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Data acquired at the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well, drilled in the
Milne Point area of the Alaska North Slope in February, 2007, indicates two zones of high gas hydrate
saturation within the Eocene Sagavanirktok Formation. Gas hydrate is observed in two separate sand
reservoirs (the D and C units), in the stratigraphically highest portions of those sands, and is not detected
in non-sand lithologies. In the younger D unit, gas hydrate appears to fill much of the available reservoir
space at the top of the unit. The degree of vertical fill with the D unit is closely related to the unit
reservoir quality. A thick, low-permeability clay-dominated unit serves as an upper seal, whereas a subtle
transition to more clay-rich, and interbedded sand, silt, and clay units is associated with the base of gas
hydrate occurrence. In the underlying C unit, the reservoir is similarly capped by a clay-dominated
section, with gas hydrate filling the relatively lower-quality sands at the top of the unit leaving an
underlying thick section of high-reservoir quality sands devoid of gas hydrate. Evaluation of well log,
core, and seismic data indicate that the gas hydrate occurs within complex combination stratigraphic/
structural traps. Structural trapping is provided by a four-way fold closure augmented by a large western
bounding fault. Lithologic variation is also a likely strong control on lateral extent of the reservoirs,
particularly in the D unit accumulation, where gas hydrate appears to extend beyond the limits of the
structural closure. Porous and permeable zones within the C unit sand are only partially charged due
most likely to limited structural trapping in the reservoir lithofacies during the period of primary
charging. The occurrence of the gas hydrate within the sands in the upper portions of both the C and D
units and along the crest of the fold is consistent with an interpretation that these deposits are converted
free gas accumulations formed prior to the imposition of gas hydrate stability conditions.

Published by Elsevier Ltd.

1. Introduction

where water depths exceed approximately 500 m. Gas hydrate
occurs in a variety of forms and a range of geologic settings. In the

Gas hydrate is a common term used to describe clathrate
compounds consisting of a solid lattice of water molecules that
efficiently encapsulate molecules of various natural gases - most
commonly methane. The pressure-temperature conditions that are
necessary (but not sufficient) for gas hydrate formation (see Sloan
and Koh, 2008) limit the occurrence of gas hydrates to arctic
sediments (typically where the geothermal gradient is impacted by
permafrost), to sediments within deep lakes and seas, and to
shallow oceanic sediments on outer continental shelves and slopes
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marine environment, gas hydrate has been documented to occur as
disseminated grains filling pores within sands (Riedel et al., 2006;
Fujii et al., 2008) and muds (Paull et al., 1996; Yang et al., 2008), as
well as complex networks of fracture fills, veins, and nodules
primarily in fine-grained sediments (Holland et al., 2008; Collett
et al., 2008a; Park, 2008; Hadley et al., 2008). In contrast, perma-
frost-associated gas hydrates have commonly been reported to be
primarily restricted to pore-filling morphologies within sandy
sediments (Dallimore and Collett, 2005).

The factors that control the occurrence and distribution of gas
hydrate continue to be the subject of much investigation. Primary
controls include conditions unique to gas hydrates, including
specific ranges of temperature and pressure conditions that vary
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with the geochemistry of both the gas and the water (Sloan and
Koh, 2008). In addition, the development of methane hydrate
systems require adequate supplies of water, as well as many of the
same elements as other hydrocarbon accumulations, including
migration pathways for gases in volumes sufficient to exceed the
solubility of methane in water at the given pressure and tempera-
ture conditions. In addition to adequate sourcing, the ultimate
nature and richness of gas hydrate systems appear to be profoundly
impacted by the nature of the host sediment, including grain and
pore sizes as well as mineralogy. Overall, it appears that deposits of
pore-filling hydrate at high saturations (herein considered to be
50% or more of pore space) require the high intrinsic formation
permeability that is only provided in high-porosity sands and
sandstones (Dallimore and Collett, 2005; Torres et al., 2008; Uchida
et al., 2009).

The formation processes for gas hydrate accumulations in nature
are also not well understood. The most commonly invoked mecha-
nisms include 1) formation from dissolved phase methane as it
exsolves due to changing solubility as methane-saturated pore
waters migrate upward through sediment columns (Hyndman and
Davis, 1992); and 2) advection of bubble-phase methane into the gas
hydrate stability zone along preferential permeability pathways
(faults, inclined permeable strata, and in vent/chimney structures;
see Milkov and Sassen, 2002). In addition, conversion of free gas
accumulations to gas hydrate by late-stage imposition of gas hydrate
stability conditions has been a favored interpretation for gas hydrate
accumulations on the Alaska North Slope (Collett, 1993, 2002).

The BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic
Test Well (Mount Elbert Well) was drilled, logged, cored, and
pressure tested in February 2007 as part of an ongoing cooperative
research and development effort between the Department of
Energy’s National Energy Technology Laboratory (NETL), BP Explo-
ration (Alaska), Inc., (BPXA), and the U.S. Geological Survey (USGS).
This research program aims to better understand the nature and
occurrence of gas hydrate on the Alaska North Slope (ANS) and to
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assess gas hydrate’s part in, and impact on, the ANS energy
resources (Hunter et al., 2011). The data collection effort at the
Mount Elbert site was designed to evaluate and advance geological/
geophysical detection and characterization methodologies, improve
confidence in regional assessments of gas hydrate resource
volumes, and provide additional reservoir evaluation and numerical
simulations to support the selection of a location and operation
plans for extended term gas hydrate production testing.

This report attempts to draw additional insights regarding the
process of formation and the geologic controls on the areal extent
and internal saturation distribution of gas hydrate at the Mount
Elbert accumulation using data acquired at the Mount Elbert well in
conjunction with features observed in industry seismic data.

2. Setting

The Mount Elbert well was drilled vertically from a temporary
ice pad within the southeastern portion of the Milne Point Unit
(MPU), within the greater ANS infrastructure area (Fig. 1). The ANS
has produced large quantities of oil from Permian to Triassic and
younger-aged sand and carbonate reservoirs at producing depths
greater than ~2000 m (~6500 ft) since initial field discovery in
1968. The ANS also has large natural gas resources which are
primarily associated with the oil fields. Three major oil fields have
been established with the greater Prudhoe Bay region (the Milne
Point, Kuparuk River, and Prudhoe Bay oil fields), resulting in the
development of extensive infrastructure and geological/geophys-
ical databases. A key aspect of the BPXA-DOE-USGS project is to
leverage this data, knowledge, and infrastructure to explore the
occurrence and resource potential of gas hydrates.

Within the MPU, hydrocarbons are produced from complex
structural/stratigraphic traps within the Lower Cretaceous Kuparuk
sand (Carman and Hardwick, 1983; Werner, 1987). The area also
contains vast resources in the form of viscous oil within cold and
shallow (~1200 m: ~3940 ft) Tertiary Schrader Bluff and Ugnu
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Fig. 1. The location of the Mount Elbert well within the Milne Point Unit (MPU) on the North Slope of Alaska. Inset shows the position of the nearest offset wells on the MPU E and

MPU B production pads.
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sands (Werner, 1987; Bidinger and Dillon, 1995). Evaporative frac-
tionation and biodegradation of these oils are considered to be one of
the sources for the hydrocarbons trapped within the overlying gas
hydrates (Masterson et al., 2001; Lorenson et al., 2011) of the Eileen
gas hydrate trend (Collett, 1993; Collett et al., 2011a). Secondary
migration of thermogenically sourced gas along major fault systems
from the more deeply buried conventional gas and oil fields has also
contributed to the gas hydrate accumulations in the Prudhoe Bay,
Milne Point, and Kuparuk River units (Collett, 1993; Collett et al.,
1990; Valin and Collett, 1992). Overall, gas hydrate in Eileen trend is
the shallow extension of the greater Prudhoe Bay region petroleum
system.

Gas hydrate occurrence within the area was confirmed as early
as 1972 with the drilling and coring of gas hydrate-bearing intervals
at the NW Eileen State-2 well (Collett, 1993). Gas hydrate stability
conditions on the ANS are extensive: ice-bearing permafrost in
eastern MPU extends to a depth of roughly 536.4 m (1760 ft), and
the base of gas hydrate stability is interpreted to extend to a depth
of 869.6 m (2853 ft; see Collett et al., 2011b). The stratigraphic
interval of interest for the Mount Elbert drilling includes the
informally designated A through E units of Collett (1993), which are
commonly found to be gas hydrate-bearing within the Eileen trend
of southern MPU, eastern Kuparuk River Unit, and western Prudhoe
Bay Unit (Fig. 2).

