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ABSTRACT

Field observations of turbulent kinetic energy (TKE), dissipation rate «, and turbulent length scale dem-

onstrate the impact of both density stratification and nonlocal turbulent production on turbulent momentum

flux. The data were collected in a highly stratified salt wedge estuary using the Mobile Array for Sensing

Turbulence (MAST). Estimates of the dominant length scale of turbulent motions obtained from the vertical

velocity spectra provide field confirmation of the theoretical limitation imposed by either the distance to the

boundary or the Ozmidov scale, whichever is smaller. Under boundary-limited conditions, anisotropy generally

increases with increasing shear and decreased distance to the boundary. Under Ozmidov-limited conditions,

anisotropy increases rapidly when the gradient Richardson number exceeds 0.25. Both boundary-limited and

Ozmidov-limited conditions demonstrate significant deviations from a local production–dissipation balance

that are largely consistent with simple scaling relationships for the vertical divergence in TKE flux. Both the

impact of stratification and deviation from equilibrium turbulence observed in the data are largely consistent

with commonly used turbulence closure models that employ ‘‘nonequilibrium’’ stability functions. The data

compare most favorably with the nonequilibrium version of the L. H. Kantha and C. A. Clayson stability

functions. Not only is this approach more consistent with the observed critical gradient Richardson number

of 0.25, but it also accounts for the large deviations from equilibrium turbulence in a manner consistent with

the observations.

1. Introduction

a. Motivation

Understanding turbulent mixing in the presence of

strong density stratification is an important and unresolved

problem in estuarine research. The ability to parameterize

turbulent fluxes in the presence of strong stratification is

important to understanding a wide array of both physi-

cal and biogeochemical processes. Given the difficulties

in directly measuring turbulent fluxes, researchers often

rely upon numerical circulation models to gain insight

into fundamental estuarine processes (e.g., Li et al. 2006;

Guo and Valle-Levinson 2008; Scully et al. 2009; Scully

2010). Circulation models in estuarine environments typ-

ically parameterize turbulent processes using second-

moment turbulence closure models (Warner et al. 2005).

The closure assumptions employed by these models of-

ten are based and validated against laboratory mea-

surements, large eddy simulations, and direct numerical

simulations (Kantha and Clayson 1994, hereafter KC94;

Canuto et al. 2001, hereafter CA01). Laboratory and

numerical studies of turbulence are limited to Reynolds

numbers many orders of magnitude below those typically

observed in energetic estuarine environments. Testing

the applicability of these models to turbulence at geo-

physically relevant scales requires field measurements

of both turbulent and mean flow quantities.

Because field measurements of turbulent quantities are

extremely challenging to obtain, studies that directly test

second-moment turbulence models using field data are

rare. The few studies that compare field measurements of
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turbulent quantities with model simulations are generally

inconclusive. Stacey et al. (1999) found that the 2.5-level

model of Mellor and Yamada (1982) significantly under-

estimated the levels of turbulent kinetic energy (TKE)

in the pycnocline region of a stratified estuary. Their re-

sults suggested that the model did not accurately account

for the vertical divergence in the turbulent transport of

turbulent kinetic energy. Similar results were found for

a stratified region of the Irish Sea, and only when an em-

pirical parameterization of internal waves was added did

the model satisfactorily predict the observations (Burchard

et al. 1998). However, Simpson et al. (2002) found good

agreement between observed tidal variations in the tur-

bulent dissipation rate and simulations employing a 1D

model with the k–« model in another study in the Irish

Sea. In the stratified Hudson River estuary, Peters and

Baumert (2007) used a simplified closure model that as-

sumes constant stability functions and found reasonable

agreement between modeled and observed dissipation

rates and turbulent length scales in regions of energetic

mixing, but their model significantly underpredicted these

quantities in strongly stratified areas near the pycnocline.

Despite these potential shortcomings, 3D modeling

studies that employ these closure assumptions generally

can hindcast mean hydrographic quantities in estuarine

environments with good skill (Warner et al. 2005; Li

et al. 2005; Ralston et al. 2010a). These studies show that

the model’s ability to reproduce mean quantities is largely

insensitive to the choice of turbulence closure. From these

results, it is tempting to conclude that the second-moment

turbulence models essentially capture the necessary pro-

cesses to sufficiently model stratified estuarine turbulence.

However, it should be noted that, in most of these studies,

the models are adjusted with the goal of reproducing

observations and as such are not unbiased tests of the

underlying parameterizations of turbulence. The few field

studies that directly evaluate closure models generally

only compare observations of one turbulent quantity

(typically turbulent dissipation rate) using a single

closure model. More detailed comparisons of the differ-

ent formulations for the stability functions using field

data are less common. This paper provides one such test

of the performance of closure models that quantifies

several turbulence quantities across a range of forcing

conditions.

b. Background

Second-moment turbulence models rely on the down-

gradient assumption for the vertical transport of momen-

tum hu9w9i and buoyancy B (Rodi 1980; Hossain 1980),

�hu9w9i5 A
z

›u

›z
and B 5

g

r
o

hr9w9i5 K
z
N2 (1)

where the eddy viscosity Az and eddy diffusivity Kz can

be represented as the product of the relevant velocity

and length scale of the turbulent motion. Following the

notation of the k–« model, the turbulent length scale can

be represented as

L 5 (co
m)3 k3/2

q

«
, (2)

where kq is the TKE, which is defined as

k
q

5
1

2
(hu92i1 hy92i1 hw92i); (3)

« is the rate of dissipation of TKE; and cm
o is a constant

defined as the ratio of stress to TKE for a constant-stress

logarithmic boundary layer (Umlauf and Burchard 2003),

(co
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5
�hu9w9i

k
q

. (4)

For unstratified flows near boundaries, where turbulent

production and dissipation balance, these models are

tuned so that the master turbulent length scale is con-

sistent with boundary layer scaling LBL,

L
BL

5 kz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z/h

BL

q
, (5)

where k is the von Kármán constant (;0.41); z is the

vertical coordinate; and hBL is the boundary layer height,

where the stress approaches zero. This assumes that the

local turbulent velocity scale is proportional to the square

root of local value of TKE, which can be related to the

stress via Eq. (4). Under stratified conditions, most models

limit the master length scale so it does not exceed the

Ozmidov scale LO,

L
O

5
«1/2

N3/2
. (6)

The Ozmidov scale is observed to be the upper limit for

the vertical length scale of turbulence in a stratified flow

(Dillon 1982) and is the point at which buoyancy and

inertial forces are equal. It should be noted that the limit

of the Ozmidov scale is not an intrinsic property of most

models but rather a numerical limit that is typically

imposed on the length scale (i.e., Galperin et al. 1988).

Using the master length scale defined in (2) and as-

suming the relevant scale for turbulent velocity fluctu-

ations is proportional to kq
1/2, the eddy viscosity and eddy

diffusivity can be represented as

A
z

5 c
m

k2
q

«
and K

z
5 c9

m

k2
q

«
, (7)
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where cm and c9m are the nondimensional stability func-

tions. Although some implementations assume constant

values for the stability functions (Baumert and Peters

2004), other approaches assume that they are func-

tions of the nondimensional stratification aN and the

nondimensional shear aS, given as

a
N

5 N2
k2

q

«2
and a

S
5

›u

›z

� �2k2
q

«2
. (8)

Although much attention has focused on the difference

between second-moment turbulence models (Mellor

and Yamada 1982; k–« and k–v), Umlauf and Burchard

(2003) demonstrate that these models are structur-

ally similar and consistent with the parameterization

in (7). As a result, model performance depends more

strongly on the choice of stability functions than on

which two-equation model is used (e.g., Burchard

et al. 1998).

