brought to you by CORE

Published by AGU and the Geochemical Society

In situ δ^7 Li, Li/Ca, and Mg/Ca analyses of synthetic aragonites

R. I. Gabitov

Department of Earth and Space Sciences, University of California, Los Angeles, California 90095, USA (gabitr@ucla.edu)

Formerly at Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA

Formerly at Department of Earth and Environmental Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, USA

A. K. Schmitt

Department of Earth and Space Sciences, University of California, Los Angeles, California 90095, USA

M. Rosner

Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA

Also at Division I.1, Analytical Chemistry; Reference Materials, BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, D-12205 Berlin, Germany

Also at Section 4.2: Inorganic and Isotope Geochemistry, Deutsches GeoForschungsZentrum, Telegrafenberg, D-14473 Potsdam, Germany

K. D. McKeegan

Department of Earth and Space Sciences, University of California, Los Angeles, California 90095, USA

G. A. Gaetani and A. L. Cohen

Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA

E. B. Watson

Department of Earth and Environmental Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, USA

T. M. Harrison

Department of Earth and Space Sciences, University of California, Los Angeles, California 90095, USA

[1] In situ secondary ion mass spectrometry (SIMS) analyses of δ' Li, Li/Ca, and Mg/Ca were performed on five synthetic aragonite samples precipitated from seawater at 25°C at different rates. The compositions of δ^7 Li in bulk aragonites and experimental fluids were measured by multicollector inductively coupled plasma–mass spectrometry (MC-ICP-MS). Both techniques yielded similar δ^7 Li in aragonite when SIMS

analyses were corrected to calcium carbonate reference materials. Fractionation factors $\alpha^7 \text{Li}/^6 \text{Li}$ range from 0.9895 to 0.9923, which translates to a fractionation between aragonite and fluid from -10.5% to -7.7%. The within-sample $\delta^7 \text{Li}$ range determined by SIMS is up to 27‰, exceeding the difference between bulk $\delta^7 \text{Li}$ analyses of different aragonite precipitates. Moreover, the centers of aragonite hemispherical bundles (spherulites) are enriched in Li/Ca and Mg/Ca relative to spherulite fibers by up to factors of 2 and 8, respectively. The Li/Ca and Mg/Ca ratios of spherulite fibers increase with aragonite precipitation rate. These results suggest that precipitation rate is a potentially important consideration when using Li isotopes and elemental ratios in natural carbonates as a proxy for seawater composition and temperature.

Components: 8800 words, 7 figures, 5 tables.

Keywords: lithium; isotope; aragonite; rate; SIMS; magnesium.

Index Terms: 1041 Geochemistry: Stable isotope geochemistry (0454, 4870); 4924 Paleoceanography: Geochemical tracers; 3630 Mineralogy and Petrology: Experimental mineralogy and petrology.

Received 10 August 2010; Revised 30 November 2010; Accepted 4 January 2011; Published 1 March 2011.

Gabitov, R. I., A. K. Schmitt, M. Rosner, K. D. McKeegan, G. A. Gaetani, A. L. Cohen, E. B. Watson, and T. M. Harrison (2011), In situ δ^7 Li, Li/Ca, and Mg/Ca analyses of synthetic aragonites, *Geochem. Geophys. Geosyst.*, *12*, Q03001, doi:10.1029/2010GC003322.

1. Introduction

[2] The fractionation of trace elements and isotopes during precipitation of carbonate minerals in the oceanic environment is the basic tool used for reconstruction of the history of oceanographic variability through time. While not a significant Li sink, marine carbonates are known to be good recorders of seawater Li abundance (~180 ppb) and δ^7 Li (~+33‰) [*Morozov*, 1968; *Ronov et al.*, 1970; *Delaney et al.*, 1985; *Hall et al.*, 2005]. Lithium isotopic composition is typically expressed as

$$\delta^{7}Li = \frac{\left({}^{7}Li/{}^{6}Li\right)_{sample} - \left({}^{7}Li/{}^{6}Li\right)_{LSVEC}}{\left({}^{7}Li/{}^{6}Li\right)_{LSVEC}} \cdot 10^{3}\%$$

where the NIST SRM 8545 (LSVEC) lithium carbonate is the certified isotope reference material which defines the zero point on the δ^7 Li scale. Lithium enters the ocean through river input (discharge weighted average of the major world rivers δ^7 Li \approx + 23‰) and hydrothermal marine fluids (average δ^7 Li \approx +7‰) [*Chan et al.*, 1993, 1994; *Huh et al.*, 1998; *Coplen et al.*, 2002; *White*, 2005]. Therefore, the changes of seawater Li and δ^7 Li should reflect changes in continental weathering environment (δ^7 Li in continental rocks varies from -10‰ to +19‰) and hydrothermal input over geological time [*Tomascak*, 2004]. Lithium is removed from the ocean by reaction with oceanic crust and absorption on surfaces of mineral particles. These Li input and output processes fractionate δ^7 Li between solid and fluid phases with preferential incorporation of ⁷Li into solution. Hence, riverine δ^7 Li inputs depend not only on the geologic settings but also on the weathering rate of continental rocks.

[3] No relationship between δ^7 Li and temperature has been found in synthetic calcite, foraminifera, or corals described in the studies of *Marriott et al.* [2004a], *Hall et al.* [2005], and *Rollion-Bard et al.* [2009]. This supports the potential for these Ca carbonate minerals to be a proxy for continental weathering and hydrothermal activity in the ocean. However, no experimental work has been performed to evaluate the influence of growth rate on Li isotope fractionation and Li partitioning between calcium carbonate minerals and fluid.

[4] It has been shown, however, that Li/Ca in foraminifera calcite depends on the saturation state of seawater (Ω), which is linked to mineral growth rate [*Hall and Chan*, 2004; *Bryan and Marchitto*, 2008]. Further, there is a negative correlation between temperature and the Li/Ca ratio of calcitic forams, calcitic brachiopods, and aragonitic corals at 2 to 28°C [*Delaney et al.*, 1989; *Marriott et al.*, 2004; *Hall and Chan*, 2004; *Bryan and Marchitto*, 2008; *Case et al.*, 2010; *Hathorne et al.*, 2009; *Montagna et al.*, 2009]. An experimental study of Li/Ca in calcite confirms the observed natural trend, i.e.,

Li/Ca partition coefficient $\left(K_d^{Li/Ca} = \frac{(Li/Ca)_{solid}}{(Li/Ca)_{fluid}}\right)$

Geochemistry

Geophysics Geosystems

Figure 1. High-resolution scans of positive ion species of (a) ⁷Li, (b) ²⁴Mg, and (c) ⁴²Ca at MRP \approx 2900 with the mass of interest and resolved molecular interferences identified. ⁶Li¹H was not detected at the relevant mass offset (0.0069 amu) from the ⁷Li peak (Figure 1a). We tentatively identify a resolved interference at higher mass relative to ²⁴Mg as ²³Na¹H (Figure 1b) and to ⁴²Ca as ²⁶Mg¹⁶O and ⁴⁰Ca¹H₂ (Figure 1c).

between solid and fluid phase decreases with increasing temperature from 5 to 30°C [Marriott et al., 2004a]. However, temperature is not the only factor responsible for Li/Ca and Mg/Ca variation in corals. Several studies have reported that Mg/Ca (and, to a lesser extent, Li/Ca) is enriched in the coral centers of calcification (COC) relative to the fibrous material [Meibom et al., 2004, 2006; Sinclair et al., 2006; Gagnon et al., 2007; Rollion-Bard et al., 2009; Case et al., 2010]. Therefore, the influence of crystallization kinetics on Li/Ca and Mg/Ca need

Figure 2. (a) Reflected and (b) transmitted light images of polished aragonite spherulites after SIMS analyses. The exposed surface of aragonite hemispheres is reasonably expected to have been attached to the growth substrate (beaker walls or stir rod), and therefore, the center of nucleation of any particular spherulite would be in its center. Patchy residual Au coating from SIMS analysis is visible in Figures 2a and 2b. SIMS ion beam craters are visible in Figure 2a and are marked by white ovals in Figure 2b. The numbers of the analysis spots are identical in both images. Spot 1 was collected on the spherulite fibers (rim), whereas spots 2 and 3 cover both the fibers and center areas.

