigraphically by a turnover and/or mass extinction of the palynofloras 

in several terrestrial sections in the coalfields of south-western New Zealand (Vajda et al., 

2001, 2003; Vajda and McLoughlin, 2004). A multidisciplinary study based on lithofacies, 

geochemistry and micropaleontology in marine sediments spanning the K-Pg boundary has 

revealed that the event is associated with extinctions of calcareous plankton and significant 

increase in terrigenous clay and biogenic silica (Hollis et al., 1995, 2003a, 2003b). 
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The presence of nano-particles of oxide and hydroxide in the K-Pg boundary clay at 

different marine sites has been proposed as additional textural evidence of an extraterrestrial 

impact (Brooks et al., 1984, 1985; Verma et al., 2001; Wdowiak et al., 2001). However, in 

sedimentary rocks, magnetically ordered Fe-oxide and hydroxide nano-particles such as 

hematite, goethite and magnetite, formed by bacterial oxidation and hydrothermal alteration 

are commonly found associated with clay minerals. Accordingly, such minerals may be 

identified and characterized by studies of their magnetic properties (Coey, 2009). Our study 

aims to integrate Mössbauer spectroscopy, mineralogy, osmium isotopes, and biostratigraphy 

in order to detect impact-generated materials in marine and terrestrial depositional settings. 

We further aim to determine the origin and mechanism of formation of the texture, 

composition and morphology of the Fe-bearing nano-particles detected in the Cretaceous-

Paleogene boundary layer. 
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2. GEOLOGICAL SETTING AND SAMPLING 

The marine mid-Waipara section is exposed between Doctors Gorge and the Canterbury 

Plains (172°34’56” E, 43°3’44” S) along the middle reaches of the Waipara River (Fig. 1a), 

and the K-Pg boundary occurs within a glauconitic sandstone of the upper Conway Formation 

(Warren and Speden, 1978; Browne and Field, 1985; Hollis and Strong, 2003). The K–Pg 

boundary is located within the upper Conway Formation, 4 m below its contact to the 

overlying Loburn Fm. The Conway Formation is a widespread unit typically 100–300 m thick 

of poorly lithified, medium grey-yellowish, very fine, sandy, siltstone to fine sandstone that 

commonly exhibits stains on weathered surfaces. In outcrops, the boundary is marked by an 

irregular ~5 cm thick, Fe-stained zone. Sediments immediately below the Fe-stained zone are 

calcareous whilst the sediments above this zone are non-calcareous. Bioturbation by marine 

biota is evident throughout the sequence. Anomalously high concentrations of Ni, Co, and an 

anomaly of Ir (0.49 ng/g) is associated with this Fe-stained zone (Brooks et al., 1986b). A 
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new set of samples was collected in 2002 after extensive digging and cleaning of the 

exposure. A sandstone monolith was cut out with a diamond saw, providing essentially 

unweathered samples. Twenty-nine samples spanning 0.56 m of the boundary interval were 

collected and subsequently analysed by Mössbauer spectroscopy, powder X-ray diffraction 

and palynology. In addition, four samples from the boundary layer were selected for 

geochemical analyses including 187Os/188Os isotope ratios and PGE concentrations. The zero 

level has been set at the base of the section from mid-Waipara in text and figures. 
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The Compressor Creek section is exposed in the upper valley of Seven Mile Creek 

(171°18’35” E, 42°22’31” S) within the Greymouth Coalfield north of Greymouth (Fig. 1a), 

and is presently located ~150 km from the marine site of mid-Waipara. However, ~65 Ma ago 

these two sites were located in different basins over 1000 km apart (Fig. 1b). The lithology at 

Greymouth Coalfield consists of carbonaceous mudstones and siltstones with sporadic coal 

seams, deposited in a non-marine setting of subsiding floodplains that hosted peat-forming 

vegetation. Initial biostratigraphic studies spanning a vertical exposure of 7.8 m were carried 

out, and later high resolution re-sampling targeting the 0.8 metres spanning the K-Pg 

boundary was performed (Vajda et al., 2003), revealing the exact position of the boundary 

based on extinction of Maastrichtian key pollen species. For this study, the boundary zone 

was further sub-sampled with seven splits over a 9 cm interval including the K-Pg boundary 

(Fig. 2). These samples, herein named CC 1–7, were prepared for Mössbauer spectroscopy, 

powder X-ray diffraction, and palynology. In addition, four key samples were selected for 

further geochemical analysis of 187Os/188Os isotope ratios and PGE concentrations. The zero 

level has been set at the base of the studied interval of the Compressor Creek section in text 

and figures. 
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3. EXPERIMENTAL METHODS 125 
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3.1 X-ray diffraction 

Powder X-ray diffraction was used to identify mineral phases to highlight mineralogical 

heterogeneity between and across the two sections. Diffractograms were obtained using a 

Siemens D5000 diffractometer equipped with monochromatic Cu- or Co Kα-radiation. 

