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Abstract An approach to analyze regime change in spatial time series data sets is

followed and extended to jointly analyze a dynamical model depicting regime shift

and observational data informing the same process. We analyze changes in the joint

model-data regime and covariability within each regime. The method is applied to two

observational data sets of equatorial sea surface temperature (TAO/TRITON array and

satellite) and compared with the predicted data by the ECCO-JPL modeling system.

Keywords Skill assessment · Data clustering · Gaussian Mixture Models · ENSO

1 Introduction1

The size and complexity of observational data sets are increasing constantly. Along2

with observations, we have ever more spatially resolved dynamical models of processes3

measured in spatial data sets. The best strategy for confronting physical models with4

data and the purpose of the comparison of models versus data remain as developing5

questions. Beyond simply obtaining a misfit, likelihood, or some other gross evaluation6

of the credibility of the model solution, we desire to know where, when, and why a7

model is performing poorly. While this is a simple idea, it is often explained with8

snapshots or a detailed analysis of an arbitrary episode because the full time series is9

too large and complex to analyze in its entirety.10

Several methods have been proposed to analyze both stationary and non-stationary11

time series (e.g., [1]). Traditionally analysis of spatial and temporal patterns in geo-12

physical spatial time series is carried out with Empirical Orthogonal Functions (EOFs,13

theory in [2] and examples of applications in [3,4]). An EOF analysis provides the14

leading eigenvectors of the temporal covariability of the data and then interprets these15

EOFs as the response to known physical processes. The eigenvectors are the “modes”16

of variability and their temporal “amplitude” functions define the temporal structure17
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of variability. In many studies [e.g., [5–7]] authors compare EOFs obtained from data18

to EOFs from models, and use their agreement as evidence of the fidelity of the model19

with respect to important physical processes. There are shortcomings to this approach.20

Firstly, the model may produce the correct modes, but at the wrong times because of21

phase errors in the model. Secondly, EOFs are an analysis of covariance and as such22

they do not consider the non-Gaussian properties of the spatial distribution. In the23

case of using the EOF method for non-Gaussian distributions, it provides an analysis24

of the best Gaussian approximation to the distribution.25

In this study, we present a method, the Joint Empirical Orthogonal GAussian26

Mixture Model Analysis (JEO-GAMMA), for analyzing the joint distribution of spa-27

tial time series of model predictions and data. The outcome is a set of easy to interpret28

representations showing the modes of spatial covariability in the model and data. The29

method accounts for non-Gaussian state distributions, or regime change, by analyz-30

ing variability about a small number of mean states. In a previous related study [8],31

Expectation Maximization (EM) was used to estimate the parameters of a Gaussian32

Mixture Model providing a distinct temporal decomposition relative to EOF analysis.33

We showed that while conventional EOF analysis was ambiguous for regime separation,34

EM produced clear separation of the spatial modes facilitating the physical interpre-35

tation of the data.36

The remainder of the paper is organized as follows: In Section 2, we define the math-37

ematical structure Gaussian Mixture Models (GMM) and describe the approach to fit38

GMM to data sets. In Section 3, we apply the JEO-GAMMA method to a combination39

of data from equatorial Pacific sea surface temperature (SST) from the TAO/TRITON40

array and a global circulation model describing the same region. In Section 4, we ex-41

tend the method to a higher dimensional dataset of the same region using satellite SST42

and an expanded model solution. Conclusions and possible extensions of the method43

are given in Section 5.44

2 Methods45

2.1 Gaussian Mixture Models46

A Gaussian Mixture Model is a probabilistic model for which the probability density47

function is a combination of two or more Gaussian distributions. LetD denote a discrete48

spatial time series of observations with time in the columns and some set of fixed49

positions in the rows. Let M denote a model whose time and space domain covers the50

region of D. In general, the relationship between D and M is given by D = H(M) + δ,51

where δ is the difference between model and data, and H is a nonlinear measurement52

operator. In our case, we assume D and M are spatially and temporally collocated53

(i.e., H is the identity matrix). We augment the matrix of data with the model’s54

approximation to the data,55

ψ = [D M ] (1)

