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Abstract. Strongly nonlinear internal waves in a layer with with the well-studied water waves and classical gas dynamics
arbitrary stratification are considered in the hydrostatic ap-problems, is that in a stratified system the wave has a verti-
proximation. It is shown that “simple waves” having a vari- cal dimension, and the local speed of a simple wave must be
able vertical structure can emerge from a wide class of initialindependent of the vertical coordinate.

conditions. The equations describing such waves have been The question of existence of simple waves in strongly non-
obtained using the isopycnal coordinate as a variable. Emetiinear, continuously stratified systems seems to be of sig-
gence of simple waves from an initial Gaussian impulse isnificant interest both from the heuristic and practical view-
numerically investigated for different density profiles, from points. Indeed, it is now a common knowledge that in many
two- and three-layer structure to the continuous one. Besidegases the tide-generated internal waves can be “genuinely”
the first mode, examples of second- and third-mode simplestrongly nonlinear in the sense that isopycnal displacement
waves are given. in the wave can be comparable with and even exceed the
characteristic vertical scale of the stratification (e.g., pycn-
ocline depth). A bulk of observational data confirms this
statement; a review of the problem for dispersive, solitary
waves can be found in, e.gipel et al.(2007. However,

It is well known that in strongly nonlinear, non-dispersive €XCept for a weakly nonlinear case considered, for example,
media, such as those considered in water waves, gas dynarRy Yermakov and Pelinovsk{1979, theoretical considera-
ics, and magnetic hydrodynamics, a smooth initial perturbaion of such processes was limited to the case of a two-layer
tion, however strong it would be, disintegrates into a set offluid wh_ere only one internal mode exists. Even in th_ls case
“simple” waves, each evolutioning in such a way that eachthe main attention was concentrated on the formation and

point of the wave profile propagates at a constant velocityParameters of strong solitons. At the same timeZ as follows
depending on the local perturbation. This speed is in genfrom the relevant models and observations both in deep and

eral a smooth function of the local perturbation. As a resultShallow ocean areas, in many cases strong internal waves are
such a wave either stretches in space or steepens; in the lattd €nough to remain practically non-dispersive and deform
case its profile eventually overlaps, preventing the further us@Nly due to the dependence of the local wave velocity on the
of non-dispersive approximation and leading to the forma_dlsplacement, i.e., as simple waves. Even when the groups of
tion of a shock wave or, in a dispersive medium (such as the_sollt_ons are observed, these groups are separated by stretch-
plasma) to oscillations and possible generation of a series df'd intervals of weaker, long waves. These cases were mod-
solitons. Here the existence of simple waves is discussed fof!€d much less thoroughly than the solitons, and the aim of
strongly nonlinear waves with a vertical structure, in applica- e Present paper is to address this gap.

tion to internal gravity waves in an incompressible stratified In the non-dispersive, two-layer case the exact expres-
fluid, considered in the hydrostatic approximation. An im- sion for the simple wave velocity(n), wheren is the lo-

portant and interesting complication in our case, in contrastal displacement of the interface (pycnocline), has been
obtained Gandstdm and Quon 1993 Baines 1995 Za-

hibo et al, 2007) and studied for general initial condi-
Correspondence td:. A. Ostrovsky tions by numerous authors. See, for examplgapide-
BY (lev.a.ostrovsky@noaa.gov) vsky (2000 for an application to roll waves. Recent work
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by Chumakova et al2009 discussed the possibility of sim- The local height; is denoted as:(8,x,t) which is the
ple waves in layered and continuously stratified hydrostaticlevel of an isopycnal characterized by its initial ley&lso
systems. However, they did not show that simple waves ddhat ¢ =& — 8 is the isopycnal displacement in the wave,
indeed develop from more general initial conditions. Hereand at infinity where the perturbation is absent: 8. At
we consider long-wave evolution in a general case of stronglyan isopycnal, vertical velocity isv = ¢; + u¢, where the
nonlinear, long waves in a smoothly stratified fluid. One of derivatives are taken at a constght Also, for a function
the interesting questions to be answered is whether a progres:(¢, x,z) < f (¢, x, 8) we have (here, by definition, = 1)
sive, distorting wave (similar to a simple or Riemann wave in of af 0B of oc
gas dynamics) can emerge from an arbitrary localized initial = = -2 = — L (1_ _)
perturbation. dz 9B oz 9B 07
The governing equations for fully-nonlinear, continuously |n particular,

stratified, hydrostatic flows are derived in Sect. 2. In Sect. 3
these equations are then used to obtain a set of nonlinear paf$ _ 9¢ (1_ 3_5) _ % othatd T8
tial differential equations that govern the simple wave dy- 3z  9f dz) 1+¢’ 9z hg
namics in this system. These eql_Jatlons can be_ reduce_zd tf)note that 1 (g = hg). Hered/oz is the derivative at con-
the known results for weakly nonlinear waves with contin- .