The formulation of the stability parameters has sig-

nificant consequences for how turbulence is modeled. In

the simplest terms, the stability functions determine the

ratio between the turbulent momentum flux and TKE.

This quantity, which is sometimes referred to as the

nondimensional stress, can be represented in terms of

the stability function for momentum, using (1), (7), and

(8) as

�hu9w9i
k

q

5

ffiffiffiffiffiffiffiffi
c
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«
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a
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p
, (9)

where P is shear production (P 5 2hu9w9i›u/›z). This

ratio is a function of both the correlation coefficient

between the horizontal and vertical velocity fluctuations

(i.e., r 5 2hu9w9i/[hu92ihw92i]) and the large-scale an-

isotropy, which is defined as

A 5
2k

q

hw92i
. (10)

Using observations collected from the atmospheric bound-

ary layer, Mauritsen and Svensson (2007) show that the

large-scale anisotropy increases and the correlation co-

efficient decreases when the gradient Richardson number

(Ri 5 N2(›u/›z)22) exceeds a value of roughly 0.25. Al-

though some models try to represent the collapse of

turbulence into a highly anisotropic and uncorrelated

interval wave field in a physically realistic way (Baumert

and Peters 2004), most simply constrain the turbulent

flux to approach zero once some critical value of Ri

(Ricr) is exceeded. The choice of stability functions, not

the choice of two-equation model, sets the value for

Ricr. The appropriate value for Ricr is a matter of some

debate. Miles (1961) and Howard (1961) theoretically

show that Ricr 5 0.25 using linear stability theory. How-

ever, Abarbanel et al. (1984) include nonlinear inter-

actions and derive a theoretical value of Ricr 5 1. The

commonly used stability functions of KC94 predict

a value of 0.235, whereas CA01 predict Ricr 5 0.847.

In addition to empirically parameterizing the influence

of stratification on mixing through the correlation co-

efficient and/or large-scale anisotropy, the stability func-

tions also modify the nondimensional stress to account

for deviations from the first-order local TKE balance.

For a unidirectional shear flow with the boundary layer

approximation, the evolution equation for TKE can be

written as

›k
q

›t
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Here, the time evolution term and advective terms are

on the left side of the equation. On the right-hand side,

the first term is the turbulent shear production P, the

second term is the buoyancy flux B, the third term is the

pressure-gradient work, the fourth term is the divergence

in vertical turbulent flux, and the last term is the turbulent

dissipation «. In many situations, a local TKE balance

(i.e., P 1 B 5 «) is assumed. Using the notation of tur-

bulence closure, deviations from this so-called equilib-

rium condition can be presented as

a
S
c

m
� a

N
c9

m
5

P 1 B

«
. (12)

The equilibrium condition is assumed to hold in the

derivation of the ‘‘quasi equilibrium’’ stability functions.

This approach is referred to as quasi equilibrium be-

cause only the derivation of the stability functions relies

on the assumption of equilibrium conditions and the

models retain the fully dynamic TKE equation (KC94).

Based on a scaling analysis, Galperin et al. (1988) con-

cluded that this is not a model inconsistency. A con-

sequence of the equilibrium assumption is that the

quasi-equilibrium models must use the downgradient as-

sumption to quantify the divergence in vertical turbulent

flux, where the eddy coefficient for the vertical trans-

port of TKE is typically equated to the eddy viscosity of

momentum. In contrast, the nonequilibrium model of

CA01 does not rely on the assumption of equilibrium in

deriving the stability functions, and the downgradient

assumption for the vertical transport of TKE is not

necessary.
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c. Objectives

In this paper, we present measurements obtained by

a new platform for measuring stratified turbulence in the

coastal ocean that was designed to provide robust esti-

mates of both turbulent and mean flow quantities. The

goal is to use field observation to evaluate commonly

used second-moment turbulence models, including sev-

eral parameterizations for the stability functions. Direct

field observations of turbulence will be used 1) to evalu-

ate the consistency of observed turbulent spectra and

cospectra with previously proposed universal forms; 2) to

compare estimates of turbulent length scale with the

theoretical limitation imposed by either boundary layer

or Ozmidov scaling; 3) to examine the relationship be-

tween Ri and the large-scale anisotropy; and 4) to eval-

uate the dominant terms in the TKE equation, including

the downgradient assumption for the vertical flux of

TKE. These results will then be used to examine how

well several commonly used stability functions account

for both the influence of stratification and deviations

from equilibrium turbulence. The stability functions

considered will include 1) constant stability functions;

2) the quasi-equilibrium stability functions proposed

by KC94; 3) the nonequilibrium form of CA01; and

4) the nonequilibrium form of KC94 as derived in

Burchard and Bolding (2001, hereafter BB01).

2. Methods

a. MAST

Data presented in this manuscript were collected us-

ing the Mobile Array for Sensing Turbulence (MAST;

Geyer et al. 2008). The MAST is a 10-m rigid instrument

package that is deployed vertically from a cross bar that

mounts across the bow of a research vessel (Fig. 1). The

MAST attaches to the cross bar via a universal joint, and

a lift line attached to the end of the MAST is used to

raise and lower the system, adjusting the angle depending

on boat speed and water depth. For the measurements

described here, six instrument brackets were located at

evenly spaced intervals along the MAST. Each instru-

ment bracket is adjustable so that the instruments can be

maintained a constant angle relative to the water surface,

regardless of the angle of the MAST. Each instrument

bracket contains three collocated sensors: 1) a Sontek

acoustic Doppler velocimeter (ADV; 25 Hz); 2) a Seabird

Electronics SBE-7 microconductivity probe (300 Hz); and

3) an RBR conductivity–temperature–depth (CTD) sensor

FIG. 1. Schematic of the MAST with detail of instrument bracket. Each bracket contains an

ADV, SBE-07 microconductivity sensor, and RBR CTD. Only six instruments were used for

this study.
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(6 Hz). The sampling of the instruments is synchronized

in time allowing for direct turbulent fluxes to be mea-

sured. A Benthos altimeter is mounted on the bottom

instrument bracket to measure the distance to the bed.

A six-axis inertial motion package is affixed to the top of

the MAST to measure the movement of the MAST.

b. Study site

The observations presented here were obtained dur-

ing a deployment of the MAST in the Merrimack River

estuary in May 2007. The Merrimack River is a highly

stratified salt wedge estuary that enters the Atlantic

Ocean near the border between Massachusetts and New

Hampshire (Fig. 2). The spring tidal range is 2.75 m with

tidal velocities approaching 1.5 m s21. The annual-mean

river discharge is approximately 250 m3 s21 but typically

exceeds 1500 m3 s21 during high flow conditions. The

mean discharge over the duration of the experiment

was roughly 350 m3 s21. During this experiment, mea-

surements were made utilizing the MAST at fixed anchor

stations as well as underway. In this paper, only the results

collected during fixed anchor stations will be discussed.

Two anchor stations in the region down river from where

the estuary expands laterally were occupied during this

experiment (Fig. 2). The first and westernmost location

was occupied on 12 and 13 May 2007 and was located in

the ebb-dominant channel. The second and more eastern

location was occupied on 14 May 2007 and was located

in the flood-dominant channel. At both locations, the

anchor stations spanned the duration of the ebb tide.

c. Analysis

The data from this experiment were partitioned into

5-min bursts. The ADV data for each burst were rotated

so that both the mean vertical velocity at each sensor

level and the depth-averaged lateral velocity across the

array were zero. The top ADV sensor malfunctioned in

a manner that it could only be used for mean velocity but

not for the turbulent quantities presented below. Data

from the 5-min bursts were used to compute the mean

flow statistics, including the mean horizontal velocity,

salinity, and temperature. These data provide continu-

ous and collocated estimates of the vertical shear and

stratification giving highly resolved estimates of Ri.