 

3.2. Mössbauer spectroscopy 

The Mössbauer spectra were obtained using a constant acceleration spectrometer and a 25 

mCi 57Co source in a Rh matrix. Mössbauer spectra were recorded at two temperatures (30K 

and 296K for the mid-Waipara and 20K and 296K for the Compressor Creek samples). The 

low temperature measurements were done using a closed cycle cryostat. Velocities were 

calibrated using a foil of natural iron at room temperature and isomer shifts are given relative 

to the centroid of the spectrum of this absorber. Thin absorber tablets were prepared by 

mixing the sample with a petroleum jelly in a 5 mm thick and 10 mm diameter target to obtain 

randomly oriented samples (Rancourt, 1994). The spectra were fitted using the Lorentzian site 

analysis software program in Recoil, a commercially available Mössbauer spectral analysis 

software package. Each absorber was made from 50 mg of sample. Experimental points are 

shown as dots and fit components and sum of fit components are shown as continuous lines. 

 

3.3. Palynological processing 

Palynological processing followed standard methods: 10-20 g of sample was treated with 

hydrochloric acid (HCl) to remove carbonate before the rock matrix was digested with 

hydrofluoric acid (HF) to remove siliciclastic material (Batten, 1999). The organic matter 
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residue was sieved and retained on a 6 µm screen. The organic residue was mounted on slides 

in glycerine jelly and sealed for examination under a transmitted light microscope. 

Percentages of spores, pollen, and dinoflagellates were calculated from a total counted 

population of at least 300 specimens per sample. The slides were further examined to check 

for the presence of rare taxa. Slides and macerated residues of the samples are deposited at the 

Institute of Geological & Nuclear Sciences, Lower Hutt, New Zealand. 
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3.4. Osmium isotopes  

Platinum group elements and 187Os/188Os isotope ratios were determined using standard 

procedures used at the Woods Hole Oceanographic Institution. A few grams of sample 

powder were mixed with an isotopically enriched tracer solution of 99Ru, 105Pd, 190Os, 191Ir, 

and 198Pt, and the tracer solution was dried over night at room temperature. Then, borax, Ni 

and S powder were added to the sample-tracer mix, homogenized, and fused in a glazed 

ceramic crucible for 90 minutes at 1050°C in a muffle furnace following procedures described 

by Ravizza and Pyle (1997). Osmium isotopes were determined by multicollector ICPMS 

(ThermoFinnigan Neptune) using a multidynamic data acquisition routine with three 

continuous dynode electron multipliers. Osmium was introduced as OsO4 following methods 

described by Hassler et al. (2000). We determined PGE concentrations in the liquid residue 

after Os isotope analyses using a single-collector ICPMS (ThermoFinnigan Element2). 

Accuracy and precision of these analytical methods have been described in detail by Peucker-

Ehrenbrink et al. (2003). 

 

4. EXPERIMENTAL RESULTS AND INTERPRETATION 

4.1 XRD 
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The XRD patterns for mid-Waipara and Compressor Creek (see Fig. 3) show that the 

major mineral components in the samples from mid-Waipara are quartz, feldspar, 

smectite/illite, and kaolinite. The dominant minerals present at Compressor Creek are quartz, 

illite, kaolinite and chlorite. In addition, mid-Waipara sample MW-13 (within the K-Pg 

boundary layer) shows diffraction peaks compatible with those of jarosite, and traces of 

gypsum are indicated in other samples from Compressor Creek. Samples CC-3 and CC-4 

(within the K-Pg boundary layer) show weak peaks due to the presence of minor goethite and 

pyrite. 
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4.2 Mössbauer spectroscopy 

Representative Mössbauer spectra of three samples from mid-Waipara (one sample below 

the boundary MW-10, one within the boundary layer MW-13, and one above the boundary 

MW-15) taken at 296K and 30K and fitted using Lorentzian line shapes are shown in Fig. 4. 

Since glauconite is the dominant silicate phase identified by optical microscopy and X-ray 

diffraction that contains Fe in its structure, the observed Mössbauer spectra are attributed to 

this mineral. 

Published Mössbauer spectra of glauconite show that the absorption lines for both 

octahedrally coordinated ferrous and ferric iron, [6]Fe3+ and [6]Fe2+, are broad and overlapping 

(Rongchuan et al., 1986; Cardile and Brown, 1988; Ali et al., 2001, Kuzmann et al., 2003). 