Sample	⁷ Li/ ⁶ Li, Aragonite ICP-MS ^b	δ^7 Li, Aragonite ICP-MS	⁷ Li/ ⁶ Li, Fluid ICP-MS	δ ⁷ Li, Fluid ICP-MS	α(⁷ Li/ ⁶ Li) Aragonite-Fluid ICP-MS	⁷ Li/ ⁶ Li, Aragonite SIMS	δ^7 Li, Aragonite SIMS	Rate (µmol/min)
PGLi-4	12.835 (6)	67.8 (5)	12.970 (3)	79.1 (2)	0.9895 (7)	12.819 (12)	66.6 (1.0)	0.25
PGLi-6	12.8515 (7)	69.25 (6)	12.9679 (15)	78.92 (13)	0.9910(1)	12.851 (8)	69.2 (7)	15.9
PGLi-5	12.8640 (9)	70.28 (8)	12.9634 (7)	78.56 (6)	0.9923 (2)	na	. ,	6.2

 Table 1.
 Reference ⁷Li/⁶Li Data^a

^aPrior to normalizing to LSVEC SIMS data were corrected to PGLi-6 that was used as internal standard. Average aragonite precipitation rate was assumed to be proportional to the pumping rate of 0.023M Na₂CO₃. Units in parentheses represent 1 standard error (1 SE) in terms of least units cited, on the basis of replicate MC-ICP-MS and multispot SIMS analyses. Therefore, 12.835 (6) should be read as 12.835 \pm 0.006. Uncertainties for SIMS data are 1 SE of the averages of 20 and 21 spots analyses in PGLi-4 and PGLi-6, respectively. MC-ICP-MS analyses of the main Li source (Li₂CO₃) yielded δ^7 Li of 81.3 \pm 0.3‰.

⁶Multicollector ICP-MS. MC-ICP-MS and SIMS data were normalized to LSVEC standard, where ⁷Li/⁶Li = 12.0192 and δ^7 Li = 0‰ [*Flesch et al.*, 1973].

to be evaluated in order to improve our understanding of their relationships to temperature.

[5] Previous work has established the usefulness of in situ analyses of natural and experimental calcium carbonates using SIMS in combination with bulk analysis of carbonates and fluids by ICP-MS [e.g., Sano et al., 2005; Shirai et al., 2005; Gabitov et al., 2006, 2008; Gaetani and Cohen, 2006; Vigier et al., 2007; Shirai et al., 2008; Rollion-Bard et al., 2009; Kasemann et al., 2009]. Here, we use SIMS to quantify δ^7 Li and Li/Ca using internal (e.g., our aragonite) and external standardization on materials that compositionally match those of our samples (e.g., calcite CAL-HTP [Vigier et al., 2007; Rollion-Bard et al., 2009]). In order to determine Mg/Ca the calcite from Mexico described by Kunioka et al. [2006] and Shirai et al. [2008] was used. The goal of the present work is to determine δ' Li, Li/Ca, and Mg/Ca in morphologically different zones of aragonite, i.e., spherulite centers and fibers using SIMS and compare the obtained in situ data with the bulk ICP-MS analyses.

2. Experimental and Analytical Methods

2.1. Aragonite Precipitation

[6] Techniques employed for precipitating synthetic aragonites from seawater were adopted from *Kinsman and Holland* [1969] as modified by *Gabitov et al.* [2006]. Experiments have been conducted at Woods Hole Oceanographic Institution (WHOI). Seawater was collected from Vineyard Sound, Massachusetts. Crystallization of aragonite has been achieved by elevating seawater Ω by continuous addition of 0.023M aqueous Na₂CO₃ solution. To preclude the dilution of the growth medium, the doubly concentrated seawater (2SW) solution was introduced at the same time. For 2SW preparation, 1L of seawater was evaporated to half of its volume at 85°C in a PTFE beaker using an isothermal bath (Lauda RE-106). The amount of seawater that evaporated was calculated by the weight loss of the fluid. Addition of deionized H₂O adjusted the final mass of solution to half of initial producing the 50% evaporated seawater solution. ICP-MS analyses confirmed that concentrations of Mg, Ca, Sr, and Ba in 2SW solution were near double the values of those in seawater [Gabitov et al., 2006]. Both solutions (Na₂CO₃ and 2SW) were injected simultaneously at the same rate by using a syringe pump. The injection rates were 0.011, 0.038, 0.27, 0.69, and 7.3 ml/min, which is equivalent to 0.25, 0.87, 6.2, 15.9, and 168 μ mol of Na₂CO₃ per minute injection for the runs PGLi-4, PGLiB-1, PGLi-5, PGLi-6, and PGLi-2 respectively. In our study, these pumping rates are used as a proxy for relative precipitation rates of aragonite. Gabitov et al. [2006] and Holcomb et al. [2009] showed that aragonite growth rate positively correlates with the injection rate of Na₂CO₃ solution into seawater. 600 ml of seawater was continuously stirred at 120 rpm in the PTFE beaker using a PTFE propeller rod at 25°C. Prior to initiation of pumping, high-purity Li₂CO₃ powder was dissolved in the seawater and titrates. As a result, Li concentration in all fluids was elevated by a factor of ~23 relative to natural seawater.

2.2. MC-ICP-MS Sample Preparation and Bulk Analysis

[7] Analyses of final fluids and bulk precipitates from the runs PGLi-4, PGLi-5, and PGLi-6 were carried out by solution MC-ICP-MS after ion chromatographic Li matrix separation. Isotopic composition of Li_2CO_3 was determined by the same method. Prior to liquid ion chromatography, the carbonate run products were dissolved in 2M HNO₃. The growth solutions and the dissolved carbonates

Figure 3. MC-ICP-MS results for three experiments plotted versus injection rate of 0.023M Na₂CO₃, which is proportional to aragonite precipitation rate. (a) δ^7 Li of aragonites, (b) δ^7 Li of fluids collected at the end of each run, and (c) fractionation factor (α) of ⁷Li/⁶Li between aragonite and fluid. Error bars are the standard errors (1 SE) from three replicate analyses of sample aliquots.

were evaporated to dryness and then dissolved in 9 ml 1N HNO₃ in 80% methanol (MeOH). Lithium matrix separation was carried out in glass columns filled with 10 ml cation resin Bio-Rad AG 50W X8 (200-400 mesh). Sample solutions (9 ml) were loaded on cleaned (40 ml 7N HNO₃) and conditioned (20 ml 0.1N HNO₃ in 50% MeOH) columns. After sample loading 10 ml of 1N HNO₃ in 80% MeOH were added before Li was finally eluted using 100 ml of 1N HNO3 in 80% MeOH. Quantitative Li recovery and Li matrix separation were monitored by Li, Na, Sr, Nd and Pb concentration analyses of solutions collected prior to and after the Li elution. The determined Li procedural blanks of <0.5 ng for the used chemical method are negligible for the accuracy of the final δ^7 Li values as >100 ng sample Li were run through chemistry.

[8] Lithium isotope ratio determinations were carried out on a MC-ICP-MS (NEPTUNE Thermo Fisher) at WHOI by sample standard bracketing after a method reported by Rosner et al. [2007]. The final separated samples were evaporated and then diluted in 0.5N HNO₃ to match the L-SVEC standard solutions (100, 50, 33, 10 μ g g⁻¹) used for bracketing to within 5%. The Li isotope compositions are reported as ⁷Li/⁶Li normalized to L-SVEC [Flesch et al., 1973] and were calculated by bracketing the measured ⁷Li/⁶Li of a sample with the mean of the two neighboring L-SVEC standards. Replicate measurements (n = 3) of our homogeneous sample solutions indicate δ^7 Li reproducibility range of 0.1‰-0.5‰ (1 SE). Lithium isotope determination on multiple processed sample aliquots of IAPSO seawater and L-SVEC performed in the course of this study indicate an accuracy of the mean δ' Li values of <0.5‰ and external reproducibility similar to that calculated here, i.e., <0.5‰ [Rosner et al., 2007].

2.3. SIMS Sample Preparation and in Situ Analysis

[9] The beaker walls and the stir rod were rinsed with distilled water and methanol, and dried at 30°C. Spherulites grew outward from the rod and beaker walls, so the flat side of the aragonite hemispheres attached to the substrate. Spherulites were manually removed from the beaker and the rod using a spatula, and mounted in epoxy, such that the flat sides of the hemispheres were exposed for SIMS analysis. The mounts were polished with 1200 grit SiC paper followed by alumina powder (down to 1 μ m size) and the spherulites were analyzed by using a CAMECA IMS 1270 ion microprobe with a 1.8–7.7 nA ¹⁶O⁻