e . ; stantx as in the above system Eq4) — (4). Also
uous stratification and fully-nonlinear waves in a two-layer
system. However, analytical solutions for simple waves for af af af 0z of of hy
general initial conditions and general stratification profiles 5, — (a)ﬂ L dzox <£>ﬂ . Bhg
do not seem possible at this point. In Sect. 4 initial value nu- ' '
merical solutions are used to demonstrate that simple wavélere we distinguish betweenderivatives at constant as
behavior in systems with many layers (approaching a continabove and at constafit Similarly,
uous stratification) does indeed exist and are consistent witlﬂbf (af) af 9z (af) of h

B.x B

the theory of Sect. 3. We note that in hyperbolic systems— = Feirvi -

such as studied here, shocks are expected to form and ou?t 9p hp

solutions do develop shocks. However, our focus is not on  Consider first the continuity Eq1) which now has the
the shock dynamics, but rather on the rarefying portions ofigrm

the solutions where simple wave behavior can be unambigu-

ously identified. In Sect. 5 we give an example of a simple (¢ +u&x), +ux =0.

wave with complex vertical structure and conclude in Sect. 6.

ot ot

In the new variables it reads

h
2 Basic equations (he+uhy)g+hg (ux—u,g ﬁ) =0,

Hydrodynamic equations for a inviscid, non-diffusive, strat- or
ified fluid (for simplicity, a 2-D problem is considered; gen-
eralization to the 3-D case can readily be made) are hpi + (”h/f‘)x =0. ®)
uy +w, =0, (1) From the dynamic Eqs3] and @) it follows, upon differ-
) entiating them ovex andz, respectively, and then subtract-
ing the results gives

iﬁ = (w; +uwy +ww;), (6)
0

pr +upx +wp; =0,
po(w; +uw, +ww;) = —p, —gp, )
po(u; +uuy +wuy) = —py. 4) (ur +uuy+wuz), —

Hereu andw are horizontal and vertical components of ve-

locity vector, p is pressurep is total density,og is a constant Ai_ nr:enuonedr,] we consgier long, non_;ﬂl_spersnée fwaves
reference density, anglis gravity acceleration. These equa- which means thab «u, andd/dx < 9/9z. This can be for-

tions assume the Boussinesq approximation which is almos[?w‘_lize_OI by in_troducing the correspon(_jing spgtial scales _from

always acceptable in the case of the ocean where the densi hich it readily follows that all terms in the right-hand side

variations are smalld/ po ~ 1). f Eq. (6) are small compared to each term on the left-hand
For an arbitrary stratification, we apply the approach sim—Slde and can be neglected. Thus,

ilar to that suggested i@strovsky(1978 for weakly non- 8Px

linear motions, where the Boussinesq equations for internafu’ g+ wig); — E

modes have been derived. Namely, the basic hydrodynamic . .

equations will be written in the variables ¢, and 8, where or, in new variables,

B is the vertical coordinate of a resting isopycnal. In these

variables the density depends only oi.

=0,

u u
[(u, Fuug) — L (hy+uhy) + 2L (h, +uhx)} —heg® =0,
hgp hp £0

B
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i.e., we have to letF; » =0, so thatA(§) is an arbitrary function
and
(s +uu) g = N?(B)hs. (7)
N2
HereN?(B) = (g/p0)dp /9B is the given square of buoyancy 18 +< (ﬁ))f 0. (12)
frequency (same as its distribution?(z) at infinity). We €0

note that in the final Eqs5) and (7) the x-derivatives are
at constan{8, while in the original variables (e.g.6)) the
x-derivatives are at constant

Equations (5) and (7) are the exact long-wave (non-
dispersive) equations which are constructive for analyzing
the propagation and formation of simple waves. In what
foIIovy; we consider a flat bottom at= 0 and the rigid-lid Cousﬁ+N2(ﬁ)hé = (u—cugp+upug, (13)
condition on the surface= H (which is typical of the con-
sideration of internal waves in the Boussinesq limit)=0
atz=0,H. Here the nonlinear terms on the right-hand sides of this sys-
tem are assumed small as compared with each linear term on
the left-hand side.

Now we will use the asymptotic perturbation method. Let

/ / H
Assume now that a non-steady progressive wave does ex%t hy +hh fandu a“1+“2d wr(ljere the stl),lbscnpts 1and 2 I
which at each leves propagates as a simple wave dependingdenote the first-and second-order perturbations, respectively.
on two variablesz andé (x,¢) = x —c(&)t. Let us look for the Then the second-order correction to EL) yields

solution in the fornh = (&, ) andu = u(&, 8), whereg and cottzzp + N2 (B,
B are considered independent. Thus, we have %

& +c(§)é=0. (8)
Substituting this into Eqg7) and(5) we obtain, respectively,

With the conditionsf(0) = f(H) =0, this is a usual lin-
ear eigenvalue problem defining the vertical mode structure
f(B) and long-wave propagation speeg,

Now consider a weakly nonlinear wave. At small nonlin-
earity, lettingc = co+¢’(§), we rewrite Eq.(10) in the form

cohéﬁ —ug = (u— c/)h/éﬂ ~|—ugh’ﬁ.