Estimates of turbulent dissipation rate, velocity vari-

ance, and turbulent length scale were estimated from the

ADV data as described below. Ship-based field measure-

ments of these quantities are complicated by several fac-

tors. First, surface gravity waves produce nonturbulent

wave orbital motion and induce boat motion, which

moves the sensors through the water. As a result, when

the amplitude of surface gravity waves is significant,

there are nonturbulent motions that contaminate the

velocity spectrum. Although it is theoretically possible

(neglecting instrument noise) to remove all of the ve-

locity that is induced by the movement of the sensors

using the data from the inertial motion package affixed

to the MAST, this does not address the nonturbulent

wave motion. Further, the complex interaction between

the boat-induced motions and the vertical structure

of the wave velocities makes separating the two very

challenging. The second complicating factor is the noise

limitations of the ADV sensors. Under strongly strati-

fied and/or low turbulent energy conditions, significant

portions of the velocity spectra may fall below the noise

floor. As a result, under low energy conditions the 25/3

slope region of the inertial subrange may be obscured by

noise, precluding accurate use of the inertial dissipation

method (e.g., Grant et al. 1984).

To avoid the complications introduced by both non-

turbulent wave and boat motions and limitations im-

posed by the ADV noise floor, the data are interpreted

using the spectral model proposed by Kaimal et al.

(1972). Their results demonstrate that the one-sided

wavenumber k autospectra of turbulent velocity fluctu-

ations collected in the atmospheric boundary layer ex-

hibit a universal form when properly normalized, which

is given as

kS
bb

(k)

hb92i
5

0.16(k/k
o
)

1 1 0.16(k/k
o
)5/3

, (13)

where b indicates either the vertical (w) or horizontal (u

and y) turbulent velocity component; hb92i is the tur-

bulent velocity variance in that direction; and ko is the

wavenumber associated with the dominant energy con-

taining scales. At high wavenumber, the dimensional

form of (13) asymptotes to

S
bb

(k) 5 hb92ik2/3
o k�5/3. (14)

FIG. 2. Site map and bathymetry of Merrimack River field study.

Stars denote ebb tide anchor station locations and the bathymetric

contour interval is 2 m. The western site was occupied on 12 and

13 May 2007, and the eastern site was occupied on 14 May 2007.
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This is consistent with Kolmogorov’s inertial subrange

model, because Kaimal et al. (1972) define

k
o

5 a3/2 «

hb92i3/2
, (15)

where a is the Kolmogorov constant, which we assume is

equal to 0.51 for fluctuations parallel to the direction of

the mean flow (u in our notation) and 4/3 times 0.51 5

0.68 for fluctuations perpendicular to the direction of

mean flow (v and w in our notation), which is consistent

with an isotropic inertial-range model (e.g., Tennekes and

Lumley 1972). Assuming that the peak of the variance-

preserving spectrum (k 5 3.8ko) given by (13) occurs

at the dominant length scale of turbulent motion Lb

gives

L
b

5
1

3.8k
o

5
1

3.8a3/2

hb92i3/2

«
. (16)

Fitting this model to observed spectrum gives estimates

of both the velocity variance and turbulence length

scale, which in turn provides an estimate of the dissi-

pation rate [via Eq. (16)].

To fit the observed spectra with the proposed model of

Kaimal et al. (1972), we must omit contributions from

waves, sensor motion, and instrument noise. Because of

the geometry of the ADV sensor, the noise variance in

the direction perpendicular to the sensor orientation is

roughly a factor of 30 lower than in the direction parallel

to sensor orientation (Voulgaris and Trowbridge 1998).

Therefore, the initial efforts to estimate the velocity

variance, turbulent length scale, and dissipation rate use

the vertical velocity spectra. Consistent with previous

studies, the model proposed by Kaimal et al. (1972) is

fit to observed vertical velocity spectrum using a two-

parameter least squares minimization (e.g., Gerbi et al.

2008). Before fitting the spectra, all spectral energy

found in the frequencies where surface wave energy was

observed (0.15 . freq . 0.85) and all spectral energy

below the estimated noise floor (8 3 1022 cm2 s22)

based on the results of Voulgaris and Trowbridge (1998)

were excluded. Inside the sheltered and fetch-limited

Merrimack River, significant wave and boat-induced

motions were limited to this relatively narrow frequency

band. The observed noise floor of the ADVs used in

this experiment was generally below that reported by

Voulgaris and Trowbridge (1998), but this value is used

as a conservative estimate to ensure that spectral fits

are not contaminated by noise in the high-wavenumber

portion of the spectrum. Spectra are then converted

from the frequency domain to the wavenumber domain

using the observed horizontal velocity and Taylor’s frozen

turbulence hypothesis. Use of the frozen turbulence

hypothesis generally did not result in contamination of

the high-wavenumber portion of the spectra by wave

advection because the wave orbital velocities were gen-

erally an order of magnitude below mean current speeds

(Lumley and Terray 1983). The vertical velocity spectra

are then fit with the spectral model to provide estimates

of vertical velocity variance, turbulent length scale Lw,

and turbulent dissipation rate. The estimates of the

dissipation rate obtained from the spectral fit are anal-

ogous to estimates obtained from the inertial dissipation

method, but with the advantage that contributions due

to instrument noise are effectively removed.

With the sensor configuration used in this experiment,

a well-resolved inertial subrange is typically observed in

the vertical velocity spectra, but much of the inertial

subrange of the horizontal velocity spectrum is obscured

by the higher noise in this component of velocity. With

poor resolution of the high-wavenumber horizontal ve-

locity spectra, the two-parameter fitting procedure de-

scribed above could not be used to provide reliable

estimates of horizontal velocity variance and integral

wavenumber ko. However, the observed horizontal ve-

locity spectrum can still be fit with this model if the

dissipation estimates obtained from the vertical velocity

spectrum are used, and it is assumed that the isotropic

Kolmogorov relation holds over the inertial subrange.

This method was used successfully by Gerbi et al. (2009)

to estimate of the horizontal velocity variances in an

environment dominated by surface gravity waves. This

assumes that the high-wavenumber portion of the hori-

zontal velocity spectrum (the inertial subrange) is fixed

based on the estimate of dissipation from the vertical

velocity spectra and allows the low-wavenumber portion

of the horizontal velocity spectra to be fit. Consistent

with the methods used to fit the vertical velocity spectra,

frequencies in the wave band and all portions of the

spectra below the estimated horizontal velocity noise

floor (;2.4 cm2 s22; following Voulgaris and Trowbridge

1998) are omitted. Again, this was a conservative estimate

of the noise floor based on the data but ensures instrument

noise does not adversely affect the spectral fits. By as-

suming that the inertial subrange of the horizontal spectra

are fixed given the dissipation rate estimated from the

vertical velocity spectra, there is only one free parameter

left to fit: the horizontal velocity variance.