	⁷ Li	⁶ Li	⁷ Li/ ⁶ Li (1 SE) Raw	$\delta^7 \text{Li}^{b}$ (1 SE) ‰	²⁴ Mg	⁴² Ca	24 Mg/ 42 Ca (1 SE) × 10 ²	$^{7}\text{Li}/^{42}\text{Ca}$ (1 SE) × 10 ²
	NI	$ST-612 (\delta^7 =$	$= 31.2 \pm 0.1\%^{\circ}$), 3	1 August 2009	(Session 1.4)), $FCp = 4.5$	5 nA, 60 Cycles	
	288305	22663	12.721 (7)	31.9 (9)		-	-	
	295231	23214	12.718 (6)	31.7 (9)				
	301865	23738	12.716 (7)	31.5 (9)				
	278644	21943	12.698 (6)	30.1 (9)				
	298995	23528	12.708 (6)	30.9 (9)				
Mean			12.712	31.2				
1 SD			0.009	0.7				
	NIS	$T-612 \ (\delta^7 =$	$31.2 \pm 0.1\%^{\circ}$), 23	8 November 200	9 (Session 2	2.2), FCp = 2	2.5 nA, 30 Cycles	
	99503	7866	12.650 (11)	30.1 (1.5)	22632	274540	8.26 (5)	36.21 (11)
	99650	7860	12.678 (9)	32.3 (1.5)	22333	274247	8.16 (5)	36.33 (7)
	99755	7883	12.656 (10)	30.5 (1.5)	22283	273052	8.18 (6)	36.53 (6)
	98144	7757	12.653 (11)	30.3 (1.5)	21966	268503	8.19 (5)	36.55 (5)
	98228	7745	12.684 (9)	32.8 (1.5)	21896	267139	8.21 (6)	36.78 (6)
Mean			12.664	31.2			8.20	36.41
1 SD			0.016	1.3			0.04	0.219
	NI	$ST-614 (\delta^7 =$	$= 20.5 \pm 0.1\%^{\circ}$), 3	1 August 2009	(Session 1.4)), $FCp = 4.4$	7 nA, 60 Cycles	
	12722	1012	12.567 (18)	19.5 (1.6)				
	12667	1008	12.57 (2)	19.3 (1.9)				
	12347	982	12.577 (19)	20.2 (1.7)				
	12169	968	12.568 (19)	19.5 (1.7)				
	12486	992	12.59 (2)	21.3 (1.8)				
Mean			12.57	20.0				
1 SD			0.01	0.8				
	NIST	$-610 \ (\delta^7 = .$	$32.50 \pm 0.02\%^{\circ}$), 2	23 November 20	009 (Session	2.2), FCp =	2.3 nA, 30 Cycles	
	1114268	87899	12.678 (9)	32.3 (1.5)	163595	253565	64.6 (3)	439.7 (1.2)
	1118937	88066	12.706 (7)	34.6 (1.5)	165935	254571	65.2 (5)	439.9 (1.9)
	1125400	88588	12.705 (7)	34.5 (1.4)	167332	258466	64.8 (4)	435.8 (1.8)
Mean			12.696	33.8			64.9	439.8
1 SD			0.016	1.3			0.3	2.3
		CAL-	-HTP, 23 Novembe	r 2009 (Session	2.2), FCp =	= 1.8 nA, 60	Cycles	
	3359	274	12.23 (5)			296912		1.131 (5)
	3329	272	12.23 (3)			290735		1.145 (4)
	3582	294	12.16 (3)			287614		1.244 (6)
	3254	267	12.20 (3)			283787		1.146 (4)
	3177	260	12.20 (3)			277531		1.145 (3)
	3078	253	12.17 (3)			267194		1.152 (4)
	3210	262	12.27 (5)			266615		1.202 (8)
	3157	258	12.23 (5)			25/292		1.226 (7)
Mean			12.21					1.174
I SD			0.03					0.043
		Calcite from	m Mexico, 23 Nove	ember 2009 (Se	ssion 2.2), F	$Ccp = 1.8 \ nA$, 30 Cycles ^d	
					/3306	28/905	26.2288 (497)	

 Table 2.
 SIMS Analyses of Reference Materials^a

^aNIST-610, 612,614 = silicate glass; CAL-HTP = hydrothermally grown calcite [*Vigier et al.*, 2007]. ⁷Lii⁶Li are SIMS intensity ratios. Units in ranthees represent 1 standard error (1 SE = 1 SD/m) in terms of least units of realized on the basis of realized analyses.

parentheses represent 1 standard error (1 SE = 1 SD/ \sqrt{n}) in terms of least units cited, on the basis of replicate analyses. ^b δ^7 Li(LSVEC) for glasses were determined by correction to the internal standard NIST-612; therefore, the average δ^7 Li in NIST-612 are the same as δ^7 Li from *Kasemann et al.* [2005].

^cMC-ICP-MS data from Kasemann et al. [2005].

 d Reproducibility of calcile from Mexico was determined as 0.78% (1 SE, n = 6) in another SIMS session (not reported in this work). *Kunioka et al.* [2006] reported 1 SE = 1.29% for this material using NanoSIMS.

Matanial	Motorial Data $p = \frac{7}{1000} \frac{1}{10000000000000000000000000000000000$									
Material	Date	n	L1/ L1 IMIF (‰)	LI/Ca RIY	Mg/Ca Ki Y					
Calcite (CAL-HTP)	23 Nov 2009	8	3.1 ± 1.0	2.85						
NIST-614 glass	31 Aug 2009	5	25.1 ± 0.4	na	na					
NIST-612 glass	31 Aug 2009	5	25.7 ± 0.3	na	na					
	20 Nov 2009	5	21.8 ± 0.6	0.91	0.45					
NIST-610 glass	20 Nov 2009	3	23.1 ± 0.7	0.90	0.57					
Average glass			23.9 ± 0.9	0.90	0.51					

Table 3. IMF of ⁷Li/⁶Li and RIY of Li/Ca and Mg/Ca in the Reference Materials^a

^aRIY, relative ion yield of Li/Ca and Mg/Ca during SIMS measurements. Errors are 1 SE of multiple measurements in each subsession. Reference values of ⁷Li/⁶Li in glasses are 12.2656 ($\delta^7 = 32.5\%$), 12.3942 ($\delta^7 = 31.2\%$), and 12.4099 ($\delta^7 = 20.5\%$) in NIST-610, 612, and 614, respectively [*Kasemann et al.*, 2005]. Reference values of ⁷Li/⁶Li and Li/Ca in CAL-HTP are 12.1754 ($\delta^7 = 13\%$) and 28.9 µmol/mol (Li = 2ppm), respectively [*Rollion-Bard et al.*, 2009]. Reference value of Mg/Ca in Mexican calcite is 6.3 mmol/mol [*Kunioka et al.*, 2006]. Reference values of Li/Ca and Mg/Ca in NIST-610, 612, and 614 glasses are 3.42×10^{-2} and 9.38×10^{-3} , 2.81×10^{-3} and 1.50×10^{-3} , and 1.12×10^{-4} and 6.90×10^{-4} mol/mol, respectively [*Pearce et al.*, 1997; *Kasemann et al.*, 2005]. Shaheen et al., 2008].

primary beam at 20–30 μ m lateral dimension on the sample surface. Positive secondary ions corresponding to mass/charge stations of 5.5 (background), ⁶Li, and ⁷Li were measured during analytical session 1 (August 2009). Subsequently, ²⁴Mg and ⁴²Ca were added to the previous set up in analytical session 2 (November 2009). Analytical sessions 1 and 2 consist of four and two subsessions, respectively, each subsession representing the interval of continuous operation of the duoplasmatron ion source (i.e., a ~12 h working period). Alignment of primary and secondary columns remained largely unchanged during each

Figure 4. Li isotopic variability of NIST-612 and PGLi-4 during SIMS analytical sessions. Red horizontal bar represents the δ^7 Li determined by MC-ICP-MS, with a thickness corresponding to δ^7 Li ± 1 SD (this study). Diamonds are δ^7 Li of PGLi-4 normalized to PGLi-6. Circle represents δ^7 Li of aragonite 1 normalized to CAL-HTP. Brown horizontal line represents the δ^7 Li determined by MC-ICP-MS [*Kasemann et al.*, 2005]. Cross and triangle are δ^7 Li of NIST-612 normalized to NIST-614 and NIST-610, respectively. Each symbol represents the mean of δ^7 Li determined in *n* number of spots; error bars are propagated from the 1 SD of the mean in the sample and reference material, except PGLi-4 data in subsession 2.2, where n = 1.

session. Intensities were measured by peak switching with waiting times up to 4 s and counting times of 1, 10, 4, 2, and 2 s for 5.5, ⁶Li, ⁷Li, ²⁴Mg, and ⁴²Ca, respectively. Each spot was presputtered until ⁷Li/⁶Li reached a steady state value. A mass resolving power (MRP) of ~2900 achieved separation of molecular interferences such as ²³Na¹H, ²⁶Mg¹⁶O, ⁴⁰Ca¹H₂ (Figure 1). ⁶Li¹H was not detected at the relevant mass offset (0.0069 amu) from the ⁷Li peak.

[10] An example of the polished aragonite spherulites is shown in Figure 2 in the reflected (Figure 2a) and transmitted light (Figure 2b) images. SIMS spot 1 was collected close to the rim of the spherulite and represents data from aragonite fibers only. Spots 2 and 3 were collected at areas that include both spherulite center and fibers.