The B, C, and D units cored and logged beneath permafrost at the
Mount Elbert location consist predominantly of fine-grained to very
fine-grained sands and coarse silts with minor amounts of thinly

interbedded coarse sands, conglomerates, and shales deposited in
a range of nearshore marine and non-marine environments (see
Collett, 1993; Rose et al., 2011). These sand units occur within the
largely non-marine Tertiary Sagavanirktok Formation (Molenaar
etal, 1987; Rose et al., 2011), but are clearly differentiated within this
unit as they show enhanced lateral continuity throughout the MPU
and beyond as compared to both overlying and underlying Sagava-
nirktok units. These sand units are also distinctive in that they
commonly display gradational bases and relatively sharp upper
contacts with a progressive upward decrease in shale content (as
inferred from “cleaning-upwards” profiles on gamma-ray logs;
Fig. 3) - features that are typical of progradational marine and
shoreline units. Furthermore, the B, C, and D units are generally
overlain by relatively thick and laterally-continuous mud-rich
sections. Therefore, this section is believed to represent the interval
of maximum influence of marine and transitional environments
within the thicker, generally non-marine and highly lenticular sand
units of the Sagavanirktok Formation and are likely age-equivalent to
the more distal early Eocene marine shales and minor sands of the
Mikkelsen Tongue of the Canning Formation further to the east
(Molenaar et al., 1987; Bird, 1998). Rose et al. (2011) and Collett et al.
(20114a,b) provide more information on the regional and local geology
of sediments evaluated at the Mount Elbert well.

The site for the Mount Elbert well was selected to test one of 14
gas hydrate-saturated sand prospects in the MPU that had been
interpreted utilizing industry 3-D seismic data (Inks et al., 2009).
Among the MPU prospects, the Mount Elbert accumulation was
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Fig. 3. Gamma-ray log data from the Mount Elbert and surrounding wells, showing the stratigraphic character of the interval containing the target sand horizons. Informal unit

designations (D, C, B) after Collett (1993).

favored as it afforded two vertically stacked targets with strong
seismic amplitudes of positive polarity (consistent with anomalously
stiff sediments suggestive of gas hydrate fill) below the base of ice-
bearing permafrost and that were areally distributed in rough
conformance with structure. Seismic ties to nearby well control
allowed these anomalies to be correlated to the C and D units. Using
the methodology of Lee et al. (2009), gas hydrate-filled sand thick-
ness and gas hydrate saturation (Sp) were predicted prior to the
drilling of the Mount Elbert well. As reported by Lee et al. (2011), the
log and core data obtained at the Mount Elbert well closely validates
the pre-drill prediction methodology and provides opportunities to
further refine those procedures. Sands within the deeper B unit were
anticipated to occur well within the gas hydrate stability zone
(GHSZ) at the Mount Elbert location, but were predicted in the
pre-drill analysis to be fully water-bearing.

Geologic structure within the eastern part of the MPU is domi-
nated by a complex network of normal faults that overprint
a general monoclinal structure that dips less than 2° to the NNE
(Collett, 1993; Molenaar et al., 1987; Bird, 1998; Inks et al., 2009). A
structure map constructed for the top of the D unit (Fig. 4) for the
immediate area around the Mount Elbert well shows several
normal faults of varying throw that generally trend from SW to NE.
This map also indicates the potential occurrence of several smaller
faults and fault splays with general SE to NW trend and minimal or
unclear offset. In addition to the faults, an array of folds with N-S
and E-W trending axes interact with each other and the faults to
produce a number of small structures that locally reverse the
overall NNE dip of the sediments and create a number of low-relief
fold closures. Fig. 4 indicates that the Mount Elbert well was drilled

vertically near the crest of one of these anticlinal structures (herein
called the “Mount Elbert structure”), which at the top of the D unit
exhibits perhaps no more than 5 m (16 ft) of four-way structural
closure. The Mount Elbert structure occurs on the upthrown side of
a down-to-the-west normal fault (herein called the “Mount Elbert
fault”) that shows approximately 20 m (65 ft) of displacement in
the vicinity of the well. The Mount Elbert fault separates the Mount
Elbert well from the nearest well control, which includes wells
drilled from the MPU E-pad, roughly 915 m (3000 ft) west of the
Mount Elbert well, and the MPU B-pad, approximately 1900 m
(6230 ft) to the north (see Fig. 8 of Hunter et al., 2011).

3. Gas hydrate occurrence at the Mount Elbert well

Observations derived from the Mount Elbert log and core data
confirm the presence of gas hydrate-bearing sands in both the C
and D units. Estimation of the abundance of gas hydrate is based on
interpretation of well logs (Collett et al., 2011a,b; Lee and Collett,
2011; Sun et al., 2011), as well as formation water geochemical data
obtained from the Mount Elbert cores (Torres et al., 2011). These
datasets enable various indirect and independent measurements of
gas hydrate saturation (Sy); however, the exact nature and volume
of in situ gas hydrate remains imprecisely known, particularly when
(and if) gas hydrate saturations are less than roughly 20%. At values
greater than approximately 20%, both the log and core-derived Sy
estimates compare closely. Using the more complete log-data set
for reference, there is a cumulative thickness of 26.7 m (87.6 ft) of
gas-hydrate bearing section within the C and D sand reservoirs
with Sy of 20% or greater (Fig. 5).
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the D unit sand at the well location and in surrounding well control using well ties and a network of 2-D lines extracted from the Milne Point 3-D data volume (Inks et al., 2009).

As previously reported for other permafrost-associated gas
hydrate regions (Collett, 1993; Dallimore and Collett, 2005),
unambiguously-detectable gas hydrate in the Mount Elbert accu-
mulation is restricted to sand-dominated lithologies. Within the D
unit, gas hydrate in excess of 20% Sy (from log-based interpreta-
tions) occurs from 614.4 m to 627.9 m (2016.2 ft-2060 ft). Within
the main body of the D unit accumulation (from 617 to 626.8 m:
2024-2056 ft), Sy, averages 65%. In the C unit, significant (S, > 20%)
gas hydrate occurs in the interval between 649.8 and 666.3 m
(2132.2 ft-2169.5 ft) with S, again averaging 65% within the main
body of the accumulation (from 651.2 m to 660.5 m: 2136 ft-
2186 ft). In both zones, maximum Sy, as determined from both core
and log data at the Mount Elbert reaches roughly 75% (Lee and
Collett, 2011; Torres et al., 2011).

The occurrence of gas hydrate beyond the main zones of
consistent high saturation is not clear. Log data shows no compel-
ling or consistent evidence of gas hydrate outside the two primary
zones (Lee and Collett, 2011). Pore water chlorinity data (Torres
etal., 2011) agrees well with the log data in delineating the tops and
bases of the highly saturated gas hydrate occurrences in both the D
and C units (Fig. 5). However, the pore-water data also suggest the
persistence of low values (10%-20%) of Sy, within the lower portions
of both the D and C units. In the D sand, this zone of low S, extends
to a depth of ~640 m (~2100 ft): in the C sand, low Sy, values from
pore water analyses appear to extend to a depth of ~686 m
(~2250 ft). In addition, analysis of EPT log data (a high-frequency,
high-vertical resolution resistivity log; see Sun et al., 2011) indi-
cates the presence of gas hydrate at high S, within several sand

units that may be too thin to be properly resolved in acoustic and
resistivity log datasets within the lowermost portion of the C unit.
Core description indicates that thin sand beds do occur throughout
the lower portions of both units, however, given the uncertainty in
log-to-core depth correlation, direct comparison of such thin units
between the core and EPT data are not reliable. At this time, the
implications of these differences in interpretation of S, are not
clear, and may represent either true differences in the resolution
capability of the different methods (both in terms of the thickness
of the units that can be seen and the degree of saturation that can
be measured) or unreliable indications of S; by some of the
methods. For the purposes of this paper, we have used S, estimates
from the Combinable Magnetic Resonance (CMR) log data as the
primary dataset for the description of Mount Elbert gas hydrate
occurrences.

In the following sections, log data are reviewed and compared to
sediment lithologic and physical property data as reported in Rose
et al. (2011) and Winters et al. (2011) to describe the nature of, and
inferred geologic controls on, gas hydrate occurrence in both the C
and D units within the Mount Elbert accumulation.

3.1. Gas hydrate within the D unit

The D unit (equivalent to Lithostratigraphic Subunits I and III (LS
II, and LS III) of Rose et al. 2011) occurs between 614.4 m and 650 m
(2015.2-2132 ft: note: unless otherwise noted, all depths in this report
are depths from the rig floor, 16.8 m (55.18 ft) above mean sea level).
Overall reservoir quality (as represented by porosity, shale content



594 R. Boswell et al. / Marine and Petroleum Geology 28 (2011) 589-607

A B C D E F G
Depth £[¢]|, Lithology GR Sk Sh Sh Sh Sh
(meters)| 2|5 |8 ——— 7| (AP (NMR) | (P-wave) | (S-wave) (RES) (Chlor.)
E 2] 8 relative grain size 0 100 0 % 100 0 % 100 0 % 100 0 % 100 0 % 100

610.0 I
620.0 1

I
630.0

I

I b

i =

|

640.0

. =

v
650.0

>
660.0
670.0
680.0 v

b
690.0

Fig. 5. Comparison of interpretations of gas hydrate occurrence from log and core data. A) generalized lithostratigraphy (from Rose et al., 2011), B) gamma-ray, C) S, interpreted
from CMR log (Collett et al., 2011b), D and E) Sy, interpreted from acoustic log data (Lee and Collett, 2011), F) S;, interpreted from resistivity log data corrected for clay effects (Lee and
Collett, 2011), G) S, from pore water chlorinity data (Torres et al., 2011).
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as inferred from gamma-ray log data, and permeability) increases
upward within the unit, with the best apparent reservoir quality
occurring from 617 to 622 m (2024-2040 ft) where log-derived
porosity exceeds 40% (Fig. 6). Overlying this interval is a 0.5 m thick
interval of relatively low porosity (~25%) that corresponds to the
lowest radioactivity (lowest inferred shale content) interval seen in
the gamma-ray log data for the D unit. Core description (Rose et al.,
2011) reveals this zone as a thin and poorly-sorted quartz pebble
conglomerate. Above this conglomerate, the upper 2.5 m (8 ft) of the
D unit exhibits overall upwards reduction in both porosity and
sand:shale ratio, as well as reduction in calculated Sy (shown in
Fig. 6 as bulk-volume gas hydrate). The stratigraphically highest
occurrence of gas hydrate (as inferred from the CMR log data) within
the D unit occurs at 614.7 m (2016.2 ft), which corresponds closely to
the transition from LS II to the overlying clay-rich LS I. The overlying
LS Iis more than 12 m (40 ft) thick and is characterized by relatively
low density porosity (27-30%) and low permeability (0.1-10 md:
Winters et al., 2011).