Estimates of both momentum flux and buoyancy flux

were obtained using methods similar to those described

above. This approach has been applied to estimate

momentum flux by Trowbridge and Elgar (2003) and

more recently by Gerbi et al. (2008). Both papers use the

results of Kaimal et al. (1972), who suggest that non-

dimensional cospectra have the following form:
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kS
bw

(k)

hb9w9i 5
0.88(k/k

o
)

1 1 1.5(k/k
o
)7/3

. (17)

This is analogous to (13), but Sbw represents the co-

spectral energy of the vertical velocity fluctuations and

either the horizontal velocity or density fluctuations.

Consistent with (13), cospectrum are normalized by the

covariance and integral wavenumber ko. Again, all en-

ergy in the wave band frequencies is omitted prior to

transforming the data into wavenumber spectra using

the Taylor’s frozen turbulence hypothesis. We assume

any covariance at the highest resolved wavenumbers is

correlated noise. This is removed by subtracting the

mean covariance at frequencies greater than 5 Hz from

the observed cospectra prior to transforming the data

into wavenumber. Turbulent fluxes are then obtained by

fitting the observed cospectra to the model using a two-

parameter least squares optimization. Both Trowbridge

and Elgar (2003) and Gerbi et al. (2008) used similar

methodology in environments with high wave energy

and demonstrated reliable estimates of turbulent fluxes

and length scales. We extend their approach to include

estimates of buoyancy flux as well, using the collocated

ADV and SBE-7 sensors, calibrated for density (which

is dominated by salinity in this highly stratified salt wedge

estuary). The temperature and salinity data measured by

the RBR were used to calibrate the SBE-7 data to give

high-frequency estimates of turbulent density variations.

In estimating both momentum flux and buoyancy flow,

some cospectra deviated considerably from the model

and could not be fit with physically reasonable parame-

ters. These data were excluded from further analysis.

There were numerous times during the experiment

when surface waves were absent. To assess the spectral

fitting procedure, both the autospectra and cospectra

were fit to these data with the models presented above,

omitting energy in the frequency bands where waves

were observed during other time periods. These spectral

estimates obtained when surface waves were absent

were then compared with direct integrals of the variance

and covariance as a check on the methodology. The

difference between the spectral fits and the direct in-

tegrals was less than 5% for all components of velocity

variance as well as momentum and buoyancy flux esti-

mates (data not shown).

3. Results

At both sites, the toe of the salt wedge is located up-

estuary from the anchor station location at the beginning

of the ebb tide. As the tide turns, the near-surface ve-

locities increase rapidly while the lower layer remains

arrested, leading to strong mixing in a middle water

column free shear layer. Eventually, the shear layer cou-

ples into the bottom boundary layer and the toe of the salt

wedge is advected seaward. By the end of the ebb tide, the

entire salt field has been advected seaward of the anchor

station location and unstratified boundary layer mixing is

observed. A representative time series of the salinity field

is presented in Fig. 3. This general pattern was observed

during all three of the ebb tide anchor stations (for more

details, see Ralston et al. 2010b).

a. Normalized velocity spectra

Many of the turbulent quantities presented in this

paper rely on fitting a theoretical spectral form to ob-

served velocity spectra. To test the consistency of the

data with the proposed theoretical spectra, the observed

velocity autospectra have been nondimensionalized fol-

lowing Eq. (13) (Fig. 4). For each plot, all of the indi-

vidual spectra are plotted, as are the spectral values

obtained from averaging all spectral data in logarith-

mically spaced intervals of k/ko. In all cases, data within

the wave band have been omitted, as have all values

below the estimated noise floors. For all three compo-

nents of velocity, when Ri , 0.25 there is good agree-

ment between the observed velocity spectra and the form

proposed by Kaimal et al. (1972). In all three velocity

components, both the peak of the variance-preserving

spectra and the low-wavenumber portion of the spectrum

are generally consistent with the Kaimal model. Because

of the lower noise floor, a well-resolved inertial subrange

(with a slope ;k22/3 in the normalized form) is evident in

the vertical velocity spectra. Although the higher noise

floor in the horizontal components of velocity prevents

resolution of a large portion of the inertial subrange, the

roll off and transition to the inertial subrange are con-

sistent with the model.

Under conditions when Ri . 0.25, the spectra are less

consistent with the proposed model. The vertical velocity

spectra agree reasonably well for values of k/ko . 1, but

there is deviation at low wavenumber. In the vertical

velocity spectra, the elevated low-wavenumber energy

FIG. 3. Time evolution of salinity field spanning the ebb tide,

observed at the western anchor station on 13 May 2007. Contour

interval is 2 psu.
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is spectrally separated from the peak of the variance-

preserving spectra. However, this spectral gap is not ev-

ident in the horizontal velocity spectra when Ri . 0.25.

This is particularly evident in the u component of veloc-

ity, where the peak of the variance-preserving spectrum

is no longer distinguishable from the lower wavenumber

energy. There are several possible reasons for these de-

viations. First, spectral models of turbulence generally

assume stationarity. The applicability to actively growing

shear instabilities is not established. During the initial roll

up of a shear instability, there may be inputs of energy at

low wavenumber before it is transferred to smaller scales

during the collapse of secondary instabilities or billows

(Smyth et al. 2001). Such growing instabilities are un-

likely to have spectral characteristics consistent with the

Kaimal et al. (1972) model and may exhibit elevated

energies at lower wavenumbers. Alternatively, when

the theoretical critical value of Ri is exceeded, turbu-

lent motions may collapse into nonturbulent wave mo-

tions. Without the turbulence to transfer energy to higher

wavenumber, it is unlikely that the spectral model would

hold for these conditions.

FIG. 4. Normalized velocity autospectra, segregated by gradient Richardson number Ri. Each in-

dividual spectrum is plotted (light gray lines), as are bin-averaged data (circles). Sold black line is the

proposed nondimensional spectra of Kaimal et al. (1972). Spectra shown are for (a) vertical velocity for

Ri , 0.25; (b) vertical velocity for Ri . 0.25; (c) horizontal velocity (u component) for Ri , 0.25;

(d) horizontal velocity (u component) for Ri . 0.25; (e) horizontal velocity (y component) for Ri , 0.25;

and (f) horizontal velocity (y component) for Ri . 0.25.
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b. Estimates of momentum and buoyancy flux

Both the observed momentum and buoyancy cospectra

agree well with the proposed model when properly nor-

malized (Fig. 5). In all cases, the observed cospectra are

slightly greater than the Kaimal model immediately to

the right of the peak of the variance-preserving cospectrum

and slightly less than the Kaimal model at high wave-

number. This indicates that the observed spectral slope is

slightly greater than the 27/3 predicted by the model in the

inertial subrange. Although this may represent a real dif-

ference, it is more likely a consequence of assuming that

covariance at the highest resolved frequencies is correlated

noise. Unlike the velocity spectra, there are no obvious

differences between the observed cospectra based on the

value of Ri (Fig. 5). However, it is important to point out

that, for most of the data where Ri . 0.25, estimates of

dissipation exceed the sum of shear production and buoy-

ancy flux (see section 3e).

c. Turbulent length scale

Fitting the vertical velocity spectra with the model

proposed by Kaimal et al. (1972) provides an estimate of

the vertical velocity variance hw92i and the integral

wavenumber ko. Thus, the Kaimal fits provide the data

necessary to test the theoretical constraints on the tur-

bulence length scale for different forcing conditions.

