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Regional coastal cliff retreat is difficult to model due to the episodic nature of failures and the along-shore
variability of retreat events. There is a growing demand, however, for predictive models that can be used to
forecast areas vulnerable to coastal erosion hazards. Increasingly, probabilistic models are being employed
that require data sets of high temporal density to define the joint probability density function that relates
forcing variables (e.g. wave conditions) and initial conditions (e.g. cliff geometry) to erosion events. In this
study we use a multi-parameter Bayesian network to investigate correlations between key variables that
control and influence variations in cliff retreat processes. The network uses Bayesian statistical methods to
estimate event probabilities using existing observations. Within this framework, we forecast the spatial
distribution of cliff retreat along two stretches of cliffed coast in Southern California. The input parameters are
the height and slope of the cliff, a descriptor of material strength based on the dominant cliff-forming
lithology, and the long-term cliff erosion rate that represents prior behavior. The model is forced using
predicted wave impact hours. Results demonstrate that the Bayesian approach is well-suited to the forward
modeling of coastal cliff retreat, with the correct outcomes forecast in 70–90% of the modeled transects. The
model also performs well in identifying specific locations of high cliff erosion, thus providing a foundation for
hazard mapping. This approach can be employed to predict cliff erosion at time-scales ranging from storm
events to the impacts of sea-level rise at the century-scale.
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1. Introduction

Coastal erosion is a worldwide societal issue and problems
associated with it are expected to increase with rising in sea levels.
With the recognition of the hazards facing coastal development, there
is an increasing interest in models that forecast or predict where the
highest hazards will be, whether from the gradual sea-level rise or
large storm events. Existing models that forecast coastal response to
sea-level rise or high water levels (i.e. storm surge or swell)
are typically geometric models that focus mainly on sandy and
dune-backed coasts (Bruun, 1962; Komar et al., 1999). Along
geologically and geomorphically variable coasts such as are found
along the U.S. west coast, there is a need to model both sandy beaches
and coastal cliff systems. Existing geometric models for predicting
erosion rates on bluffed or cliffed coasts typically apply a modified
Bruun Rule (Bray and Hooke, 1997), whereas similar but empirically
driven models rely on historical water level data in conjunction with
cliff toe elevations (Ruggiero et al., 2001) to establish potential
erosion hazard zones. Sunamura (1982) combined empirically
derived data from wave tank experiments with measurements of
cliff geometry, material strength and wave frequency distributions to
predict cliff erosion rates. More simplistically, hazard zones are
delineated by a linear forward projection of historic rates (Moore
et al., 1999; Priest, 1999). All of these models and methods focus on
climatalogically averaged predictions but generally do not account
well for the spatial and temporal variability and uncertainty of cliff
retreat processes.

Recently, there has been a focus on the development of statistical
and probabilistic models of coastal cliff retreat of which Lee et al.
(2001) provide detailed examples. A conclusion they reach is that cliff
retreat is not amenable to statistical forecasting models because each
retreat event is not independent (i.e. each event is influenced by
previous events) but that a probabilistic model can accommodate the
spatial and temporal uncertainty inherent to the process of cliff
retreat. Hall et al. (2002) utilized probabilistic models to predict the
maximum likelihood distributions of cliff failure based on a time
series of historic cliff retreat data, and additionally developed a
Bayesian probabilistic model based on historical retreat rates, recent
observations and expert assessments of the expected recession
frequencies. They generated a probability density function of cliff
retreat for various future time periods (22 to 84 yr), but the output
was not in the form of geospatial data suitable for generating hazard
maps, nor do they provide a verification of the model output.

The Bayesian approach is well-suited to the prediction of cliff
retreat due to its ability to include prior (e.g., historic) information
and to address the complexity of the feedback mechanisms inherent
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in cliff failure processes. In addition it addresses the existing
difficulties in correlating the multiple variables that influence the
process and is able to infer the relationships between them. As noted
previously, cliff retreat is not a continuous process; it occurs
episodically and is difficult to predict. A model must track the cliff
evolution to account for the fact that a cliff must have an unstable
geometry to fail, but after failure it may be in a stable configuration for
a long period of time. In a Bayesian network, variables such as cliff
geometry can be updated as changes occur, andmore information can
be added to the model as it becomes available.

