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Abstract 

 

Considerable debate surrounds the sources of oxygenated polybrominated diphenyl 

ethers (O-PBDEs) in wildlife as to whether they are naturally produced or result from 

anthropogenic industrial activities. Natural radiocarbon (14C) abundance has proven to  

be a powerful tool to address this problem as recently biosynthesized compounds 
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contain contemporary (i.e. modern) amounts of atmospheric radiocarbon; whereas 

industrial chemicals, mostly produced from fossil fuels, contain no detectable 14C. 

However, few compounds isolated from organisms have been analyzed for their 

radiocarbon content. To provide a baseline, we analyzed the 14C content of four O-

PBDEs. These compounds, 6-OH-BDE47, 2’-OH-BDE68, 2’,6-diOH-BDE159, and a 

recently identified compound, 2’-MeO-6-OH-BDE120, were isolated from the 

tropical marine sponges Dysidea granulosa and Lendenfeldia dendyi. The modern 

radiocarbon content of their chemical structures (i.e. diphenyl ethers, C12H22O) 

indicates that they are naturally produced. This adds to a growing baseline on, at least, 

the sources of these unusual compounds. 

 

Keywords: O-PBDEs, radiocarbon, accelerator mass spectrometry, sponges, Mariana 

Islands, Pacific Ocean   

 

Research highlights 

 

· O-PBDEs in the marine environment could have both natural and anthropogenic 

origin. 

· Molecular-level 14C is measured by accelerated mass spectrometry. 

· Industrial products, derived from fossil sources, are radiocarbon 14C-free. 

· O-PBDEs compounds from marine sponges show modern levels of 14C. 

· Some species could produce O-PBDEs rather than being biotransformation from 

industrial PBDEs.   
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One particular group of halogenated organic compounds (HOCs) are the 

polybrominated diphenyl ethers (PBDEs), a class of industrially produced, brominated 

flame retardants, that are ubiquitous in the environment (Hassanin et al., 2005; Hale et 

al., 2008; Gao et al., 2009; Shaw and Kannan, 2009; de Wit et al., 2010). In addition, 

many derivatives of PBDEs, such as hydroxylated (OH-PBDEs) and methoxylated 

(MeO-PBDEs) polybrominated diphenyl ethers, have been found in wildlife (Haglund 

et al., 1997; Verreault et al., 2005; Letcher et al., 2010) as well as in humans 

(Athanasiadou et al., 2008; Sudaryanto et al., 2008; Lacorte and Ikonomou, 2009). 

We refer to these compounds collectively as oxygenated polybrominated diphenyl 

ethers (O-PBDEs). These chemicals and their parent PBDE compounds are present as 

contaminant residues that may exhibit different toxicological effects (Brouwer et al., 

1998; Harju et al., 2007; Dingemans et al., 2008; Boxtel et al., 2008; Canton et al. 

2008; Ucan-Marin et al., 2010). Several experimental studies have shown the 

bioaccumulation of higher levels of O-PBDEs than their parent compounds in marine 

wildlife, along with a limited animal metabolic capacity to produce some of these O-

PBDE metabolites at different trophic levels (Wan et al., 2009; Letcher et al., 2009). 

Recently, these two groups of O-PBDEs have also been determined in surface waters, 

rain, snow (Ueno et al., 2008), rivers and coastal waters (Vetter et al, 2009), as well as 

in seafood (Covaci et al., 2007). However, the environmental behaviour of the O-

PBDEs, their routes into the environment, their toxic effects on exposed organisms, as 

well as whether some are metabolites or by-products of synthetic PBDEs or naturally 

produced HOCs remains uncertain (Kelly et al., 2008; Wan et al., 2009).  

Since some marine organisms (e.g. sponge-cyanobacteria associations), produce 

similar O-PBDE compounds (Faulkner, 1994; Handayani et al., 1997; Hanif et al., 

2007), it has been shown or suggested that OH-PBDE and MeO-PBDE compounds 
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are biosynthesized from natural sources, which could then bioaccumulate in exposed 

organisms. The bioaccumulation in one stranded whale (Mesoplodon mirus) of two 

naturally produced MeO-PBDEs (i.e. 6-MeO-BDE47 and 2’-MeO-BDE68) was 

confirmed by measuring their natural radiocarbon content (Teuten et al., 2005; Teuten 

and Reddy, 2007). This approach has proven to be a useful tool for determining the 

sources of HOCs (Reddy et al., 2002; Reddy et al., 2004; Teuten et al., 2005).  