[11] Reproducibility of ⁷Li/⁶Li in glasses (NIST-610, 612, 614) and calcite reference material (CAL-HTP) was 0.72‰-1.25‰ and 2.94‰ (1 SD), respectively. ⁷Li/⁴²Ca and ²⁴Mg/⁴²Ca homogeneity in silicate glasses was <0.6%. CAL-HTP yielded ⁷Li/⁴²Ca reproducibility of 3.7%. δ ⁷Li and Li in CAL-HTP were reported as 13‰ and 2 ppm, respectively

Table 4. IMF of ⁷Li/⁶Li in Aragonites^a

Sample	Date	n	IMF (‰)
PGLi-4	27 Aug 2009	3	2.8 ± 1.7
	28 Aug2009	3	4.5 ± 0.9
	30 Aug 2009	4	8.1 ± 1.1
	31 Aug 2009	2	2.7 ± 0.4
	20 Nov 2009	10	6.3 ± 2.3
	23 Nov 2009	1	5.3
PGLi-6	27 Aug 2009	4	5.9 ± 0.9
	28 Aug 2009	2	5.3 ± 0.006
	30 Aug 2009	5	5.0 ± 1.6
	31 Aug 2009	2	8.1 ± 0.8
Average aragonite			5.4 ± 0.6

^aIMF, instrumental mass fractionation of ⁷Li/⁶Li; n, number of SIMS spots. Errors are 1 SE of multiple measurements in each subsession. Reference ⁷Li/⁶Li values are in Table 1.

Table 5. SIMS Analyses of Aragonites^a

	⁷ Li	⁶ Li	⁷ Li/ ⁶ Li (1 SE) Raw	δ^7 Li (1 SE) ‰	²⁴ Mg	⁴² Ca	²⁴ Mg/ ⁴² Ca (1 SE)	$^{7}\text{Li}/^{42}\text{Ca}$ (1 SE) × 10 ²	Mg/Ca (mmol/mol)	Li/Ca (µmol/mol)
Mean 1 SD	35848 31744 29045 32348	2798 2463 2252 2511	PGLi-4, 12.813 (17) 12.890 (17) 12.90 (2) 12.881 (18) 12.870 0.045	27 August 60 (2) 66 (2) 67 (3) 65 (2) 65 3	2009 (Sess	ion 1.1),	FCp = 3.6nA,	60 Cycles		
Mean 1 SD	46777 74731 51158	3639 5800 3970	<i>PGLi-4</i> , 12.852 (15) 12.884 (15) 12.885 (14) 12.874 0.019	28 August 63.7 (1.6) 66.3 (1.5) 66.4 (1.5) 65.5 1.5	2009 (Sess	ion 1.2),	FCp = 7.7nA,	60 Cycles		
Mean 1 SD	49155 66273 32507	3806 5126 2514	<i>PGLi-4</i> , 12.915 (10) 12.928 (11) 12.93 (2) 12.92 0.01	30 August 69 (4) 70 (4) 70 (4) 70 4	2009 (Sess	ion 1.3),	FCp = 5.0nA,	60 Cycles		
Mean 1 SD	35352 44426	2748 3451	<i>PGLi-4,</i> 12.864 (14) 12.90 (10) 12.87 0.05	<i>31 August</i> 61.7 (1.7) 62.3 (1.5) 62.0 1.6	2009 (Sess	ion 1.4),	FCp = 4.5nA,	60 Cycles		
	6071 12464 12047 8604 12414 16891 9173 11862 22922 12547	468 956 924 664 970 1316 716 924 1767 972	PGLi-4, 20 N 12.97 (5) 13.037 (19) 13.043 (19) 12.96 (2) 12.79 (3) 12.83 (2) 12.80 (3) 12.84 (3) 12.97 (2) 12.90 (3) 12.91 0.09 12.89 0.08	ovember 20 79 (5) 85 (3) 86 (3) 79 (4) 65 (4) 68 (4) 66 (4) 69 (4) 79 (3) 74 (4) 75 8 73 6	09 (Session 18611 113887 201096 29499 42842 71649 28742 38374 340609 80385	a 2.1), FC 223764 281669 279785 297800 300017 314298 298013 307922 291120 277334	Cp = 2.1nA, 30 0.0832 (3) 0.4044 (11) 0.716 (6) 0.0991 (1) 0.1428 (2) 0.2280 (4) 0.0964 (1) 0.1247 (3) 1.170 (5) 0.289 (3) 0.3 0.3 ^c 0.101 0.017	<i>and 60 Cycles</i> 2.715 (15) 4.424 (15) 4.305 (9) 2.889 (6) 4.136 (9) 5.370 (19) 3.077 (7) 3.851 (7) 7.86 (4) 4.52 (3) 4.31 1.49 3.13 0.50	b 1.998 (5) 9.71 (3) 17.19 (6) 2.379 (6) 3.430 (9) 5.477 (14) 2.316 (6) 2.995 (8) 28.09 (8) 6.94 (3) 8.05 8.46 ^c 2.42 0.42	67.4 (1.9) 110 (3) 107 (3) 71.7 (1.9) 103 (3) 133 (4) 76 (2) 96 (3) 195 (5) 112 (3) 107 37 78 12
c	27748	2150	<i>PGLi-4, 2</i> 12.902 (19)	3 November 74.11 (13)	r 2009 (Ses 413050	sion 2.2) 270696	FCp = 2.1nA 1.522 (9)	<i>1, 30 Cycles</i> ^b 10.23 (8)	36.55 (11)	254 (7)
Mean 1 SD	47410 43308 54726 34856	3668 3358 4228 2692	<i>PGLi-6</i> , 12.926 (12) 12.894 (17) 12.942 (13) 12.95 (2) 12.93 0.02	27 August 69 (2) 67 (2) 70 (2) 71 (3) 69 2	2009 (Sess	ion 1.1),	FCp = 3.9nA,	60 Cycles		
Mean 1 SD	42695 61015	3305 4723	<i>PGLi-6</i> , 12.919 (12) 12.919 (10) 12.919 0.011	28 August 69.2 (1.4) 69.3 (1.3) 69.2 1.3	2009 (Sess	ion 1.2),	FCp = 4.6nA,	60 Cycles		

Table 5. (continued)

	⁷ Li	⁶ Li	⁷ Li/ ⁶ Li (1 SE) Raw	$\delta^7 \text{Li}$ (1 SE) ‰	²⁴ Mg	⁴² Ca	²⁴ Mg/ ⁴² Ca (1 SE)	$^{7}\text{Li}/^{42}\text{Ca}$ (1 SE) × 10 ²	Mg/Ca (mmol/mol)	Li/Ca (µmol/mol)
Mean 1 SD	58520 58081 58880 54110 51299	4531 4486 4553 4179 3996	<i>PGLi-6</i> , 12.914 (12) 12.948 (11) 12.931 (9) 12.949 (11) 12.837 (17) 12.916 0.046	30 August 69 (4) 72 (4) 70 (4) 72 (4) 62 (4) 69 4	2009 (Sess	sion 1.3), .	FCp = 5.7nA,	60 Cycles		
Mean 1 SD	76570 74111	5913 5717	<i>PGLi-6</i> , 12.948 (9) 12.963 (9) 12.956 0.009	<i>31 August</i> 68.6 (1.5) 69.9 (1.5) 69.2 1.5	2009 (Sess	sion 1.4), .	FCp = 4.5nA,	60 Cycles		
c f f f+c f c f Mean 1 SD Mean (f) 1 SD	21017 14320 22737 13855 15597 11473 13537 9859	1636 1121 1767 1082 1215 894 1051 763	PGLi-6, 20 12.85 (3) 12.77 (3) 12.86 (2) 12.80 (3) 12.83 (3) 12.84 (3) 12.877 (19) 12.92 (3) 12.84 0.05 12.83 0.06	November 65 (4) 58 (4) 66 (4) 61 (4) 63 (4) 64 (4) 67 (3) 70 (4) 64 4 63 5	2009 (Ses 341168 67428 329708 74882 68384 43653 301096 55415	sion 2.1), 263791 275939 303184 271845 297418 275463 237949 249867	FCp = 1.9nA, 1.293 (2) 0.2445 (3) 1.083 (10) 0.2754 (3) 0.2300 (4) 0.1584 (4) 1.262 (11) 0.2218 (3) 0.596 0.515 0.225 0.495	30 Cycles ^{b,d} 7.96 (3) 5.186 (13) 7.49 (3) 5.093 (15) 5.240 (13) 4.161 (19) 5.67 (6) 3.941 (17) 5.593 1.442 4.595 0.636	$\begin{array}{c} 31.06 \ (8) \\ 5.872 \ (15) \\ 26.00 \ (10) \\ 6.616 \ (17) \\ 5.526 \ (14) \\ 3.806 \ (10) \\ 30.31 \ (11) \\ 5.328 \ (13) \\ 14.31 \\ 12.37 \\ 5.41 \\ 1.19 \end{array}$	198 (5) 129 (3) 186 (5) 127 (3) 130 (3) 103 (3) 141 (5) 98 (3) 139 36 114 16
Mean 1 SD	12166 17287	944 1349	<i>PGLi-6, 2</i> 12.88 (3) 12.81 (2) 12.84 0.05	3 November 68 (4) 63 (4) 62 4	· 2009 (Se. 51545 165925	ssion 2.2), 243205 269081	FCp = 1.7nA, 0.2120 (5) 0.6170 (19) 0.4145 0.2863	30 Cycles ^b 5.00 (2) 6.42 (2) 5.71 1.01	5.093 (13) 14.82 (4) 9.96 6.88	124 (3) 159 (4) 142 25
Mean 1 SD	33462 34512	2592 2672	<i>PGLiB-1</i> 12.910 (14) 12.91 (2) 12.912 0.014	7, 27 August 68 (2) 68 (3) 68 2	2009 (Ses	ssion 1.1),	FCp = 3.6nA,	60 Cycles		
Mean 1 SD	87038 85560	6750 6636	<i>PGLiB-1</i> 12.895 (13) 12.894 (10) 12.894 0.011	, 28 August 67.2 (1.4) 67.1 (1.2) 67.2 0.1	2009 (Ses	ssion 1.2),	FCp = 4.6nA,	60 Cycles		
Mean 1 SD	76570 74111	5913 5717	<i>PGLiB-1</i> 12.948 (9) 12.963 (9) 12.956 0.009	, <i>31 August</i> 68.6 (1.5) 69.9 (1.5) 69.2 1.5	2009 (Ses.	sion 1.4),	FCp = 4.5 nA,	60 Cycles		
Mean 1 SD	709 586 219	9176 7656 2838	<i>PGLiB-1</i> , 12.94 (2) 13.06 (2) 12.98 (4) 12.99 0.06	20 Novemb 77 (4) 87 (4) 80(5) 82 5	er 2009 (S 92869 95377 38473	Session 2.1 279655 242321 126414	$\begin{array}{l} I), \ FCp \ = \ 2 \ nA \\ 0.3321 \ (13) \\ 0.3935 \ (6) \\ 0.3038 \ (12) \\ 0.3431 \\ 0.0459 \end{array}$	l, 30 Cycles 3.280 (12) 3.156 (12) 2.23 (2) 2.89 0.57	7.976 (10) 9.452 (5) 7.298 (9) 8.242 1.102	81 (2) 78 (2) 55.5 (1.8) 72 14

