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Ratio Tauberian Theorems for Positive
Functions and Sequences in Banach Lattices
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Abstract. We prove two ratio Tauberian theorems and deduce two generalized
Tauberian theorems for functions and sequences with values in positive cones
of Banach lattices. Two counter-examples are given to show that the hypoth-
eses in the ratio Tauberian theorems are essential.
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1. Introduction

Let X be a Banach space, and u(·) : [0,∞) → X be a locally integrable function. It
is well known that the existence of the Cesàro limit y := lim

t→∞ t−1
∫ t

0
u(s)ds implies

that the Abel limit lim
λ↓0

λ
∫∞
0

e−λtu(t)dt also exists and equals y. Similarly, if for

a sequence {xn}∞
n=0 ⊂ X the Cesàro limit y := lim

n→∞ n−1
n−1∑

k=0

xk exists, then the

Abel limit lim
r↑1

(1 − r)
∑∞

n=0 rnxn = y. More generally, Sato [8, Theorems 1 and 3]

proved the following ratio limit theorem.

Proposition 1.1. If
∫∞
0

e−λtu(t)dt (resp.
∞∑

n=0
rnxn) converges absolutely for all

λ> 0 (resp. 0 < r < 1) and g is a nonnegative function (resp. {an}∞
n=0 is a

sequence of non-negative real numbers), with
∫∞
0

g(t)dt > 0 (resp.
∞∑

n=0
an > 0),

then the existence of the limit

lim
t→∞

(∫ t

0

u(s)ds

)/(∫ t

0

g(s)ds

)(

resp. lim
n→∞

(
n∑

k=0

xk

)
/
(

n∑

k=0

ak

))

= x (1)
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implies

lim
λ↓0

(∫ ∞

0

e−λtu(t)dt

)/(∫ ∞

0

e−λtg(t)dt

)

(

resp. lim
r↑1

( ∞∑

k=0

rkxk

)
/
( ∞∑

k=0

rkak

))

= x. (2)

In general, the existence of the Abel limit does not guarantee the existence
of the Cesàro limit (see [2, p. 8] or [6] for examples). The Tauberian theorem of
Hardy and Littlewood asserts that if u(·) (resp. {xn}∞

n=0) is bounded, or is positive
in a Banach lattice, then the existence of the Abel limit also implies the existence
of the Cesàro limit, and the two limits coincide (cf. [3], [2, Theorem 3.3], [6]).
In view of this Tauberian theorem, one would ask whether (2) implies (1) for a
bounded sequence {xn}∞

n=0 in a Banach space or a positive sequence {xn}∞
n=0 in a

Banach lattice. As we will see in two examples to be given in Section 5, the answers
for both cases are negative. In order to establish a ratio Tauberian theorem for a
positive sequence {xn}, some suitable conditions on the sequence {an} are needed.

The purpose of this paper is to formulate ratio Tauberian theorems for pos-
itive functions and sequences in Banach lattices. We will prove in Section 3 both
continuous version and discrete version of such ratio Tauberian theorems (see
Theorem 3.2, Corollary 3.3, Theorem 3.4). From them we also deduce that, for
Banach space valued functions (resp. sequences) which are bounded relatively to
the positive function g (resp. sequence {an}) in the denominator, the assertions
of the ratio Tauberian theorems hold in the sense of weak limit (see Remark (i)
after Theorem 3.4). It is unknown whether they hold in the strong sense. From the
ratio Tauberian theorems we can deduce generalized Tauberian theorems (Theo-
rems 4.1 and 4.2). For need in the proofs of the ratio Tauberian theorems, we first
prove in Section 2 an auxiliary convergence lemma. To show that the positivity
of {xn} and the two conditions (D1) and (D2) are essential in Theorem 3.4, two
counter-examples will be given in Section 5.

2. A Convergence Lemma

We first prove the following lemma which generalizes Lemma 4.1 of [6] and forms
the basis of the whole arguments in the main results in Section 3.