Within the interval of gas hydrate occurrence in the D unit,
porosity and Sy are consistently high. Notable, however, is the
interval of highest porosity (ranging from 40% to nearly 50%: zone
D-1 of Fig. 6), which shows virtually identical CMR-derived Sy, as the
subjacent interval (5 m of section) where porosity ranges between
32% and 37%. CMR log data (Fig. 6) indicates that virtually all the
additional pore space available within this zone D-1 is occupied by
free water, which locally increases from 10% to as much as 25% of
pore volume. It is not clear if this zone, which appears to provide
underutilized space for additional gas hydrate within the main
reservoir interval, reflects some intrinsic upper limit on Sp, or

perhaps is an indication of local limitations in gas charge. As a result
of the additional mobile water, CMR-based calculations of in situ
permeability (Ksqr) within zone D-1 exceeds 10 md (Fig. 6), more
than an order of magnitude higher than in the bounding units
where Kgqr is typically less than 1 md. Notably, the presence of
a zone of relatively higher mobile water and in situ K may play an
important role in accelerating the response of gas hydrate-bearing
sand reservoirs to production via depressurization (Anderson et al.
2011). Similar ranges of the free-water saturations and in situ
permeabilities were observed in the sand units with high gas
hydrate saturations in the Mallik 5L-38 well (Dallimore and Collett,
2005).

Downward from zone D-1, the D unit exhibits a gradual reduc-
tion in reservoir quality (reduced porosity and increased shale
content). However, despite this apparent gradational decrease in
reservoir quality, both the log and core data indicate a relatively
abrupt decrease in Sy from >60% to < 10% over a relatively narrow
depth interval at the base of the gas hydrate occurrence (zone D-3
of Figs. 5 and 6). Below this level, there is no clear indication of gas
hydrate in the resistivity or acoustic log data with the D unit
(Fig. 5; see also Lee and Collett, 2011). Notable features that are
proximal to the base of gas hydrate in the D unit include a thin zone
of increased formation radioactivity (zone D-2) that counter-intu-
itively correlates to a slight increase in Sp; a thin zone of reduced
porosity (zone D-4) that coincides closely with the base of gas
hydrate at the well, and a zone of high-porosity (zone D-5) that is
fully water saturated with Ksgqr over 200 md. Below zone D-5, the
log data indicates overall reduced and more highly variable reser-
voir quality than within the hydrate-bearing intervals above, with
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NMR T, relaxation times using the Timur-Coates algorithm (Krjv) and an algorithm developed by Schlumberger-Doll Research (Kspr). ®pen is density Log porosity. ®nur is porosity
derived from the NMR log data. “Small pore wtr”, “cap bound wtr” and “free wtr” (blue) show the volume of bulk rock occupied by water with different NMR responses that are
interpreted to represent different states of water in the reservoir. The remaining rock volume (the difference between total porosity and water-filled porosity) is interpreted to
represent gas hydrate (green coloration). Blue triangles at right indicate general trends in reservoir quality as either decreasing upwards (point up) or increasing upwards (point down).
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only one additional high-porosity, high K interval (zone D-6) which
marks the base of LS II at 637.8 m (2092 ft). The potential signifi-
cance of these features in controlling the occurrence of gas hydrate
in the D unit is discussed in more detail in a later section.

3.2. Gas hydrate within the C unit

From well and core data, the C unit at the Mount Elbert location
is comprised of two primary lithologic units (Rose et al., 2011). The
lower part (and bulk) of the C unit (LS Vb: from 633.1 m to 729.0 m;
2176 ft-2391 ft) consists of a thick sequence of fine to very-fine
sands with rare shale interbeds. As with the D unit, this lower
portion of the C-unit exhibits an overall upward increase in reser-
voir quality as indicated by reduction in gamma-ray inferred shale
volume, increasing grain size, increasing porosity, increasing
permeability, and decreasing occurrence of significant shale breaks.
Reservoir quality within LS Vb is commonly very high, with
porosity ~40% and CMR-derived and core-derived permeability
often exceeding 1 Darcy within many of the sand-rich units. Core
description of LS Vb reveals a series of individual, coarsening
upward sequences dominated by sand beds that tend to be massive
(internally structureless) and occasionally amalgamated. The bases
of these individual sequences within LS Vb are mostly planar. In
contrast, the upper portion of the C unit sand (LS Va: from 650 to
663.1 m; 2133 ft-2176 ft) is marked by a succession of thin, fining-
upwards sequences of very-fine sand, silt, fine silt and clay layers.
The sands in LS Va exhibit sub-planar laminations, unlike the
primarily massive, structureless sands in LS Vb (Rose et al., 2011).
Furthermore, both the core description and the gamma-ray log data
indicate a marked shift to greater shale content at the LS Va-Vb
contact (Fig. 7). Nonetheless, porosity remains relatively high in the
unit (~38%) with intrinsic permeabilities (defined as permeability
of the reservoir with no gas hydrate present) of 100 md or more
(Winters et al., 2011).

As in the D unit, gas hydrate in the C unit appears to fill the
available reservoir fully to the top of the sand occurrence, extending
upwards in the stratigraphic section until gamma-ray readings drop
below 75 API units, density log porosity drops below 30%, and in situ
permeability drops below ~ 10 md (Fig. 7). This horizon (at 650 m;
2132 ft) corresponds to the top of the C unit (LS Va) and the base of
a12.5 m (41 ft) thick, low-permeability, clay-dominated interval (LS
IV). Gas hydrate occurs in relatively constant proportions
throughout the upper 11 m of LS Va to a depth of 661.3 m (2169 ft),
where log data indicates a hydrate-free water contact. There is one
anomalous zone (zone C-1) in which the gamma-ray log indicates
high radioactivity (and high Vgy), that corresponds surprisingly to
the highest CMR-based S, measurements (77%) observed in the unit.
The base of the unit is water saturated (zone C-2).

On log data, LS Vb is marked by substantial shift to decreased
gamma radioactivity (reduced Vgy), and slightly higher and more
variable porosity. At the top of the unit, corresponding to the lowest
gamma-ray reading, is a 1 m-thick interval (zone C-3) of reduced
porosity (<25%) that corresponds with the “cleanest” (lowest V)
sands observed in the gamma-ray log data. CMR-log data indicate
a high Sy, in zone C-3, indicating perhaps that an increased average
grain size and poorer sorting resulted in reduced porosity without
substantially impacting intrinsic permeability. Directly below zone
C-3 is a high-porosity (38%-40% from the density log) sand (zone C-
4) about 2 m in thickness. Core data reveal zone C-4 to have the
highest average grain size (210 pm) and highest intrinsic perme-
ability (>7 md) of any samples taken at the well (Winters et al,,
2011). The upper meter of zone C-4 appears to contain gas hydrate
at high saturations; while the lower meter appears fully water-
saturated, resulting in a second hydrate-free water contact at
664.7 m (2181 ft). This unit is underlain by a thin zone (zone C-5) of
slightly reduced porosity (2184 ft), which is in turn underlain by
a thick section of non-gas-hydrate-bearing, high-porosity (40%),
high-permeability (Ks4r of ~1 darcy) sands.
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Fig. 7. Detailed CMR and gamma-ray data for C unit (LS Va and Vb; Rose et al., 2011) showing the key lithologic and fluid contacts and features discussed in the text. See Fig. 6

caption for explanation of data.
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3.3. The B unit at the Mount Elbert well

The B unit (LS VII: from 756.6 to 759.5 m in the cored interval;
continuing within the lower portion of the hole that was logged but
not cored) is a massive, high-porosity (up to 40%), high-permeability
(Ksqr = 3-5 darcy) sand consisting of two apparent amalgamated
coarsening-upwards sequences (Fig. 8). The B Unit contains some of
the coarsest-grained and highest permeability sands recovered in
the cored interval (Rose et al., 2011; Winters et al., 2011 ). However, in
conformance with pre-drill predictions (Lee et al., 2011), the B unit
was found to be fully water-saturated at the Mount Elbert location
based on both log and pore water analyses (Lee and Collett, 2011:
Torres et al., 2011).