Bayesian statistics have been used in the geosciences for several
decades, mainly in the seismic and landslide hazard communities. The
heavy computational requirements of calculating joint probability
distributions using Bayesian methods limited its application until
recently with the accessibility of fast and powerful computers and
availability of software compatible with most standard desktop
computers. Examples of seismic applications include the use of Bayesian
statistics to generate extreme-value distributions of earthquake occur-
rences (Cambell, 1982; Stavrakakis andDrakopoulos, 1995) in California
and Greece, respectively. Additionally, Oh et al. (2008) apply Bayesian
methods to develop early warning systems for earthquakes, and Amiri
and Tabatabaei (2008) use a Bayesian approach in earthquake risk
assessment studies. Gritzner et al. (2001) employ a Bayesian probability
model to help identifywhichvariables aremost important inwatershed-
scale landslide risk assessments. Lee et al. (2002), Demoulin and Chung
(2007), and Miller et al. (2007) develop geospatial landslide suscepti-
bility models based on Bayesian statistics. Dahal et al. (2008) assessed
the predictive performance of Bayesian statistics to map landslide
hazards and found a prediction accuracy greater than 88%.
Fig. 1. Location map of study ar
Coastal cliff failure and accompanying cliff edge retreat are
similar in behavior to earthquakes and landslides, exhibiting
nonlinear behavior with occurrences that are episodic in both time
and space. Few studies have been conducted that explore the use of
Bayesian methods to predict future behavior of coastal systems (Hall
et al., 2002; Plant and Holland, in press). In this study, we apply a
Bayesian network to model the probability of coastal cliff retreat in
two study areas located in Southern California. Cliff retreat within a
study area along the San Diego coast (Fig. 1) is modeled over a 3-yr
time period and a study area in Santa Barbara is modeled over a 7-yr
time period.

2. The Bayesian model

An advantage of a Bayesian inference approach is that it can be
used to combine multiple parameters to make statistically robust
forecasts. Additionally, unlike more classical inferential models,
Bayesian models permit the incorporation of prior knowledge, and a
Bayesian network allows the utilization of conditional probabilities in
the predictive model.

Bayes rule is expressed as:

p Fi jOj

� �
= p Oj jFi
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p
�
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�
= p Oj
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where the left-hand term is the updated conditional probability (or
‘posterior probability’) of a forecast, Fi, given a particular set of
observations, Oj. In the case of this study, we are forecasting the
probability distributions of cliff erosion on a number of transects
eas in Southern California.



Table 1
Bin boundary values for model parameters.

Model parameter Bin boundary values

San Diego Santa Barbara

Long-term retreat rate
(m/yr)

−0.05 −0.15 −0.45
−0.065 −1.0

0 −0.1 −0.2
−0.4 −0.8

Cliff slope (°) 0 15 30 45 70 0 10 30 50 70
Cliff height (m) 0 10 20 30 60 120 0 10 20 30 60
Geologic ranking 1 2 3 4 1 2
Impact hours (h) 0 100 1000 10000 100000 0 50 500 2500 5000 10000
Short-term retreat (m) 0–0.5 −0.75 −

1.0 −2.0 −5.0
0–1.0 −2.0 −3.0
−5.0 −30.0

Long-term retreat rate=70 yr; short-term retreat is 3 yr (San Diego) and 7 yr (Santa
Barbara).
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along the coast. The term p(Oj|Fi) is the likelihood of the observation if
the forecast is known and is the inverse of the left-hand term—this
term contains all the information relating cliff retreat to the input
variables, and includes uncertainties due to measurement or process
errors. The term p(Fi) is the prior probability of F and is what is known
about the problem before new or additional information is available.
Finally, the term p(Oj) is the sum of the joint probabilities of all the
observations and is a normalizing or scaling factor that is independent
of F.

The Bayesian network approximates a generalized probability
density function for a domain containing a number of variables, each
having either discrete (e.g., a lithologic description) or continuous
(e.g., cliff height) states. The network consists of a set of conditional
probability density functions combined with a set of conditional
independence assertions (indicating which parameters are related to
one another and which are not) that together tell the domain how the
individual variables are causally related. Bayesian networks are often
represented using a schematic diagram to represent the variables and
their conditional probabilities. Processes of cliff erosion, including the
feedback and interplay between the variables, are shown in a
simplified schematic in Fig. 2.

To develop a Bayesian network, the data for each parameter
(described in detail in Section 3) were binned (Table 1), with the size
of the bins optimized to provide as wide a distribution as possible.
Therefore, the bin widths are not equal for the distribution of an
individual parameter. In the case of the long-term erosion rate, the bin
widths also attempt to represent the uncertainty limits of the data,
and therefore the bins could not be divided in increments smaller
than 0.05 m/yr. As a result, the input distribution for the long-term
erosion rate is skewed towards the lower values. Figs. 3 and 4 show
the distribution of the input data for each parameter.