These observations indicate that Fe in glauconite is distributed between the two types of 

octahedrally coordinated cation sites, designated M1 and M2, in the crystals. At 296K, the 

Mössbauer spectra of samples MW-15 and MW-10 were fitted using three doublets, two for 

distinct [6]Fe2+ sites at M1 and M2 and one for overlapping [6]Fe3+ sites at M1 and M2. At 

30K, however, only two doublets were used, each for overlapping [6]Fe2+ and [6]Fe3+ at M1 
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and M2 sites. These observations are valid for all the other samples taken above and below 

the K-Pg boundary. 
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The Mössbauer spectra of sample MW-13 show additional features compared to the 

spectra of samples above and below the K-Pg boundary. The 296K spectrum of sample MW-

13 (Fig. 4), for example, shows the presence of a distinct shoulder (vertical arrows) due to the 

presence of an additional Fe-bearing phase with isomer shift and quadrupole splitting of 0.39 

mm/s and 1.20 mm/s, respectively. These parameters correspond to the Mössbauer parameters 

of jarosite as reported in the literature (Leclerc, 1980; Bigham and Nordstrom, 2000). 

Moreover, the disappearance of the doublet at 296K and its replacement by a sextet at 30K 

(vertical arrows) with a magnetic hyperfine field of 44 Tesla confirms that the additional Fe-

bearing phase found at the K-Pg in mid-Waipara is indeed jarosite, because jarosite shows 

magnetic ordering at 30K (Eneroth and Bender Koch, 2004) similar to those jarosite-bearing 

gypsum-rich sediments reported from Moscow Landing and Starkville (Wdowiak et al., 

2001). The detection of jarosite at the K-Pg in mid-Waipara by Mössbauer spectroscopy 

corroborates the observation made by X-ray diffraction. 

It has been established that, for a given number of free parameters, fitting the Mössbauer 

spectra of phyllosilicates with overlapping Mössbauer lines assuming a distribution of 

quadrupole splitting (QSD) produces a better approximation of the relative distribution of Fe 

species in the different sites than does fitting the spectra assuming a Lorentzian line shape for 

the absorption lines (Rancourt, 1994; Ferrow, 2002; Kuzmann et al., 2003). Consequently, in 

this study the spectra of the glauconite-containing samples were also fitted assuming that the 

electrical quadrupole splitting was distributed, and Mössbauer data of Longworth et al. (1986) 

and Ferrow (1987) were used to assign the Fe species to the M1 and M2 sites (Table 1). 

According to Ali et al. (2001), the Mössbauer parameters of glauconite are very sensitive to 

the environmental conditions prevailing during glauconitization. For example, with increasing 



 10

degree of glauconitization the ratios of [6]Fe3+/[6]Fe2+ and [6]Fe3+(M2)/[6]Fe3+(M1) increase, i.e. 

the maturation process is accompanied by oxidation of [6]Fe2+ to [6]Fe3+and a corresponding 

increase of [6]Fe3+ in the M2 site. Data in Fig. 5a show remarkably constant [6]Fe3+/[6]Fe2+ 

ratios throughout the section, indicating that the depositional environment was relatively 

stable over periods defined by the sample resolution. However, the presence of relatively high 

[6]Fe2+ abundances (20%) in glauconite from mid-Waipara indicates that the maturation 

process was incomplete in these sediments. The distribution of [6]Fe3+ between M1 and M2 

sites (Fig. 5b) shows two distinct erratic intervals between samples MW-11 and MW-21 with 

maximum anomaly in sample MW-13 and quite stable regions above and below this interval. 

The increase in [6]Fe3+at the M2 site in these two samples is explained as an artefact caused by 

inclusion of the jarosite spectral component into the fit of glauconite. 
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Representative Mössbauer spectra of the samples from Compressor Creek, taken at 296K 

and 20K and fitted using components with Lorentzian line shapes, are shown in Fig. 6. The 

Mössbauer spectrum of the boundary clay layer (sample CC-3) shows line broadening and a 

poorly defined magnetically-ordered sextet at 296K due to the presence of nano-sized goethite 

(Madsen et al., 2009). 

Based on the Mössbauer parameters derived from the 20K analyses and from the X-ray 

data in Fig. 3 we assign the [6]Fe2+ to chlorite, the paramagnetic [6]Fe3+ to illite - with minor 

contribution of chlorite (Wagner et al., 1990) - and the magnetically ordered sextet to goethite 

(Mørup et al., 1983). Moreover, the highest amount of Fe in goethite at Compressor Creek is 

associated with the boundary clay layer (sample CC-3), whereas samples above the boundary 

(samples CC-5 and CC-7) contain Fe in paramagnetic minerals only (Figs. 6, 7). The 

relatively large amount of nano-particles of goethite observed below the K-Pg boundary 

(samples CC-2 and CC-1) suggests post-depositional downward transport of these nano-sized 

particles within the sediments. Such transport has previously been observed for shocked 
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quartz as well as iridium and other elements at other terrestrial and marine K-Pg sites 

(Peucker-Ehrenbrink et al., 1995; Zhou et al., 2001; Vajda and McLoughlin, 2004, 2007). The 

nano-particles are smaller than 15 nm, which increases the probability of these particles to be 

dispersed downward within the sediments. 
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Variations in the Fe-species in Compressor Creek samples (Table 2), derived from low-

temperature Mössbauer analyses, show an increase in the amount of nano-phase goethite at 

the K-Pg (Fig. 7a). For the mid-Waipara section the anomaly is very sharp despite the small 

amount of the jarosite and is found exclusively at the K-Pg boundary. Data for Compressor 

Creek, in contrast, indicate that goethite also occurs in samples below the boundary. 