4. Gas hydrate occurrence within the Mount Elbert structure

The preceding discussion dealt primarily with the vertical
occurrence of gas hydrate-bearing sediments at the Mount Elbert
well location. Our understanding of the areal extent of gas hydrate
occurrences laterally away from the well location is based primarily
on the interpreted distribution of anomalous seismic amplitudes as
mapped by Inks et al. (2009) using an industry 3-D seismic survey
supplied by BPXA. For both the D and C units, the area of strongest
seismic amplitude response occupies a relatively small area in close
accordance with the Mount Elbert structure, with large flanking
areas of relatively reduced amplitude. The Mount Elbert well was
drilled very near the structural crest and penetrated both the C and
D units in these areas of highest seismic amplitude response.

To investigate the geologic structural controls on the distribution
of gas hydrate at the Mount Elbert site, the regional structure around

the well was compared to the distribution of mapped anomalous
seismic amplitudes from Inks et al. (2009). Overlaying the areal
extent of the seismic anomalies with the local structure maps for
both units (Figs. 9 and 10) suggests a complex combination of
stratigraphic and structural controls. Structural controls include both
the apparent focusing of greatest gas hydrate content over the crest
of the Mount Elbert fold as well as lateral trapping by the normal
faults, particularly the “Mount Elbert” fault to the northwest.
Although this fault may have sealing capabilities of its own, esti-
mates of the fault throw adjacent to the gas hydrate occurrences
(~20m: ~65 ft) indicate that both the gas hydrate-bearing portions
of the C and D units are juxtaposed across the fault plane with
lithologies of significantly reduced reservoir quality, aiding in the
formation of reservoir traps (Fig. 11). Additional minor splay faults of
minimal throw also occur within the structure and may exert some
influence on gas hydrate occurrence (primarily as barriers for gas
migration along stratigraphic layers within the units); however, the
throws on these faults (if any) appear to be minimal and their ability
to serve as trapping faults in such thick sands would seem unlikely.

Stratigraphic influence on the occurrence of gas hydrate is very
evident in both the C and D units. In the D unit (Fig. 9), there occur
two areas where seismic amplitude response suggests gas hydrate as
inferred by Inks et al. (2009). The lateral terminations of these
anomalies show little relationship to geologic structure. The geom-
etry of the units is illustrated in two example seismic lines from the
Milne Point 3-D data set that intersect the Mount Elbert well location
(Figs. 12 and 13). When traced to the south (Fig. 12), the gas hydrate
occurrence in the D unit tested by the Mount Elbert well is observed
to terminate upon the ascending monoclinal slope with no structural
control apparent (Fig. 14). To the north, high amplitudes inferred to
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Fig. 8. Detailed CMR and gamma-ray data for the B unit. See Fig. 6 caption for explanation of data.
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Fig. 9. Overlay of mapped seismic anomaly (Inks et al., 2009) and local structure on the D unit sand. Star indicates well position. Note the occurrence of second seismic anomaly,

similar to that seen in the well location, but located within a general synclinal axis. Yellow area indicates area with pre-drill S, estimates in excess of X%. Darker yellow indicated
pre-drill S, estimates in excess of X%.

indicate gas hydrate occurs in units with structural top as deep at
640 m (2100 ft) - and therefore, presumed structural base of at least
648 m (2125 ft, assuming minimal thickness of seismically-detect-
able gas hydrate at ~8 m in the Milne Point data set per Lee et al.,
2009). The second (eastern) accumulation in the D unit is an elongate
zone that occurs partially within a structural low (Fig. 9) with
possible, but inconclusive, ties to minor faulting. Together, these
relationships indicate a high degree of stratigraphic control on the
lateral extent of gas hydrate occurrence in the D unit.

At the level of the C unit, the Mount Elbert structural closure is
significantly enlarged, and the distribution of the seismic anomalies
is more coincident with this structure (Figs. 10 and 11). The
discordance between the mapped geologic structure on the top of
the D and C units is interpreted to reflect stratigraphic variations on
the top of the C unit sand. As traced away from the well location
(Figs. 12 and 13), the horizon interpreted to mark the top of the
C unit can be observed to drop within the stratigraphic section,
suggesting the lateral disappearance of the upper portions of the
C unit (presumably LS Va). This interpreted lateral pinchout (red
dashed line on Fig. 10) may be a significant stratigraphic control on
the occurrence of gas hydrate in the upper part of the C unit.

5. Discussion
5.1. Lithologic control on gas hydrate occurrence

Observations at the Mount Elbert well suggest that reservoir
lithology exerts a key control on the distribution of gas hydrate.

Contourinterval =5m

Line 530

!{Figure 12)

— 835 —

Pre-drill saturation estimate > ~40%

Pre-drill saturation estimate > ~65%

Most fundamentally, gas hydrate is restricted to sand lithologies
within the overall interbedded sand-shale sequence. Within the
examined section below permafrost, two main accumulations
occur. In both units, gas hydrate occurs within the stratigraphically
highest portions of the larger sand sections. This occurs in both the
younger D unit, where the highest reservoir quality occurs at the top
of the unit, as well as in the older C unit, where the highest reservoir
quality occurs largely below the gas hydrate bearing section. In the D
unit, gas hydrate fills most of the high-quality reservoir sands in the
section. In contrast, gas hydrate only fills a small portion of the total
apparent reservoir space in the C unit, and is largely missing from
the most porous and permeable underlying sands (LS Vb).

While the reservoirs within the D and C units are sands, these
sands are very-fine grained. Typical grain sizes range from 29 to
229 pm with a median and mean grain size of ~ 84 um (Rose et al.,
2011; Winters et al., 2011). Nonetheless, where these units are well
sorted, they can be excellent reservoirs, with porosities up to 40%
and permeabilities measured in the darcies. However, due to the
very fine dominant grain size, only modest lithologic variations can
result in significant changes in reservoir quality. As a result,
although there are large volumes of sand present in the section, it
appears that only those intervals that are the moderately well-sor-
ted, very fine to fine sands serve as potential reservoir facies. For
example, analysis of whole-round cores taken at the Mount Elbert
well indicate that reduction in porosity from 37% to 33% results in an
order of magnitude decrease in intrinsic permeability (Fig. 15:
Winters et al., 2011). As porosity drops below ~33% in these sands,
coincident to a decrease in the sand-to-silt ratio (Rose et al., 2011),
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Fig. 10. Overlay of mapped seismic anomaly (Inks et al., 2009) and local structure on the top of the C unit sand. Star indicates well position. Red lines indicate structural elevation of
the upper gas-hydrate water contact. Yellow area indicates area with pre-drill Sy estimates in excess of X%. Darker yellow indicated pre-drill S, estimates in excess of X%.

permeability falls to levels of 10 md and below, creating significant
permeability contrasts with only slightly more porous layers. This
affect may reflect an increase in pore entry pressures required for
gas to migrate through water-wet sediments when pore throats
become sufficiently small. The high sensitivity of permeability to
modest lithologic variation can be a key contributor to the devel-
opment of stratigraphic barriers that aid the trapping of gas within
this section.

These primary observations at the Mount Elbert location support
prior work that has indicated that the occurrence of pore-filling gas
hydrate is highly influenced by reservoir properties, with higher Sy
generally restricted to zones of enhanced permeability (Riedel et al.,
2006; Dallimore and Collett, 2005; Uchida et al., 2009; Torres et al.,
2008). To investigate if these controls impact the smaller-scale details
of Sy variation within specific sand reservoirs where gas hydrate
occurs, we have plotted Sy, (as determined at 0.05 m intervals from
the combinable magnetic resonance (CMR) and density porosity logs)
against porosity (from the density log), core-derived measures of
intrinsic (in the absence of gas hydrate) permeability, and sand-shale
ratio (as reflected by formation natural radioactivity). These data
show a clear but complex link between reservoir quality and Sy,. As
shown in Fig. 163, Sy generally increases with decreasing gamma-ray
(and therefore decreasing V) as expected within the primary gas
hydrate bearing units (D unit and upper C unit (LS Va)). The corre-
lation between Sy and density porosity is also very well developed
(Fig. 16b). However, correlation between core-derived permeability
measurements (Kpp: please see Winters et al, 2011, for more

discussion on the nature of these measurements) and log-derived Sy
is less clear (Fig. 16c): nonetheless, these data do show increasing
potential for high Sy in those units with greater permeability.