Lemma 2.1. Suppose X and Y are two Banach lattices and W is a Banach sub-
lattice of Y . Let E be a subset of W and let {Fα} and {Gα} be two nets of positive
linear operators from W to X such that the net {(Fα − Gα)|spanE} is uniformly
bounded and such that

lim
α

[Fα(u) − Gα(u)] = 0 (3)
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for all u ∈ E. If a vector w ∈ W has the property that there are two sequences
{un}∞

n=1 and {vn}∞
n=1 in spanE such that un ≤ w ≤ vn for all n ≥ 1 and

lim sup
α

||Gα(vn − un)|| → 0 as n → ∞, (4)

then lim
α

[Fα(w) − Gα(w)] = 0.

Proof. For the assumed w ∈ W and {un}, {vn} ∈ spanE, we have for every n =
1, 2, . . . and for every α

Gα(un) ≤ Gα(w) ≤ Gα(vn),

and so

Gα(un) − Fα(vn) ≤ Gα(w) − Fα(vn) ≤ Gα(w)
−Fα(w) ≤ Gα(vn) − Fα(w) ≤ Gα(vn) − Fα(un).

Therefore we have for every n = 1, 2, . . . and for every α

||Gα(w) − Fα(w)||
≤ ||Gα(un) − Fα(vn)|| + ||Gα(vn) − Fα(un)||
≤ ||Gα(un − vn)||+||Gα(vn) − Fα(vn)||+||Gα(vn − un)|| + ||Gα(un) − Fα(un)||
= 2||Gα(un − vn)|| + ||Gα(vn) − Fα(vn)|| + ||Gα(un) − Fα(un)||.

The uniform boundedness of {Fα − Gα} on spanE implies that (3) holds for all
u ∈ spanE. It follows from this and (4) that

lim sup
α

||Gα(w) − Fα(w)||
≤ lim sup

α
[2||Gα(un − vn)|| + ||Gα(vn) − Fα(vn)|| + ||Gα(un) − Fα(un)||]

≤ 2 lim sup
α

||Gα(un − vn)|| + 0 + 0 → 0 as n → ∞.

This shows that lim
α

[Fα(w) − Gα(w)] = 0. This completes the proof. �

For the special case Y := L∞, Lemma 2.1 leads to the following two corol-
laries. The following one is also proved directly in [6, Lemma 4.1].

Corollary 2.2. Let Ω be a nonempty Lebesgue measurable subset of a Euclidean
space Rr, B(Ω) be the σ-field of all Lebesgue measurable sets in Ω, and m be Le-
besgue measure on Rr. Let X be a Banach lattice, let E be a subset of L∞(Ω)
which contains 1, and let W be a Banach sub-lattice of L∞(Ω) which contains E.
Let {Fα} be a net of positive linear operators from W to X and F be a positive
linear operator from W to X such that

lim
α

Fα(u) = F(u)

for all u ∈ E. If a function w ∈ W has the property that there are two bounded
sequences {un}∞

n=1 and {vn}∞
n=1 in spanE such that
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un ↗ w and vn ↘ w a.e.[m] and ‖F(vn − un)‖ → 0,

then lim
α

Fα(w) = F(w).

Proof. Since each Fα is positive and 1 ∈ E ⊂ W , we have

−||w||∞Fα(1) = Fα(−||w||∞) ≤ Fα(w) ≤ Fα(||w||∞) = ||w||∞Fα(1),

so that ‖Fα(w)‖ ≤ ‖Fα(1)‖‖w‖∞ for all w ∈ W , which implies ||Fα|| = ‖Fα(1)‖.
Similarly, ||F|| = ‖F(1)‖. By assumption we have lim

α
Fα(1) = F(1), which implies

that the operators Fα are uniformly bounded. The result follows from Lemma 2.1
by taking Y := L∞(Ω,B(R),m), Gα ≡ F for all α. �

The next corollary will be needed in Section 3.