 

4.3 Osmium isotopes 

Iridium concentrations in the K-Pg boundary layer at the two sites are significantly higher 

than upper crustal levels of approximately ~22 pg/g (Peucker-Ehrenbrink and Jahn, 2001; 

Peucker-Ehrenbrink et al., 2003). However, concentrations are low compared to the nearby 

terrestrial K-Pg site of Moody Creek Mine, where an anomaly of 4ng/g has been reported 

(Vajda and McLoughlin, 2004). Iridium concentrations are comparable to those at the marine 

Woodside Creek site (0.49 ng/g; Brooks et al., 1984, 1986). In the terrestrial location 

(Compressor Creek) Os and Ir concentrations are similar, particularly in sample CC-3 that 

marks the K-Pg. In this sample the Os/Ir ratio is chondritic. In contrast, the marine location 

(mid-Waipara) has more fractionated Os/Ir values with significantly higher Os concentrations. 

This is typically observed in marine sediments with elevated organic carbon contents, because 

Os is more efficiently scavenged than Ir by such sediments. 

Osmium isotope ratios (187Os/188Os) are significantly less radiogenic than average eroding 

continental crust (187Os/188Os ~ 1.05, Peucker-Ehrenbrink and Jahn, 2001) and are much more 
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similar to extraterrestrial (187Os/188Os ~0.12-0.14) and mantle-derived Os. Osmium isotope 

values at the time of deposition were likely even less radiogenic than the measured values, 

because the values we report have not been corrected for radiogenic ingrowth since 

deposition. This would have required the determination of Re concentrations. The measured 

187Os/188Os values at the K-Pg boundaries in both sites are, within uncertainty, the least 

radiogenic values of the entire sample set. 
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The PGE and 187Os/188Os data (Table 3) are consistent with significant contributions from 

an extraterrestrial (chondritic) impactor to the sedimentary PGE budget. 

 

4.4. Palynology 

The shallow marine sediments at mid-Waipara contain a transported but well-preserved 

assemblage of spores and pollen grains, and 50 species of fossil pollen and spores from 

terrestrial land plants were identified in this study. Based on changes in relative abundance of 

different pollen-spore groups as well as the last appearance of Tricolpites lilliei and first 

appearance datum (FAD) of key taxa, the K-Pg boundary is located in sample MW-13, 24 cm 

above the base of the sampled section (Fig. 8a), that is also recognized by the fern-spike, 

starting in sample MW-13. The fern spike extends for 18 cm above the boundary (including 

sample MW-22). The base of the fern-spike clearly indicates the onset of altered ecological 

conditions that presumably have been caused by the Chicxulub impact (Nichols and Johnson, 

2002; Vajda and Raine, 2003; Pole and Vajda, 2009). 

A diverse assemblage of marine organic-walled dinoflagellates cysts comprising 93 

species was recorded in the samples from mid-Waipara. The K-Pg boundary interval in mid-

Waipara (between sample MW-12 and MW-13; Fig. 8a) coincides with the FAD of a number 

of global earliest Danian taxa such as Damassadinium californicum, Senoniasphaera inornata 
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and Membranilarnacia tenella (Moshkovitz and Habib, 1993; Habib et al., 1996; Stover et al., 

1996; Williams et al., 2004). The FAD of these Danian index taxa dinoflagellate cysts further 

supports application of Mössbauer signals in locating potential K-Pg horizons. Two sporadic 

occurrences of C. cornuta below the K-Pg boundary in samples MW12 and MW10 are 

considered artefacts of reworking by intense bioturbation of the sediments at the K-Pg 

transition (see discussion in Willumsen, 2006, p. 959). However, the dinoflagellate species 

Trithyrodinium evittii has its FAD in sample MW-13 and it becomes increasingly abundant up 

through the basal 20 cm of Danian strata examined, which supports previous observations 

from this section as well as patterns reported elsewhere in New Zealand K-Pg boundary 

sections (Wilson, 1987; Willumsen, 2000, 2003, 2004, 2006; Willumsen, in press). 
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The interval 2-23 cm (samples MW-1 to MW-12) belongs to the Manumiella druggii 

Interval Zone, whereas the interval from 24 cm (sample MW-13 to MW-27) is placed within 

the T. evittii Interval Zone (Helby et al., 1987; Wilson, 1984, 1987; Willumsen, in press) 

(Figs. 5 and 8a). Noteworthy, both Manumiella druggii and M. seelandica co-occur with the 

earliest Danian marker species directly above the boundary where they are also relatively 

more common than in the latest Maastrichtian sediments (Willlumsen, 2000, 2003, 2006). 