The Bayesian approach allows for the incorporation of existing
knowledge and conditional relationships into a system. In our
network, this is indicated by unidirectionally linked parameters
(i.e. geology, cliff slope, etc.). The links imply a causal relationship in
the direction indicated by the vector. For example, we infer that the
cliff slope is directly influenced by wave impact hours, geology and
long-term erosion rate and that the only parameter in our model that
directly influences cliff height is the geology. All parameters are
inferred to contribute to the short-term retreat.
3. Application to Southern California cliffs

3.1. Model data

The study areas are an approximately 52 km stretch of coast in
northern San Diego County, California, extending from the southern
portion of Camp Pendleton to La Jolla, and an approximately 60 km
portion of the Santa Barbara County coast (Fig. 1). The geomorphology
Waves

Historical erosion
rate

Historical erosion
rate

Geology

Predicted erosion 
rate

Cliff 
geometry

Fig. 2. Simplified schematic diagram of a Bayesian network in the context of modeling
coastal cliff retreat.
along this coastline is variable and consists of cliffed coastline
interrupted by coastal lagoons, river outlets and harbors.

The model data were generated for 100-m spaced transects, in
coincident locations to Coastal Data Information Program (CDIP)
nearshore wave transformation sites consisting of predictions along
profiles being developed as part of a U.S. Geological Survey multi-
hazards evaluation project (Barnard et al., 2009). Transects coincident
with cliffs and data coverage results in model development for 194
transects in the San Diego study area and 157 transects in the Santa
Barbara area.

The input geospatial database consists of five parameters including
long-term historical retreat rate, cliff slope and height, geology, and
wave impact hours. The selected parameters represent prior behavior,
initial state and forcing, respectively, andwere chosen as being critical
for forecasting retreat. Additionally, datasets of 3- and 7-yr (San Diego
and Santa Barbara, respectively) cliff retreat were generated to
independently validate the results. In the current iteration of the
model presented herein, terrestrial forcing in the form of precipitation
and associated groundwater forcing are not incorporated into this
model. We recognize that rainfall-associated processes are important
in coastal cliff retreat (Hampton and Griggs, 2004; Collins and Sitar,
2008; Young et al., 2009). However, we assume that the spatial
variation in rainfall along the ~50–60 km study areas over the
modeled durations was negligible. Data ranges and means for the
cliff slope, height and short-term retreat are shown in Table 2.

3.1.1. Cliff slope and height
Many researchers have documented the relationship between

slope angle, cliff height, and the processes governing cliff retreat (Edil
and Vallejo, 1980; Emery and Kuhn, 1982; Sunamura, 1982, 1983;
among many others) and these studies are rooted in the basic
principles of rock and soil mechanics. In general, steeper slopes are in
less stable configuration than less steep slopes and are more likely to
fail, resulting in cliff retreat. In addition, because slope failure is a
gravity-driven process, the higher a cliff section, the more prone it is
to failure given an identical section of a cliff that is not as high. For this
analysis, we derive the cliff slope and height from the lidar data for the
initial date of the short-term assessment (1998 for Santa Barbara and
2003 for San Diego).

For the San Diego County study area, lidar data were acquired for
2003 and 2006 from the NOAA Coastal Services Center website
(http://www.csc.noaa.gov/digitalcoast/data/coastallidar/index.html).
For Santa Barbara, the available lidar data are 1998 and 2005. The data
for both study areas were chosen based on availability and coverage,
and to allow for a long enough duration between surveys to ensure
that sufficient retreat of the cliff occurred with which to evaluate the
model results.

All lidar datasets were gridded to 1 m cell size using a natural
neighbors interpolation technique (Hapke, 2005). The slope of the cliff
face was measured from the earliest lidar dataset in both study areas

http://www.csc.noaa.gov/digitalcoast/data/coastallidar/index.html
image of Fig.�2
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Fig. 3. Bayesian network for the San Diego study area. The bin divisions and the prior distributions (p(Fi)) are shown for each parameter. The first column in each box contains the bin
boundary ranges and the second column (adjacent to the histogram) is the percentage of the prior distribution found in each bin. The value at the bottom of each box is the mean of
the prior distribution values±one standard deviation. The probability distribution of erosion from 2003 to 2006 is what themodel is predicting (p(Fi|Oj)). Kp, Tt, Tsm and Q alQm in the
geology parameter are the varying lithologies in the study area and are described in more detail in the text.
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Fig. 4. Bayesian network for the Santa Barbara study area. The bin divisions and the prior distributions (p(Fi)_) are shown for each parameter. The first column in each box contains
the bin boundary ranges and the second column (adjacent to the histogram) is the percentage of the prior distribution found in each bin. The value at the bottom of each box is the
mean of the prior distribution values±one standard deviation. The probability distribution of erosion from 1998 to 2005 is what the model is predicting (p(Fi|Oj)).Tt TsqTsm, and
Q alQ t in the geology parameter are the varying lithologies in the study area and are described in more detail in the text.
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Table 2
Range and means of data variables incorporated into the Bayesian network.