Next we fit a mixture model to the joint data-prediction data set, ψ. For an nc com-56

ponent Gaussian mixture model, we have in general57

p(ψ|µ1, ...µnc , Σ1, ...Σncτ1, ..τnc) =

ncX
k=1

τk exp(− 1
2 (ψ − µk)T [Σk]−1(ψ − µk))p

(2π)2nd |Σk|
(2)
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Fig. 1 Idealized depiction of joint model-data probability distribution. Here we show three
possible model regimes, a “good” regime (upper right quadrant) in which the model and data
are both in physical regime A, and the model and data are positively covarying. A “bad”
regime (lower left quadrant) in which the model and data are both in regime B but the model
and data are anti covarying. A bad regime can appear not only when model and data are anti
correlated, but also when the model and data vary in different ways. Lastly we show a case
of the Data being in regime A while the model is in regime B - “wrong regime” (lower right
quadrant).

An underlying assumption is the stationarity of the distribution. For non-stationary58

cases, a trend parameter can be added to each regime mean or if there is a global trend,59

it can be extracted before the EM analysis. We use limited length time series for which60

the assumption of stationarity is appropriate. The use of this method for non-stationary61

time series goes beyond the scope of this study.62

We use the Expectation-Maximization (EM) algorithm, outlined in [8] and Apendix A,63

to find the best GMM describing the joint distribution of the model and data. In pre-64

vious studies, EM was used to estimate missing values for oceanographic datasets [9,65

10]. In the present study, by using EM to estimate the parameters of the GMM, we66

are able to use EM to identify regimes in spatial time series and analyze the variability67

within each regime. After we have found the number of components, nc, component68

distributions (mean and covariance), G(µk, Σk), and their respective likelihoods, τk,69

we can conduct the EOF analysis on the Σk and separate them into their data and70

model parts. nd is the number of time series of length nt.71

The goal is to produce a comparison of the joint data-model distribution that72

characterizes the separation into the regimes observed in the combined matrix (Equa-73
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tion 1). In an optimal prediction, the “good” regime (Figure 1) will be predicted by74

the model and the statistical characteristics of the data during that regime will be75

appropriately reproduced by the model. A regime can be bad in several ways. Firstly,76

the model may have a strong bias within a particular regime. Secondly, the model may77

not covary with the data within a regime, either because the magnitude or direction78

of covariance represents an error in the model prediction. Finally, in an extreme case79

the “wrong” regime will be predicted by the model. A model that results in “wrong”80

regime estimates should not be used for non-linear applications that require proper81

characterization of different regimes. A model that exhibits deficiencies (bias, poor co-82

variability) in its regime estimation may or not be useful depending on the application83

and the nature of the deficiencies.84

2.2 Determining the number of regimes85

A difficulty of the clustering approach is the lack of a generalized statistically princi-86

pled method for determining the number of clusters. Several methodologies have been87

proposed to address this issue using empirical or data-based approaches.88

A first option is the use of the empirical Akaike’s Information Criterion (AIC, [11]).89

In general, AIC(k) = 2Dk−2log(p̂), where Dk is the number of free parameters in the90

statistical mixture model, and p̂ is the maximized likelihood function for the estimated91

model. The goal is to rank several competing models according to their AIC, with the92

best being the one with the lowest AIC. The goodness of fit improves as the number93

of estimated free parameters (number of clusters) is increased. AIC aims at optimizing94

goodness of fit while including a penalty to discourage overfitting that increases with95

increasing number of clusters.96

A second empirical approach is the Bayesian Information Criterion (BIC, [12]).97

The BIC approximates the total probability (Bayes factor) of a probability distribution98

under some set data,99

BIC(k) = −2log(p̂(ψ|µ1, ..., µk, Σ1, ..., Σk, τ1, ..., τk))−Dklog(nt) (3)