Figure 6 compares the turbulent length scale calculated

from the vertical velocity spectrum to the Ozmidov scale

after normalizing each quantity by boundary layer scal-

ing. The diagonal dashed line represents the asymptote of

Ozmidov scaling (i.e., Lw 5 LO) and horizontal dashed

line represents the asymptote of boundary layer scaling

(i.e., Lw 5 LBL). For the well-mixed conditions observed

at the end of the ebb tide when LO� LBL, the ratio LW/

LBL is roughly equal to one, consistent with the expected

boundary layer scaling. In contrast, under strong stratifi-

cation, there is a rapid decrease in the estimated turbulent

length scale, which is generally equal to or less than the

estimated Ozmidov scale. Only rarely does the turbulent

length scale exceed the Ozmidov scale. In fact, less than

3% of the data have LW . LO and nearly all these data

are characterized by estimates of dissipation that signifi-

cantly exceed production (see section 3e). In fact, on

average, dissipation exceeds production by a factor of 2

for the outlying data.

FIG. 5. Normalized momentum and buoyancy flux cospectra, segregated by gradient Richardson

number Ri. Each individual cospectrum is plotted (light gray lines), as are bin-averaged data (circles).

Sold black line is the proposed nondimensional cospectra of Kaimal et al. (1972). Spectra shown are for

(a) momentum where Ri , 0.25; (b) momentum where Ri . 0.25; (c) buoyancy where Ri , 0.25; and

(d) buoyancy where Ri . 0.25.
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d. Estimates of anisotropy

With the spectral fitting techniques employed in this

study, we are assuming isotropy at the dissipation scales

of turbulence. Gargett et al. (1984) found that this was

a reasonable assumption under energetic conditions

when a well-resolved inertial subrange was observed.

Although the methodology employed assumes isotropy

at small scales, the large-scale anisotropy can still be

estimated using the velocity variance obtained from the

spectral fits. Figure 7a shows the estimated large-scale

anisotropy [Eq. (10)] as a function of Ri. Under condi-

tions when Ri is small, estimates of the anisotropy are

generally consistent with expected values for unstratified

boundary layer flows (e.g., A 5 5.5; Turner 1973). For

conditions when Ri , 0.1, the mean value of A is 5.4, with

a slight trend for A to decrease with increasing Ri. How-

ever, as values of Ri increase there is a rapid increase in

anisotropy, with a transition consistent with the Miles–

Howard linear stability threshold of Ri 5 0.25.

Under boundary-limited conditions (i.e., LO . LBL)

the large-scale anisotropy varies only weakly as a func-

tion of aN (Fig. 7b) and increases as a function of aS (Fig.

7c). As the shear increases, more energy is fed into the

horizontal component of velocity, increasing the an-

isotropy. Further, for boundary-limited conditions the

shear is driven by the presence of the boundary, which

limits the vertical scale of turbulent motion. As a result,

the level of anisotropy increases with proximity to the

bed, where shear is largest and the vertical length scale is

increasingly constrained. The dependence of the an-

isotropy on the shear for boundary-limited conditions

explains the slight negative relationship between A and

Ri seen for low values of Ri.

In contrast, under Ozmidov-limited conditions (i.e.,

LO , LBL), anisotropy is generally higher than 5.5, and

the degree of anisotropy increases as a function of both

increasing aN (Fig. 7b) and increasing aS (Fig. 7c). Be-

cause Ozmidov-limited conditions occur at higher values

of Ri, the overall anisotropy for a given value of aN or aS

is higher than for boundary-limited conditions. Without

the influence of the boundary, the shear is more strongly

related to the overall degree of stratification for Ozmidov-

limited conditions. Increases in shear respond to increases

in stratification, which increases the anisotropy by feed-

ing more energy into the horizontal velocity component

through increased shear production. The stratification

limits the vertical scale of turbulent motion and removes

energy from the vertical component of velocity through

buoyancy production, enhancing the anisotropy. In

FIG. 6. Estimates of Ozmidov scale LO vs turbulent length scale

estimated from vertical velocity spectra LW where each quantity

has been normalized by boundary layer scaling LBL. The horizontal

black line represents the limit of boundary layer scaling (LW 5

LBL), and the diagonal black line represents the limit of Ozmidov

scaling (LW 5 LO).

FIG. 7. Large-scale anisotropy A plotted as a function of (a) gradient Richardson number Ri; (b)

nondimensional stratification; and (c) nondimensional shear. Gray triangles are used to denote Ozmidov-

limited conditions, and black circles represent boundary-limited conditions. In (a), the dashed vertical

line indicates Ri 5 0.25, which appears to represent the threshold beyond which there is a rapid increase

in anisotropy. The dashed horizontal line indicates the suggested anisotropy for unstratified boundary

layer conditions (A 5 5.5) following Turner (1973). Black and gray lines in (b) and (c) represent

regressions fit to the boundary-limited and Ozmidov-limited data, respectively.
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contrast to boundary-limited conditions, the overall an-

isotropy goes up with increasing Ri for Ozmidov-limited

conditions.

One interpretation of the rapid increase in anisotropy

for values of Ri . 0.25 is the increased contribution of

nonturbulent wave motion. As noted above, the hori-

zontal spectra begin to deviate from the Kaimal form in

this range and the spectral gap between turbulent mo-

tion and wave energy disappears. This could lead to an

overestimate of horizontal velocity variance and result

in an upward bias of the anisotropy values at high Ri.

However, the deviation in spectral shape and the abrupt

transition in estimated anisotropy that occurs in the data

when Ri exceeds 0.25 suggest the suppression of local

turbulent production in this regime. As will be discussed

below, although we do have estimates of momentum

flux for conditions when Ri . 0.25, these generally occur

when turbulent dissipation exceeds shear production, sug-

gesting the suppression of local turbulent production.

e. Turbulent kinetic energy balance

The terms estimated from the spectral data allow ex-

amination of several terms in the turbulent kinetic en-

ergy balance, including the time rate of change, P, B, and

«. Under some conditions, direct estimates of the vertical

TKE flux were possible using methods similar to those

outlined in section 2c. However, because the vertical

gradient in the flux is required, these estimates were

generally very noisy and are not included in this analysis.

Instead, two scaling relationships for the divergence in

the vertical turbulent transport of TKE are presented for

the two types of mixing observed during this experiment:

1) boundary layer mixing (appendix A) and 2) shear layer

mixing (appendix B). These scaling relationships are used

to provide an order of magnitude estimate of the im-

portance of the turbulent transport term and a qualitative

examination of how this term is expected to vary in the

vertical. The advective terms and pressure-gradient work

cannot be addressed with this dataset.

It is often assumed that the first-order TKE balance

can be simply represented as P 1 B 5 «. For both

boundary-limited and Ozmidov-limited conditions, de-

viations from this first-order balance are observed (Fig. 8).

The deviations are generally greater at the western sam-

pling location (slope 5 0.51 6 0.07) as compared to the

eastern site (slope 5 0.63 6 0.06), but the slopes of the

regressions are not statistically different at the 95%

confidence level. To investigate the potential that the

observed imbalance in the TKE budget is due to the

divergence in the turbulent transport during unstratified

conditions, we use the boundary layer scaling presented

in appendix A. This scaling is only applied to unstratified

conditions, defined as data where the maximum observed

water column value of N2 , 5 3 1024 s22. For these

conditions, the distance to the boundary sets the tur-

bulent length scale, the velocity shear is logarithmic

(Fig. 9a), and the profiles of stress decrease linearly

away from the bed (Fig. 9b). The observed logarithmic

shear and linear stress profiles give a vertical profile of

the observed eddy viscosity that generally agrees with

the theoretical parabolic form [Eq. (A2)]. Although the

observed eddy viscosity is slightly smaller than the pro-

posed scaling, the general vertical structure is consistent

(Fig. 9c). The vertical profile of TKE decreases linearly

away from the bed during unstratified conditions in a

manner that is roughly linearly proportional to the ob-

served stress profiles (Fig. 9d).