3 Simple waves

= (u1—cuigg +uipuz,
Cohzgﬁ —ug = (ur—¢ )hlsﬂ —i—ulghlﬁ.

From here, after substitutingl_cOh/ from Eq. (L1) into
the right-hand side of these equauons and eliminatingve

[ug (& +u&)] ;= N?(B)héx = O, (9)  obtain
_ , 2
(hekr) , + &5 (hpus +uheg) =O. AL ) (ﬂ) Wy =24 i <3 Afp—© (5)) 14
Taking into account Eq:8) and independence éfon 8, we <0
have with h’25 (0, H) =0. Here Eq(11) has been used to eliminate
[ —c)ug],— N?(B)he =0, (10 1

According to the Fredholm theorem, for the existence of
(u—c)hgp +ughp =0. a finite solution for this inhomogeneous boundary problem

Hence, the problem is reduced to a system of lower order afor the functioni.,, the right-hand side of Eq14) must be

thex andr dependence is reduced to jgst orthogonal to the eigenfunctions of the left-hand-side linear

To relate these equations to the known results, we considepperator, thus

two particular cases. Let us first apply equations in the form o

Eqg. (10) to small-amplitude waves. In the linear approxi- / fres <3A(§)fﬂ — (§)>dﬂ=0.

mation, after letting- = c¢o and representing the solution in Jo

the formh =B +n'(§,8), u=u(&,B), whereh’ andu are

From this the known expression fot is found to be (e.g.,

small,(10) becomes Yermakov and Pelinovskyl975 Ostrovsky 1978,
cougp+N(B)hy =0, H .3
3 fzaB
—cohzg+ug = 0. C/(§)=300A(5)M > OA(S)fOH—ﬂZ- (15)
fo ffﬁﬂ 0 f,s dp

After integrating these equations ovewe have
5 This expression determines the nonlinear correction to
ot N“(B) W =Fi(B), u=cohy+ Fa(8) wave velocity which is, as expected, proportional to the
pp 2 ’ P ’ displacement4 (£). As expected, wheiv? is constant and
f ocsinkg from Eq. L2), ¢/ =0, and nonlinearity reveals
itself only at higher order. Examples of the application of
weakly nonlinear theory to single and multi-modal cases can
=AE)f(B), u=coA()fs(B), (1)) be found inYermakov and Pelinovsk{975.

whereF  are arbitrary functions. Seeking a solution in the
form

www.nonlin-processes-geophys.net/18/91/2011/ Nonlin. Processes Geophys. 112, 2041
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As a further test of the simple wave E4.(} it is shown

L. A. Ostrovsky and K. R. Helfrich: Simple waves in continuously-stratified, shallow fluids

4 Evolution of strongly nonlinear perturbations

that they give the known simple wave results (i.e., charac-
teristic, or phase speeds and the corresponding Riemann ifderiving a general analytical solution to the continuously-

variants) for the fully-nonlinear two-layer system with a rigid
lid (Sandstdm and Quon1993 Baines 1995 Zahibo et al,
2007. In what follows the lower layer is labeled 1 and the
upper layer 2, with a density jump pp— p1 at 8 = Bo. In the
first approximation the horizontal velocitiag(£) anduz (&)

in each layer are independent gf The vertical locatiorh

of the interface is approximated as a linear functior p§o
that for each layer

h1 = ho(§)(B/Bo),
py = H o= Po)+B(H —ho)
H—po
Hereho(§) = h1,2(8 = Po) is the interfacial height at a given
&. The thicknessy, of each layer igl1 = hg andds = H — hy,
withdi+do=H.
After that the second Eq10) yields

(16)

(u1—c)diz +diutg =0, (17)
(w2 — c)dog +douze = 0.

From where it follows that

dug _ wi—c dup _ dup_ uz—c (18)
ddq dq dd> ddq do

In this two-layer casey? = g'5(8 — Bo), whereg’ = (p1—
p2)/po. Thus, integrating the first EqLQ) over g in a small
vicinity of 8 = Bg, gives

(u2—c)uze — (u1—cuye = g'dz.

Substituting Eq.18) into this equation gives

(2=0)® (1-0)® _
d2 d1

from which the two-layer characteristic speeds, are

1

d d
Cizul 2+ u2 liﬁ

1/2
7 o

[dldz[g’H — (uz—u1)?] (19)

Equations {8) and (L9) can be manipulated to give

ds  (1—s?)Y2

dn (A=)
were n = (d2 — d1)/H = 2dp/H — 1 and s = (uz —
u1)/(g' H)Y2. Integration then gives the Riemann invariants

Ry =sin1(n) £sin(s) (20)

on the characteristias. from Eq. (9). Both Egs. 19) and
(20) are the same as found Bandstdm and Quor(1993,
Baines(1995, andZahibo et al(2007).