Model parameter Max. Min. Mean

San Diego (n=194)
Long-term retreat rate −1.0 m/yr 0.0 m/yr −0.1 m/yr
Cliff slope 66.5° 10.3° 36.1°
Cliff height 96.5 m 4.3 m 24.2 m
Geologic ranking 4 1 –

Impact hours 22,546 h 0 h 4697 h
Short-term retreat −4.8 m 0.0 m −0.8 m

Santa Barbara (n=156)
Long-term retreat rate −0.8 m/yr 0.0 m/yr −0.2 m/yr
Cliff slope 63.6° 14.9° 40.5°
Cliff height 50.0 m 6.2 m 24.5 m
Geologic ranking 2 1 −
Impact hours 9271 h 0 h 1142 h
Short-term retreat −26.0 m −0.2 m −3.1 m
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to represent an initial condition slope. A straight-line slope was
calculated at each transect by connecting the points representing the
cliff top edge and base. The ‘end-point slope’method does not account
for complex cliff face geometries. However, it is a good indicator of
whether the cliff is in a more or less stable geometry.

The top edge of the cliff was interpreted and digitized from both
lidar survey dates for each study area using methods developed by
Hapke and Reid (2007) and Hapke et al. (2009) and the elevation of
the earliest edge was determined from the grid cell elevation value
where the each transect intersects the cliff edge. Table 2 contains the
ranges and means of the cliff height and slope datasets incorporated
into the model.

3.1.2. Historical cliff retreat rates
Long-term erosion rates are input as a descriptor of the prior

behavior of the cliffs. The rates are approximately 70-yr historic rates
calculated using the cliff top edge data generated by Hapke and Reid
(2007). The cliff edges were originally derived from the 1930s-era
historical maps and modern (1998) lidar data, and the rates of cliff
retreat calculated on 50-m spaced transects. For this analysis, rateswere
re-generated at each transect using DSAS (Digital Shoreline Analysis
System; Thieler et al., 2009) so that the erosion rates corresponded to
the CDIP transects. The uncertainties in the historical rate assessments
are taken to be the same as those detailed in Hapke and Reid (2007), ±
0.1 m/yr for the average annualized rates. Long-term rates in each study
area ranged from zero to 0.8 m/yr (Santa Barbara) and zero to 1.0 m/yr
(San Diego) (Table 2).

3.1.3. Geology
A simplified geologic parameter, intended to represent a relative

‘erodibility ranking’, was assigned at each transect by identifying the
cliff-forming geologic unit. Geologic units were initially determined
from a digital statewide coastal geology GIS database (Griggs, 2002)
and subsequently refined using available geologic maps of the area:
Minor et al. (2002) for the Santa Barbara study area, and Kennedy and
Tan (2008) and Kennedy et al. (2007) for the San Diego study area.
The erodibility ranking is broadly based on the lithology and age of the
cliff-forming material and is not empirically derived from field data or
geotechnical reports.

In the San Diego study area, there are four geologic units that we
rank from 1 to 4 for their relative erodibility (1 being the weakest, 4
being the most resistant). (1) Quaternary shallow marine and alluvial
deposits (Qal and Qm, respectively); (2) shallow marine sandstones,
siltstones and conglomerates of the late Pliocene SanMateo Formation
(Tsm); (3) middle Eocene sandstones including the Torrey Sandstone
and the Scripps Formation (Tt); and (4) the Point Loma Formation, an
upper Cretaceous interbedded sandstone and shale (Kp).
For Santa Barbara, the geologic units were grouped into two
relative erodibility categories: (1) Quaternary shallow marine and
alluvial deposits (Qal and Qm, respectively); and (2) various Pliocene
and Miocene-age shales and mudstones of the Monterey Formation,
and the Sisquoc Formation, a lower Pliocene and upper Miocene
mudstone, shale and conglomerate (Tm, Tsq, and Tr). The geologic
units were broadly categorized, partly for simplification, but also to
establish a more regional database in which the parameters from
different areas can be integrated into one model without revising the
categories.