To provide additional baseline data on the radiocarbon content of O-PBDEs, and 

therefore their sources, we analyzed four compounds that were isolated from the 

tropical marine sponges Dysidea granulosa and Lendenfeldia dendyi (Figure 1). These 

compounds, 6-OH-BDE47, 2’-OH-BDE68, 2’,6-diOH-BDE159 and a recently 

identified compound, 2’-MeO-6-OH-BDE120, were measured for their natural 

radiocarbon content by accelerator mass spectrometry (AMS).  

The sponges Dysidea granulosa and Lendenfeldia dendyi were collected from Akino 

reef, Saipan in May 2005 (15° 12′ 43" N; 145° 41′ 48" E) at a depth of up to 15 m 

[they represent a depth gradient of 1m (sample AS-I-48B = compound I) and 15 m 

(AS-I-55B = II)] and Papua New Guinea in June 1998 (11° 02′ 51" S; 152° 28′ 72" E) 

at a depth of 7 m [MR-LD-1 = III and MR-LD-2 = IV], respectively. A voucher 

specimen of the sample Dysidea granulosa (SA20503037) was deposited at the Ocean 

Biotechnology Center and Repository, National Oceanographic and Atmospheric 

Agency (NOAA), Oxford, MS and a voucher specimen of the sponge Lendenfeldia 

dendyi (Coll. No.C018887) was deposited at Smithsonian Institute, Washington D.C. 

The isolation and extraction of the compounds were as follows; the freeze-dried, 

powdered sponge samples were extracted with 1:1 dichloromethane/methanol and the 

resulting crude extract was fractionated by vacuum liquid chromatography on a silica 

gel column using n-hexane/ethyl acetate gradient mixtures as eluents. The fractions 
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were analyzed by nuclear magnetic resonance (NMR) and then repeatedly purified 

either by column chromatography or by normal phase high pressure liquid 

chromatography (HPLC) to yield pure compounds I (4.4 g), II (30.0 mg), III (350.0 

mg) and IV (304.0 mg) for each sample processed. HPLC was performed on a Waters 

2695 model system (Phenomenex, Si, 5μm, 250x10mm column). 1H-NMR (400 

MHz), 13C-NMR (100 MHZ), and 2D-NMR spectra were recorded using the residual 

solvent signal as an internal standard on a Varian AS-400 and Bruker Advance DRX-

400 spectrometers. Infrared (IR) spectra were recorded on an ATI Mattson Genesis 

series Fourier transforme infrared (FTIR) spectrometer. High-resolution mass spectra 

were recorded via direct injection into a Bruker Magnex BioAPEX 30es ion cyclotron 

resonance Fourier transform mass spectrometer (HR-FT-MS). Melting points were 

determined on a Thomas Hoover capillary melting point apparatus. The structures of 

PBDEs were identified by comparison of NMR and mass spectral data to that reported 

in the literature (Carte and Faulkner, 1981; Hanif et al., 2007).  

The molecular radiocarbon measurements (14C) were performed as described 

previously (Reddy et al., 2002). Briefly, these analyses encompass three steps: (1) 

combustion of the organic carbon into carbon dioxide, (2) reduction of the carbon 

dioxide into graphite, and (3) analysis of the graphite by AMS. About 10% of the 

carbon dioxide was reserved for C analysis by isotope ratio mass spectrometry 

(IRMS). The 14C radiocarbon measurements were done at the National Ocean 

Sciences Accelerator Mass Spectrometry (NOSAMS) facility at Woods Hole 

Oceanographic Institution, Woods Hole, MA (McNichol et al., 1994).  All 14C 

measurements were normalized to 13C values of -25‰ and expressed as 14C values. 