Corollary 2.3. Let X be a Banach lattice and let E be a subset of C[0, 1] such that
the linear span spanE of E is dense in C[0, 1]. Suppose W is a Banach sub-lattice
of L∞[0, 1] which contains C[0, 1]. Let {Fα} and {Gα} be two uniformly bounded
nets of positive linear operators from W to X such that lim

n→∞[Fα(u) − Gα(u)] = 0

for all u ∈ E. If w ∈ W has the property that there are two sequences {un} and
{vn} in C[0, 1] satisfying un ≤ w ≤ vn and lim sup

α
||Gα(vn − un)|| → 0 as n → ∞,

then lim
α

[Fα(w) − Gα(w)] = 0.

3. Ratio Tauberian Theorems

We first prove the following proposition which will be used to deduce continuous
and discrete ratio Tauberian theorems.

Proposition 3.1. Let X be a Banach lattice and let hs(t) :=
{

0, 0 ≤ t < e−s;
t−1, e−s ≤ t ≤ 1

for s > 0. Let E be a subset of C[0, 1] which contains 1 and is such that spanE
is dense in C[0, 1] and let W be a Banach sub-lattice of L∞[0, 1] which contains
C[0, 1] and the functions hs, s > 0 (for instance, W = L∞[0, 1]). Let {Gn} be a
uniformly bounded sequence of positive linear functionals on W which satisfies the
following conditions for some s0 > 0:

(A1) lim inf
n→∞ Gn(hs0) > 0;

(A2) lim sup
n→∞

|Gn(hs0 − hs)| → 0 as s → s0.

If {Fn} is a uniformly bounded sequence of positive linear operators from W into
X such that lim

n→∞
Fn(u)
Gn(u) = x for some x ∈ X and all u ∈ E, then lim

n→∞
Fn(hs0 )

Gn(hs0 ) = x.

Proof. Since {Fn} and {Gn} are positive and 1 ∈ E, the assumption implies x
is a positive element of X. Define positive operators Gn : W → X by Gn(u) :=
Gn(u)x, u ∈ W . Since {Gn} is uniformly bounded, it follows from lim

n→∞
Fn(u)
Gn(u) = x
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for all u ∈ E that ‖Fn(u) − Gn(u)‖ ≤ |Gn(u)|‖Fn(u)
/

Gn(u) − x‖ → 0 for all
u ∈ E.

Now, let {sn} and {s′
n} be two sequences of positive numbers such that

sn ↗ s0 and s′
n ↘ s0. We define for every n = 1, 2, . . . two functions un and vn by

vn(t) :=

⎧
⎪⎨

⎪⎩

0, 0 ≤ t < e−s′
n ;

es0

e−s0−e−s′
n
(t − e−s′

n) e−s′
n ≤ t ≤ e−s0

t−1, e−s0 ≤ t ≤ 1

and

un(t) :=

⎧
⎨

⎩

0, 0 ≤ t < e−s0 ;
esn

e−sn−e−s0 (t − e−s0) e−s0 ≤ t ≤ e−sn

t−1, e−sn ≤ t ≤ 1.

Then we have for every n = 1, 2, . . . un, vn ∈ C[0, 1] and

hsn
≤ un ≤ hs0 ≤ vn ≤ hs′

n
.

It follows from the positivity of Gn and condition (A2) that

lim sup
n→∞

‖Gn(vm − um)‖ ≤ lim sup
n→∞

‖Gn(hs′
m

− hsm
)‖

≤ lim sup
n→∞

|Gn(hs′
m

− hsm
)|‖x‖ → 0

as m → ∞. Since {Gn} is uniformly bounded, it follows from Corollary 2.3 that
‖Fn(hs0) − Gn(hs0)x‖ → 0 as n → ∞. This and the assumption (A1) imply that
lim

n→∞
Fn(hs0 )

Gn(hs0 ) = x. This completes the proof. �

Remark. Proposition 3.1 also holds for nets {Fλ}, {Gλ} of operators.

We can deduce from Proposition 3.1 the following ratio Tauberian theorem
for positive functions.