3.1.4. Wave impact hours
To estimate the amount of time that total water levels exceeded the

elevationof thebaseof the cliff,wave impact hourswerepredictedusing
the methods developed by Ruggiero et al. (1996, 2001). For the total
water level predictions, local wave and tide data were obtained from
NOAA (http://www.ndbc.noaa.gov/) for the 3- and 7-yr periods over
which cliff retreat predictions are being evaluated. Beach slope and cliff
base elevation for the run-up calculations at each transect were
extracted from the earliest date of lidar data. Thewave run-up equation
of Stockdon et al. (2006)was then used in conjunctionwith tide data to
predict the total number of hours that waves exceeded the elevation of
the cliff base over the 3- and 7-yr durations of the cliff retreatmodel. The
results indicate thatwater levels exceed cliff base elevationsmuchmore
frequently in San Diego than that in the Santa Barbara study area
(Table 2) indicating that the elevation of the shoreline angle
(the intersection of the cliff and the beach) is in general lower in
San Diego.

3.1.5. Short-term cliff retreat
DSAS was used to calculate the amount of landward retreat of the

top edge of the cliff over the model period: 3 yr for San Diego and
seven for Santa Barbara. The cliff top edges were generated from the
lidar data using the approach described earlier in this section. Retreat
was highly variable along the coast in both study areas, andmaximum
values of −4.8 m and −26.0 m were measured in San Diego and
Santa Barbara, respectively (Table 1). The short-term retreat is only
used to independently validate the model predictions.

4. Results

An initial runof themodel used three of thefiveparameters to assess
howwell themodel performedwithminimal inputs. This parsimonious
approach serves as a baseline to determine if the other inputs add any
real predictive value. The parameters included in the initial run were
(1) long-term erosion rate, (2) cliff slope and (3) wave impact hours.
The Bayesian network was used to determine the probability distribu-
tion of the cliff retreat over 3 yr in San Diego and 7 yr in Santa Barbara,
based on the distributions of the input parameters and the conditional
probability relationships established between them. To evaluate the
model results, we produced a second model output that included the
actual measured outcome (i.e. cliff retreat). The evaluation indicated
that the three-parameter model was able to accurately predict the
correct cliff retreat amount only ~50% of the time, essentially the same
as chance.

The model was assessed again using all five parameters. Including
the ranked geology parameter and cliff height noticeably improved
the outcome. At approximately 30% of transects, the model predicted
an equally high probability value of short-term erosion in more than
one bin. In these cases, if the observed output matched one of the
most probable bins, it is considered an agreement in the cross-
evaluation, but is noted to be a transect with higher uncertainty than
those where themost probable output had high confidence in one bin.

For the SanDiego study area, themodelwas run and cross-validated
on194 transects. The results shown in Fig. 5a indicate that there is a very
goodagreement between thepredictedmost probable bin value and the

http://www.ndbc.noaa.gov/


Fig. 5. Observed (bars) and predicted (x) values of cliff retreat for the (a) San Diego and (b) Santa Barbara study areas. The plotted values of the model output are the center values of
the bin with the highest probability at each transect location.
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observed, with correct erosion predictions at 71% (138) of the modeled
locations. Uncertainties were higher at 31% of transects wherein the
output predicted equally high probability in more than one bin (worst
casewas 3). The confidence in themajority of the predictions, however,
was high.

In addition to the cross-validation of the posterior model
predictions, we also examined how well the model was able to
accurately predict specific locations of extreme erosion events or
“hotspots”. For the San Diego study area, extreme erosion was
considered in any location where the cliff retreated more than 2 m in
the 3-yr period of the analysis. The actual measured amount of the cliff
retreat is compared with the along coast distribution of the modeled
highest probabilities of the high retreat (Fig. 6a). The model predicts
thirteen locations where the probability of the cliff retreat greater
than 2 m is high. High probability is defined by the central 50% of the
predicted probability distribution. The cliff retreat measured over the
3-yr study period indicates that 16 extreme events were observed,
and that the observed and predicted were coincident at 10 locations.
Since the cliff retreat was observed to exceed 2 m at only about 10% of
the transects, it was a relatively rare event. Thus, a prediction of 50%
probability (i.e., as likely as not) is a five-fold increase in predicted
vulnerability. The observed and predicted extreme events were
coincident at 10 locations. This indicates at 63% success rate of
correctly identifying specific locations of extreme erosion. There were
three occurrences of false positive predictions—that is, the model
predicted a high probability of an extreme event but none was
observed at that location. Oppositely, there were six false negatives
wherein extreme erosion was observed but the model was unable to
accurately predict their occurrence. The 95% confidence bounds
(Fig. 6) include the false negative predictions, indicating that the
potential for increased prediction error was known to be high at these
locations.