Carpatella septata occur from the base of the latest Maastrichtian strata upwards and it 

disappear in the earliest Danian, supporting previous observations by Willumsen (2000, 2003, 

2004, 2006, in press). Palynodinium minus has its FAD in sample MS-6 (12cm below the K-

Pg boundary) and occurs consistently throughout the Danian strata examined. 

Variations in microfossils from both the terrestrial plant and marine plankton assemblages 

from the mid-Waipara River section suggest that the change from the latest Maastrichtian to 

Danian flora is not as abrupt as the floral change at the Compressor Creek section. At mid-

Waipara River, Cretaceous terrestrial indicator species such as Nothofagidites kaitangata and 

Tricolpites lilliei are identified above the K-Pg boundary, a clear sign of bioturbation and 
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reworking. This interpretation is further supported by the higher diversity seen in the 

palynological assemblage at mid-Waipara compared to Compressor Creek. We interpret this 

observation as a result of the larger catchment area of the sediments at this near-shore marine 

site. Thus, at mid-Waipara the agreement between the Mössbauer signal and the palynological 

signal is striking, as Fe in paramagnetic state occurs throughout the fern-spike interval. 
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The samples from Compressor Creek contain a well-preserved miospore assemblage, and 

34 species of pollen and spores were identified. No marine palynomorphs were encountered 

in this entirely terrestrial setting. Based on the last appearance datum (LAD) of indicator 

species such as Tricolpites lilliei and Nothofagidites kaitangata, the two pollen zones 

Phyllocladidites mawsonii, PM2 and PM3 as outlined by Raine (1984) (see further Vajda and 

Raine, 2010), were identified (Fig. 8b). The K-Pg boundary was located at sample CC-3 at the 

base of the 1 cm thick clay layer which also marks the base of the PM3 pollen zone. The 

boundary is also marked by a sharp and sudden increase in fern spores. This marked increase, 

from 34% below the boundary to 74% above it, is mainly caused by the increase in the spores 

Baculatisporites comaumensis and Cyathidites spp., representing ground fern and tree ferns, 

respectively. The high relative abundance of fern spores persists in the overlying five 

centimetres that define the basal part of the so-called fern-spike (Fig. 8b). This is consistent 

with the results from another adjacent terrestrial K-Pg section, Moody Creek Mine, where the 

boundary is located within a coal seam (Vajda et al., 2001; Vajda and McLoughlin, 2004). 

 

 

5. FORMATION MECHANISM AND SOURCE OF K-Pg NANO-PARTICLES 

The mineralogy of the nano-phases at the investigated K-Pg boundary sites is dominated 

by goethite, although phases such as jarosite, hematite, and magnetite have also been reported 
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(Brooks et al., 1985; Griscom et al., 1999; Wdowiak et al., 2001; Verma et al., 2001; 

Bhandari et al., 2002). We argue that the variation in the mineralogy of nano-particles 

observed at the two K-Pg boundary sites merely reflects the prevailing post-depositional 

diagenetic conditions rather than the primary mineralogy of the nano-particle condensed after 

the impact. 
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The target rock at Chicxulub is composed of a 3 km thick succession of limestones, 

anhydrite, dolomite, marls and sandstones covering crystalline basement (Kettrup and 

Deutsch, 2003). When the impactor hit the target rock, the carbonate platform and the 

underlying crystalline basement were excavated, involving material down to the base of the 

crust (Kring, 2005). Stephens and Kothari (1978) indicated that the condensate collected from 

experiments in reactive gas atmospheres reflects both the composition of the target and the 

ambient gas. Consequently, a sulfide aerosol formed from the vaporization of anhydrite and 

associated massive addition of CO2 by impact vaporization of the carbonate platform at 

Chicxulub (O'Keefe and Ahrens, 1989; Pope et al., 1994; Ocampo et al., 2006; Wigforss-

Lange et al., 2007) provided an environment conducive to the condensation of Fe-sulfide 

phases. Well crystallized phases, however, are unlikely to occur owing to the non-equilibrium 

nature of condensation that favors the formation of metastable rather than thermodynamically 

stable phases (Hirth and Pound, 1963; Dunning, 1969; Donn, 1979). We contend that the Fe 

in the Fe-sulfides is derived from the impactor. One aspect of the vapor ejecta that is often 

overlooked is its reaction with the atmosphere. Although there will be a condensation phase 

as the vapor plume rises from the crater and into space, it will be re-heated when it re-enters 

the atmosphere. Therefore, there may be a second episode of (partial) evaporation and 

condensation. This process did not vaporize all of the solid debris in the plume, as indicated 

by the shocked quartz that excavated from the target survives and was deposited around the 

world. The presence of shocked quartz also illustrates the heterogeneous nature of the 
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process. Although the vapor plume contained a lot of vaporized rock components, it also 

contrained solid quartz, feldspar, and other crystalline phases. 
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We agree with the assessment of Brooks et al. (1985) that the nano-particles identified in 

the K-Pg clays at several sites are post-depositional authigenic products. We also agree that 

jarosite could be formed by bacterial oxidation of pyrite (Carlson et al., 1992). However, we 

argue that marcasite and not pyrite is the most probable primary condensate, as the former is 

metastable at temperatures below 700K and subsequently converts to pyrite (Lennie and 

Vaughan, 1992). 