Theorem 3.2. Let μ be a positive measure on [0,∞) satisfying μ[0,∞) > 0 and the
two conditions:

lim inf
λ↓0

(μ[0, s0/λ])
/(∫ ∞

0

e−λtdμ(t)
)

> 0 for some s0 > 0; (C1)

(μ[0, t]) / (μ[0, s]) → 1 as t, s → ∞ with t/s → 1. (C2)

Let u(·) : [0,∞) → X+ be a strongly measurable positive function in a Banach
lattice X such that

∫∞
0

e−λtu(t)dt exists for all λ > 0. Then

x = lim
λ↓0

(∫ ∞

0

e−λtu(t)dt

)/(∫ ∞

0

e−λtdμ(t)
)

exists if and only if

x = lim
t→∞

1
μ[0, t]

∫ t

0

u(s)ds.
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Proof. Conditions (C1) and (C2) are not needed for the “if” part to hold. We omit
its proof, which is essentially the same as that of Proposition 1.1. It remains to
show the “only if” part. Define Gλ(w) =

∫∞
0 e−λtw(e−λt)dμ(t)∫∞

0 e−λtdμ(t)
for w ∈ L∞[0, 1]. It is

clear that Gλ is a positive linear functional on L∞[0, 1] with ‖Gλ‖ = Gα(1) = 1,
and Gλ(hs) = μ[0,s/λ]∫∞

0 e−λtdμ(t)
, s > 0. Thus (C1) implies that (A1) of Proposition 3.1

(with W = L∞[0, 1]) holds.
Next, we see that condition (A2) holds. Let ε > 0 be arbitrary. By the

assumption, there is a small δ > 0 and large M > 0 such that
∣
∣
∣
∣
μ[0, t]
μ[0, s]

− 1
∣
∣
∣
∣ < ε for t, s such that s, t > M and |t/s − 1| < δ.

For those s > 0 which are so close to s0 that | s
s0

− 1| < δ and for sufficiently small
λ > 0 we have s/λ, s0/λ > M and |(s/λ)/(s0/λ) − 1| = | s

s0
− 1| < δ, so that

∣
∣
∣
∣
Gλ(hs)
Gλ(hs0)

− 1
∣
∣
∣
∣ =

∣
∣
∣
∣

μ[0, s/λ]
μ[0, s0/λ]

− 1
∣
∣
∣
∣ < ε.

Then |Gλ(hs) − Gλ(hs0)| < εGλ(hs0) ≤ ε||hs0 ||∞ for small enough λ. This
implies that lim sup

λ→0
|Gλ(hs − hs0)| ≤ ε||hs0 ||∞ for s close enough to s0, i.e., (A2)

in Proposition 3.1 holds.

Let Fλ(w) =
∫∞
0 e−λtw(e−λt)w(t)dt∫∞

0 e−λtdμ(t)
for w ∈ L∞[0, 1]. Then Fλ is a positive

linear operator from L∞[0, 1] to X with ‖Fλ‖ = ‖Fλ(1)‖ =
∥
∥
∥
∫∞
0 e−λtu(t)dt∫∞
0 e−λtdμ(t)

∥
∥
∥ (see

the proof of Corollary 2.2), which tends to ‖x‖ as λ ↓ 0. It follows that the net
{Fλ}λ↓0 is uniformly bounded.

Let E := {tn;n ≥ 0}. Since

lim
λ↓0

Fλ(tn)
Gλ(tn)

= lim
λ↓0

∫∞
0

e−(n+1)λtu(t)dt
∫∞
0

e−(n+1)λtdμ(t)
= x

for all n ≥ 0, and since spanE is the set of all polynomials which is dense in C[0, 1],
we can apply Proposition 3.1 (with W = L∞[0, 1]) to conclude that

∫ s0
λ

0
u(t)dt

μ[0, s0/λ]
=

Fλ(hs0)
Gλ(hs0)

→ x as λ ↓ 0.