In the Santa Barbara study area, the model was evaluated on 156
transects. The cross-validation of the posterior prediction compared
to the observed for the 7-yr study period shows a very good
agreement (Fig. 5b). The model prediction of the most probable bin
is correct (as compared with the observed most probable bin) on 89%
of transects. The uncertainties are high on 28% of transects on which
the model predicted equally high probability in more than one bin
(worst case was 2).

The assessment of the model to identify locations of the highest
probability of extreme erosion resulted in the prediction of 21 extreme
events (Fig. 6b), which for the Santa Barbara study areawas defined as
greater than 5 m of erosion over the 7-yr period of the study. Of the
measured 7-yr cliff retreat, there are thirteen occurrences of extreme
erosion, and all are coincident with a predicted location of high
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probability of extreme erosion, yielding a result of 62% accuracy in
prediction. Seven of the extreme erosion predictions were not
observed. However, the model did predict the correct location of
every transect on which extreme erosion was measured. The 95%
confidence bounds for the Santa Barbara region (Fig. 6) spanned the
entire range of cliff retreat scenarios, indicating that prediction
uncertainty was higher in this region as compared to the San Diego
region.

5. Discussion

The very episodic nature of the cliff retreat coupled with a typical
lack of long-term high-resolution time series data makes predicting
cliff erosion very difficult. Additionally, the complex interplay
between cliff geometry, lithology of cliff-forming materials, and
long-term erosion rates and trends requires a multivariate approach
for accurate forecasting. The Bayesian approach provides a statistical
framework that describes what is known about the physical
parameters of a system and, perhaps more importantly, what is
known about the causal relationships between them.

Based on the results presented in this study, the Bayesian approach
is particularly well-suited to forecasting the coastal cliff erosion. The
compilation of the model parameters as geospatial data also
subsequently allows for the creation of probability distribution maps
to provide visual hazard information, especially useful for the
management and planning communities. The Bayesian learning
process, incorporating prior information and likelihood functions
into a decision framework, is parallel to the adaptive management
approach of managing natural resources (Ellison, 1996), which is a
mode of decision-making in which results are assessed and decisions
or actions are modified based on the new information that has been
learned. It stands to reason then that the Bayesian approach is ideal for
producing the science needed to address numerous issues associated
with natural resource management in the coastal zone, especially in
the context of sea-level rise and climate change scenarios. Although
the model presented herein does not include extreme events for the
short-term validation such as El Niño seasons or earthquakes, which
have been shown to correlate to the increased cliff retreat in California
(Hapke and Richmond, 2002), it is assumed that these events are
recorded in the 70-yr historic cliff retreat rates that are incorporated
into the model. The original design of this study is to test the
application of the Bayes method to predict cliff response to moderate
to severe storms, and is validated over too short a time period to
incorporate sea-level rise or increased storm intensity data, both of
which will need to be considered and incorporated in longer-term
predictions (decades to centuries).

In this discussion, we wish to understand which processes and
variables are most influential in the model predictions and why the

image of Fig.�6


Table 3
Likelihood ratios for the updated (posterior) probability distributions of cliff retreat for
single parameter updates andmultiple (combined) updates for the San Diego and Santa
Barbara study areas. The values listed are exponents of 10.

Likelihood ratio (10x)

San Diego Santa Barbara

Single parameter update
Short-term retreat 121a 77a

Long-term retreat rate 1 1
Cliff slope 1 0
Impact hours 2 0
Geology 2 0
Cliff height 3 1

Multiple parameter update
Long-term retreat rate+slope 4 3
Long-term retreat rate+slope+impact hours 15 9
Long-term retreat rate+slope+impact
hours+height

48 22

All parameters 59 32

a Maximum obtainable for model.
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predictions succeed at some locations and fail at others. To address
these issues, a sensitivity study that varies the input variables was
performed. The spatial variations in the predictive skill were
inspected to identify missing information that may be responsible
for poor predictions.

5.1. Sensitivity analysis

A sensitivity analysis was conducted to identify which input
parameters most affect the model results, whether this varies from
one study area to the other, and to understand the relative importance
of the parameters to the predicted outcomes. The sensitivity values
are based on a ratio of the change in the model outcome if the model
input is varied (Hamby, 1994). The results (Fig. 7) are unitless ratio
values and the relative values between them demonstrate that for
both study areas the historical erosion rate is the most influential
parameter. The relatively low sensitivity of the Santa Barbara study
area to the geology parameter is likely a function of the low variation
in the distribution of the input data (only 2 categories).