Figure 10a shows the vertical profiles of turbulent pro-

duction and dissipation, averaged over the same data used

in Fig. 9 (buoyancy flux is negligible under these con-

ditions). For these data, turbulent production slightly

exceeds dissipation near the bed, whereas dissipation in-

creasingly exceeds production moving higher in the water

column. This behavior is highlighted by dividing the av-

erage profile of measured shear production by the profile

of measured dissipation (Fig. 10b). The nondimensional

ratio based on the simple theory (A5) is shown for com-

parison. Although the observed magnitude of the ratio of

production to dissipation is slightly less than predicted by

the scaling, the vertical distribution is consistent with the

simple analytic prediction suggesting that the divergence

in turbulent transport is a plausible explanation for the

observed imbalances seen in Fig. 8. This suggests that the

elevated dissipation that is observed higher in the water

column may be substantially balanced by the divergence

in vertical TKE flux. Although we do not resolve the

FIG. 8. Estimates of the local TKE balance where shear production

P plus buoyancy production B are plotted against the dissipation rate

«. The dashed line represents local balance where P 1 B 5 «.
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lowest 1 m of the water column, there is evidence that

production exceeds dissipation in this region and is a

source of TKE to the upper half of the boundary layer.

This scaling suggests that for unstratified conditions pro-

duction goes to zero at the top of the boundary layer,

where the dominant balance is between the divergence in

vertical flux and dissipation.

The nondimensional expression given in (A5) is only

a function of the vertical location within the boundary

layer and several reasonably well-constrained constants.

Thus, for unstratified conditions, the observed dissipa-

tion rates can be ‘‘corrected’’ to account for the possible

contribution from the divergence in the vertical flux

of TKE by multiplying the observed dissipation by the

FIG. 9. Observed (circles) vertical profiles of (a) velocity; (b) stress; (c) eddy viscosity; and (d) TKE for

unstratified conditions (end of ebb) compared to logarithmic boundary layer predictions (solid lines).

Profiles are obtained by averaging all data where the minimum water column value of N2 , 5 3 1024 s22.

FIG. 10. (a) Vertical profiles of shear production P and dissipation rate « averaged over all data where

the minimum water column value of N2 , 5 3 1024 s22. (b) Vertical profiles of the ratio of production to

dissipation for the same data, compared to the prediction based on the boundary layer scaling that ac-

counts for the vertical divergence in turbulent TKE transport [Eq. (A5)].
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expression given in (A5) assuming that the boundary

layer height equals the local water depth. The observed

shear production is compared to both the corrected and

uncorrected dissipation in Fig. 11 for the unstratified

conditions observed at the end of ebb. Despite this rel-

atively simple approach, the slope of the regression is

closer to unity when the influence of vertical TKE flux

is accounted for via Eq. (A5), and the slopes of the re-

gressions for the corrected and uncorrected data are sta-

tistically different at the 95% confidence interval (slope

uncorrected 5 0.60 6 0.05; slope corrected 5 0.81 6 0.09).

In applying this approach, it is assumed that the ratio of

stress to TKE is constant. However, as will be discussed in

section 3f, this ratio is reduced when « . P and would be

expected to decrease in the vertical. Applying a linear

correction for this effect fi.e., (cm
o)2 5 0.2[1 2 (z/h)]g re-

sults in a slope to the regression that is not statistically

different from unity (slope 5 0.98 6 0.13) but increases

the overall scatter.

A similar approach is used for the stratified shear layer

mixing that is observed during the early and middle por-

tions of the ebb tide, when the salt wedge is arrested and

there is only weak velocity near the bed. Stress is gener-

ated by the strong shear across the pycnocline. As the ebb

progresses and the salt wedge is advected seaward, the

height of the interface descends until the stress from the

shear layer couples into the bottom boundary layer. To

account for the vertical changes in the location of the in-

terface during the tidal cycle, a new vertical coordinate

system is defined such that zsl 5 0 at the location in the

water column where the magnitude of the observed shear

is maximal. This is determined by differencing the velocity

between the six instrument brackets and interpolating the

shear back onto the original sensor locations assuming the

velocity at the bed in zero and that the shear is constant

between the top sensor and the water surface. The results

are not sensitive to this interpolation, and the shear maxi-

mum is generally located between the second and fifth

sensor locations.

Using this vertical coordinate system, all Ozmidov-

limited data are averaged over evenly spaced bins based

on the nondimensional distance from the center of the

shear layer (i.e., zsl/hsl 5 0). The average velocity profile

for these conditions is consistent with the hyperbolic

tangent form used in Eq. (B2) in the appendix (Fig. 12a).

Under these Ozmidov-limited conditions, the location

of the stress maxima generally coincides with the center

of the shear layer (zsl/hsl 5 0) and decreases outward

from this location (Fig. 12b). Although this stress dis-

tribution is generally consistent with the form assumed

in appendix B, the observed stress distribution is asym-

metric with slightly higher values of stress observed above

the interface. There are also deviations at the lowermost

location that may reflect the influence of the boundary.

Near-bottom velocities slowly increase during the ebb

until the shear layer couples into the bottom boundary

layer and may enhance the stress near the bed before the

salt wedge is fully advected seaward of the location.

Average profiles of buoyancy flux, shear production,

and dissipation all show maximum values in the interface

(Fig. 12c). In the interface, the sum of the shear pro-

duction and buoyancy flux slightly exceeds dissipation.

However, moving away from the center of the shear

layer, the dissipation increasingly exceeds the TKE that is

produced through shear production and lost to buoyancy

flux. The overall vertical structure of the ratio (P 1 B)/« is

FIG. 11. Estimates of the local TKE balance for unstratified data. Shear production is compared to

(a) the observed dissipation rate and (b) the corrected dissipation rate after applying a correction for the

potential influence of the vertical divergence in turbulent TKE transport [Eq. (A5)]. The solid line is the

best-fit least squares regression to the log-transformed data with the regression slope and 95% confidence

interval. The dashed line represents P 5 «.
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generally consistent with the shear layer scaling that ac-

counts for the divergence in turbulent transport (B7)

using the observed average interfacial stress u
*
2 and av-

erage velocity difference across the layer DU (Fig. 12d).

In applying the scaling, the flux Richardson number Rif
was assumed to be 0.2 and the thickness of the shear layer

was assumed to be 1.5 m.

Consistent with the approach taken for boundary layer

conditions, the dissipation estimates for shear layer con-

ditions can be corrected to account for potential influence

of the vertical divergence in TKE flux using Eq. (B7).

This is done using the measured value of the stress in the

interface (zsl/hsl 5 0) and the total velocity difference

measured across the MAST. Consistent with the results

presented in Fig. 12d, Rif is assumed equal to 0.2 and the

width of the shear layer is 1.5 m and assumed to be

constant. Although the value for hsl most likely increases

during the ebb tide, this constant value gives a reasonable

fit for the average vertical profiles of velocity and stress

(Fig. 12). With estimates of these quantities, the scaling

from appendix B is used to reanalyze the TKE balance

for shear layer conditions (Fig. 13). As in the boundary

layer case, the influence of the divergence in vertical TKE

flux is accounted for by multiplying the observed dissi-

pation by the nondimensional ratio given in B7. The

uncorrected data show significant deviations from the

typically assumed first-order balance of P 1 B 5 « (slope

of logarithmic regression 5 0.54 6 0.09; Fig. 13a). In

contrast, accounting for the potential influence of ver-

tical TKE flux via Eq. (B7) shows better agreement with

the slope of the regression approximately equal to one

(slope 5 0.96 6 0.26; Fig. 13b). There is more scatter using

this approach, which is not surprising given the uncer-

tainty in the quantities needed to apply this scaling. It

should be noted that obtaining reliable estimates of direct

turbulent fluxes in the strongly stratified center of the

shear layer is very challenging because the Ozmidov scale

can be smaller than the ADV sampling volume. As a re-

sult, the total number of data points in which all the nec-

essary quantities are reliably estimated is relatively small.