For the full mixture model with k components and n model-data time series, Dk =100

k(n(n − 1)/2 + n) + k − 1, where kn(n − 1)/2 of those are for the parameters of the101

covariance matrix, kn for the means of each distribution, and k − 1 for the τj . The102

preceding “data” refers to the combination of model and data. As for the AIC, the103

model with the lower value of BIC is the one to be preferred. The penalty preventing104

overfitting is larger in the BIC than in the related AIC.105

A completely different approach uses a data-driven method to estimate the number106

of clusters. In one example, [13] calculate the cross-validated likelihood. The method107

pre-analyzes the data to estimate a posterior probability distribution for the number108

of clusters. In cross-validation, the data is repeatedly divided into two subsets, one109

to fit the model and the other to estimate performance. The procedure is repeated110

multiple times and the results for each subsampling are averaged to obtain a mean111

estimate of the number of clusters. A second example of data-driven method [14] finds112

uncertainties on the estimated parameters to determine the number of regimes. It113

calculates confidence intervals of the mixing proportions based on order statistics by114

producing multiple estimates of the parameters. The main inconvenience of these two115

data-driven approaches is that the quality of the separation depends on the number of116

cross-validation subsamplings or uncertainty estimates. Both methods require at least117
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Fig. 2 Data (a) and ECCO model (b) SST (◦C) for period of co-availability for each longi-
tudinal station. The x-axis indicates years.

one hundred samples, which for high-dimensional problems as the ones presented in118

this study, will result in the approach being too computationally expensive.119

In this study, we use the Bayesian Information Criterion to identify the number of120

component distributions in the data set because of its simplicity, reproducibility and121

relatively low computational cost. This approach has been shown to optimally estimate122

the quantity of clusters ([12,15,16]).123

3 Application to Equatorial Pacific124

3.1 Data and Model125

A subsample of the TAO array data consisting of sea surface temperature (SST) from126

the equatorial Pacific moorings (including stations along the Equator, and at 2◦N127

and 2◦S) is used. Data from this array has been extensively used to understand the El128

Niño/Southern Oscillation (ENSO) dynamics [17,18]. In this study the data (Figure 2a)129

is block averaged between 2◦N and 2◦S for each longitude resulting on a set of 611130

temporal instances (to match model output) for each of the 10 longitudinal points131

considered.132
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The model is a non-assimilative global model solution provided by Estimating the133

Circulation and Climate of the Ocean (ECCO-JPL, [19,20]) which is based on the MIT134

general circulation model (MITgcm). The model has a horizontal resolution that varies135

between 0.3 and 1 degree. As with the data, we average the model solution between136

2◦S and 2◦N. The time step of the time average model output fields is 10 days. The137

top layer of the model temperature (5 meters) is taken to be the best approximation138

to the observed SST. The period of co-occurrence with the TAO data stretches from139

spring of 1993 to fall of 2009 (Figure 2b). The model shows a tendency to be colder140

than the observations at the eastern stations and slightly warmer at the western ones.141

3.2 Results142

The BIC selects for three component distributions in the joint model-data distribution143

(the same number as in [8]). The three regimes show similar spatial patterns that are144

clearly present in the original data with warmer temperatures in the western stations145

(Figure 3). The spatial distribution of the means differs only slightly between data and146

model. We call the component most predominant in time Regime A and it is present147

55% of the time. The second most frequent component (Regime B) is identified 34%148

of the time and the third component (Regime C) corresponds to the remaining 11%.149

Examining the time-varying probability (most often we find wk(t) = 0 or wk(t) = 1)150

of being in each regime (Figure 3,a5,b5,c5) and comparing them with the NOAA Mul-151

tivariate ENSO Index (MEI, [21]), we can relate the different regimes to the different152

ENSO states. Positive (negative) MEI corresponds to El Niño (La Niña) conditions153

when it exceeds a certain threshold that in our representation is normalized to be 1154

(-1) and otherwise corresponds to “normal conditions”. Thus, the three regimes corre-155

spond to normal conditions (Regime A), La Niña (Regime B), and El Niño (Regime C).156

All the regimes means (Figure 3,a1,b1,c1) show a strong cold bias in the model solution157