Although the mineralogy of the nano-particles associated with the K-Pg layer reflects 

post-depositional diagenetic alteration, the impact-induced texture and morphology remain 

primary. Stephens and Kothari (1978) developed a conceptual model of the vaporization, 

condensation, and grain-gas interaction that accounts well for the formation of nano-particles, 

their morphology and their mineralogy at K-Pg boundary sites. These authors argued that 

preservation of small grain sizes was facilitated by rapid expansion of the target vapor and 

rapid mixing with cold ambient gas. This causes the vapor to become supersaturated within 

microseconds and to nucleate into ~1 nm droplets. Further growth occurs predominantly by 

droplet collisions due to thermal motions, and to some extent by aerosol growth via thermal 

coagulation. Stephens and Kothari (1978) showed that the resulting condensate smoke 

consists, in most cases, of strings composed of grains that have a median diameter of 20–30 

nm. Moreover, as droplet size decreases, surface energy becomes comparable in magnitude to 

the binding energy of the atoms in the droplet volume, tending to promote the formation of 

spherical grains (Stephens and Kothari, 1978). We suggest that the growth mechanisms of 

nano-sized and spherical particles described in the experimental work of Stephens and 

Kothari (1978) explains well the formation mechanism of nano-particles with spheroidal 

morphology such as those identified in the K-Pg boundary clay. 
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Nano-particles of Fe-oxides, Fe-sulphates, and Fe-hydroxides such as hematite, magnetite, 

jarosite and goethite, formed by hydrothermal alteration and bacterial oxidation, are 

commonly found in sedimentary rocks. Jarosite, for example, develops naturally through the 

weathering of pyrite, and it can also be formed during bioleaching of iron-containing sulfides, 

especially by thermophile bacteria (Larsson et al., 1990). Moreover, jarosite has also been 

found in various plants as a product of biomineralization processes (Rohwerder et al., 2003), 

Allen et al. (1999) suggested a link between as yet unidentified marine biogenic gas emissions 

and nano-particle formation and it has also been suggested that nano-particles identified at the 

K–Pg boundary were formed by similar diagenetic and biogenic processes (Villasante et al., 

2009). However, it is difficult to explain why such processes, especially hydrothermal 

alteration, should be confined to a thin, well-defined globally distributed clay bed at the K–Pg 

boundary. If the nano-particles found associated with K–Pg boundary were formed by 

biological processes, then the widespread but stratigraphically narrow occurrence of the nano-

particles in well-dated sections would indicate a surge in biologic activity and massive 

production of biogenic gas in the immediate aftermath of the Chicxulub impact. 
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A detailed rock magnetic study of K-Pg boundary sediments from an ODP section from 

the southern Kerguelen Plateau by Abrajevitch and Kodama (2009) reveals that cessation of 

biological productivity after the event allowed preservation of the initial detrital authigenic 

iron phases (dominated by reactive iron oxyhydroxides). The oxyhydroxides, however, were 

replaced with biogenic magnetite as the recovery of normal biological activity took place, 

leading to the production of biochemical magnetization and to a several-fold increase in 

remanence (Abrajevitch and Kodama 2009). Their results suggest that in areas where 

bioavailable iron constitutes a significant part of the detrital input, such as in pelagic marine 

environments distant from clastic sources, the biochemical remanent magnetization may be 

the dominant process of magnetization acquisition (Abrajevitch and Kodama 2009). 
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The origin of the nano-particles by atmospheric condensation and global fallout appears to 

be a more parsimonious explanation for their distribution. 
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6. CONCLUSIONS 

This integrated study has led to the detection of the first K-Pg boundary clay layer in a 

Southern Hemisphere terrestrial setting. All methods employed place the boundary, at 

centimetre resolution, in the same horizon both in the marine sequence of mid-Waipara and in 

the terrestrial K-Pg boundary site at Compressor Creek. At mid-Waipara Mössbauer 

spectroscopy, osmium isotopes and biostratigraphy identify sample MW-13 at 24 cm above 

the base of the investigated section as the K-Pg boundary layer (Figs. 5, 8a). Osmium isotope 

values indicate a significant extraterrestrial component within the same sample. Similarly, the 

boundary clay at Compressor Creek is located at the base of sample CC-3, making it the first 

continental boundary clay identified in the Southern Hemisphere (Figs. 7, 8b). 