The latter terms is the per mille (‰) deviation from the international standard for 14C 

dating, Standard Reference Material 4990B “Oxalic Acid” (Stuiver and Polach, 1977). 
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In this context, fossil carbon has a 14C of -1000‰ (i.e. 14C-free), while values >0‰ 

reflect modern levels of 14C radiocarbon (i.e. corresponding to the natural background 

in addition to post nuclear bomb tests 14C radiocarbon inputs from the 1950s and 

1960s). Routine precision for  13C and 14C measurements are 0.1 and 10‰, 

respectively. 

The structures of the isolated compounds (Figure 1) were identified as two OH-

PBDEs , I = 6-OH-BDE47 (2-(2’,4’-dibromophenoxy)-3,5-dibromophenol); II = 2’-

OH-BDE68 (2-(2’,4’-dibromophenoxy)-4,6-dibromophenol), a diOH-PBDE; III = 

2’,6-diOH-BDE159 (2,3,4,5-tetrabromo-6-(3’,5’-dibromo-2’-hydroxyphenoxy)phenol) 

and a OH-/MeO-PBDE IV = 2’-MeO-6-OH-BDE120 (2,3,5-tribromo-6-(3’,5’-

dibromo-2’-methoxyphenoxy)phenol). All the compounds in this study correlated 

with the structure classification of sponge-derived oxygenated polyhalogenated 

diphenyl ethers (O-PHDEs), according to the core formula and the substitution pattern 

classes, described recently by Calcul et al. (2009). Thus, compounds I and II 

correspond to class I (i.e. one OH- or MeO- substitution in the ortho position; C12O2) 

and were found in Dysidea granulosa, while compounds III and IV corresponding to 

class II-1 (i.e. one OH- or MeO- substitution in the ortho position in each ring; C12O3) 

were found in Lendenfeldia dendyi. Similar structures based on diphenyl ether 

molecular skeletons (i.e. C12H22O) have been previously identified in other species of 

marine sponges. The OH-PBDE compounds (structures I and II) are the most frequent 

isolated structures in the Dysidea sp. collected in different geographical areas along 

the tropical Pacific Ocean, whilst the diOH-PBDE compound (structure III), has been 

found so far, in Dysidea granulosa and Dysidea dendyi. Table 1 reviews the tropical 

sponge species and the collection areas from the literature where these compounds 

have also been found. The OH- or MeO- functional group substitution in the ortho 
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position of the diphenyl ether backbone is often found in compounds isolated from 

marine species and has helped to elucidate the origin of the PBDE metabolites 

observed at different trophic level organisms (Marsh et al., 2004). To date, more than 

40 O-PHDEs are known to be derived from sponge-cyanobacteria associations (Zhang 

et al., 2008; Calcul et al., 2009), exhibiting bromine or chlorine atoms or both. 

However, the fourth compound isolated reported here, 2’-MeO-6-OH-BDE120, to our 

knowledge has not been previously described in the literature, although closer 

bromine substitution patterns were found in similar hydroxyl-methoxy-diphenyl ether 

structures isolated from marine sponges (Fu et al., 1995; Utkina, et al., 2001; Oda et 

al., 2005). 

The 14C measurements along with the 13C values are shown in Table 2. The 14C 

values for the four isolated compounds were within the range -6.6 to 21‰, which 

indicate contemporary (or modern) levels of radiocarbon. These radiocarbon levels 

point to recently assimilated carbon used during the biosynthesis of these chemicals; 

however, this range found is lower than compared with previous 14C radiocarbon 

studies of HOCs. For example, Teuten et al. (2005) obtained values of +103‰ and 

+119‰ for the methoxylated analogue compounds 6-MeO-BDE47 and 2’-MeO-

BDE68, respectively, accumulated in True’s beaked whale (Mesoplodon mirus) 

blubber that was found dead on the Northwest Atlantic coast, whilst the values found 

for the hydroxylated compounds identified in this study, 6-OH-BDE47 and 2’-OH-

BDE68 were +21‰ and +17.2‰, respectively (Table 2). Clearly, they are not from 

industrial sources as they would have 14C values of -1000‰ (Reddy et al., 2002; 

Reddy et al. 2004). Previously, Reddy et al. (2002) reported a value of 14C = +73‰ 

for a structurally similar compound (i.e. 2’,6-diMeO-BDE68) isolated from the 

sponge Phyllospongia foliascens, collected in Palau (western Pacific, 134°E). This 
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could clearly indicate geographical and temporal 14C variations in the dissolved 

inorganic carbon composition between these locations (i.e. coral reefs) in the Pacific. 