(red line) east of the international date line that ranges 1− 2 ◦C.158

The first mode of the EOF analysis of Regime A (associated with “normal con-159

ditions”, Figure 3,a2) shows the predominant covariability is in the eastern stations.160

The model variability corresponds with the observed variability except for in the east-161

ernmost station. The model-data covariability is coherent across the entire spatial162

extension of the second EOF (Figure 3,a3). In the third EOF mode (Figure 3,a4), a163

component of variability in the easternmost station is not reproduced in the model re-164

sulting in model and data being anti-correlated. The model exhibits twice the observed165

variability in this mode east of 220 (140◦W ).166

During La Niña conditions (Regime B) the model mean (Figure 3,b1) is slightly167

worse than during normal conditions reproducing the spatial structure but not the168

magnitude exhibiting a larger bias. Most of the variability associated with this regime169

is present in the first mode (V = 14) and the model-data discrepancies for this mode170

(Figure 3,b2) were similar in structure to the first mode of the Regime A. The model171

component of the covariability in the third mode of this regime (Figure 3,b4) differs sig-172

nificantly from the observed spatial structure by exhibiting a mode of model variability173

in the west not present in the data.174

Finally, during El Niño (Regime C) the model displays the worse deficiencies. The175

model mean (Figure 3,c1, red line) resembles more the observed mean from Regime A176

than the mean for Regime C. All modes of variability include deterioration of the model177
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Fig. 3 The three identified regimes from top to bottom in frequency: Regime A (55% fre-
quency) is shown in the top 8 panels, Regime B (34%) in the next 8 panels and Regime C
(11%) in the following 8 panels. The last eight panels correspond to the conventional EOF
analysis of the entire dataset (no regime separation) for comparison. The data is in black and
the model in red. For each regime the panels are: 1: The longitudinal distribution of the data
and model mean; 2,3,4: The spatial distribution of the 1st, 2nd and 3rd EOFs of the joint co-
variability (the size of each mode is included in the title of each panel); 5: Adjusted probability
of the regime (the axis has been stretched so that for regime k, wj=k = 1 and wj 6=k = −1)
and time series of normalized ENSO MEI Index (blue line) where positive (negative) values
larger (smaller) than 1 (-1) correspond with El Niño (La Niña) conditions; 6,7,8: The time
varying amplitudes of the first three EOFs (valid only for periods when the regime has been
separated). d5 includes the normalized time-varying magnitude of the 1st EOF in black.
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skill with the first mode (Figure 3,c2) having problems around the date line, and the178

second and third modes (Figure 3,c3,c4) being poorly captured in most stations.179

The joint temporal variability of model and data represented in the lower panels of180

each of the regimes allows the interpretation of the temporal changes for each regime.181

For instance for Regime C, the first EOF time-vaying amplitude (Figure 3,c6) separates182

the large 1998 El Niño from other smaller El Niño periods (1993, 1994, 2003). The183

second EOF (Figure 3,c7) separates the variability associated with the initiation of El184

Niño from the one associated with its breakdown.185

When the entire data set is analyzed without the use of EM for regime separa-186

tion, the resulting averages (Figure 3,d1) are very similar to the Regime A (normal187

conditions) averages. Using the conventional EOF analysis in the entire dataset, the188

longitudinal distribution of variability for the different modes present some differences189

from the modes of each of the regimes. The first EOF (Figure 3,d2) exhibits increased190

model variability (compared to the modes obtained after EM) in the region between191

the dateline and 220 (140◦W ). This is caused by the changes from regime to regime, as192

it is not present in any of the first modes obtained by the EM separation. The second193

EOF of the entire data set (Figure 3,d3) exhibits a similar longitudinal structure to the194

second modes of each of the regimes, while the third EOF (Figure 3,d4) is completely195

different.196

The EM method provides a more accurate regime separation than using a con-197

ventional EOF approach (no EM used). When compare EOF and EM to the MEI198

Index, the conventional EOF method estimates the correct regime 73% of the time199