 Table 5. (continued)

⁷ Li	⁶ Li	⁷ Li/ ⁶ Li (1 SE) Raw	$\delta^7 \text{Li}$ (1 SE) ‰	²⁴ Mg	⁴² Ca	²⁴ Mg/ ⁴² Ca (1 SE)	$^{7}\text{Li}/^{42}\text{Ca}$ (1 SE) × 10 ²	Mg/Ca (mmol/mol)	Li/Ca (µmol/mol)	
12551	080	PGLiB-1, 2	23 November	2009 (Se	ssion 2.2),	FCp = 1.5 m	A, 30 Cycles ^b A 222 (14)	8 075 (10)	105 (2)	
12331	980	12.81 (3)	00 (4)	110039	290370	0.3737 (13)	4.255 (14)	8.975 (10)	105 (2)	
		PGLi-2,	27 August 2	009 (Sess	ion 1.1), F	FCp = 3.6 nA	60 Cycles			
34164	2645	12.916 (17)	68 (2)							
		PGLi-2,	28 August 20	009 (Sessi	on 1.2), F	$Cp = 11.7 \ nA$, 60 Cycles			
77486	6019	12.873 (10)	65.4 (1.2)							
34164	2645	12.977 (15)	74.0 (1.5)							
PGLi-2 20 November 2009 (Session 2.1) $FCp = 2.nA$ 30 Cycles										
13894	1081	12.84 (3)	69 (5)	211323	306031	0.690 (3)	4.53 (3)	16.57 (5)	112 (3)	

^{a7}Li/⁶Li are SIMS intensity ratios. δ^7 Li was determined by normalizing to SIMS and MC-ICP-MS data of PGLi-6 (except session in November 2009). c, f, and f+c are spherulite centers, fiber aragonite, and their mixture, respectively; mean (f) is the average of fiber data. 1 SD is the external standard deviation or the mean of the internal 1 SE; the largest one is presented. Please note that during session 1 δ^7 Li values of aragonite samples were calculated using SIMS and ICP-MS data of PGLi-6, which is less heterogeneous than PGLi-4 but not homogeneous enough to be treated as a standard. Therefore, 1 SE of δ^7 Li are significantly larger (by a factor of ~1.5) than 1 SE of raw SIMS ⁷Li/⁶Li data.

 ${}^{b}\delta^{7}$ Li was determined by normalizing to our SIMS data and bulk data reported by *Rollion-Bard et al.* [2009] for CAL-HTP; these δ^{7} Li data overlap with those determined by normalizing to PGLi-6 within 1 SE.

^cStatistically insignificant value because high heterogeneity of the sample.

^dLi/Ca and Mg/Ca in subsession 2.1 were estimated from the next subsession (2.2) analyses of CAL-HTP.

[*Rollion-Bard et al.*, 2009]. The Li/Ca was estimated as 28.9 μ mol/mol by assuming stoichiometric Ca content in calcite of 4×10^5 ppm (presence of Li has negligible effect on these calculations relative to SIMS analytical uncertainties). Reference value of Mg/Ca in Mexican calcite is 6.3 mmol/mol [*Kunioka et al.*, 2006; *Shirai et al.*, 2008].

3. Results

3.1. MC-ICP-MS Data

[12] The mean of three replicates of the bulk MC-ICP-MS analysis of three aragonite samples yielded that δ^7 Li increases by 2.5‰ when Na₂CO₃ injection rate increases from 0.25 to 6.2 µmol/min, then δ^7 Li decreases by 1‰ at the fastest injection rate of 15.9 µmol/min (Table 1 and Figure 3a). δ^7 Li in PGLI-4 and PGLi-6 fluids is homogeneous within 1 SE uncertainty (Figure 3b). However, fluid δ^7 Li is 0.5‰ lower in PGLi-5. We calculate an isotopic fractionation factor using the bulk ⁷Li/⁶Li of experimental aragonite and the final fluid

$$\left(\alpha = \frac{\left({^7Li}/{^6Li}\right)_{solid}}{\left({^7Li}/{^6Li}\right)_{fluid}}\right) \tag{1}$$

The plot of α values versus precipitation rate shows the similar pattern as for aragonite δ^7 Li (Figure 3c). Here α varies between 0.9895 ± 0.0007 and 0.9923 ± 0.0002, i.e., from -10.5‰ to -7.7‰. This range overlaps with aragonitic corals (~-9‰ [*Marriott et al.*, 2004a]), but extend the range observed in synthetic aragonites (~-12‰ [*Marriott et al.*, 2004b]) and alteration aragonite veins in altered oceanic crust (-16‰ to -10‰ [*Rosner et al.*, 2004]).

[13] Li isotopic composition of the initial fluid (solution at the beginning of the experiments) was calculated using measured δ^7 Li of the main Li source (Li₂CO₃, δ^7 Li = +81.3 ± 0.3‰, molar fraction of

Figure 5. δ^7 Li from four aragonite samples (PGLi-4, PGLiB-1, PGLi-6, and PGLi-2). Small circles represent individual spot analyses (see 1 SE example bar on the plot). Large circles are the averages of multiple SIMS data with 1 SD error bars.

22/23) and averaged seawater value ($\delta^7 \text{Li} \approx +33\%$, molar fraction of 1/23). The following mass balance equation was used:

$$\delta^{7} Li(initial fluid) = 22/23 \times \delta^{7} Li(Na_{2}CO_{3}) + 1/23$$
$$\times \delta^{7} Li(seawater) = 79.2\%$$
(2)

This initial fluid $\delta^7 \text{Li}$ is similar to the measured $\delta^7 \text{Li}$ in the final solutions (Table 1). Therefore, fluid $^7 \text{Li}/^6 \text{Li}$ was assumed to be constant over the duration of the runs.