Tests of conditional independence were conducted to assess the
dependence of the likelihood ratios on the updated distributions of
individual parameters and combinations of parameters, to gauge the
importance of the relationships that were user-established. The
likelihood ratio (LR) is determined by:

LR = ∑n
i = 1flog p Fi jOj

h i� �
−log p Fi½ �ð Þ ð2Þ

where LR=1, the updated probability (p[Fi|Oj]) is not an improve-
ment over the prior probability distribution (p[Fi]). LR values that fall
below one indicate that the update is worse than the prior and the
model has failed to make an improved prediction. LR values greater
than one indicate that the updated probability is an improvement
0.000 0.001 0.002

70-yr erosion rate

Slope

Wave impact

Height

Geology

0.00 0.02
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Fig. 7. Sensitivity analysis results for the two study sites (a) San Diego and (b) Santa Barbara
The analysis is used to determine how sensitive the model is to changes in the values of th
over the prior. Table 3 shows the calculated values of the LR for both
individual and combined parameters. The likelihood ratios for the
updated probabilities of each single parameter are either no better or
just slightly better than the prior probability, demonstrating the
significant limitations of developing forecasts based on single
parameter updates. This approach is somewhat common in more
simplistic coastal hazard forecasts, specifically the forward projection
of historical erosion rates (Moore et al., 1999; Priest, 1999). The
results shown in Table 3 indicate that the success of the prediction is
dictated by the inclusion of multiple parameters. The likelihood ratios
increase exponentially as parameters are combined and updates are
generated. The likelihood ratios of the probabilities updated using all
Sensitivity
0.003 0.004 0.005

Sensitivity
0.04 0.06 0.08

a. San Diego

b. Santa Barbara

, show that the Bayesian model is most sensitive to the long-term (70-yr) erosion rate.
e prior distribution parameters and is a unitless number.
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five parameters provide a prediction that is 1059 times better than the
prior in the San Diego study area and 1032 times better than the prior
in Santa Barbara.

5.2. Site-specific prediction skill

The results of the cross-evaluation of themodel predictions for two
independent stretches of cliffed coastline investigated in this study
support the strength and reliability of a Bayesian approach to
forecasting cliff erosion. The lower ability to accurately forecast
erosion in San Diego (71%) versus Santa Barbara (89%) is likely related
to the relative amount of cliff top development and engineering
structures in the study areas. In general, development and structural
reinforcement of the cliffs are lower in Santa Barbara than in SanDiego.
In a less natural (or more modified) state, the cliffs are less likely to
behave based on the parameters that were input into the network,
which assume a natural system. For example, a seawall may result in a
section of a cliff responding as if it is composed of a stronger material
than it is, in which case the model would tend to over-predict the
erosion. This suggests that the addition of a parameter describing the
level of modification/reinforcement is likely to be useful in improving
the model results.

The Bayesian network performed relatively well in its ability to
accurately identify areas with a higher probability of extreme erosion,
indicating that it may be a useful tool for management applications. In
locations where the observed and predicted erosion extremes were
not coincident, the model either over-predicted (false positive) or
under-predicted (false negative). For the cases of false positive
predictions, the models forecasted an extreme event where none
was observed. For hazard assessments, this situation may result in an
over-preparation for an expected erosion event. Oppositely, in the
locations of false negatives, the probability of extreme erosion was
low but a large erosion event was observed. This situation is the
“worst case” for management applications in that communities or
property owners would not expect high erosion at a specific location
and therefore could be caught off-guard in terms of preparation or
mitigation procedures. For the Santa Barbara study area, there were
no false negative predictions, which support the potential value of this
method for localized hazard assessments. Overall, the predictive
capability yielded similar results in both study areas (62–63%) when
considering both false negative and false positive predictions,
suggesting that this may be the limitation of the model given the
current parameters being incorporated.

To assesswhether there is an identifiable process-related or physical
reason for higher uncertainties and/or poor predictions at some
locations as compared with others, specific sites were examined using
a digital photograph database (http://www.californiacoastline.org/).
Locations were examined to look for consistency in the presence or
absence of seawalls, cliff top development, basal notching, and evidence
of erosion processes (block falls, rilling/gullying of cliff face, etc.). The
hypothesis for this exercise was that areas with high uncertainty and
poor prediction have been modified to the extent that the parameters
input into themodel no longer accurately represent the state of the cliff.
Additionally, a sitewith consistent evidence of the cliff retreat related to
terrestrial processes rather than the marine processes might not
generate results consistent with a model forced with wave impact
hours. More than seventy individual locations were inspected but no
consistent patterns emerged. It is beyond the scope of this study to
develop a quantitative database and include a thorough analysis of the
spatial distribution of the various influencing parameters and how they
correlate to the model results. This will be investigated as part of future
efforts.