The factors that determine the upper limit of gas hydrate occur-
rence in both the C unit and D unit accumulations at the Mount
Elbert site are related to the marked vertical reduction in perme-
ability between the reservoir sands and the overlying clay-domi-
nated, low-permeability sediments. These clay-dominated units
have Kyq; typically measured at around 1 md and have clearly served
as vertical seals, inhibiting upward gas migration. It is assumed that
these units serve as the upper boundaries of the C and D unit accu-
mulation laterally throughout their extent. However, understanding
the controls on the base of the gas hydrate occurrence within the
sands is more complex, and generally equates to determining the
degree of fill in each reservoir. Within both units, the basal contacts
are relatively sharp, with reduction in Sy, from >60% to less than 20%
occurring over a depth range of about 2 m in the D unit and less than
1 m in both the upper and lower C units. Two alternative end-
member explanations for the sharp nature of these contacts include:
1) the contact is driven by reservoir controls, indicating that this level
marks some critical change in reservoir lithology that effectively
precluded gas hydrate formation below this depth (i.e. a fully “filled”,
or lithologically-limited reservoir — at least at the location of the
well); or 2) the contact represents a gas hydrate-free water contact
within a fully communicating reservoir (i.e., a partially “filled”, or
charge-limited reservoir) with the level being controlled by some
combination of available gas charge and the sealing capability of the
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overlying shale. The issue is further complicated by the need to
incorporate processes related to the in situ conversion of an original
free gas accumulation into gas hydrate (Behseresht et al., 2009).

Within the C unit, there are two apparent gas hydrate-water
contacts as discussed above. Both occur within sand units with no
apparent connection to lithologic variation, placing gas-hydrate
saturated sand in direct contact with water-bearing sand units. As
aresult, both contacts within the C unit are attributed to gas hydrate-
water contacts within fully communicating reservoirs. However, the
presence of the two contacts, (leaving a small zone of perched water
at the base of zone C-3), suggests that the two portions of the C sand
are not effectively in vertical communication, at least at the well
location. The water-bearing sand (zone C2: Fig. 7) is associated with
a decrease in the sand-to-silt ratio based on grain size analyses and
visual core description (Rose et al., 2011) as well as a slight decrease
in permeability based on mini-permeameter data (Winters et al., the
volume). The gas hydrate-bearing sand directly below zone C2
contains some of the cleanest, sand-rich beds recovered from the
entire cored interval, over 90% sand throughout. These sand zones,
C3 and (4, are also some of the coarsest grained with an average
grain size of ~220 pm placing them in the upper range of the fine
sand classification (Rose et al., 2011). The role this relatively subtle
and small-scale vertical heterogeneity plays on the occurrence of
hydrate saturated sand versus water saturated is not fully under-
stood, but there is a good correlation between the parameters
described above. Unfortunately, the lack of core recovered below this
interval prevents a similar analysis of the deeper and thinner water
saturated interval in the C Unit at 664.7 m (2181 ft).

Within the D unit, the base of gas hydrate occurs within a zone
of overall gradual reduction in reservoir quality (Fig. 6). In support
of lithologic control, core data from the D unit indicates that this

stratigraphic level (around the base of gas hydrate at 628 m:
2059 ft) corresponds to a significant reduction in core-derived
estimates of permeability (Kmp: intrinsic permeabilities from mini-
permeameter tests: see Winters et al., 2011). Ky,p above this level
routinely measures in the hundreds of md; whereas below, Ky
varies more erratically, with values <100 md being more common
(see Winters et al, 2011, Fig. 6). Furthermore, detailed core
description and grain size analyses (Rose et al., 2011) indicates that
this stratigraphic level also corresponds to fundamental fine-scale
lithostratigraphic changes (marking the transition from the
underlying LSII to the overlying LS III). This change is primarily
marked by a significant increase in the thickness and amalgamation
of individual fining-upwards sand beds and general disappearance
of clay interbeds and may occur at vertical scales too small to be
fully captured in the NMR log data. Perhaps most compellingly, the
contact lies less than 0.5 m above zone D-4, the highest strati-
graphic occurrence of density porosity measured less than 32%.
Below this zone, there is a significant increase in the percentage of
bound water (see Lee et al., 2011), with even the better reservoir
sections in the lower portion of the D sand (such as zone D-5),
containing more bound water than the upper sands. However, the
D-4 and D-5 intervals, including the sands, display lower sand-to-
silt ratios than the overlying gas hydrate bearing intervals in the D
Unit (Rose et al.,, 2011). The increase in fine material and the thinly
interbedded nature of this section may be partly responsible for the
lack of gas hydrate occurrence in this interval. However, the lateral
persistence of such zones (such as zone D-4), and their ability to
isolate the gas hydrate-bearing units above from the water-bearing
sands below, is not clear. Nonetheless, the sediments within the
lower portion of the D unit would seem to be of sufficient quality to
house free gas. Therefore, the apparent lack of gas hydrate is
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Fig. 12. Seismic line 530 (W-E) from the Milne Point 3-D data set showing the occurrence of the seismic amplitudes on the crest of the Mount Elbert structure, the Mount Elbert
fault, and the potential pinchout of the upper part of the C unit away from the well location.
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Fig. 13. Seismic line 300 (S-N) from the Milne Point 3-D data set showing the occurrence of the seismic amplitudes on the crest of the Mount Elbert structure, the Mount Elbert
fault, and the potential lateral pinchout of the upper part of the C unit away from the well location.
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Fig. 14. Schematic cross-sections of the geology and occurrence of gas hydrate in the vicinity of the Mount Elbert well: A) west to east section (based on data shown in Fig. 12),

B) south to north section (based on data shown in Fig. 12).

problematic. Possible explanation include simple lack of charge to
a level coincident with the lithologic changes described above;
a similarly-coincidental limit in the height of the original free gas
column that could be maintained by the sealing lithology; removal
of free gas and migration upwards during gas hydrate formation to
account for overall hydrocarbon volume reduction; or some pet-
rophysical control that selectively limits Sy, to very low levels during
the conversion from free gas to gas hydrate.

It is difficult to conclusively state that the contact at 2059 ft
within the D unit does not represent a gas hydrate-free water
contact within a fully communicating reservoir. In this case, the
volume of unfilled reservoir (within the vertical section observed in
the Mount Elbert core and log datasets) would likely be limited to
2.5 m (8 ft) thick (the zone D-5 sand). If this sand does reflect
a water-bearing basal zone within the D unit reservoir, it may
reflect either a volume reduction related to the conversion to gas
hydrate of a previously gas-filled reservoir (leaving some reservoir
area vacated), or insufficient gas sourcing, or a combination of the
two.

5.2. Mode of formation

A key issue posed by the gas hydrate accumulations at Mount
Elbert (and throughout the Arctic) is: how did they form? As
mentioned above, previous workers have suggested that these
reservoirs may represent free gas accumulations that were converted
to gas hydrate when gas hydrate stability conditions were imposed
across the ANS roughly 1.8 Ma (Collett, 1993, 2002). The physical
processes by which this conversion might happen are not well
understood. Nor is it clear that when it happens, if the increased
methane density of gas hydrate as compared to free gas would be
expressed by a volume reduction (and upward shift in hydrocarbon-
water contact) or by general saturation reduction, or by some
combination of the two. Nonetheless, there are several aspects of
Arctic gas hydrate accumulations that support the interpretation of
conversion of free-gas to gas-hydrate accumulation. First, gas
hydrates at MPU (where the details of gas hydrate occurrence within
the broader gas hydrate trends has been revealed by the work of Inks
etal.,2009) show no preference for accumulation near the base of the
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measured from samples at net confining stress. Blue dots are permeability estimated
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gas hydrates stability (BGHS), but instead tend to be rare near the
BGHS, even where high-quality reservoirs are present, and more
prevalent higher in the section (see Fig. 2). This seems to be true
throughout the ANS (Collett et al., 2011a) and is clearly true at the
Mount Elbert location. The lack of gas hydrate in the B unit and lower
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sands suggests that free gas did not pass through these reservoirs in
great volumes while gas hydrate stability conditions were in effect.
Second, as seen at Mount Elbert, gas hydrates are often largely
restricted to the upper part of the sand units. In the case of the D unit,
this could be a reflection of the occurrence of more favorable lithol-
ogies at the top of the formation; however, this is not the case with
the C unit, in which hydrate occurs in the upper most section (LS Va)
even though this unit is of significantly lower reservoir quality
(porosity and intrinsic permeability) than those within LS Vb. Third,
gas hydrate tends to occur as discrete, concentrated deposits that
show varying degrees of relation to trapping structures (see Inks
etal,, 2009). This is clearly seen at Mount Elbert, where both the Cand
D units appear to be trapped by at least one fault and are most highly
concentrated at the crest of the closed folded structure. Finally,
reservoir sands are often only partially filled, with relatively sharp
basal contacts. Together, these features suggest the original buoyant
separation of gas from water, with resultant preferential concentra-
tion in structural highs. The lack of gas hydrate in a reservoir such as
the B unit at Mount Elbert is most likely due to a lack of trapping
geometries in that unit during the period of gas charging. In the case
of the B unit, the lack of trapping (prior to imposition of gas hydrate
stability conditions) may be due to the lack of sufficient stratigraphic
variation to develop the combination stratigraphic-structural traps
that support the formation of gas deposits within the relatively gentle
structures present within the overall monoclinal dip.