3.2. SIMS Data

[14] Isotopically homogeneous silicate glass standards (NIST-610, 612, and 614) were examined in order to test instrumental reproducibility (Table 2). Kasemann et al. [2005] reported MC-ICP-MS and in situ SIMS δ^7 Li data that showed that these standard glasses are enriched in ⁷Li and homogeneous within 1 SD of 0.01‰-0.07‰ (two measurements of one aliquot) in MC-ICP-MS, and 1 SD of 0.9%-2.8% (ten spots) in SIMS, measurements. Our SIMS δ' Li five spot analyses of NIST-612 and 614 glasses yielded reproducibility within 1 SD 0.8%-1.3% (1 SD of ⁷Li/⁶Li intensity ratios varied from 0.7‰ to 1.2‰). Internal (single spot) standard error (1 SE) of 0.5‰-0.8‰ was determined through the averaging of ⁷Li/⁶Li intensity ratios in 30 or 60 analytical cycles. The isotopic discrimination in SIMS is characterized by an instrumental mass fractionation factor (IMF):

$$IMF = \left(\frac{\left({^{7}Li}/{^{6}Li}\right)^{SIMS}}{\left({^{7}Li}/{^{6}Li}\right)^{reference}} - 1\right) \cdot 10^{3}\%_{00}$$
(3)

Using values from *Kasemann et al.* [2005], we found that the IMF for silicate glasses varied between $25.7 \pm 0.3\%$ (1 SE) (MSWD = 1.2, n = 5) and $21.8 \pm 0.6\%$ (MSWD = 1.2, n = 5) throughout the analytical sessions with an average of $23.9 \pm 0.9\%$ (Table 3). We determined IMF on NIST-614 and 610 and applied these values to NIST-612 in order to check for internal consistency between bulk MC-ICP-MS and multiple SIMS spot analyses (Table 2 and Figure 4). Each symbol represents

Figure 6. Comparison of SIMS (a) $\delta^7 \text{Li}$, (b) ${}^7 \text{Li}/{}^{42}\text{Ca}$, and (c) ${}^{24}\text{Mg}/{}^{42}\text{Ca}$ collected in spherulite centers (solid symbols) and fibers (open symbols) of experimentally precipitated abiogenic aragonite spherulites. Each column includes the data from an individual spherulite. In Figure 6a, blue and red solid lines are the averages for $\delta^7 \text{Li}$ in the aragonite centers and fibers, respectively. In Figures 6b and 6c, the error bars (1 SE) are smaller than the size of the markers on the plots of ${}^7 \text{Li}/{}^{42}\text{Ca}$ and ${}^{24}\text{Mg}/{}^{42}\text{Ca}$. The lateral dimensions of the O⁻ beam are larger than the spherulite centers, and therefore, solid symbols represent compositions for centers and fibers (for example, see spots 2 and 3 in Figure 2). All data are from session 2.1.

Figure 7. Variation of SIMS (a) $\delta^7 \text{Li}$, (b) ${}^7 \text{Li}{}^{42}\text{Ca}$, and (c) ${}^{24}\text{Mg}/{}^{42}\text{Ca}$ with aragonite precipitation rate. The bottom *x* axis shows the bulk precipitation rate expressed as the injection rate of the titrant (Na₂CO₃). The top *x* axis represents the radial spherulite growth rates determined in the same samples by *Gabitov et al.* [2006]. The data presented here were collected at the aragonite fibers. Each small blue circle corresponds to the single spot analysis with the error bar of internal 1 SE. The averages of these data are shown as large red circles with the error bar of external 1 SD between individual spot data for each of the two runs. All data are from session 2.1.

the average of replicates analyzed during individual subsessions (i.e., alternating between NIST-612, 614, and 610). In two subsessions δ^7 Li SIMS data of NIST-612 are consistent with independently determined δ^7 Li MC-ICP-MS value of this standard (brown line, from *Kasemann et al.* [2005]).

[15] Analyses of Li-doped calcite quality control material (CAL-HTP) yielded ⁷Li/⁶Li external reproducibility of 2.5‰ (1 SD) and IMF of $3.1 \pm 1.0\%$ (1 SE, n = 8) (Table 3). The mean IMF for aragonite in PGLi-4 and PGLi-6 was $5.4 \pm 0.6\%$ (Table 4) (all material of PGLi-5 was consumed by MC-ICP-MS analyses). The observed similar IMF for aragonite and calcite is expected to be a common phenomenon as the main chemical composition is comparable and only minor chemical and crystallographic differences exist between the two materials. This conclusion is supported by similarity of SIMS IMF of ¹¹B/¹⁰B for basaltic to rhyolitic natural glasses [*Rosner et al.*, 2008].

[16] The variability of δ^7 Li measured in aragonite ranges from 1 SD = 1.3% to 8% (⁷Li/⁶Li SIMS) intensity ratios range from 1 SD = 0.6% to 7.1%) in different subsessions. The reasons for that are the variability in number of SIMS measurements and Li count rates that are related to ${}^{16}O^{-}$ primary beam current. Therefore, to assess heterogeneity in the samples, it is important to compare the variation of the standards and samples in the same session only. The standard deviation for CAL-HTP and especially NIST glasses within a session are always lower than in aragonite samples from the same analytical session (Tables 2 and 5). Similarly to silicate glasses, ⁷Li/⁶Li of aragonite from PGLi-4 was normalized to aragonite from PGLi-6 (Figure 4). In five subsessions, δ' Li SIMS data of the run PGLi-4 (diamonds) are consistent with independently determined δ' Li MC-ICP-MS value of this sample (red bar). The only exception is δ^7 Li of the run PGLi-4 obtained in subsession 1.4, where only two spots were measured, which resulted in a typically small error bars. In subsession 2.2, we also used the IMF value determined by analysis of CAL-HTP which yielded a value for PGLi-4 that is consistent with that obtained by using the IMF determined by analysis of sample PGLi-6 (circle).

[17] Relative ion yields of Li/Ca:

$$\left(RIY = \frac{\left({^{7}Li}/{^{42}Ca}\right)^{SIMS}}{\left({^{7}Li}/{^{42}Ca}\right)^{true}} \cdot \frac{abundance(\%^{42}Ca)}{abundance(\%^{7}Li)}\right) \quad (4)$$

were calculated from analysis of CAL-HTP assuming the natural abundances of ⁷Li (92.5%) and ⁴²Ca (0.648%). Mg/Ca RIY was calculated similarly with a ²⁴Mg natural abundance of 79.0% and by using the elemental concentrations for optically clear calcite from Mexico (Table 3) [*Kunioka et al.*, 2006].

[18] Compositions of the spherulites ranged significantly in each sample. 1 SD was as high as 8‰, >30%, and >100% for 7Li/6Li, 7Li/42Ca, and ²⁴Mg/⁴²Ca, respectively (Table 5 and Figure 5 for δ^7 Li). However, this large variability in 7 Li/ 42 Ca and 24 Mg/ 42 Ca was reduced by considering only analyses of fibrous aragonite. Li/Ca and Mg/Ca in the sessions 2.1 and 2.2 were estimated by using CAL-HTP quality control material that was measured during session 2.2. Because of the lack of CAL-HTP analyses in the session 2.1, Li and Mg data are presented as raw SIMS intensity ratios in Figures 6 and 7. Figure 6 shows $\delta^7 \text{Li}$, $^7 \text{Li}/^{42}$ Ca, and ²⁴Mg/⁴²Ca data collected in spherulite centers and fibers of aragonites from PGLi-4 and PGLi-6 (three spherulites in each sample). δ^7 Li differences between spherulite centers (closed circles) and fibers (open circles) are almost indistinguishable (Figure 6a). However, the mean δ' Li of the data points collected at spherulite centers (blue line) is slightly higher than the mean of the data points collected at aragonite fibers (red line). This effect is much stronger for elemental ratios, Li/Ca and Mg/Ca are enriched in spherulite centers relative to aragonite fibers by factors of 2 and 8, respectively (Figures 6b and 6c).

4. Discussion

^[19] Similar to the present work, SIMS analyses of deep sea corals yield overlapping of δ' Li in COCs and fibers of the coral septa (Figure 6a) [Rollion-Bard et al., 2009]. However, both works show a slightly lower δ' Li in fibers relative to centers. Therefore, it is probably premature to eliminate the possibility of δ' Li dependence on the type of mineralization zone of biogenic and abiogenic aragonites, although any precipitation rate dependence appears to be weak. The similarity in variation of δ' Li in synthetic aragonite (this work) and corals [Rollion-Bard et al., 2009] suggests that biological control on ⁷Li/⁶Li fractionation is insignificant. The growth rate effect on Li isotopic composition in aragonite was not resolved because the variability of δ^7 Li data between multiple SIMS spots of the single sample (the range of up to 27‰) masked small differences in mean δ' Li between aragonites

precipitated at different rates (the range of up to 6‰) (Figures 5 and 7a).

[20] For elemental ratios, $^{7}Li/^{42}Ca$ and $^{24}Mg/^{42}Ca$, in order to reduce scatter within a single sample, spherulite center data were excluded from data set and only fibers data were plotted versus precipitation rate in Figures 7b and 7c. Here all data were collected during single session 2.1. The bottom and top x axes represent the Na₂CO₃ injection rates and radial growth rates of spherulites determined in the same runs by Gabitov et al. [2006] using Sr isotope markers. The growth rates of the spherulites edge fibers determined in their study are 2.6 ± 1.3 and 69 ± 14 nm/min for aragonites in PGLi-4 and PGLi-6, respectively. Growth of spherulite edge fibers is slower than precipitation of spherulite centers [Gabitov et al., 2008; Holcomb et al., 2009]. Therefore, each of the two radial rate values presented above is lower than the mean growth rate of aragonite in corresponding run (PGLi-4 or PGLi-6). The δ^7 Li heterogeneity of aragonite fibers from the single run means that the difference in δ^7 Li between samples precipitated at different rates cannot be resolved unlike bulk MC-ICP-MS results where errors represent not the heterogeneity but the analytical uncertainty only (Figures 7a and 3a).