This proves the “only if” part. �

Remark. (i) If 0 < K := limλ↓0 λ
∫∞
0

e−λtdμ(t) < ∞, then by the Tauberian the-
orem of Hardy and Littlewood, limt→∞ t−1

∫ t

0
dμ(r) = K, so that conditions

(C1) (with any s0 > 0) and (C2) are satisfied. In this case, the conclusion of
Theorem 3.2 also follows directly from the Tauberian theorem of Hardy and
Littlewood together with Proposition 1.1; furthermore, we note that this also
holds for a locally integrable function u(·) : [0,∞) → X, with X a general
Banach space, when u(·) is bounded.
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(ii) A similar proof shows that Theorem 3.2 still holds when t → ∞, s → ∞, and
λ ↓ 0 are replaced by t → 0, s → 0, and λ → ∞, respectively.

If g is a nonnegative function, with
∫∞
0

g(t)dt > 0, then with the measure μ

defined as μ(Ω) :=
∫
Ω

g(t)dt, Theorem 3.2 becomes the following ratio Tauberian
theorem.

Corollary 3.3. Let g be a nonnegative function satisfying
∫∞
0

g(t)dt > 0 and the
two conditions:

lim inf
λ↓0

(∫ s0
λ

0

g(t)dt

)
/(∫ ∞

0

e−λtg(t)dt

)

> 0 for some s0 > 0; (C1′)

(∫ t

0

g(r)dr

)/(∫ s

0

g(r)dr

)

→ 1 as t, s → ∞ with
t

s
→ 1. (C2′)

Let u(·) : [0,∞) → X+ be a strongly measurable positive function in a Banach
lattice X such that

∫∞
0

e−λtu(t)dt exists for all λ > 0. Then

x = lim
λ↓0

(∫ ∞

0

e−λtu(t)dt

)/(∫ ∞

0

e−λtg(t)dt

)

exists if and only if

x = lim
t→∞

(∫ t

0

u(s)ds

)/(∫ t

0

g(s)ds

)

.

Remark. If g is a bounded nonnegative function such that

K := lim inf
t→∞

1
t

∫ t

0

g(r)dr > 0, (5)

then conditions (C1′) and (C2′) hold. In fact, we have

lim inf
λ↓0

(∫ s0
λ

0

g(t)dt

)
/(∫ ∞

0

e−λtg(t)dt

)

≥ K

‖g‖∞
s0 > 0 for all s0 > 0

and for sufficiently large s and t > s
∣
∣
∣
∣

(∫ t

0

g(r)dr

)/(∫ s

0

g(r)dr

)

−1
∣
∣
∣
∣≤

2
K

t−s

s
‖g‖∞ →0 as t, s→∞ with

t

s
→1.

Let W be the Banach sub-lattice of L∞[0, 1] consisting of all right-continu-
ous bounded functions u : [0, 1] → R which are also continuous at the point 1.
Suppose {xn} is a sequence of positive elements in a Banach lattice X and {an}
is a sequence of positive numbers such that

∞∑

n=0
rnan < ∞ for all 0 < r < 1 and

∞∑

n=0
an > 0. Define linear operators Fr and linear functionals Gr on W by

Fr(u) :=

( ∞∑

n=0

rnu(rn)xn

)
/
( ∞∑

n=0

rnan

)
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and

Gr(u) :=

( ∞∑

n=0

rnu(rn)an

)
/
( ∞∑

n=0

rnan

)

for u ∈ W and for those 0 < r < 1 for which the definitions are well-defined. Then

Fr(hs0) =

⎛

⎝
[−s0/ ln r]∑

n=0

xn

⎞

⎠
/
( ∞∑

n=0

rnan

)

and

Gr(hs0) =

⎛

⎝
[−s0/ ln r]∑

n=0

an

⎞

⎠
/
( ∞∑

n=0

rnan

)

,

where [−s0/ ln r] denotes the largest integer less than or equal to −s0/ ln r. By
arguments similar to those in the proof of Theorem 3.2 we can deduce from Prop-
osition 1.1 and Proposition 3.1 the following ratio Tauberian theorem for positive
sequences in Banach lattices.