It is worth noting that large scale circulation and 14C distributions occur in the 

Pacific Ocean, which show dropping trends of post-bomb (after the 1950's and 1960's) 

radiocarbon levels in some oceanic locations (Druffel, 2002). Moreover, sessile 

sponge-cyanobacteria symbionts are exposed through their life cycle to the local 

hydrodynamics, quite opposite to open-ocean planktonic life cycle organisms exposed 

to the surface waters, which are highly enriched with post-bomb testing 14C (Teuten et 

al., 2005).  

 

Marine pharmacological research has provided a large library of bioactive chemicals 

from marine sponges, such as polyhalogenated diphenyl ethers (PHDE) compounds 

(Faulkner, 1994; Unson et al., 1994); among other classes of compounds, commonly, 

sesquiterpenes (Alvi et al., 1992) and polychlorinated peptide derivatives (Sauleau et 

al., 2005). As far as we know, there has not been a review of PHDE compounds. 

Some of these compounds have shown antibacterial and cytotoxic activity, such as the 

congener 2’-OH-BDE68 studied in Dysidea granulosa (Shridhar et al. 2009). Most 

studies indicate the symbiont cyanobacteria, Oscillatoria spongeliae, as the 

responsible microorganism that produces O-PBDEs (Faulkner, 1994; Unson, 1994), 

although the mutual relationship between the sponge and the symbiont cyanobacteria, 

in relation to the production of chemical metabolites, is still not fully understood. The 

studies in Dysidea granulosa have investigated differences between the production of 

O-PBDEs and the environmental conditions, such as light or depth, showing a 

complex symbiotic relationship (Becerro and Paul, 2004), although chemical 

variations have also been shown to originate from the existence of closely related 
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cyanobacterial strains (Ridley et al., 2005). There is a positive agreement that these 

would act as chemical defenses against predation (Handayani et al., 1997). Different 

authors also have indicated the important role of the host-symbiont coevolution, to 

improve the adaptation to different habitats (i.e. intertidal), therefore, influencing to 

some extent the metabolite synthesis pathway (Steindler et al., 2002; Calcul et al, 

2009). Some of these O-PBDEs compounds have also been found in other species. 

The metabolite 6-OH-BDE47 was found in an ascidian (Didemnum sp.) by 

Schumacher (1995), and the MeO-BDE68 has been found in green algae (Cladophora 

fascicularis) in the Pacific (Kuniyoshi et al., 1985). The structurally related analogues 

of the hydroxylated compounds found in this study, i.e., 6-MeO-BDE47 and 2’-MeO-

BDE68, have also been isolated in several tropical marine sponges. Alternatively of 

the four compounds isolated in this study, the dihydroxylated and the hydroxy-

methoxy compounds have never been reported in wildlife other than marine sponges 

or in the environment. However, similar chemical structures (e.g. diOH- and diMeO-

containing) are often found in the marine environment and have been found in marine 

organisms as presumably naturally occurring HOCs (Marsh et al., 2005, Haraguchi et 

al., 2009). In contrast, the OH-PBDEs found in this study, 6-OH-BDE47 and 2’-OH-

BDE68, as well as their MeO-containing analogues (i.e., 6-MeO-BDE47 and 2’-MeO-

BDE68) have been frequently found in aquatic organisms and sourced to different 

origins. Kierkegaard et al. (2001) found six different OH-tetraBDEs in northen pike 

(Esox lucius) exposed to BDE-47, including the congener 6-OH-BDE47. The 6-OH-

BDE47 was also found to be the highest congener retained along with nine other OH-

PBDEs congeners in fish species in Detroit River (Valters et al., 2005), of the Great 