Nano-particles are commonly found associated with the K-Pg boundary. Their texture and 

morphology is primary as modeled by Stephens and Kothari (1978), and not characteristic of 

hydrothermal or biologic processes. The experimental model suggests that the ~ 1 nm droplets 

as the target rock and impactor are vaporized, ejected at supersonic speed into the stratosphere 

and cooled extremely rapidly. Grain growth is influenced by the density of the original 

condensate droplets, circulation within the ejecta plume, and aerosol growth via thermal 

coagulation. Furthermore, the experimental data showed that the resulting condensate smoke 

consists, in most cases, of strings made up of grains with a median diametre of 20–30 nm, in 

full agreement with our observations. 

The Fe-bearing nano-phases in the K-Pg boundary clays consist of goethite, jarosite, 

hematite, magnetite and pyrite — phases commonly found associated with clay minerals in 

sedimentary rocks. However, the composition of these Fe-phases in the boundary clay is not 
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primary but a result of diagenetic alteration since deposition ~ 65 Ma. It is most likely that the 

primary impact-related Fe-phases were metastable Fe-sulphides, as determined by the 

chemistry of the target and impactor (Kring, 2005). Moreover, the condensation environment 

with temperatures below 700K favours the formation and 'freezing in' of metastable products 

rather than the occurrence of the thermodynamically stable species (Donn, 1979). We suggest 

that the Fe-sulphide condensate was probably marcasite, and not pyrite as proposed by Brooks 

et al. (1985). 
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Finally, this investigation clearly demonstrates that Mössbauer spectroscopy is a simple, 

fast, sensitive, and accessible technique for detecting Fe-bearing phases associated with 

impact events. Another advantage is that Mössbauer measurements do not alter the samples, 

which allows them to be subsequently investigated with other techniques. 
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Fig. 1a. Location of the Cretaceous-Paleogene (K-Pg) exposures of mid-Waipara River and 

Compressor Creek, New Zealand. 

 

Fig. 1b. Paleogeographical map of New Zealand showing the position of the investigated 

localities 65 million years ago. Investigated sections marked with red. 

 

Fig. 2. The sampled section at Compressor Creek, Greymouth coalfield, New Zealand (Scale; 

measuring stick = 100 cm long). 

 

Fig. 3. Powder X-ray diffraction results from the K-Pg boundary succession a) mid-Waipara 

sample MW-13, containing glauconite, quartz, feldspar and gypsum. b) Compressor 

Creek, sample CC-4, containing illite, quartz, kaolinite and pyrite. 

   C: chlorite; F: feldspar; I: illite; K: kaolinite; Q: quartz; S: smectite. 
 

 

Fig. 4. Representative Mössbauer spectra of samples MW-10, 13 and 15 from the mid-

Waipara section, measured at 296K and 30K, respectively. Note the presence of the 

sextet in MW-13 reflecting the presence of jarosite at the K-Pg boundary. 

 

Fig. 5. Composite figure of results for the mid-Waipara sample set with lithological log and 

microfossil zonations to the left. 

a) Distribution of total [6]Fe3+ and [6]Fe2+ in glauconite at 296K. 

b) Distribution of [6]Fe3+ in M1 and M2 in glauconite at 296K. 
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c) Distribution of Fe species for measurements at 30K. Note the anomaly of Fe3+ due to 

the presence of jarosite at samples MW-12 and MW-13. 

758 

759 

760 

761 

762 

763 

764 

765 

766 

767 

768 

769 

770 

771 

772 

773 

774 

775 

776 

777 

778 

779 

780 

781 

782 

 

Fig. 6. Representative Mössbauer spectra from the Compressor Creek section, measured at 

296K and 20K respectively. Note the line broadening for the samples at and below the 

K-Pg for the 296K analyses and the corresponding sextets for the 20K analyses. 

 

Fig. 7. Composite figure of Mössbauer results from the Compressor Creek sample set with 

lithological log and pollen zonations to the left. SIRMis the saturation isothermal 

remanent magnetization and Hcr is the remanence coercivity  

 

Fig. 8a. Palynological results from mid-Waipara. 

Pollen and spore abundances and distribution of key-species. The miospores have been 

grouped within their affinity: 1. Ferns, 2. Conifers, 3. Angiosperms (flowering plants). 

Note the significant increase in fern spores coincident with the boundary, sample 13. 

Dinoflagellates; distribution of key-species. Note the appearance of Paleogene index 

species in sample 13. 

 

Fig. 8b. Palynological results from Compressor Creek. 

Pollen and spore abundances and distribution of key-species. The pollen and spores 

have been grouped within their affinity: 1. Ferns, 2. Conifers, 3. Angiosperms. Note the 

significant increase in fern spores coincident with the K-Pg boundary. 

 

Table 1. Relative distribution (in %) of [6]Fe2+ and [6]Fe3+ in glauconite for the Mid-Waipara 

samples from Mössbauer spectroscopy measured at 296K (Fig. 5a), distribution of [6]Fe3+ 
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for the octahedrally coordinated M1 and M2 sites in glauconite measured at 296K (Fig. 