Therefore, we interpret that both the C and D accumulations at
Mount Elbert formed as conventional gas accumulations some
time before ~ 1.8 Ma (as per Collett, 1993, 2002; see also Dai et al.,
2011). Due to buoyancy, these accumulations would have formed
gas-water contacts in down dip positions that closely conform to
structure assuming relatively consistent reservoir quality. This
level would also equate to the structural elevation of any gas-
water contact seen in updip wells. However, at Mount Elbert, there
is a poor correspondence between these elevations. As with free
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Fig. 16. Plots of gas hydrate saturation (as interpreted from Combinable Magnetic Resonance (CMR) log data) versus various petrophysical parameters within different intervals of
gas hydrate occurrence: A) gamma-ray (API units), a direct indication of formation shaliness; B) porosity as recorded by the density porosity log; and C) intrinsic permeability as
determined from mini-permeameter tests on the Mount Elbert core (see Winters et al., 2011). Shaded areas show overall trends within each unit.
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gas accumulations, these deviations can be generally attributed to
lateral lithologic heterogeneities. Furthermore, due to a lack of
case studies available, these relationships in the case of gas
hydrate accumulations are less clear. Whether this poorly under-
stood process of free-gas to gas-hydrate conversion would occur
evenly on all flanks of the structure, and therefore maintain some
conformance between the base of gas hydrate in the well and the
down-dip extent of gas hydrate, is uncertain. A non-uniform
availability of water around the structure could result in differ-
ential hydrate formation areally; however, if one assumes that no
free gas currently exists within the structure, then it would appear
that sufficient water was available to convert all pre-existing free
gas to gas hydrate. The presence of stratigraphic heterogeneities
within the reservoirs would further complicate this process.
Continued delivery of methane to the accumulation subsequent to
gas hydrate formation could additionally complicate these
relationships.

Similarly, if the accumulations were previously-existing conven-
tional gas traps as we believe, then it would be reasonable to expect
the current gas hydrate to fill only a portion of the available closure or
to occur at saturations less than what would be expected for a free-
gas accumulation (due to the more efficient concentration of
methane in the gas hydrate form). With average saturations of
roughly 65%, it may be that the volumetric effect of conversion from
gas hydrate to free gas is also accommodated by a general reduction
in saturation in addition to the areal change in hydrocarbon occur-
rence (Behseresht et al., 2009). Nonetheless, in the D unit, the
occurrence of gas hydrate to and beyond the apparent limits of the
structural closure suggests a complex formation history. In addition,
the size of the total available reservoir in the D unit, including
stratigraphic variations, is not clear.

5.3. Nature of gas hydrate occurrence on the flanks of the Mount
Elbert structure

The drilling of the Mount Elbert well confirms the pre-drill
interpretation that the seismic amplitude anomalies associated
with the Mount Elbert structure correspond to thick occurrences of
gas hydrate at high saturations within sands in both the C and D
units (Lee et al., 2011). However, these amplitude anomalies
generally decline in magnitude away from the crest of the structure.
Using the thin-bed analysis techniques presented in Lee et al.
(2009), these amplitudes were interpreted to reflect simultaneous
changes in reservoir thickness and Sp, with large areas assigned
estimates of average Sy ranging between 40 and 60%. Alternative
potential explanations for the observed amplitude decreases
include 1) reductions in S with relatively constant thickness and
reservoir quality of the gas hydrate-bearing interval, 2) reductions

Strong Amplitudes

Diminishing Amplitudes

Strong Amplitudes

in Sp, due to reductions in reservoir quality, or 3) relatively consistent
Sp with reduction in the thickness of the gas hydrate occurrence
(Fig. 17).

The first option (Fig. 17a) - reduction in Sp with generally
consistent reservoir thickness and quality — would suggest a lack of
sufficient gas supply to fully saturate the reservoir. In this scenario,
the flanking regions of reduced S, may be a remnant of the process
by which the pre-existing free gas accumulations were converted
to gas hydrate. The gas hydrate occurrence would have presumably
formed from the top down as hydrate stability conditions passed
down through the section. Given the expected limited availability
of water within the free-gas reservoir, it is not at all certain how this
might happen, but if it did, the large fringing area of moderate S,
now observed on the seismic data could develop due to some
inability to move all the gas updip to feed the developing main gas
hydrate accumulation, leaving gas behind for conversion to Sy at
reduced saturations as the base of gas hydrate stability descended
toward the original gas-water contact within each unit. However, if
this were the case, one would expect a similar zone of moderate Sy
in the sections vertically below the main hydrate accumulations at
the Mount Elbert well, and no clear evidence for such exists within
the log data. In fact, as described above, gas hydrate accumulations
across the ANS seem to have relatively sharp, not transitional, basal
contacts. Overall, the available data suggests that gas hydrate in
sand reservoirs typically leaves only small free (or mobile) water
saturations (which varies with reservoir quality both laterally and
vertically) with limited documented cases of intermediate satura-
tion (ex. Collett et al., 2009; Dallimore and Collett, 2005; Lee et al.,
2011; Boswell et al., 2009). Nonetheless, there are few detailed case
studies to reference, and the Mount Elbert core data do suggest
large, low Sp, (<20%; although not observed in log data, and not
sufficient to create the seismic responses seen laterally) sections
below the primary gas hydrate-bearing reservoirs, so this scenario
clearly remains a possibility (Lee et al., 2009; Inks et al., 2009;
Behseresht et al., 2009).

The second option (Fig. 17b) would suggest that the observed
lateral reduction in amplitude is due to reduction in Sy at relatively
constant reservoir thickness due to progressive reduction in
reservoir quality. In this case, the reservoir is still fully saturated to
the extent the petrophysics allow, but that capacity is diminished
due to reduction in intrinsic permeability. Given the high sensi-
tivity of reservoir quality (in terms of permeability) to relatively
modest changes in porosity observed in the Mount Elbert data set;
a broad zone of precisely those intermediate conditions that seem
to be required to produce moderate saturations seems unlikely. In
addition, this option implies the coincidence that the best reservoir
quality in both sands at the Mount Elbert well is located on, and
roughly conformable to, the structural closures.

Strang Amplitudes
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Fig. 17. Schematic of various potential models of gas hydrate distribution consistent with the observation of reduced seismic amplitude response flanking the Mount Elbert
Structure: A) S, reduction within uniform reservoir; 2) S, reduction due to reduced reservoir quality; 3) thickness reduction at relatively consistent Sp.
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The third option (Fig. 17c) - reduced thickness of gas-hydrate-
saturated section within relatively uniform Sp — would suggest
a generally thinning accumulation away from the structural crest.
This option is favorable as it conforms to the observations in the
well, in which the boundaries of the gas hydrate accumulation are
relatively sharp. This interpretation is also consistent with the
proposed origin of the accumulation from pre-existing free gas
traps, in which case total hydrocarbon thickness would tend to be
maximum at the structural crest, and thin away due to the original
buoyant separation of gas and water. Therefore, we suggest that the
diminishing amplitudes on the flanks of the Mount Elbert structure
are most likely due to reductions in amount of fill within the sands,
with the fill that occurs being of relatively consistently high Sp.

Given this interpretation, isopach maps of the two accumula-
tions can be prepared (Fig. 18). Incorporating the assumption of
constant Sy (we chose 65% for this analysis) into the thin-bed
approach (which assumes simultaneously varying thickness and
saturation) used in the original analyses of the Mount Elbert
prospects (Lee et al, 2009) was not possible, so a modified
approach was required. This modification involved using the net
thickness of gas hydrate (T;,) (given by T, = ¢S;T;, where S; and T;
are saturation and thickness) as determined from the thin bed
analysis, and calculating the total reservoir thickness that would
equate to this net thickness assuming constant Sy, of 65%.

The complex stratigraphic/structural controls on gas hydrate
occurrence at the Mount Elbert site are similar to those previously
interpreted for permafrost-associated gas hydrate-bearing sands
from the Mallik gas hydrate research program in Canada. At Mallik,
three zones of gas hydrate occurrence were observed (Zones A, B, and
C; see Dallimore and Collett, 2005). The upper zone (Zone A) at Mallik
appears to be a case potentially similar to the Mount Elbert D unit
sand, with S, and gas-hydrate/water contacts controlled primarily by
changing reservoir quality (in particular by significant vertical
changes in effective porosity; Katsube et al., 2005; Uchida et al,,
2005). The middle gas hydrate bearing sand at Mallik (Zone B)
directly overlies free-water bearing sands with no apparent lithologic
control (similar to Mount Elbert C unit sand), and was interpreted to
indicate insufficient charge (Dallimore and Collett, 2005). The lower
zone (Zone C) at Mallik shows similar correlations between S, and
reservoir quality, with the base of the accumulation likely being
controlled by the base of gas hydrate stability with no free gas below,
further indicating lack of gas charge (Dallimore and Collett, 2005).

A
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6. Summary

Examination of log data acquired at the BPXA-DOE-USGS Mount
Elbert well and reference to information from seismic data enables
the following observations and conclusions regarding the nature,
extent, and controls on gas hydrates within the Mount Elbert
structure.