Lakes region, and these were suggested to have originated primarily from CYP 

enzyme-mediated oxidative metabolism of BDE-47, although MeO-BDEs were found 
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at very low concentrations. Furthermore, the production of hydroxylated metabolites 

from synthetic PBDEs has also been demonstrated in exposed organisms in several in 

vivo studies (Morck et al., 2003; Malmberg et al., 2005; Marsh et al., 2006), although 

these animal experiments have not shown the formation of their MeO-PBDE 

derivatives. On the contrary, the majority of the OH-PBDEs found in Baltic Sea 

Salmon (Salmo salar), were attributed to natural sources (Marsh et al., 2004), as most 

of the hydroxylated compounds identified exhibited the hydroxyl group in the ortho 

position on the diphenyl ether backbone rather than in the meta or para position, thus 

the latter metabolites would suggest PBDE metabolism. These structural trends for 

natural sources were recently supported by the occurrence of O-PBDEs in blue 

mussels (Mytilus edulis), red algae (Ceramium tenuicorne) and cyanobacteria 

(Aphanizomenon flosaquae) in the Baltic Sea (Malmvarn et al., 2005, 2008). 

Observations in the Arctic wildlife (e.g. seals, porpoises, gulls, whales, polar bears) 

have provided the majority of data with regard the occurrence of O-PBDEs (Verreault 

et al., 2005;, Kelly et al. 2008; Wan et al., 2009; Letcher et al., 2009, 2010). The 3-

OH-BDE47, 4’-OH-BDE49, and 6-OH-BDE47 were detected in plasma samples from 

glaucous gulls (Larus hyperboreus), although 4’-OH-BDE49 and 4-OH-BDE42 were 

the only OH-PBDEs congeners quantifiable in polar bears (Ursus maritimus) 

according Verreault et al. (2005). In opposition, the study conducted by Kelly et al. 

(2008) reported an undetectable occurrence of OH-PBDEs in samples of blood, 

muscle, and/or liver of fish and marine wildlife in specimens from the Arctic, with the 

exception of beluga whale blubber and milk samples, although at very low 

concentrations. However, elevated concentrations were found in other Arctic 

organisms for MeO-PBDEs with the highest concentrations of 6-MeO-BDE47 and 2’-

MeO-BDE68 in beluga whales. Weijs et al. (2009) found also the bioaccumulation of 
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6-MeO-BDE47 and 2’-MeO-BDE68) in seals in the southern North Sea. The 

differences in biomagnification processes were explained in terms of differences in 

metabolic breakdown for the two species of harbour seals (Phoca vitulina) and 

harbour porpoises (Phocoena phocoena). According Letcher et al. (2009), who reports 

a comparative study for East Greenland ringed seal (Pusa hispida) blubber to polar 

bear (Ursus maritimus) tissues (adipose, liver and brain), for diverse congeners of 

persistent chlorinated and brominated contaminants and metabolic by-products, 

PBDEs, MeO-PBDEs and OH-PBDEs can bioaccumulate but do not appear to be 

biotransformed or are biotransformation products produced in the polar bear. These 

authors found the 6-OH-BDE47 congener bioaccumulated in seals, but unlike OH-

PCBs metabolites, OH-PBDEs in the bear tissues appear to be mainly bioaccumulated 

from the seal blubber, due to the low PBDEs oxidative metabolism exhibited from in 

vitro assays using polar bear (Ursus maritimus) hepatic microsomes (Letcher et al., 

2009). Wan et al. (2009) pointed to the formation of OH-PBDEs from MeO-PBDEs 

rather than directly from industrial PBDEs metabolism. Another explanation has also 

been suggested to link the occurrence of O-PBDE compounds in wildlife with 

environmentally transformed synthetic PBDEs rather than direct animal metabolism, 

through routes, such as sewage effluent discharges (Hua et al., 2005; Ueno et al., 

2008). 