(Figure 3,d5) while the EM algorithm correctly predicts the ENSO state 92% of the200

time. Furthermore, the clear modal separation achieved by the EM analysis facilitates201

the physical interpretation of the data.202

4 Higher dimensional application203

One of the main concerns of this methodology is the applicability to larger data sets204

such as realistic model outputs and satellite observations. We conduct an additional205

experiment to compare daily high-resolution blended SST ([22,23]) and the ECCO-206

JPL model solution (Section 3.1) in the same area of the Equatorial Pacific but now207

extending from 5◦N to 5◦S. The original 0.25◦-resolution SST data is averaged to208

match the 0.3◦ latitudinal and 1◦ longitudinal resolution of the model resulting in209

4000 spatial points and 659 temporal instances.210

In theory, the computational cost of using the EM algorithm to separate the com-211

ponents of the GMM could be expensive for high dimensional problems. In practice,212

the extraction of the EOFs is also computationally intensive for these problems and in213

fact in this application the EM algorithm is only six times more costly than the basic214

EOF analysis. Clearly, the combined cost is high but we believe the improved results215

and the ease of interpretation compensate for the increased cost.216

The method separates three components in the extended model-data distribution217

(Figure 4). The regimes in this case are very similar to the ones extracted in Section 3.218

The most predominant component (Regime A) is present 52% of the time, while the219

second (Regime B) is identified 36% of the time, and Regime C corresponds to the220

remaining 12%. As in the previous case, Regime A is consistent with “normal condi-221

tions”, Regime B with La Niña, and Regime C with El Niño. The probability of each222

regime exhibits a binary behavior, with wk(t) = 0 or wk(t) = 1 most of the time.The223
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Fig. 4 Probability of the three separate regimes and time series of normalized ENSO MEI
Index (black line) where values larger (smaller) than 0.66 (0.33) correspond with El Niño (La
Niña) conditions. The x-axis indicates years.

EM algorithm is slightly worse than in Section 3 at predicting correctly the ENSO224

state (correct regime 84% of the time), because of the presence of additional variability225

associated with other processes such as the seasonal cycle.226

The three regimes show different spatial patterns (Figure 5) with some common fea-227

tures present in both the satellite data and the model simulation: warmer temperatures228

in the west, slightly cooler temperatures in the southern than in the northern hemi-229

sphere. Regime A (normal conditions) exhibits a cold model bias (Figure 5c) in most230

of the domain with larger values along the Equator between 190-260 (170 − 100◦W ).231

The difference between the Regime A first EOF of data and model (Figure 5d,e) is232

significant with the model highest variability centered in a position to the northwest233

of the data and exhibiting a smaller maximum. In the case of Regime B (La Niña), the234

model bias (Figure 5h) is larger in magnitude but concentrated over a smaller area.235

The model first EOF of Regime B closely resembles the structure and magnitude of the236

data first EOF (Figure 5i,j). The model during El Niño (Regime C) exhibits a larger237

colder bias (Figure 5m) with its maximum concentrated around 260 (100◦W ). The238

model first EOF for Regime C (Figure 5o) exhibits the largest deficiencies failing to239

appropriately characterize its maximum in magnitude and longitudinal and latitudinal240

position. When the entire data set is analyzed (without regime partition), the model241
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Fig. 5 Spatial distribution of the means, bias and 1st EOF of the data and model solutions.
The first, second and third rows corresponds to Regimes 1, 2 and 3, respectively. The fourth
row corresponds to the entire dataset. The first column is the data mean; the second is the
model mean; the third is the bias (model-data); the fourth is the 1st EOF of the data; and
the last column is the 1st EOF of the model.