Theorem 3.4. Let {an} be a sequence of nonnegative numbers such that
∞∑

n=0
an > 0.

Suppose {an} satisfies:

lim inf
r↑1

⎛

⎝
[−s0/ ln r]∑

n=0

an

⎞

⎠
/
( ∞∑

n=0

rnan

)

> 0 for some s0 > 0; (D1)

(
m∑

k=0

ak

)
/
(

n∑

k=0

ak

)

→ 1 as m,n → ∞ with
m

n
→ 1. (D2)

Let {xn} be a sequence of positive elements in a Banach lattice X such that
∞∑

n=0
rnxn exists for all 0 < r < 1. Then

x = lim
r↑1

( ∞∑

n=0
rnxn

)/( ∞∑

n=0
rnan

)

exists if and only if x = lim
n→∞

(
n∑

k=0

xk

)/

(
n∑

k=0

ak

)

.

Remarks. (i) Let {an} be as in Theorem 3.4, and {xn} be a sequence in a

general Banach space X such that
∞∑

n=0

rnxn exists for all 0 < r < 1 and
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supn≥0 ‖xn‖/an < ∞ (we let 0/0 = 1). Then the following weak-type result
holds:

x = weak- lim
r↑1

( ∞∑

n=0

rnxn

)
/
( ∞∑

n=0

rnan

)

=⇒ x = weak- lim
n→∞

(
n∑

k=0

xk

)
/
(

n∑

k=0

ak

)

.

For, if {xn} is a sequence of real numbers, then, considering the sequence
{xn + Can} for some large enough constant C > 0, we may assume that
xn + Can ≥ 0 for all n ≥ 0. Since we have that

x = weak- lim
r↑1

( ∞∑

n=0

rnxn

)
/
( ∞∑

n=0

rnan

)

exists if and only if

x + C = weak- lim
r↑1

( ∞∑

n=0

rn(xn + Can)

)
/
( ∞∑

n=0

rnan

)

,

it follows from Theorem 3.4 that the assertion holds. Since for a sequence
{bn} of complex numbers we have limn→∞ bn exists if and only if both
limn→∞ Re(bn) and limn→∞ Im(bn) exist, from the above real case together
with a standard argument the general case follows easily. The same assertion
also holds for the continuous case.

(ii) If the sequence {an} in Theorem 3.4 satisfies
∞∑

n=0
an < ∞, then clearly con-

ditions (D1) (with any s0 > 0) and (D2) are satisfied automatically, and one
can directly see that both limits in the conclusion of Theorem 3.4 are equal to
(
∑∞

n=0 xn)/(
∑∞

n=0 an), when either {xn} is a positive sequence in a Banach
lattice such that

∑∞
n=0 xn converges, or when {xn} is a sequence in a general

Banach space satisfying supn≥0 ‖xn‖/an < ∞.
(iii) Discrete analogs of Remark (i) after Theorem 3.2 and the Remark after Cor-

ollary 3.3 also hold. In particular, here is an example of sequence {an} of
nonnegative real numbers which is bounded and satisfies the discrete coun-
terpart of condition (5), and hence satisfies conditions (D1) and (D2).

Example 1. Let {kj}∞
j=1 be a strictly increasing sequence of nonnegative integers

with positive lower density (i.e., supj≥1 kj/j < ∞). Define

an =
{

1 if n = kj for some j ≥ 1,
0 otherwise.

Then, putting K = lim inf
j→∞

j/kj (> 0), we have

lim inf
n→∞

1
n + 1

n∑

j=0

aj = lim inf
j→∞

j

kj
= K > 0.
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Then using the same argument as in the Remark after Corollary 3.3 together
with the fact that limr↑1(1− r)([−s/ log r] + 1) = s one can verify conditions (D1)
and (D2). Hence Theorem 3.4 holds for this sequence {an}. It is interesting to
note that there are many papers treating mean and pointwise ergodic theorems
for sequences with positive lower density (e.g., see [1] and [4]; see also Chapter 8
of [5]).