Nonlin. Processes Geophys., 18, 202 2011

stratified, simple-wave theory EQ.@) does not appear possi-
ble at this point. However, we can obtain numerical solutions
of the continuously-stratified, shallow-water Eds). &nd (7)
and analyze the results for evidence of simple wave behavior.
The integration is done by taking the fluid to be composed of
M layers. The thickness of each layerds j=1,2,...M
(labeled from the bottom up) and the interface between layer
jandj+1isath;,1/. Far away from the disturbance the
depth of interfacé: ;1> — B;+1/2. Note that the fluid is
contained between aflat bottoniay, = 81,2 =0 and a rigid
lid at i pr41/2 = Bu+1/2 = H. Each layer has uniform veloc-
ity u; and densityp;. The reduced gravity between layers
g}_,.]_/z =g(pj—pj+1)/po.

With these definitions,

oh  hjyip—hj12 dj

B Birye—Bj—12  Dj’

whereD; = B;.1/2— Bj—1/2 is the resting thickness of layer
Jj- Similarly

3u| Ujpl—Uj
—|jr1e= 7"
op Y Bj+1—Bj
and
/
8j+1/2

N?(B)jp1j2=
T2 (B —B))
Hereg; is the resting position of mid-point of laygt
Thus the layered version of the continuity EB) is
ad;

J .
' +a(ujdj)=0, j=12,..M

o (21)

and Eq. {) becomes an equation for the velocity jump
uj1—uj between layers

a
E(Mjﬂ—uj) +
a

1 /
2 [éwiﬂ—u?) g aah ,-+1/z] —0. (22

forj=1,2,...M—-1, and

J
hjv12= Zdi-
i=1

These give # —1 equations in 2/ unknowns,u; andd;,
j=12,...,M. The final equation comes from summirgf)
over all the layers and noting that

M
Zdj =H
=1

(23)

www.nonlin-processes-geophys.net/18/91/2011/
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from the rigid-lid assumption. This gives

M
Y ujd;=0, (24)
j=1

where we have assumed that= 0 far from any disturbance.
We also eliminate solving one of the individual continuity
Eq. 21) by using Eq. 23).

In what follows, Eqgs. 21)—(24) are non-dimensionalized
using(g’'H)Y/? for u;, H for d;, B, andx. Timer is scaled
by (H/g")¥/2 and density by a reference densjty. Here
g = gAp/po is the reduced gravity based on the bottom-
to-surface density differenc&p = p1 — py. The resulting
non-dimensional reduced gravity between layers i1/, =
(pj—pj+1)/Ap.

The layered Egs.2()—(24) are solved with the non-
oscillatory, shock-capturing method dfang and Tadmor
(1998. A shock-capturing method was employed since these 0 ‘ ‘ ‘ ‘
nonlinear, hydrostatic equations can be expected to lead to 0 0.2 0.4 0.6 08 1
wave steepening and breaking. This numerical method is ad- S
vantageous since it naturally allows the numerical solutions _
to proceed smoothly when shocks form as demonstrated if'9: 1- $(8) profile from Eq. @7) for zo=0.6 and1 =5 and 15.
the results below. We note that the equations above, while | The solid circles indicate the valuessét the layer mid-points for
a flux form suitable for shock capturing, do not preserve mo-"" 20.
mentum flux across a shock. Indeed, even the two-layered
version of these equations do not possess this property. The
fundamental issue concerns the distribution between the IayThe normalization inZ6) givess (1) = 0 ands(0) = 1 so that
ers of the energy loss across the shock. A discussion of thif‘ne dimensional density varies from + Ap at 8 = 0 to po
issue can be found iilemp et al(1997) for two-layer flows. 54 g _ 1 Thetanhdensity profile in Eq.27) was chosen for
Jiang and Smitt§2009) h|gh||ght the ro!e of viscosity in re- simplicity and to provide a definite example. It allows both
solving the problem. Since our focus is not on the shock dy'the location of the interface, given by, and the thickness,

namics, we allow shocks to form, but rgstnct our analysis ofset by, to be varied. TheM-layer discretization is done so
the numerical results to shock-free regions where we search} . (e density difference is approximately the same across

for simple-wave behavior. Note that if either non-hydrostatic 5 jayers, although in some cases additional layers are added
effects or significant (turbulent) viscosity were included in keep individual layer thickness below a maximum. Fig-
the model the shocks would have a finite length or not form . 1 showss(8) profiles withzo= 0.6 and =5 and 15.

atall. . ) Also shown by the solid circles are the densities at the layer
In all the results reported the numerical solutions use @mid-points for a discretization fa = 20.