Other explanations for the high uncertainty/poor prediction at
certain locations include inaccuracies in the construction of thenetwork,
unaccounted for uncertainties in the data, and the exclusion or over-
simplified representation of an influencing input parameter. The
network construction was aided by published literature on cliff erosion
processes and is unlikely to contribute substantially to the levels of
higher uncertainties observed in the model outputs. Unaccounted for
uncertainties in the input data could result in translation of uncertainties
to the model output and/or poor posterior predictions. For example, in
the estimate of wave impact hours, the run-up is estimated for a specific
slope and back beach elevation which do not evolve through the time
period of the model; rather they are fixed in the initial state. It would
require a fairly complex model to incorporate hour by hour changes in
the beach geometry over periods of several years. This approach is being
incorporated into an application of the model for a single storm event
(Barnard et al., 2009); however, it is not practical for longer-term
modeling at this time.

Some of the uncertainty in themodel prediction is also likely related
to the simplified input geology parameter and the lack of a terrestrial
forcing parameter (rainfall/groundwater/slope wash). The geology
parameter could be refined by including data on rock strength and
fracture density. Some data exist and could be derived from existing
technical reports and building permits, but the compilation of a
complete database would require detailed and regionally extensive
field mapping. A pilot study to assess howmuch the model uncertainty
improves with the inclusion of rock strength characterization would be
useful for determining if a regional mapping effort was warranted.

The contribution of terrestrial forcing in processes of coastal cliff
retreat is widely recognized and, in combination with marine forcing,
is held to be fundamental to the development and evolution of coastal
cliffs (Trenhaile, 1987; Sunamura, 1992; Hampton and Griggs, 2004).
Recent studies by Collins and Sitar (2008) and Young et al. (2009)
highlight the importance of terrestrial processes. The exploration of
the performance of the Bayesian model presented in this study
requires consideration of the influence that a lack of a terrestrial
forcing component may have on the model outcome. With recogni-
tion that some descriptor of variation in terrestrial forcing along the
coast would improve the model results, our results suggest that it is
unlikely that this can be the main culprit to explain the areas of poor
performance. If the model output was highly sensitive to terrestrial
forcing, it would be expected that it would consistently under-predict
cliff erosion and the occurrence of false negative predictions for
extreme erosion would be high. This is not consistently manifested in
the results; for in the Santa Barbara study area there were no false
negative extreme erosion predictions. In the San Diego study area, 37%
of the extreme events were false negative predictions, possibly
indicating that terrestrial forcing is more important in San Diego than
in Santa Barbara. It is also likely that the dominant retreat process
(marine versus terrestrial) is manifested in the cliff slope parameter.
In general, cliffs that are dominated by terrestrial processes tend to
have lower slopes and thus would be associated with lower historical
cliff retreat rates and have a lower probability of failure.

6. Conclusions

The Bayesian application to forecasting coastal cliff retreat is
advantageous over other predictive methods because a user-defined
network is used to combine multiple parameters with information on
how the parameters influence or are related to one another. This is
critical for cliffed coastlines where erosion is dependent on a complex
interplay of slope, height, material properties, historical behavior
and driving forces. The Bayesian prediction also incorporates
the uncertainties of the prior probabilities and can be updated as
additional information is obtained or learned. In this study, we use a
multi-parameter Bayesian network to investigate correlations between
key variables that control and influence variations in cliff retreat
processes.

The Bayesian network predicted the most likely outcome of cliff
failurewith ahighdegreeof confidence. In termsof rankedprobabilities,
the method accurately predicted the correct outcome (location and

http://www.californiacoastline.org/


149C. Hapke, N. Plant / Marine Geology 278 (2010) 140–149
amount of cliff erosion) in approximately 70–90% of the study areas. The
model was also highly successful in correctly predictingwhere extreme
erosion events (cliff retreat N2 m or N5 m) occur.

Model evaluations and sensitivity analyses indicate that informa-
tion on prior behavior is crucial for accurately predicting the most
likely outcome. In this study, the model performed poorly in locations
lacking information on long-term erosion rate of the cliff that
represents prior behavior. The assessment of likelihood functions
clearly shows that a single parameter approach (i.e. projection of
historical rates) is insufficient for predicting coastal cliff erosion, and
the strongest improvement of the prediction is achieved when all
parameters are combined.

The formulation of a Bayesian model is conceptually similar to the
framework of adaptive management strategies that are gaining favor
for natural resource management and as such, Bayesian modeling of
the physical system is compatible with planning for the future. The
Bayesian approach is ideal for producing the science needed to
address numerous issues associated with natural resource manage-
ment in the coastal zone, especially in the context of sea-level rise and
climate change scenarios.
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