Currently, these MeO-PBDEs compounds, which are now frequently measured in 

marine wildlife, could be considered to originate from a natural sources due to the 

lack of evidences of synthesis through animal metabolism (e.g. in vivo studies) as well 

as higher concentrations in wildlife relative to PBDEs (Letcher et al., 2009, 2010). In 

contrast, the OH-PBDEs would originate both from anthropogenic sources via animal 

metabolism and natural sources as confirmed by the radiocarbon data in this study. 
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Investigations in the Great Barrier Reef in Australia (Vetter et al., 2009) showed the 

occurrence of dissolved concentrations in seawater of natural halogenated organic 

compounds (e.g. 6-MeO-BDE47; 2’-MeO-BDE68; 2’,6-diMeO-BDE68). The 

occurrence of the same compounds in sponges, dolphins and marine mammals in 

Queensland/Australia (Vetter et al., 2001; Vetter et al., 2002; Agrawal and Bowden, 

2005), indicate that the bioaccumulation process in the marine food web might start in 

the same geographical area, perhaps limiting the extent of the bioaccumulation 

potential through the oceanic dispersion of these natural HOCs. Yet, the sponges 

containing cyanobacteria associations represent about 100 species in 29 families 

which is a large pool of O-PBDEs producing organisms mainly located in the tropical 

ocean. Recently, an Oscillatoria-type symbiont has been found in a sponge in the west 

Atlantic Ocean (Diaz et al., 2007), which exhibits higher rates of photosynthetic 

production than Oscillatoria spongeliae, and would constitute an advantage over other 

reef organisms, as well as a potential PBDE compounds producer. Nevertheless, these 

chemical compounds released in tropical areas are likely to be also exposed to 

transformation by abiotic processes in the environment. If so, rather than global 

distributions of O-PBDEs from tropical areas (e.g. produced by sponge-cyanobacteria 

associations), there would be unidentified marine species producing naturally O-

PBDEs compounds, which could be bioaccumulated afterwards in higher trophic 

levels in the marine food web. Therefore, the 14C>100‰ values found in the 

bioaccumulated MeO-PBDEs in a whale (Mesoplodon mirus) in the North Atlantic 

Ocean (Teuten et al. 2005) or identified O-PBDEs in other marine organisms (Marsh 

et al., 2005; Haraguchi et al., 2009) in the Pacific Ocean (offshore Japan), could 

correspond to a marine microorganisms whose life cycle occurs in the surface of the 

ocean as a planktonic organisms (i.e. planktonic cyanobacteria) with higher turnover 



 13

rates, thus being highly enriched in post-bomb 14C from surface waters, rather than 

bioaccumulated sponge-cyanobacteria metabolites originated in the tropical ocean. 

The existence of potentially different sources of O-PBDEs in the environment (i.e. 

synthetic, natural, transformed), without regard to methylation, debromination, 

dechlorination or phototransformation processes (Steen et al., 2009), challenges the 

issue of source and the potential risks to exposed wildlife. Therefore, elucidation of 

sources is a key to understanding the environmental occurrence, transformation 

processes, transport processes and bioaccumulation of O-PBDEs. The molecular level 

radiocarbon technique allows discriminating between these origins. The baseline data 

presented in this study provides evidence of natural production in sponge-bacteria 

associations. 
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Figure 1. Structures of compounds isolated in this study. I = 6-OH-BDE47 (2-(2’,4’-

dibromophenoxy)-3,5-dibromophenol); II = 2’-OH-BDE68  (2-(2’,4’-

dibromophenoxy)-4,6-dibromophenol); III = 2’,6-diOH-BDE159 (2,3,4,5-tetrabromo-

6-(3’,5’-dibromo-2’-hydroxyphenoxy)phenol) and IV = 2’-MeO-6-OH-BDE120 

(2,3,5-tribromo-6-(3’,5’-dibromo-2’-methoxyphenoxy)phenol).  See also Table 1 for 

equivalent nomenclature. 
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Table 1. Tropical marine sponge species known to contain the oxygenated 1 

polybrominated diphenyl ethers isolated in this study.  2 

Compounda Sponge specie Location Reference 
I. 6-OH-2,2’,4,4’-tetraBDE 
(6-OH-BDE47) 

Dysidea granulosa 
 
 
Dysidea herbacea and 
Dysidea dendyi 
 
Dysidea dendyi 
 
Dysidea sp. 
 