bias (Figure 5r) and the structure of the data and model first EOF (Figure 5s,t) closely242

mimic the results for Regime A.243

In general, the model presents some deficiencies, especially during El Niño periods,244

that include sporadic poor correlation with the data and imperfect variability struc-245

ture and magnitude representation. While these deficiencies can be severe in specific246

locations and times, the joint model-data distribution suggests the model is able to247

characterize the right regime for each of the three separate components.248

5 Conclusions249

As a generalization to EOF analysis, JEO-GAMMA allows for a non-Gaussian de-250

scription of model-data joint distributions. The applications of the method extend251

from model skill estimations to improved regime separation.252

The method allows the analysis of the variability in each component separately253

with an optimal and non-arbitrary procedure. The data-model comparison is therefore254
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achieved inside the limits of the specific regime instead of having to concentrate in255

concrete periods or entire time series that include multiple regime signals. The separa-256

tion of each regime permits the description of the predominant modes around clearly257

defined and statistically distinguishable means.258

JEO-GAMMA can be summarized as a procedure to first objectively separate the259

different components (regimes) of a GMM using the EM methodology and then analyze260

the covariance in each regime using EOF analysis. Previous studies [13,14] followed261

the reversed path, using EM to separate clusters inside EOF modes from geopotential262

height anomalies. We believe our approach is more appropriate for regime separation263

and skill assessment.264

We demonstrate the applicability of the method for both small (TAO/TRITON vs265

ECCO-JPL model) and large (satellite SST vs model) data sets. The application of this266

methodology to extremely large datasets (millions of spatial datapoint) may require267

additional slight modifications by the implementation of high-dimensional data clus-268

tering algorithms (e.g., [24]). We believe these modifications to be small (if necessary)269

and therefore expect the method to be of great usefulness.270

Therefore, the method represents an efficient and flexible approach for regime iden-271

tification and analysis especially for model skill assessment. We believe that the preser-272

vation of the realistic multi-regime structure of a system should be encouraged in future273

statistical analysis of the ocean.274
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Appendices285

A Expectation-Maximization286

The EM algorithm is an iterative procedure to find the Maximum Likelihood Estimate of the287

parameters of a Gaussian Mixture Model by applying the following two steps:288

Expectation step: The expected value for component k of the likelihood function, wk(t),289

is calculated under the current estimate of the parameters µk and Σk:290

wk(t) =
e(−

1
2 (ψ−µk)T [Σk]−1(ψ−µk))p

(2π)nd |Σk|
, (4)

291

wk(t)→
wk(t)P
j w

j(t)
(5)

The wk(t) is used for the temporal description of the time series, being analogous to the292

temporal amplitudes produced by EOF analysis. In practice, we find that most often there is293

a tendency for binary behavior, with wk(t) = 0 or wk(t) = 1.294

Maximization step: The optimal parameters that maximizes the current estimate given295

the data ψ(t) is calculated. Note that τk, µk and Σk may be all maximized independently of296

each other since they appear in separate linear terms.:297
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τk =
nk

nt
=

P
t w

k(t)

nt
(6)

298

µk =
X
t

wk(t)ψ(t)/nk (7)

299

Σk =
X
t

wk(t)(ψ(t)− µk)(ψ(t)− µk)T /(nk − 1) (8)

This procedure converges to a local maximum of the likelihood function [25]. The con-300

vergence to the global maximum is achieved by the repetition of the algorithm with random301

initial means. The mean of the first component is randomly chosen from the data points and302

the second and successive components are chosen such that their states are farthest from the303

precedent means.304

References305

1. Huang, N. E. , Shen, Z., Long, S. R., Wu, M. C., Shih, E. H., Zheng, Q., Tung, C. C.,306

Liu, H. H., The Empirical Mode Decomposition Method and the Hilbert Spectrum for307

Non-stationary Time Series Analysis, Proc. Roy. Soc. London, A454, 903–995, (1998).308