grid step ofAx =0.02. The time step adjusts automatically o5t of the time-dependent numerical solutions of

to keep the Courant number m@x)Ar/Ax~0.5. INnSOome  gqq 01y _ (24) use a Gaussian-shaped initial condition for
caseAt is fixed for convenience of analysis. The lateral {a interface displacements,

boundary conditions are simply th@&tdx = 0. The continu-
ous, background density profile (non-dimensional) which the¢;  1/o(x, 8, =0) = hj12—Bj+1/2

M-layer discretization approximates is given by _ aoe_h2x2¢(ﬁj+1/z), (28)
p(ﬂ)=1+£ s(B) (25) with amplitudeag and widthb. Here ¢ (B) is the verti-
po cal structure function for the linear vertical mode of inter-
where est (max¢) =1). The vertical mode structure is found nu-
R R merically from the correspondingf-layer linear eigenvalue
- M (26) problem that also gives the linear long wave phase spged
5(0)—s(D) The initial condition for the velocity field is found from the
with linear approximation to Eq2()
! P S
$= 2 taniiAB -z, @ wr=0=cof F-1). 29)

www.nonlin-processes-geophys.net/18/91/2011/ Nonlin. Processes Geophys. 112, 2041
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Fig. 2. The solid lines show the interface positions from a two-layer Fig. 3. Layer interfaces from the three-layer numerical solution
numerical solution foD1 = 0.6 andD, = 0.4. The initial condition for D1 =0.54, D, =0.12, andD3 =0.34, andAg/, = As/» = 0.5.

is the Gaussian interface displacement 2§) ith ap =0.25,and  The initial condition is given by Eqs26) and @9) with ag=0.25
b=1/3. The initial velocity field is for simple wave wit®R_ = andb=1/3.

sin_l(Dz— D1) in Eq. 20). The dashed lines shown for- 6 are
the theoretical simple wave solutions that have become multi-valued

after_the onset of bregklng ar 4.76.' The _num_erlcal solution and' lution. Prior to the onset of breaking at- 4.76, the nu-
the simple wave solution are nearly indistinguishable on the leading . . . T .
face of the wave. Note that only the upper half of the domain is merical and theoretical solutions are indistinguishable. After
shown. this time the agreement between the theoretical and numer-
ical solutions is excellent on the leading face of the distur-

bance ahead of the shock. For simplicity, theoretical solution

Before proceeding to the continuously stratified cases (i.e.d0€s notinclude the trailing shock that could be obtained us-
large M) the numerical code was tested for a two-layer casgnd @ shock-joining analysis.
(M = 2) where Simp|e wave solutions can be found ana|yt- The comparison in Fi@ indicates that the numerical so-
ically from the characteristic speeds E49Y and Riemann lution procedure is very accurate, especially in the smooth
invariants Eq. 20). Figure 2 shows the numerical solu- parts of the flow that are of interest here. We do not show,
tion for the interface at the times indicated for a two-layer but do note, that the two-layer model also accurately captures
case with the resting layer depttiy = 0.6 and D, = 0.4 the initiation of multiple shocks due to the non-monotonic,
(zo=0.6 andx — oo in Eq. (27)) and an initial Gaussian Simple-wave relation betweanand displacement that can

disturbance Eq.28) with agp = 0.25 andb =1/3. The ini-  occur for certain layer depths and initial interfacial displace-
tial velocity field is a simple wave propagating to the right ments Emyth and Holloway1988 Zahibo et al.2007).
with R_ =sin"1(D, — D1) in Eq. (20). The leading face of In this two-layer example, and the numerical solutions be-

the initial disturbance rarefies and a shock quickly forms onlow we will focus on stratifications withg > 0.5 and initial

the trailing face. Both are expected from the simple-waveconditions withag > 0 andcg > 0. As seen above, this initial
characteristic speed,., that decreases monotonically from condition produces a leading rarefaction propagating in the
co = (D1D2)Y2 as the interface displacement=di — D3 positivex direction. This isolates the simple wave behavior
increases above zero (for this example with> 0). The  ahead of any trailing shocks and simplifies the analysis for
dashed lines in the figure are the theoretical simple wave sosimple waves. g < 0 andzg > 0.5 a shock would form on

Nonlin. Processes Geophys., 18, 202 2011 www.nonlin-processes-geophys.net/18/91/2011/



L. A. Ostrovsky and K. R. Helfrich: Simple waves in continuously-stratified, shallow fluids 97
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X

Fig. 4. (a) Speed of propagation of points on each interfacet

t =30 from Fig.3. Speeds of the lower and upper interfaces are
indicated by solid and dashed lines, respectively. At the magnifica-
tion of the plot these two curves are indistinguishakity. Close-up

of the interface positions (solid lines) from the numerical solution Zg,
in Fig. 3atr =60. Also shown (dashed lines) are the interface posi-
tions assuming simple wave behavior from E2p)(with ¢(¢) from

(a). The numerical and simple wave lines are nearly indistinguish-
able on the the leading part of the wawex{ 25).