[21] The Mg/Ca enrichment in aragonite spherulite centers is consistent with results found previously by Gabitov et al. [2008] and Holcomb et al. [2009], where high Mg/Ca in the center was explained by its enhanced growth rate. The similarity of Li/Ca and Mg/Ca distribution in both abiogenic aragonites and corals suggest that K_d^{Li/Ca} positively correlates with crystallization rate, as was shown for $K_d^{Mg/Ca}$ [Gabitov et al., 2006, 2008]. In addition, positive correlations of 7Li with ²⁴Mg SIMS intensities (linear regression slope of 0.04, $R^2 = 0.78$) qualitatively agrees with findings of Case et al. [2010] in corals suggesting the similarity of Li and Mg behavior during precipitation of synthetic and biogenic aragonite. Overall, the separation of Mg/Ca and Li/Ca of coral fibers from its COC's data should increase the precision of their temperature calibrations and ocean budget proxies.

[22] The heterogeneity observed in individual samples in $^{7}\text{Li}/^{42}\text{Ca}$ and $^{24}\text{Mg}/^{42}\text{Ca}$ means that dependence on aragonite precipitation rate can be resolved by SIMS when data collected in spherulite centers are separated from those in aragonite fibers. Excluding of the data from spherulite centers yields an increase of $^{7}\text{Li}/^{42}\text{Ca}$ and $^{24}\text{Mg}/^{42}\text{Ca}$ with increasing precipitation rate (Figures 7b and 7c). Here the

means of ⁷Li/⁴²Ca and ²⁴Mg/⁴²Ca in the fast precipitated run (PGLi-6) are higher than in the slow run (PGLi-4) by \sim 50% and \sim 120%, respectively. Thus, both observations shown in Figures 6 and 7 suggest a positive correlation of Li/Ca with aragonite growth rate. This Li/Ca growth rate dependence is significant but somewhat weaker than that of Mg/Ca. Gabitov et al. [2008] explained Mg/Ca increase with aragonite crystallization rate using the growth entrapment model developed by Watson and coworkers [Watson and Liang, 1995; Watson, 1996, 2004]. It was proposed that enhanced crystal growth rates cause entrapment of crystal surface composition by the newly formed lattice. Results from our present work suggest that Li partitioning could also be explained by a growth entrapment model, however, more data are required to confirm this suggestion.

5. Summary

[23] We demonstrate that $\delta^7 \text{Li}$ in experimentally precipitated aragonites determined by MC-ICP-MS and SIMS agrees when SIMS analyses are corrected for IMF using either calcite or experimental aragonite references. SIMS data does not yield a relationship between ⁷Li/⁶Li fractionation and aragonite precipitation rate at the range of Na₂CO₃ injection rate from 0.25 to 168 μ mol/min. However, given the lack of growth rate information and the significant heterogeneity within single samples, it is premature to rule out any effect of growth kinetics on ⁷Li/⁶Li fractionation between aragonite and fluid. Li/Ca and Mg/Ca are sensitive to aragonite growth rate within a single spherulite. The dependence on bulk precipitation rate is resolvable only after exclusion of data from spherulite centers, which are systematically enriched in Li/Ca and Mg/Ca. This enrichment likely reflects faster precipitation of the spherulites centers relative to the fibrous aragonite. Therefore, taking into account the potential effects of coral growth rates can improve Li/Ca and Mg/Ca temperature calibrations, and the reliability of the Li isotope proxy for past seawater compositions.

Acknowledgments

[24] We thank Fabrice Brunet, Claire Rollion-Bard, and Kotaro Shirai for providing calcite standards for normalization of ion probe data. We also thank the Editor, Joel Baker, and two anonymous reviewers for their comments on the manuscript. SIMS analyses were supported by U.S. NSF, EAR, Instrumentation and Facilities Program. The development of the method for bulk δ^7 Li analysis and the MC-ICP-MS measurements were covered by NSF grant EAR/IF-0318137. Precipitation experiments were supported by NSF through grants OCE-0402728, OCE-0527350, and OCE-0823527 to Glenn Gaetani and Anne Cohen and through grant EAR-0337481 to Bruce Watson.

References

- Bryan, S. P., and T. M. Marchitto (2008), Mg/Ca-temperature proxy in benthic foraminifera: New calibrations from the Florida Straits and a hypothesis regarding Mg/Li, *Paleoceanography*, 23, PA2220, doi:10.1029/2007PA001553.
- Case, D. H., L. F. Robinson, M. E. Auro, and A. C. Gagnon (2010), Environmental and biological controls on Mg and Li in deep-sea scleractinian corals, *Earth Planet. Sci. Lett.*, 300, 215–225, doi:10.1016/j.epsl.2010.09.029.
- Chan, L.-H., J. M. Edmond, and G. Thompson (1993), A lithium isotope study of hot springs and metabasalts from midocean ridge hydrothermal systems, *J. Geophys. Res.*, 98, 9653–9659, doi:10.1029/92JB00840.
- Chan, L.-H., J. M. Gieskes, C. F. You, and J. M. Edmond (1994), Lithium isotope geochemistry of sediments and hydrothermal fluids of the Guaymas Basin, Gulf of California, *Geochim. Cosmochim. Acta*, 58, 4443–4454, doi:10.1016/0016-7037(94)90346-8.
- Coplen, T. B., et al. (2002), Compilation of minimum and maximum isotope ratios of selected elements in naturally occurring terrestrial materials and reagents, U.S. Geol. Surv. Water Resour. Invest. Rep., 01-4222, 98 pp.
- Delaney, M. L., A. W. H. Be, and E. A. Boyle (1985), Li, Sr, Mg, and Na in foraminiferal calcite shells from laboratory culture, sediment traps, and sediment cores, *Geochim. Cosmochim. Acta*, 49, 1327–1341, doi:10.1016/0016-7037(85) 90284-4.
- Delaney, M. L., B. N. Popp, C. G. Lepzelter, and T. F. Anderson (1989), Lithium-to-calcium ratios in Modern, Cenozoic, and Paleozoic articulate brachiopod shells, *Paleoceanography*, *4*(6), 681–691, doi:10.1029/PA004i006p00681.
- Flesch, G. D., A. R. Anderson, and H. J. Svec (1973), A secondary isotopic standard for ⁶Li/⁷Li determination, *Int. J. Mass Spectrom. Ion Phys.*, 12, 265–272, doi:10.1016/0020-7381 (73)80043-9.
- Gabitov, R. I., A. L. Cohen, G. A. Gaetani, M. Holcomb, and E. B. Watson (2006), The impact of crystal growth rate on element ratios in aragonite: An experimental approach to understanding vital effects, *Geochim. Cosmochim. Acta*, 70(18), suppl., A187, doi:10.1016/j.gca.2006.06.377.
- Gabitov, R. I., G. A. Gaetani, E. B. Watson, A. L. Cohen, and H. L. Ehrlich (2008), Experimental determination of growth rate effect on U^{6+} and Mg^{2+} partitioning between aragonite and fluid at elevated U^{6+} concentration, *Geochim. Cosmochim. Acta*, 72, 4058–4068, doi:10.1016/j.gca.2008.05.047.
- Gaetani, G. A., and A. L. Cohen (2006), Element partitioning during precipitation of aragonite from seawater: A framework for understanding paleoproxies, *Geochim. Cosmochim. Acta*, 70, 4617–4634, doi:10.1016/j.gca.2006.07.008.
- Gagnon, A. C., J. F. Adkins, D. P. Fernandez, and L. F. Robinson (2007), Sr/Ca and Mg/Ca vital effects correlated with skeletal architecture in a scleractinian deep-sea coral and the role of

Rayleigh fractionation, *Earth Planet. Sci. Lett.*, *261*, 280–295, doi:10.1016/j.epsl.2007.07.013.