2. Emery, W. J., Thomson, R. E., Data Analysis Methods in Physical Oceanography, Perg-309

amon, pp 634, (1997).310

3. Bretherton, C. S., Smith, C., Wallace, J. M., An intercomparison of methods for finding311

coupled patterns in climate data, J. Climate, 5, 541–560, (1992).312

4. Tourre, Y. M., White, W. B., ENSO signals in global upper-ocean temperature, J. Phys.313

Oceanogr., 25, 1317–1332, (1995).314

5. Goswami, B., Shukla, J., Predictability of a coupled ocean-atmosphere model, J. Climate,315

4, 3–22, (1991).316

6. Murtugudde, R., Busalacchi, A., Interannual Variability of the Dynamics and Thermody-317

namics of the Tropical Indian Ocean, J. Climate, 12, 2300–2326, (1999).318

7. Barnett, T. P., Comparison of near-surface air temperature variability in 11 coupled global319

climate models, J. Climate, 12, 511–518 (1999).320

8. Smith, K. W., Aretxabaleta, A. L., Expectation-maximization analysis of spatial time321

series, Nonlin. Processes Geophys., 14, 73–77, (2007).322

9. Houseago-Stokes, R. E., Challenor, P. G., Using PPCA to Estimate EOFs in the Presence323

of Missing Values, J. Atmos. Oceanic Technol., 21, 14711480, (2004).324

10. Kondrashov, D., Ghil, M., Spatio-temporal filling of missing points in geophysical data325

sets, Nonlin. Processes Geophys., 13, 151159, (2006).326

11. Akaike, H., A new look at statistical model identification, IEEE Transactions on Automatic327

Control, 19, 716–723, (1974).328

12. Schwarz, G., Estimating the dimension of a model, Ann. Stat., 6, 461–464, (1978).329

13. Smyth, P., Ide, K., Ghil, M., Multiple Regimes in Northern Hemisphere Height Fields via330

Mixture Model Clustering, J. Atmos. Sci., 56, 3704–3723, (1999).331

14. Hannachi, A., Tropospheric Planetary Wave Dynamics and Mixture Modeling: Two Pre-332

ferred Regimes and a Regime Shift, J. Atmos. Sci., 64, 3521–3541, (2007).333

15. Hu, X. L., Xu, L., A comparative study of several cluster number selection criteria, In:334

Proc. of IDEAL03, Lecture Notes in Computer Science, LNCS 2690, Springer-Verlag, 195–335

202, (2003).336

16. Raftery, A., Dean, N., Variable selectionfor model-based clustering, J. Amer. Statist. As-337

soc., 101 (473), 168–178, (2006).338

17. McPhaden, M. J., Busalacchi, A. J., Donguy, R. C. J. R., Gage, K. S., Halpern, D., Ji, M.,339

Julian, P., Meyers, G., Mitchum, G. T., Niiler, P. P., Picaut, J., Reynolds, R. W., Smith,340

N., Takeuchi, K., The Tropical Ocean-Global Atmosphere observing system: A decade of341

progress, J. Geophys. Res., 103, 14169–14240, (1998).342

18. McPhaden, M. J., Genesis and evolution of the 1997-1998 El Niño, Science, 283, 950–954,343

(1999).344

19. Wunsch, C., Heimbach, P., Practical global oceanic state estimation, Physica D.,345

doi:10.1016/j.physd.2006.09.040, (2007).346



13

20. Wunsch, C., Heimbach, P., Ponte, R. M., Fukumori, I., the ECCO-GODAE Consor-347

tium Members, The Global General Circulation of the Ocean Estimated by the ECCO-348

Consortium, Oceanography, 22, 88–103, (2009).349

21. Wolter, K., Timlin, M. S., Measuring the strength of ENSO - how does 1997/98 rank?,350

Weather, 53, 315–324, (1998).351

22. Reynolds, R. W., Rayner, N. A., Smith, T. M., Stokes, D. C., Wang, W., An improved in352

situ and satellite SST analysis for climate. J. Climate, 15, 1609–1625, (2002).353

23. Reynolds, R. W., Smith, T. M., Liu, C., Chelton, D. B., Casey, K. S., Schlax, M. G.,354

Daily High-Resolution-Blended Analyses for Sea Surface Temperature, J. Climate, 20,355

5473–5496, (2007).356

24. Bouveyron, C., Girard, S., Schmid, C., High-dimensional data clustering, Comput. Statist.357

Data Analysis, 52, 502–519 (2007).358

25. Fraley, C., Raftery, A., Model based clustering, discriminant analysis, and density estima-359

tion, J. Amer. Statist. Assoc., 97 (458), 611–631, (2002).360