1. The Mount Elbert coring and logging program evaluated
a series of Eocene sands of the Sagavanirktok Formation within
the southeastern Milne Point Unit, Alaska North Slope. Within
roughly 500 ft of interbedded sands and shales, gas hydrates
were found to be limited to sand reservoirs within the C and D
units of Collett (1993).

2. Gas hydrate appears to fully saturate the upper portions of both
sands with the loss of sand reservoir controlling the upper
extent of the deposits. Both units are capped by thick (>10 m)
shale-dominated sections of reduced permeability that have
acted as seals.

3. Where gas hydrate occurs, Sy, is generally high (60% or greater)
and varies within the accumulations in rough accordance with
changes in reservoir quality as represented by gamma-ray
inferred shale volume and density porosity.

4. The basal contact of gas hydrate in the D unit is relatively sharp,
despite overall gradual change in reservoir quality, and is
coincident with subtle but significant lithologic and petro-
physical changes. However, the possibility that the contact
reflects a limitation in charge or in the sealing capacity of the
upper seal, with the reservoir in contact with a thin basal free-
water zone, cannot be ruled out.

5. Complex stratigraphic variations within the C unit produce two
gas hydrate-water contacts. Neither contact can be related to
significant stratigraphic changes within the individual unit.
Therefore the C unit appears to be a composite of two partially-
filled reservoirs, each with gas hydrate bearing sands in direct
contact with potentially extensive high-permeability, water-
bearing reservoirs.

6. The comparison of the areal extent of the seismic anomaly, the
mapped structural configuration of the units, and information
from the Mount Elbert well, suggest that the C and D accu-
mulations represent combination structural-stratigraphic
traps. Primary structural controls are a sealing fault that forms

60 ft B

50 ft

40 ft

30ft
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10 ft

Fig. 18. Isopach maps of interpreted thickness of gas hydrate bearing sands for A) the D unit, and B) the C unit, assuming all variations in amplitude are related to changes in

thickness at constant average reservoir saturation.
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the western boundary of both accumulations, and a subtle four-
way closed anticlinal structure.

7. Seismic amplitude data indicates that the most significant
accumulations of gas hydrate in both sands (as determined by
strongest seismic amplitudes) occur along the crest of the anti-
clinal closure. The proximity of this closure to the primary fault
suggests that it was an initial locus of trapping of hydrocarbons.

8. Seismic amplitudes decrease away from the fold crest, and
extend asymmetrically around this closure to elevations with
no clear relationship to the base of gas hydrate as observed at
the well. We attribute this to gradual reductions in thickness of
gas-hydrate-bearing sediments, although other explanations
are considered.

9. For the D unit, the occurrence of gas hydrate outside the
interpreted closure indicates that the lateral limits on the
accumulation are largely controlled by lateral stratigraphic
variations. For the C unit, the primary lateral control on gas
hydrate occurrence is the pinch-out of the upper C unit (LS Va).
The small secondary accumulation within the lower C unit (LS
Vb) may be entirely structurally controlled but small scale
lithologic changes are present and may have influenced this
occurrence.

10. The observations at Mount Elbert are in keeping with prior
observations that the C and D gas hydrate accumulations
formed originally as free-gas pools within combination struc-
tural-stratigraphic traps. Overall, it is postulated that free gas
migrating up the western bounding fault entered and was
trapped within the C- and D-units within the fold closure. Lack
of gas in the lower B sand is likely due to lack of trapping
geometries in this unit. These accumulations were later con-
verted to gas hydrate through physical processes that are not
currently well understood.

11. We interpret that gas hydrate most likely remains at relatively
high S, throughout its extent, with the previously mapped
variations in seismic amplitude (Inks et al, 2009) driven
primarily by lateral changes (primarily reductions) in reservoir
thickness away from the structural crest.

Acknowledgements

The authors wish to thank BPXA for access to data and for
leadership in advancing gas hydrate research on the Alaska North
Slope. We thank the BPXA engineers who planned the Mount Elbert
drilling program and crew of the Doyon-14 for their safe and effi-
cient execution of the drilling. We also thank those that contributed
to the selection of the Mount Elbert site (Tanya Inks, Dave Taylor,
Mariana Zyrianova), members of the Mount Elbert Science Party
(Micaela Weeks, Bob Hunter, Steve Hancock, Marta Torres, Rick
Colwell, Bill Waite, Tom Lorenson, and Eilis Rosenbaum) and all the
scientists who have participated in the post-field analysis of the
Mount Elbert datasets whose work appears in other contributions
to this special volume.

References

Anderson, B., Hancock, S., Wilson, S., Collett, T., Boswell, R, Hunter, R., 2011.
Formation pressure testing at the Mount Elbert Gas Hydrate Stratigraphic Test
Well, Alaska North Slope: Operational summary, history matching, and
interpretations. Marine and Petroleum Geology 28 (2), 478-492.

Bidinger, C., Dillon, J., 1995. Milne Point Schrader Bluff; Finding the Keys to Two
Billion Barrels. SPE 30289. In: Int’'l Heavy Oil Symposium. Calgary, Alb.

Bird, K., 1998. Geographic and geologic setting. Chapter GG. In: ANWR Assessment
Team (Ed.), The Oil and Gas Resource Potential of the Arctic National Wildlife
Refuge 1002 Area, Alaska. http://pubs.usgs.gov/of/1998/0fr-98-0034/GG.pdf, U.S.
Geological Survey Open-File Report 98-34. Version 1.0, p. GG1-GG51, CD-ROM.

Behseresht, J., Peng, Y., Bryant, S., Winters, W., 2009. Sedimentological control on
arctic gas-hydrate-bearing deposits. In: Proceedings American Geolophysical
Union, Annual Meeting, December 2009.

Boswell, R., Shelander, D., Lee, M., Latham, T., Collett, T., Guerin, G., Moridis, G.,
Reagan, M., Goldberg, D., 2009. Occurrence of gas hydrate in oligocene frio
sand; alaminos canyon block 818, northern Gulf of Mexico. Marine and Petro-
leum Geology 26, 1499-1512.

Carman, G., Hardwick, P., 1983. Geology and regional setting of Kuparuk oil field,
Alaska. American Association of Petroleum Geologists Bulletin 67, 1014-1031.

Collett, T., Kvenvolden, K., Magoon, L., 1990. Characterization of hydrocarbon gas
within the stratigraphic interval of gas-hydrate stability on the North Slope of
Alaska. Applied Geochemistry 5, 279-287.

Collett, T., 1993. Natural gas hydrates of the Prudhoe Bay and Kuparuk River area,
north slope, Alaska. American Association of Petroleum Geologists Bulletin 77
(5), 793-812.

Collett, T., 2002. Energy resource potential of natural gas hydrates. American
Association of Petroleum Geologists Bulletin 86 (11), 1971-1992.

Collett, T., Lee, M., Agena, W., Miller, J., Lewis, K., Zyrianova, M., Boswell, R., Inks, T.,
2011a. Permafrost-associated natural gas hydrate occurrences on the Alaska
North Slope. Marine and Petroleum Geology 28 (2), 279-294.

Collett, T., Lewis, R., Winters, W., Lee, M., Rose, K., Boswell, R., 2011b. Downhole well
log and core montages from the Mount Elbert gas hydrate stratigraphic test
well, Alaska North Slope. Marine and Petroleum Geology 28 (2), 561-577.

Collett, T, Johnson, A., Knapp, C., Boswell, R, 2009. Natural gas hydrates -
a review. In: Collett, T., Johnson, A., Knapp, C., Boswell, R. (Eds.), Natural Gas
Hydrates — Energy Resource Potential and Associated Hazards. AAPG Memoir,
vol. 89.

Collett, T., Riedel, M., Cochran, ]., Boswell, R,, Presley, J., Kumar, P, Sathe, A, Sethi, A.,
Lall, M., Sibal., V., the Indian National Gas Hydrate Program Expedition 01
Scientific party, 2008a. Indian National Gas Hydrate Program Expedition 01
initial reports: prepared by the U.S. Geological Survey and the Directorate
General Hydrocarbons, Ministry of Petroleum and Natural Gas (India), DVD.

Dai, S., Lee, C,, Santamarina, C., 2011. Formation history and physical properties of
sediments from the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska
North Slope. Marine and Petroleum Geology 28 (2), 427-438.

Dallimore, S., Collett, T. (Eds.), 2005. Scientific Results From the Mallik 2002 Gas
Hydrate Production Research Well Program, Mackenzie Delta, Northwest
Territories, Canada. Geological Society of Canada Bulletin, vol. 585.

Fujii, T., Saeki, T., Kobayashi, T., Inamori, T., Hayashi, M., Takano, O., Takayama, T.,
Kawasaki, T., Nagakubo, S., Nakamizu, M., Yokoi, K. 2008. Resource Assessment
of Methane Hydrate in the Eastern Nankai Trough, Japan, Offshore Technology
Conference, OTC 19310.

Hadley, C., Peters, D., Vaughan, A., Bean, D. 2008. Gumusut-Kakap project: geo-
hazard characterization and impact on field development plans. In: Interna-
tional Petroleum Technology Conference IPTC-12554. p. 15.