5b), and distribution of [6]Fe2+ and [6]Fe3+ of glauconite and [6]Fe3+ of jarosite taken at 

30K (Fig. 5c). M1 and M2 are two non equivalent octahedral sites where the ferrous and 

ferric iron is accommodated. T is the sum of ferrous and ferric iron in M1 and M2, 

respectively. 

 

Table 2. The relative distribution in % - obtained by Mössbauer spectroscopy - of ferrous 

(Fe2+), and paramagnetic ferric (Fe3+PM) in chlorite and illite; and the distribution of 

super-paramagnetic ferric iron (Fe3+SPM) in goethite for the samples from Compressor 

Creek. 

 

Table 3. Osmium isotope composition and platinum group element concentrations. 

Notes: * - Cretaceous-Paleogene boundary. n.d. - not determined. r – replicate. 1 - 

concentrations are corrected for instrumental background and typical analytical blank 

concentrations of 0.6 pg Os/g, 1.3 pg Ir/g, 14 pg Pt/g and 26 pg Pd/g (see Peucker-

Ehrenbrink et al., 2003, for details). Osmium concentrations are determined using three 

isotope ratios, Pt and Pd are calculated using two isotope ratios, while Ir concentrations are 

based on the 191/193 mass ratio. Concentrations determined by different isotope ratios 

typically agree to better than 2%. 
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mid-
Waipara 
sample 

no.  

cm 
from 

base of 
section Fe2+(T) Fe3+(T) Fe2+M1 Fe3+M1 Fe2+M2 Fe3+M2 

28 54-56 15.1 84.9 32.0 16.0 68.0 84.0 
27 52-54 18.5 81.5 32.0 16.0 68.0 84.0 
26 50-52 21.7 78.3 24.3 8.8 75.7 91.2 
25 48-50 25.6 74.4 26.0 14.4 74.0 85.6 
24 46-48 20.3 79.7 27.9 12.9 72.1 87.1 
23 44-46 21.9 78.1 28.0 10.4 71.7 89.6 
22 42-44 21.2 78.8 28.0 12.2 72.0 87.8 
21 40-42 20.4 79.6 32.6 6.5 67.4 93.5 
20 38-40 15.5 84.5 33.1 22.9 66.9 77.1 
19 36-38 17.7 82.3 22.3 14.6 77.7 85.4 
18 34-36 18.4 81.6 32.0 13.0 68.0 87.0 
17 32-34 16.0 84.0 38.0 25.2 61.8 74.8 
16 30-32 21.9 78.1 28.1 13.2 71.9 86.8 
15 28-30 18.7 81.3 32.1 21.2 67.9 78.8 
14 26-28 19.3 80.7 37.4 11.6 62.6 88.4 
13 24-26 15.9 84.1 29,0 31.2 71.0 68.8 
12 22-24 17.8 82.2 26,0 27.4 74.0 72.6 
11 20-22 19.4 80.6 40,0 11.5 60.2 88.5 
10 18-20 16.8 83.2 34.8 13.5 65.2 86.5 
9 16-18 17.3 82.7 29,0 13.0 71.3 87.3 
8 14-16 21.7 78.3 27.2 9.2 72.8 90.8 
7 12-14 19.8 80.2 37.8 8.9 62.2 91.1 
6 10-12 21.9 78.1 24.9 10.3 75.1 89.7 
5 8-10 20.1 79.9 27.2 9.2 72.8 90.8 
4 6-8 19.7 80.3 30.4 8.3 69.6 91.7 
3 4-6 19.2 80.8 27.4 12.1 72.6 87.9 
2 2-4 19.9 80.1 28.9 11.2 71.1 88.8 
1 0-2 21.5 78.5 35.5 24.0 64.5 76.0 

 



Compressor C. 
sample no. 

cm from 
base of 
section Fe3+(PM) Fe2+ Fe3+(SPM) 

7 8-9 14.8 85.2 0 
6 7-8 18 82.0 0 
5 6-7 21.1 78.9 0 
4 4.5-6 6 13.3 80.7 
3 4-4.5 7.2 14.6 78.2 
2 2-4 15.8 30.7 53.5 
1 0-2 24.7 43.1 32.2 

 



 Compressor C.  
sample no. 

cm from 
base of 
section 187Os/188Os ±2σ 

Os1 
pg/g  

Ir1     

pg/g 
Pt1     

pg/g 
Pd1    

pg/g 
7 8-9 0.3487 0.0021 50 102 172 739 
4 4.5-6 0.2529 0.0015 119 161 559 1808 
4r 4.5-6 0.2577 0.0014 120 n.d. n.d. n.d. 
3 4-4.5 0.2040 0.0005 172 176 568 1465 
1 0-2 0.1993 0.0010 165 153 610 1169 

                

mid-Waipara 
sample no.  

  
            

14 26-28 0.2670 0.0007 2162 233 498 770 
13* 24-26 0.2692 0.0012 1200 321 677 780 
12 22-24 0.3136 0.0010 1022 304 613 813 
11 20-22 0.3391 0.0010 834 273 534 768 
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