Fig. 6. Interface evolution from thé/ = 20 representation of the

stratification Eq. 27) with zg=0.6 andA = 15. The initial condi-
08¢ t=30 ] tion is from Eqgs. 28) and @9) with ag=0.25 andb =1/3. The

vertical dashed lines at= 30 indicate positions wherein Fig. 7a

z 077 T are determined.

0.6

case in Fig.2. In this exampleD; =0.54, D, =0.12 and
0.5—% 20 o5 20 a5 D3 =0.34, with scaled density jumpas/> = As2 = 0.5.

X The initial condition is given by Eq2@) and the linear wave

velocity structure from Eq.29) with ag=0.25,b=1/3 and
Fig. 5. Interface positions at =30 from the numerical solution co=0.458. This case also produces a leading rarefaction
in Fig. 3 (blue lines) and the solution of the layered simple wave With a first vertical mode structure. At=6 the upper in-
Egs. B1) and @2) (red dashed lines). terface is approaching breaking (i.e., it is nearly vertical).
As the breaking proceeds£ 12— 20) a second-mode dis-
turbance develops behind the trailing shock of the leading
disturbance. Interestingly, this second-mode wave develops
the leading face and for general stratifications the shock willshocks on both the leading and trailing ends. However, it is
generate slower, higher-mode disturbances that would theRot clear that this behavior is physically correct as there are
interfere with the trailing rarefaction (see below). While the questions about the conservation properties of the govern-
shocks are certainly interesting and merit study, our focus idng equations across discontinuities. Small first and second-
on simple wave dynamics. mode disturbances propagating to the left can also be seen.
When the stratification consists of more than two layers If the leading rarefaction is evolving as a simple wave,
there is no analytical simple wave solution. Fig@rehows  the speedc of any point along either interface should be
a numerical solution for a three-layer stratification with a independent of the interface (i.e3) and depend only on
thin middle layer that closely approximates the two-layer x. This was tested by taking the numerical solution at any
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(@)

20 25 30 35 40 45

Fig. 7. (a) Speedc of interfacial points as a function ¢f at x = 14, 16, 20, 22, and 24 computed from the numerical solution in&-ig.
atr =30. (b) Interfacial speed as a function ofx in the rarefaction region of the numerical solutiorr at 30. The solid line shows the
average and the dashed lines the maximum and minimysn ifhe dash-dot line showsx) predicted from the weakly non-linear model
Eq. (15) and the initial condition(c) Close-up of the interface positions from the numerical solution in&&+ = 60 (blue solid lines) and
the prediction from assuming simple wave behavior fr@@) (vith c¢(¢) from (b) (red dashed lines).

t =t, and extracting the propagation speed of points on eachderec(¢) is found atz, = 30 in Fig.4a. The interface posi-
interface. This is done by differencing thepositions (at tions atr = 30 and 15< x < 34 propagate with speedst)
two closely separated times arounjl of the interface point  independent of the vertical position (i.g,or j). With the
with displacement;1/2(x,t,). For example, at, = 30, exception of the shock, that propagates faster than trailing
andx = 15 in Fig. 3, the upper interface has an amplitude portion of the rarefaction, the agreement is excellent.
$5/2(15,30) = 0.149. Atr, —dr, the upper interfacial point Another test for the presence of a simple wave is to solve
with 5> =0.149 is atx = 15—dx; and atz, +dt, itis at  the simple wave Eqs1() for thec(&) derived above. In the
x =15+dx,. The speed of the interface point with ampli- layered system, the non-dimensional versions of [E@). 4re
tudess;» =0.149 is therc = (dx2+dx1)/(2dt). This proce- 5
dure gives the speed 1/, for each interface as a function 2 [(uj—c)dj]=—djce (31)
of & (=x atr =t,). 0

The computation o€} 1/2(§) for x = 15— 34 att, =30
from Fig. 3 is shown in Fig4a. The speeds along both inter-
faces are shown, the lower is dashed and the upper is solid9_ }( 2 W) (Ui —u) — Aiiasoh
and they are almost exactly the same and thus not distingg | 2 /1~ )~ WAL I = Bj+1/20j+1/2
guishable on the figure as it is plotted. The largest difference =—(uj1—uj)ce  (32)
is 0.001 atx = 15 and is< 10~° for x > 18. The solution is
evolving as a simple wave since the speeds are independeiftd; andu; are known at one end of the domain whe(#)
of the interface. A further test of simple-wave behavior is is given, sayo, then Egs. 1) and 32), along with the con-
shown in Fig.4b where a close-up of the numerical solution straints Egs.43) and @4), can be integrated to obtaif ()
atr =60 is plotted. Also plotted is the estimate of the inter- andu ; (£).
face positions (dashed lines) found by assuming simple wave Figure5 shows a comparison of the full numerical solu-