- Hall, J. M., and L. H. Chan (2004), Li/Ca in multiple species of benthic and planktonic foraminifera: Thermocline, latitudinal, and glacial-interglacial variation, *Geochim. Cosmochim. Acta*, 68, 529–545, doi:10.1016/S0016-7037(03)00451-4.
- Hall, J. M., L. H. Chan, W. F. McDonough, and K. K. Turekian (2005), Determination of the lithium isotopic composition of planktic foraminifera and its application as a paleoseawater proxy, *Mar. Geol.*, 217, 255–265, doi:10.1016/j.margeo. 2004.11.015.
- Hathorne, E., T. Felis, A. Suzuki, and H. Kawahata (2009), Lithium content of the aragonitic skeletons of massive *Porites* corals: A new tool to reconstruct tropical sea surface temperatures?, *Eos Trans. AGU*, *90*(52), Fall Meet. Suppl., Abstract PP34B-05.
- Holcomb, M., A. L. Cohen, R. I. Gabitov, and J. L. Hutter (2009), Compositional and morphological features of aragonite precipitated experimentally from seawater and biogenically by corals, *Geochim. Cosmochim. Acta*, 73, 4166–4179, doi:10.1016/j.gca.2009.04.015.
- Huh, Y., L. H. Chan, L. Zhang, and J. M. Edmond (1998), Lithium and its isotopes in major world rivers: Implications for weathering and the oceanic budget, *Geochim. Cosmochim. Acta*, 62, 2039–2051, doi:10.1016/S0016-7037(98)00126-4.
- Kasemann, S. A., A. B. Jeffcoate, and T. Elliott (2005), Lithium isotope composition of basalt glass reference material, *Anal. Chem.*, 77, 5251–5257, doi:10.1021/ac048178h.
- Kasemann, S. A., D. N. Schmidt, J. Bijma, and G. L. Foster (2009), In situ boron isotope analysis in marine carbonates and its application for foraminifera and paleo-pH, *Chem. Geol.*, 260, 138–147, doi:10.1016/j.chemgeo.2008.12.015.
- Kinsman, D. J. J., and H. D. Holland (1969), The co-precipitation of cations with CaCO₃—IV. The co-precipitation of Sr^{2+} with aragonite between 16 and 96°C, *Geochim. Cosmochim. Acta*, 33, 1–17, doi:10.1016/0016-7037(69)90089-1.
- Kunioka, D., K. Shirai, N. Takahata, and Y. Sano (2006), Microdistribution of Mg/Ca, Sr/Ca, and Ba/Ca ratios in *Pulleniatina obliquiloculata* test by using a NanoSIMS: Implication for the vital effect mechanism, *Geochem. Geophys. Geosyst.*, 7, Q12P20, doi:10.1029/2006GC001280.
- Marriott, C. S., G. M. Henderson, N. S. Belshaw, and A. W. Tudhope (2004a), Temperature dependence of $\delta^7 \text{Li}$, δ^{44} Ca and Li/Ca during growth of calcium carbonate, *Earth Planet. Sci. Lett.*, 222, 615–624, doi:10.1016/j.epsl.2004.02.031.
- Marriott, C. S., G. M. Henderson, R. Crompton, M. Staubwasser, and S. Shaw (2004b), Effect of mineralogy, salinity, and temperature on Li/Ca and Li isotope composition of calcium carbonate, *Chem. Geol.*, *212*, 5–15, doi:10.1016/j.chemgeo. 2004.08.002.
- Meibom, A., J.-P. Cuif, F. Hillion, B. R. Constantz, A. Juillet-Leclerc, Y. Dauphin, T. Watanabe, and R. B. Dunbar (2004), Distribution of magnesium in coral skeleton, *Geophys. Res. Lett.*, 31, L23306, doi:10.1029/2004GL021313.
- Meibom, A., et al. (2006), Vital effects in coral skeletal composition display strict three-dimensional control, *Geophys. Res. Lett.*, 33, L11608, doi:10.1029/2006GL025968.
- Montagna, P., et al. (2009), Li/Mg ratios in shallow- and deepsea coral exoskeletons as a new temperature proxy, *Eos Trans. AGU*, 90(52), Fall Meet. Suppl., Abstract PP11A-1286.
- Morozov, N. P. (1968), Geochemistry of rare alkaline elements in the oceans and seas, *Oceanology*, *8*, 169–178.
- Pearce, N. J. G., W. T. Perkins, and J. A. Westgate (1997), A compilation of new and published major and trace element

data for NIST SRM 610 and NIST SRM 612 Glass reference materials, *Geostand. Newsl.*, 21, 115–144, doi:10.1111/j.1751-908X.1997.tb00538.x.

- Rollion-Bard, C., N. Vigier, A. Meibom, D. Blamart, S. Reynaud, R. Rodolfo-Metalpa, S. Martin, and J. P. Gattuso (2009), Effect of environmental conditions and skeletal ultrastructure on the Li isotopic composition of scleractinian corals, *Earth Planet. Sci. Lett.*, 286, 63–70, doi:10.1016/j.epsl. 2009.06.015.
- Ronov, A. B., A. A. Migdisov, N. T. Voskresenskaya, and G. A. Korzina (1970), Geochemistry of lithium in the sedimentary cycle, *Geochem. Int.*, 7, 75–102.
- Rosner, M., W. Bach, H. Paulick, and J. Erzinger (2004), Lithium and strontium isotope compositions of serpentinitehosted carbonate veins from the MAR (ODP Leg 209), Records of different stages of seafloor metamorphism, *Eos Trans. AGU*, 85(47), Fall Meet. Suppl., Abstract V23B-0626.
- Rosner, M., L. Ball, B. Peucker-Ehrenbrink, J. Blusztajn, W. Bach, and J. Erzinger (2007), A simplified, accurate and fast method for lithium isotope analysis of rocks and fluids, and delta Li-7 values of seawater and rock reference materials, *Geostand. Geoanal. Res*, 31, 77–88, doi:10.1111/ j.1751-908X.2007.00843.x.
- Rosner, M., M. Wiedenbeck, and T. Ludwig (2008), Compositioninduced variations in SIMS instrumental mass fractionation during boron isotope ratio measurements of silicate glasses, *Geostand. Geoanal. Res.*, 32, 27–38, doi:10.1111/j.1751-908X.2008.00875.x.
- Sano, Y., K. Shirai, N. Takahata, T. Hirata, and N. C. Sturchio (2005), Nano-SIMS analysis of Mg, Sr, Ba and U in natural calcium carbonate, *Anal. Sci.*, 21, 1091–1097, doi:10.2116/ analsci.21.1091.
- Shaheen, M., J. E. Gagnon, Z. Yang, and B. J. Fryer (2008), Evaluation of the analytical performance of femtosecond laser ablation inductively coupled plasma mass spectrometry at 785 nm with glass reference materials, *J. Anal. At. Spectrom.*, 23, 1610–1621, doi:10.1039/b809880h.
- Shirai, K., M. Kusakabe, S. Nakai, T. Ishii, T. Watanabe, H. Hiyagon, and Y. Sano (2005), Deep-sea coral geochemistry: Implication for the vital effect, *Chem. Geol.*, 224, 212–222, doi:10.1016/j.chemgeo.2005.08.009.
- Shirai, K., T. Kawashima, K. Sowa, T. Watanabe, T. Nakamori, N. Takahata, H. Amakawa, and Y. Sano (2008), Minor and trace element incorporation into branching coral *Acropora nobilis* skeleton, *Geochim. Cosmochim. Acta*, 72, 5386–5400, doi:10.1016/j.gca.2008.07.026.
- Sinclair, D. J., B. Williams, and M. Risk (2006), A biological origin for climate signals in corals—Trace element "vital effects" are ubiquitous in Scleractinian coral skeletons, *Geophys. Res. Lett.*, 33, L17707, doi:10.1029/2006GL027183.
- Tomascak, P. B. (2004), *Geochemistry of Non-Traditional Stable Isotopes, Rev. Mineral. Geochem.*, vol. 55, 166 pp., edited by C. M. Johnson, B. L. Beard, and F. Albarede, Mineral. Soc. of Am., Washington, D. C.
- Vigier, N., C. Rollion-Bard, S. Spezzaferri, and F. Brunet (2007), In situ measurements of Li isotopes in foraminifera, *Geochem. Geophys. Geosyst.*, 8, Q01003, doi:10.1029/ 2006GC001432.
- Watson, E. B. (1996), Surface enrichment and trace-element uptake during crystal growth, *Geochim. Cosmochim. Acta*, 60, 5013–5020, doi:10.1016/S0016-7037(96)00299-2.
- Watson, E. B. (2004), A conceptual model for near-surface kinetic controls on the trace-element and stable isotope composition of abiogenic calcite crystals, *Geochim. Cosmochim. Acta*, 68, 1473–1488, doi:10.1016/j.gca.2003.10.003.

- Watson, E. B., and Y. Liang (1995), A simple model for sector zoning in slowly growing crystals: Implications for growth rate and lattice diffusion, with emphasis on accessory minerals in crustal rocks, *Am. Mineral.*, 80, 1179–1187.
- White, W. M. (2005), Stable isotope geochemistry, in *Geochemistry: An Online Text Book* [electronic], Johns Hopkins Univ. Press, Baltimore, Md. (Available at http://www.imwa.info/geochemistry/Chapters/Chapter09.pdf)