FIG. 12. Average profiles of quantities estimated during Ozmidov-limited shear layer conditions in-

cluding (a) velocity; (b) stress; (c) buoyancy flux B, shear production P, and dissipation «; and (d) the ratio

(P 1 B)/«. The vertical coordinate system has been transformed so that z 5 0 at the center of the shear

layer. All quantities are then averaged over equally spaced intervals of zsl/hsl, where hsl is assumed

constant and equal to 1.5 m. Only data where LO , LBL are considered. Solid black lines represent the

assumed analytic forms derived in appendix B.
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f. Nondimensional stress (hu9w9i/kq)

In deriving the analytic expressions for the divergence

in vertical TKE flux, it is assumed that the ratio of stress

to TKE is roughly constant. However, as will be dis-

cussed in section 3g, most turbulence models predict

that this ratio should decrease with increasing stratifi-

cation as well as for conditions when « . P. Figure 14a

shows the observed ratio 2hu9w9i/kq plot against P/« for

all data where Ri , 0.1. This restriction on Ri is imposed

to remove the influence of stratification and highlight

the role of nonlocal turbulent production. Although

there is some scatter, the trend clearly demonstrates

a reduction in the ratio 2hu9w9i/kq for conditions when

« . P. From the data presented in section 3e, the most

likely explanation for conditions where « . P 1 B is the

divergence in the vertical flux of TKE. For both boundary

layer and shear layer mixing, shear production is greatest

where the shear is at its maximum. TKE diffuses away

from these regions and is exported to regions of lower

shear. Because the stress also is reduced in the lower

shear regions, the vertical flux of TKE reduces overall

the ratio 2hu9w9i/kq.

The presence of density stratification also is expected

to reduce the nondimensional stress. To try to isolate the

influence of nonlocal turbulent production, the ratio

2hu9w9i/kq is plotted as a function of Ri only for all data

where P 1 B balances « to within 20% (Fig. 14b). These

data suggest that there is a general decrease in this ratio

as Ri approaches some critical value. We do not have

FIG. 13. Estimates of the TKE balance for stratified Ozmidov-limited conditions. The sum of shear

production and buoyancy flux is compared to (a) the observed dissipation rate and (b) the corrected

dissipation rate after applying a correction for the potential influence of the vertical divergence in turbulent

TKE transport [Eq. (B7)]. The solid line is the best-fit least squares regression to the log-transformed data

with the regression slope and 95% confidence interval. The dashed line represents (P 1 B) 5 «. In applying

(B7), it is assumed that Rif 5 0.2 and hsl 5 1.5 m. Only data where reliable estimates of the interfacial stress

were obtained are shown.

FIG. 14. Comparison of the observed ratio of momentum flux to TKE as a function of (a) deviation from

local TKE balance [(P 1 B)/«] for all data where the gradient Richardson number Ri is less than 0.1 and

(b) gradient Richardson number for all data where the local TKE balance is satisfied to within 20%.
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any observations where P 1 B balances « to within 20%

for Ri . 0.29, generally consistent with linear stability

threshold of Ricr 5 0.25. This value also is supported by the

increase in anisotropy as Ri approaches 0.25 (Fig. 7a).

However, it is important to note that it becomes increasing

difficult to resolve the turbulent quantities presented in

this paper as stratification increases and the turbulent

length scales decrease. Therefore, we cannot conclusively

rule out the possibility of equilibrium mixing for Ri . 0.25.

g. Consistency with turbulence closure

The results presented show boundary layer and shear

layer conditions and wide variations in stratification and

deviations from a typically assumed TKE balance of P 1

B 5 «. With this range of conditions, these data provide

an opportunity to test several commonly used turbu-

lence closure models. Estimates of the momentum flux

and vertical shear are used to calculate an observed eddy

viscosity [i.e., Az 5 2hu9w9i(›u/›z)21], which is compared

to values calculated from Eq. (7) using the four different

formulations for the stability functions described in section

1c. The two nonequilibrium formulations compare most

favorably with the data (Fig. 15). Based on this analysis,

the BB01 formulation is slightly better than CA01, be-

cause the correlation coefficient is slightly higher and the

slope of the logarithmic regression is closer to unity for the

BB01 formulation (r2 5 0.66 versus 0.68; slope 5 0.83

versus 0.99). Neither the quasi-equilibrium stability func-

tion (r2 5 0.49 and slope 5 1.05) nor the constant stability

function (r2 5 0.27 and slope 5 0.55) compares as favor-

ably as the two nonequilibrium formulations.

Because the only difference between these approaches

is the value of the calculated stability functions, it is

instructive to directly compare the predicted value of

cm to its observed value (Fig. 16). The observed value

for the stability function is calculated using the ob-

served stress, shear, TKE, and dissipation rate [i.e., cm 5

2hu9w9i«(›u/›z)21kq
22]. The observed values of cm vary

FIG. 15. Comparison of the observed eddy viscosity Az defined as the observed stress divided by the

vertical velocity shear to predicted value of Az based on (a) assumed constant value of stability function

(cm 5 0.0945); (b) quasi-equilibrium stability functions of KC94; (c) full equilibrium stability functions of

CA01; and (d) full equilibrium stability functions of KC94 as derived in BB01. Solid lines indicate the

best-fit least squares regression to the log-transformed data.
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from 0.006 to 0.14, nearly a factor of 25. Consistent with

the comparison of eddy viscosity, the two nonequilib-

rium formulations compare most favorably to the ob-

servations. The best overall agreement is found for the

nonequilibrium model BB01. Of the three variable sta-

bility function parameterizations, all three demonstrate

good agreement for low to midrange values of cm. How-

ever, BB01 captures the higher values better than the

other two forms. The models of CA01 and KC94 as-

ymptote to maximum values for cm of ;0.10 and ;0.09,

respectively. In contrast, maximum values predicted by

BB01 reach ;0.16. The impact of the lower maximum

value of cm can be seen in Figs. 16a,b, where the predicted

values flatten out as the observed value increases. This

behavior is less noticeable for the BB01 model (Fig. 16c).

The assumption of a constant stability function is a poor

representation of this dataset.

The data presented above show that the nonequilibrium

stability functions are more consistent with the data than

either a constant stability function or the quasi-equilibrium

formulation. One key reason for this is that stability func-

tions in the quasi-equilibrium models are only a function of

aN. As a result, they asymptote to a constant value of cm at

low values of Ri, even for conditions when « . P. In

contrast, both nonequilibrium formulations retain their

dependence on disequilibrium turbulence at low values

of Ri. The most significant difference between the

comparisons shown in Fig. 16 is for larger values of cm,

which correspond to low Ri and «� P in this dataset. It

appears that the model of BB01 best represents this

dataset, because it allows for greater variability of the

stability function for low Ri conditions when dissipa-

tion exceeds production.