evolution of ther = 30 solution from tion in Fig. 3 atr = 30 (solid lines) and the simple wave solu-
tion (dashed lines) found from integrating Eq31)(and @32)
Civ12(x,t) =Cj112(6, 1), E=x—c(&)(t—1t). (30) starting atp = x = 15 using a Runge-Kutta method an@)
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dence ofc on 8. The speed becomes essentially indepen-
dent of 8 for x > 16. The minimum, mean, and maximum
values ing of ¢(x) for 14> x > 34 are shown in Fig7b.
Both figures testify to the formation of a simple wave. Also
shown by the dash-dot line é$x) from the weakly nonlinear
approximation {5) with the same initial condition and strat-
ification. Only the rarefying portion of the solution ahead of
the crest is shown. Clearly, this numerical example demon-
strates simple-wave behavior well beyond the weakly non-
linear regime. A comparison of the full numerical solution at
t = 60 with the prediction from assuming simple wave evo-
lution from (30) is given in Fig.7c. This calculation used

==e—— = t=30 the mearc(£) in Fig. 7b (¢, = 30). With the exception of the
205 %\\\E shock, the agreement is excellent.
—\ Unlike the three-layer example shown in Fig.attempts
‘ ‘ ‘ ‘ to directly solve the layered simple wave Eddl)(and @32)

0 51 1s 2o s 30 % 40 ysinge(€) from the time-dependent numerical solution were

not successful. This appears to be a result of the sensitivity
of the problem to small errors in(¢). However, the full
numerical solution at = 30 was found to satisfy3(l) and
(32) in 14> x > 34 with maximum residuals of 10°°.
Figures8 and9 show the same plots for the second case,
X with a more diffuse interfacel. =5 andcg=0.339. The
other parameters are all unchanged. The dependencerof
Fig. 8. Interface evolution from thes = 20 representation of the g is slightly more pronounced (Figa and b) but agaima
stratification Eq. 27) with zo = 0.6 andi =5. The initial condition does become independent@hg the |eading portion of the
is from Egs. 28) and @9) with ap=0.25 andb = 1/3. The verti-  rarefaction is approached. The application28)(in Fig. 9c
cal dashed lines at= 30 indicate positions wherein Fig. 9a are i gicates that the leading disturbance is evolving as a simple
determined. wave. The comparison with the weakly nonlinear theory in
Fig. 9b again indicates that simple waves exist in the fully

. . ... nonlinear regime.
from Fig.4a. The agreement is very good, again indicating The vertical structure of the interface displacemeqgg),

that the leading disturbance is evolving as a simple wave. from the example in Fig8 at ¢ = 30 betweenx = 16 and

The role of continuous stratification is explored for the 24 are shown in FiglOa. FigurelOb shows comparison of
density profiles from Eq27) shownin Fig1. Both casesuse the vertical structure at = 24, where the displacements are
M =20 layers as shown in the figure. The time-dependenismall, and the vertical structure from the linear eigenvalue
numerical solution for the stratification witth = 0.6 and  problem scaled to have the same maximum displacement as
A =15, andco = 0.363 is shown in Fig6. The initial con-  the full numerical solution. A similar comparison between
dition is Gaussian-shaped frorad) and @9) with ap=0.25  the linear vertical structure and the vertical structure in the

andb = 1/3 asin FlgSZ and3. The evolution is qualitatively |arge_disp|acement regiorx % 16— 20) shows Signiﬁcant
the same as above with a leading rarefaction followed by &jjfferences.

shock. Slower second and higher vertical mode disturbance Finally, the development of simple wave behavior in a
are aISO present. The Very h|gh WaVenUmber OSCi”ationS (amode_two disturbance is shown in FL‘gl for a three-'ayer
near the grid spacing) behind the shock at15 and later  case withD; = D, = 0.4, andD3 = 0.2, andAzj = Asjp =
appear to be the expression of Kelvin-Helmholtz instability 9. 5. The initial condition is again from Eqs2®) and @9)
in analogy with the ill-posed nature of the two-layer hydro- ith ap=0.23,b=1/3 andco = 0.235. The unbalanced ini-
static system for large vertical shear. However, in this casgja| condition produces both first- and second-mode distur-
the instability does not grow to overwhelm the solution. bances that propagate to the right. By 50 the faster first-
Analysis of the propagation speeds of points along the in-mode disturbance (with the frontal shock) has moved ahead
terfaces of the leading rarefaction are shown in Figsand  of the slower mode-two rarefaction (with the rear shock).
b. Figure7a shows the speedas a function ofg for the = The speeds of points on each interface-at75 in the mode-
x-locations indicated by the dashed vertical lines in fEg. two rarefaction (15 x < 32) are shown in Figl2a. The
atr = 30. Just ahead of the shock at= 14 | the speeds computed speeds are noisy, with the upper interface gener-
of the interfaces in the lower part of the water column areally propagating slightly faster than the lower one. The noise
greater than the upper part, with a two-layer-like depen-probably reflects the difficulty of making finite difference

www.nonlin-processes-geophys.net/18/91/2011/ Nonlin. Processes Geophys. 112, 2041