Saipan 
 
 

Papua New 
Guinea/Fiji 

 
- 
 

Indo-Pacific  

this study; Becerro 
and Paul, 2004 
 
Calcul et al., 2009 
 
 
Xu et al., 2005  
 
Fu et al., 1995; 
Zhang et al., 2008 

II. 2’-OH-2,3’,4,5’-tetraBDE 
(2’-OH-BDE68) 

Dysidea granulosa 
 
 
 
Dysidea herbacea and 
Dysidea dendyi 
 
Dysidea dendyi 
(Phyllospongia 
dendyi) 
 
Dysidea sp. 
 
 
Dysidea herbacea 
 
 
 
Phyllospongia 
foliascens 
 
 
Dysidea chlorea 
 

Saipan 
- 
 
 

Papua New 
Guinea/Fiji 

 
- 
 
 
 

Indo-Pacific  
 
 

Indonesia 
 
 
 

Republic of 
Palau 

 
 
- 

this study; Becerro 
and Paul, 2004; 
Shridhar et al., 
2009 
Calcul et al., 2009 
 
 
Liu et al., 2004 
;Xu et al., 2005 
 
 
Fu et al., 1995; 
Zhang et al., 2008 
 
Handayani et al., 
1997; Carte and 
Faulkner, 1981; 
Faulkner, 1994 
Reddy et al., 2002 
and Carte and 
Faulkner, 1981 
 
Carte and Faulkner, 
1981 

III. 2’,6-diOH-2,3,3’,4,5,5’-hexaBDE 
(2’,6-diOH-BDE159) 

Lendenfeldia dendyi 
 
Dysidea 
(Lamellodysidea) 
herbacea 
 
Dysidea herbacea and 
Dysidea granulosa 
 
Dysidea sp. 
 
Dysidea dendyi 
 

Papua New 
Guinea 

- 
 
 
 

Papua New 
Guinea/Fiji 

 
Indo-Pacific 

(Fiji) 
- 

this study 
 
Hanif et al., 2007 
 
 
 
Calcul et al., 2009 
 
 
Fu et al., 1995 
 
Utkina et al., 2001 

IV.2’-MeO-6-OH-2,3’,4,5,5’-
pentaBDE 
(2’-MeO-6-OH-BDE120) 

Lendenfeldia dendyi 
 
 

Papua New 
Guinea 

this study 
 

a= full chemical name according Maervoet et al., 2004 (in brackets corresponds to BZ (Ballschmiter 3 

and Zell, 1980) or IUPAC-accepted BZ numbering rules). 4 
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Table 2. Radiocarbon measurements for the compounds isolated from marine sponges 1 

in the western Pacific Ocean. See Table 1 for equivalent nomenclature. 2 

Compound chemical name Specimen 14C 
(per mil) 

 13C 
(per mil) 

NOSAMS 
accession no. 

I. 6-OH-2,2’,4,4’-tetraBDE 

 
Dysidea  

granulosaa 
 

21.0 -35.3 OS-62355 

II. 2’-OH-2,3’,4,5’-tetraBDE 

 
Dysidea 

 granulosaa 
 

17.2 -35.2 OS-62354 

III. 2’,6-diOH-2,3,3’,4,5,5’-
hexaBDE 
 

 
Lendenfeldia 

dendyib 
 

-6.6 -34.7 OS-62536 

IV. 2’-MeO-6-OH-2,3’,4,5,5’-
pentaBDE 
 

 
Lendenfeldia 

dendyib 
 

12.7 -36.2 OS-62353 

 
2’,6-diMeO-2,3’,4,5’-tetraBDE 
 

 
Phillospongia 

foliascensc 

 

73.2 -35.9 OS-30008 

a: collected in Saipan in 2005; b: collected in Papua New Guinea in 1998 and c: collected in Koror, 3 

Republic of Palau (collected several decades ago; data from Reddy et al., 2002). Note:  13C values are 4 

listed only for information purposes. The isolation process was undertaken without any precautions for 5 

possible fractionation of the stable carbon isotope ratios 13C/12C.  6 

 7 
 8 