4. Discussion and conclusions

Although the use of the proposed nonequilibrium

stability functions significantly improves the comparison

between the observed and modeled eddy coefficients,

the observed eddy viscosities are roughly 50% smaller

than the modeled values (Fig. 15). Even for unstratified

conditions where P ’ «, the observed ratio of stress to

TKE is roughly 40% smaller than assumed by turbulence

models (Fig. 14a). We cannot conclusively rule out that

this is caused by some bias in our methodology. Con-

tamination of our estimates of TKE by nonturbulent

motion would explain the observed discrepancies. How-

ever, it also is possible that the ratio of momentum flux to

TKE is simply lower in an estuarine environment with

complex bathymetry than the ratio derived from labora-

tory experiments.

Despite these discrepancies, we feel that the overall

consistency with turbulence models is notable and con-

clude that the approach used by most second-moment

turbulence models captures the key elements of stratified

mixing in an estuarine environment. These models are

largely consistent the observations presented here be-

cause they 1) impose either Ozmidov or boundary layer

scaling based on the limiting length scale; 2) account for

stratification affects by reducing the ratio of stress to TKE

as Ri approaches Ricr; 3) reduce the ratio of stress to TKE

for nonlocal turbulence (i.e., « . P 1 B); and 4) employ

a fully dynamic TKE equation that allows for turbulent

transport of TKE. Most of these models employ a down-

gradient formulation for TKE transport, which employs

an eddy coefficient that is equal or proportional to the

eddy viscosity. This is generally consistent with observa-

tions of both boundary layer and shear layer mixing,

given the limited data.

Of the formulations considered, the best agreement

was found with the nonequilibrium stability functions of

KC94 as derived by BB01. This formulation is slightly

more consistent than the approach suggested by CA01,

because the stability functions are more strongly depen-

dent on deviations from equilibrium turbulence under

weakly stratified conditions. Also the data are more

FIG. 16. Comparison of the observed stability function cm to that predicted by (a) the quasi-equilibrium stability

functions of KC94; (b) the full equilibrium stability functions of CA01; and (c) the full equilibrium stability functions

of KC94 as derived in BB01. The observed stability function is calculated as the product of observed stress and

dissipation rate divided by the product of the vertical velocity shear and TKE squared.
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consistent with Ricr 5 0.235 than the value proposed by

CA01 (Ricr 5 0.847). However, it should be noted that

both of the nonequilibrium stability functions consid-

ered perform better than the quasi-equilibrium formu-

lation and that the differences between the nonequilibrium

form of KC94 and CA01 are slight. Further, Burchard and

Deleersnijder (2001) found that the nonequilibrium form

of KC94 was numerically unstable. In many ways the

agreement reported here is not surprising given that the

parameterizations used in these models are tuned to re-

produce the turbulent characteristics of boundary layer

and free shear layer flows, the two dominant types of

mixing observed here. Similar agreement might not be

expected in other environments, where other mixing

processes (e.g., surface wave breaking, internal wave

energy) contribute significantly to the momentum fluxes.
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APPENDIX A

Scaling for TKE Flux in a Logarithmic Boundary
Layer

For an unstratified bottom boundary layer, with loga-

rithmic velocity profile and vertical distribution of stress

that decays linearly away from the bed to the top of the

boundary layer (where stress ;0), shear production can

be represented as

P 5�hu9w9i ›u

›z
5

u3
*

kz
1� z

h
BL

� �
, (A1)

with an eddy viscosity

A
z

5 u*kz[1� (z/h
BL

)]. (A2)

Using the downgradient assumption for the vertical

transport of TKE and assuming that the eddy coefficient

for the vertical transport of TKE is the same as the eddy

viscosity of momentum gives the following form for the

vertical flux of TKE:

hk9
q
w9i5 A

z

›k
q

›z
5�

u3
*k

(co
m)2h

z� z2

h

� �� �
, (A3)

where the vertical distribution of TKE is simply as-

sumed to be proportional to the stress (via cm
o). The

divergence in vertical TKE flux is then

›

›z
hk9

q
w9i5�

u3
*k

(co
m)2h

1� 2z

h

� �� �
. (A4)

Because (A3) depicts a parabolic flux profile, (A4) pre-

dicts a linearly varying divergence in flux that is negative

in the lower half of the boundary layer (i.e., export of

TKE) and positive in the upper half (i.e., import of TKE).

Assuming a simple balance between turbulent dissipa-

tion, production, and the divergence in turbulent trans-

port gives the following nondimensional function for the

ratio of turbulent production to dissipation:

P

«
5

1� z

h

� �
1� z

h

� �h i
� k2

(co
m)2

z

h
� 2z2

h2

� �� �( ) . (A5)

APPENDIX B

Scaling for TKE Flux in a Stratified Shear Layer

We next consider mixing associated with a free shear

layer where the velocity profile is approximated by a

hyperbolic tangent,

u(z) 5
DU

2
tanh

z
sl

h
sl

� �
1 C, (B1)

where DU is the velocity difference across the shear

layer, the thickness of the layer is given by hsl, and C

is a constant. The vertical distribution of stress can be

roughly estimated as

�hu9w9i5 u2
* sech2 z

sl

h
sl

� �
, (B2)

where u
*
2 is the scale for the maximum stress at the in-

terface (zsl/hsl 5 0). Using the shear associated with

velocity profile (B1) and the stress profile given in (B2)

results in the following expression for the shear pro-

duction:

P 5�hu9w9i ›u

›z
5

u2
*DU

2h
sl

sech4 z
sl

h
sl

� �
. (B3)

The assumed form of the stress distribution and vertical

shear gives an eddy viscosity that is constant across the

shear layer,

A
z

5�hu9w9i
›u
›z

5
2u2

*h
sl

DU
. (B4)
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Using the same assumptions used to obtain (A3), the

vertical flux of TKE can be represented as

hk9
q
w9i5�A

z

›k
q

›z
5

4u4
*

DU(co
m)2

tanh
z

sl

h
sl

� �
sech2 z

sl

h
sl

� �
,

(B5)

with the divergence in vertical TKE flux given as

� ›

›z
hk9

q
w9i5

8u4
*

DUh(co
m)2

tanh2 z
sl

h
sl

� �
sech2 z

sl

h
sl

� ��

� 1

2
sech4 z

sl

h
sl

� ��
. (B6)

The flux profile given by B5 is positive above the interface

(zsl/hsl . 0) and negative below (zsl/hsl , 0), asymptoting

to zero as zsl/hsl exceeds 6p. The expression in B6 results

in a negative divergence in TKE flux (i.e., export of

TKE) over the central portion of the shear layer (20.66 ,

zsl/hsl , 0.66) and a positive divergence (i.e., import of

TKE) at the upper and lower portions of the shear layer

(zsl/hsl , 20.66 and zsl/hsl . 0.66).

For the shear layer case, the assumed TKE balance is

between turbulent dissipation, shear production, buoy-

ancy flux, and the divergence in turbulent transport.

Relating the buoyancy flux term to shear production via

the flux Richardson number Rif gives the following

nondimensional ratio, which accounts for the divergence

in turbulent transport:

P 1 B

«
5

1�Ri
f

(1�Ri
f
) 1

16u2
*

(co
m)2

DU2
sinh2 z

sl

h
sl

� �
� 1

2

� �. (B7)

Unlike the expression given in (A5), this expression is

a function of several unknown and difficult to estimate

quantities, including the stress at the interface, the ve-

locity gradient across the layer, the thickness of the shear

layer, and the value of the flux Richardson number.

However, despite this more complicated formulation, this

scaling can help constrain the overall importance of the

divergence in vertical turbulent flux to the observed TKE

balance for shear layer mixing.
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