100 L. A. Ostrovsky and K. R. Helfrich: Simple waves in continuously-stratified, shallow fluids

a
@ 0.45
0.8
0.4 ]
I:))O.S 00-35
0.4 03
x=15 25 0.25
0.2 Y ]
™~ 0.2
0 0.15
01 02 03 04 05 15 20 25 30
c X
1 — ; ; ‘ ‘
= (c)t=60_"]
0.8F = ]
S06F = E
0.4
0.2 /ﬂ‘r\ ,
. ]
0 L L L L L

45

Fig. 9. (a) Speed: of interfacial points as a function ¢f at x = 15, 17, 19, 21, 23, and 25 computed from the numerical solution in8Fig.
atr =30. (b) Interfacial speed as a function ofx in the rarefaction region of the numerical solutiorr at 30. The solid line shows the
average and the dashed lines the maximum and minimysn ifhe dash-dot line showsx) predicted from the weakly non-linear model
(15) and the initial condition(c) Close-up of the interface positions from the numerical solution in&&s = 60 (blue solid lines) and the
prediction from assuming simple wave behavior fr@a)(with ¢(¢) from (b) (red dashed lines).
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Fig. 10. (a) The vertical structure of the interface displacement®), in the leading rarefaction at the indicatedocations from the
numerical solution at =30 in Fig.8. (b) ¢(B) atx =24 (solid with dots) and the linear eigenfunction scaled to have the same maximum
displacement (dashed line).

estimates in this slower moving mode-two disturbance thatple wave assumption for interface evolutic30) shown in
may not be free of small amplitude mode one waves. TheFig. 12c is quite good. The simple wave estimate was found
different speeds on each interface would presumably comeisingr, = 75 andc(¢) given by the mean speed on the two
together if the simple wave behavior had more time becomenterfaces.

established. Despite these issues, the comparison of the

numerical solution at=100 with an application of the sim-
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Fig. 11. Layer interfaces from the three-layer numerical solution

for D1 =0.4,D2=0.4,andD3=0.2, andA3/, = A5/ =0.5. The
initial condition is given by Eqgs.28) and @9) with ag =0.25 and
b=1/3 and the vertical structure from the second vertical mode.

5 Construction of a prescribed simple wave

Although the solutions of the Eq¢5) and (7) at the corre-

sponding stage do satisfy the lower-order simple wave equa-

tions (10), it is often difficult to solve the latter directly since
the velocityc(¢) is not known in advance, and the vertical
(mode) structure is not fixed. However, Efj0) can be effec-

tively used for constructing a wide spectrum of simple waves  _

with any prescribed velocity(¢) and different initial condi-

tions. Sometimes the corresponding wave structure can be
rather complex. Here we give an example of a solution with

the following parameters:

N?(B) = 1+8. c(®)=(1—qcos)/m,  (33)
h(0,8) = B—gsin(3rp), u(0,B)=—uocos3np),
h(€,0) = 0, hE D=1,

u(¢,0) = —vcos, u(¢,1) =vcos.
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Fig. 12. (a)Speed of propagation of points on each interfage,
atr =75 from Fig.11. The lower (upper) interface is indicated by
the solid (dashed) lingb) Close-up of the interface positions from
the numerical solution in Fig atr = 100 (blue solid lines) and the
prediction from assuming simple wave behavior from Bg) (vith
c(&¢) from (a) (red dashed lines).
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Fig. 13. Evolution of initially sinusoidal isopycnat — 8 corre-
sponding tg8 = 0.4 at the times indicated.

In the linear approximation this corresponds to a third-modetime of breaking the hydrostatic approximation becomes in-

vertical structure which is harmonic in time.

Then equationsl) for the simple wave were solved with
the initial conditions 83) using Mathematica. As an exam-
ple, we have taken the following parametets=0.2,g =
up=v =0.1. Figuresl3and14show the resulting wave evo-
lution. The wave front becomes vertical (breaksy at17,
then it becomes multi-valued as shown fot 20. Past the

www.nonlin-processes-geophys.net/18/91/2011/

applicable, and either dispersion (typically resulting in soli-
ton formation) or dissipation (forming a shock wave - inter-
nal bore), or both, have to be taken into account. Figure

illustrates the vertical structure of displacement at different
wave phases. Since the initial condition (the relation be-
tweenh andu) does not correspond exactly to a regular pro-
gressive wave structure at the givgl) so that higher-mode
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