Holland, M., Schultheiss, P., Roberts, J., Druce, M. 2008. Observed gas hydrate
morphologies in marine sediments. In: Proceedings, 6th International Confer-
ence on Gas Hydrates (ICGH 2008).

Hunter, R., Collett, T., Boswell, R., Anderson, B., Digert, S., Pospisil, G., Baker, R.,
Weeks, M., 2011. Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska
North Slope: Overview of scientific and technical program. Marine and Petro-
leum Geology 28 (2), 295-310.

Hyndman, R., Davis, E., 1992. A mechanism for the formation of methane hydrate
and sea floor bottom simulating reflections by vertical fluid explusion. Journal
of Geophysical Research 97, 7025-7041.

Inks, T., Lee, M., Agena, W., Taylor, D., Collett, T., Hunter, T., Zyrianova, M., 2009.
Seismic prospecting for gas hydrate and associated free gas prospects in the
Milne Point area of northern Alaska. In: Collett, T., Johnson, A., Knapp, C.,
Boswell, R. (Eds.), Natural Gas Hydrates - Energy Resource Potential and
Associated Hazards. AAPG Memoir, vol. 89.

Katsube, T., Dallimore, S., Jonasson, I, Connell-Madore, S., Medioli, B., Uchida, T.,
Wright, ], Scromeda, N., 2005. Petrophysical characteristics of gas-hydrate-
bearing and gas-hydrate-free formations in the JAPEX/JNOC/GSC et al. Mallik
5L-38 gas hydrate production research well. In: Dallimore, S., Collett, T. (Eds.),
Scientific Results Form the Mallik 2002 Gas Hydrate Production Research Well
Program, Mackenzie Delta, Northwest Territories, Canada. Geological Society of
Canada Bulletin, vol. 585.

Lee, M., Agena, W., Collett, T., Inks, T., 2011. Pre- and post-drill comparison of the
Mount Elbert gas hydrate prospect at the Milne Point area, Alaska North Slope.
Marine and Petroleum Geology 28 (2), 578-588.

Lee, M., Collett, T., 2011. In-situ gas hydrate saturations estimated from various well
logs at the Mount Elbert well, Alaska North Slope. Marine and Petroleum
Geology 28 (2), 439-449.

Lee, M., Collett, T., Inks, T., 2009. Seismic attribute analysis for gas-hydrate and free-
gas prospects on the North Slope of Alaska. In: Collett, T., Johnson, A., Knapp, C.,
Boswell, R. (Eds.), Natural Gas Hydrates - Energy Resource Potential and
Associated Hazards. AAPG Memoir, vol. 89.

Lorenson, T,, Collett, T., Hunter, R., 2011. Gas geochemistry of the Mount Elbert gas
hydrate test well, Milne Pt. Alaska. Implications for gas hydrate exploration
Arctic. Marine and Petroleum Geology 28 (2), 343-360.

Masterson, D., Dzou, L., Holba, A, Fincannon, A. Ellis, L, 2001. Evidence for
biodegradation and evaporative fractionation in west Sak, Kuparuk, and
Prudhoe Bay field areas, north slope, Alaska. Organic Geochemistry 32 (3),
411-441.

Molenaar, C., Bird, K, Kirk, A., 1987. Cretaceous and tertiary stratigraphy of north-
eastern Alaska. In: Tailleur, I, Weimer, P. (Eds.), Alaskan North Slope geology:
Society of Economic Paleontologists and Mineralogists, Pacific Section, Book 50,
vol. 2, pp. 513-528.


http://pubs.usgs.gov/of/1998/ofr-98-0034/GG.pdf

R. Boswell et al. / Marine and Petroleum Geology 28 (2011) 589-607 607

Milkov, A.V., Sassen, R., 2002. Economic geology of offshore gas hydrate accumu-
lations and provinces. Marine and Petroleum Geology 19, 1-11.

Park, K., 2008. Gas hydrate exploration activities in Korea. In: Proceedings, 6th
International Conference on Gas Hydrates (ICGH 2008), p. 10.

Paull, C., Matsumoto, R., Wallace, P. (Eds.), 1996. Initial Reports - Gas Hydrate
Sampling on the Blake Ridge and Carolina Rise. Proceedings of the Ocean
Drilling Program, vol. 164. Ocean Drilling Program, Texas A&M University,
College Station, TX, p. 623.

Riedel, M., Collett, T., Malone, M., Expedition 311 scientists, 2006. In: Proceedings of
the Integrated Ocean Drilling Program, vol. 311. Ocean Drilling Program,
Washington, DC. doi:10.2204/iodp.proc.311.2006.

Rose, K., Boswell, R., Collett, T., 2011. Mount Elbert Gas Hydrate Stratigraphic Test
Well, Alaska North Slope: Coring operations, core sedimentology, and lithos-
tratigraphy. Marine and Petroleum Geology 28 (2), 311-331.

Sloan, D., Koh, C., 2008. Clathrate Hydrates of Natural Gases, third ed. CRC Press,
Taylor and Francis Group, Publishers, New York, 721 pp.

Sun, Y., Goldberg, D., Collett, T., Hunter, R., 2011. High-resolution well-log derived
dielectric properties of gas-hydrate-bearing sediments. Marine and Petroleum
Geology 28 (2), 450-459.

Torres, M., Collett, T., Rose, K., Sample, J., Agena, W., Rosenbaum, E., 2011. Pore fluid
geochemistry from the Mount Elbert gas hydrate stratigraphic test well, Alaska
North Slope. Marine and Petroleum Geology 28 (2), 332-342.

Torres, M., Trehu, A., Cespedes, N., Kastner, M., Wortmann, U., Kim, J., Long, P,
Malinverno, A., Pohlman, ]., Riedel, M., Collett, T., 2008. Methane hydrate
formation in turbidite sediments of northern Cascadia, IODP Expedition 311.
Earth and Planetary Science Letters 271, 170-180.

Uchida, T., Tsuji, T, Takahashi, T, Okui, T., Minagawa, H., 2005. Petrophysical
properties and sedimentology of gas-hydrate-bearing sediments in the JAPEX/

JNOC/GSC et al. Mallik 5L-38 gas hydrate production research well. In:
Dallimore, S., Collett, T. (Eds.), Scientific Results Form the Mallik 2002 Gas
Hydrate Production Research Well Program, Mackenzie Delta, Northwest
Territories, Canada. Geological Society of Canada Bulletin, vol. 585.

Uchida, T,, Waseda, A., Namikawa, T., Boswell, R., 2009. Methane accumulation and
high concentration of gas hydrate in marine and terrestrial sandy sediment. In:
Collett, T., Johnson, A., Knapp, C., Boswell, R. (Eds.), Natural Gas Hydrates —
Energy Resource Potential and Associated Hazards. AAPG Memoir, vol. 89.

Valin, Z., Collett, T., 1992. Molecular and Isotopic Analyses of the Hydrocarbon
Gases Within Gas Hydrate-bearing Rock Units of the Prudhoe Bay-Kuparuk
River Area in Northern Alaska, vol. 92-299. U.S. Geological Survey Open-File
Report, 90 p.

Werner, M., 1987. Tertiary and upper Cretaceous heavy oil sands, Kuparuk River
area, Alaskan North Slope. In: Tailleur, L.L., Weimer, Paul (Eds.), Alaskan North
Slope Geology: Bakersfield, California, Pacific Section, Society of Economic
Paleontologists and Mineralogists and the Alaska Geological Society, Book 50,
vol. 1, pp. 109-118.

Wilson, S., Hunter, R., Collett, T., Hancock, S., Boswell, R., Anderson, B., 2011. Alaska
North Slope regional gas hydrate production modeling forecasts. Marine and
Petroleum Geology 28 (2), 460-477.

Winters, W., Walker, M., Hunter, R., Collett, T., Boswell, R., Rose, K., Torres, M.,
Patil, S., Dandekar, A., 2011. Physical properties of sediment from the Mount
Elbert gas hydrate stratigraphic test well, Alaska North Slope. Marine and
Petroleum Geology 28 (2), 361-380.

Yang, S., Zhang, H., Wu, N,, Su, X,, Schultheiss, P,, Holland, M., Zhang, G., Liang, J., Lu,
J., Rose, K., 2008. High concentration of hydrate in dessiminated forms obtained
in Shenhu area, North Slope of South China Sea. In: Proceedings, 6th Interna-
tional Conference on Gas Hydrates (ICGH 2008), p. 10.


http://dx.doi.org/doi:10.2204/iodp.proc.311.2006

	Geologic controls on gas hydrate occurrence in the Mount Elbert prospect, Alaska North Slope
	Introduction
	Setting
	Gas hydrate occurrence at the Mount Elbert well
	Gas hydrate within the D unit
	Gas hydrate within the C unit
	The B unit at the Mount Elbert well

	Gas hydrate occurrence within the Mount Elbert structure
	Discussion
	Lithologic control on gas hydrate occurrence
	Mode of formation
	Nature of gas hydrate occurrence on the flanks of the Mount Elbert structure

	Summary
	Acknowledgements
	References