4. Generalized Tauberian Theorems

Next, we deduce from Theorem 3.2 the following generalized Tauberian theorem
for positive functions.

Theorem 4.1. Let γ ≥ 0 and u(·) : [0,∞) → X+ be a strongly measurable positive
function such that

∫∞
0

e−λtu(t)dt exists for all λ>0. Then x= lim
λ↓0

λγ
∫∞
0

e−λtu(t)dt

exists if and only if x = lim
t→∞

Γ(γ+1)
tγ

∫ t

0
u(s)ds. The assertion also holds when

t → ∞ and λ ↓ 0 are replaced by t → 0 and λ → ∞, respectively.

Proof. For the case γ > 0 let μ be defined as μ(Ω) :=
∫
Ω

g(t)dt with g(t) :={
tγ−1/Γ(γ), t > 0;
0, t = 0 . Then

∫∞
0

e−λtdμ(t) = 1/λγ and μ[0, t] = tγ/Γ(γ +1), and

(C2) is satisfied. Since
(
(
s

λ
)γ/Γ(γ + 1)

)/
(1/λγ) = (Γ(γ + 1))−1sγ

for all λ > 0, clearly condition (C1) also holds for all s0 > 0. For the case γ = 0,
let μ be the Dirac measure at 0, which is the measure such that μ({0}) = 1 and
μ(0,∞) = 0. Then

∫∞
0

e−λtdμ(t) = e−λ0 = 1 for all λ > 0 and μ[0, t] = 1 for all
t > 0. Clearly both conditions (C1) and (C2) hold. Thus the assertion follows from
Theorem 3.2. �

Now we deduce from Theorem 3.4 the following generalized Tauberian theo-
rem for positive sequences.

Theorem 4.2. Let γ ≥ 0 and let {xn} ⊂ X+ be a sequence of positive elements

in a Banach lattice X such that
∞∑

n=0
rnxn exists for all 0 < r < 1. Then x =

lim
r↑1

(1 − r)γ
∞∑

n=0
rnxn exists if and only if x = lim

n→∞
Γ(γ+1)
(n+1)γ

n∑

k=0

xk.

Proof. For the case γ = 0, we can take a0 = 1 and an = 0 for all n = 1, 2, . . . .Then
∞∑

k=0

rkan =
n∑

k=0

ak = 1 for all n = 0, 1, 2, . . .. Hence both (D1) and (D2) are satisfied

and Theorem 3.4 applies.

For the case γ > 0, we can take an :=
(−γ

n

)
(−1)n. Then

∞∑

n=0
rnan = (1−r)−γ

for 0 < r < 1 and
n∑

k=0

ak =
n∑

k=0

(−γ
k

)
(−1)k =

n∑

k=0

(
k+γ−1

k

)
=
(
n+γ

n

)
= Γ(n+γ+1)

Γ(γ+1)Γ(n+1) .



Vol. 11 (2007) Ratio Tauberian Theorems 443

By Stirling’s formula: lim
t→∞ Γ(t + 1)/(( t

e )t
√

2πt) = 1 (see [7, p. 194]) and the fact

that lim
r↑1

(ln r)/(r − 1) = 1, we have

(
Γ([ −s

ln r ] + γ + 1)
Γ(γ + 1)Γ([ −s

ln r ] + 1)

)/( 1
(1 − r)γ

)

=
Γ([ −s

ln r ] + γ + 1)(1 − r)γ

Γ(γ + 1)Γ([ −s
ln r ] + 1)

∼ 1
Γ(γ + 1)

(
[ −s
ln r ]+γ

e

)[ −s
ln r ]+γ√

2π([ −s
ln r ] + γ)

(
[ −s
ln r ]

e

)[ −s
ln r ]√

2π[ −s
ln r ]

(1 − r)γ

=
1

Γ(γ + 1)

(
[ −s
ln r ] + γ

[ −s
ln r ]

)[ −s
ln r ]+1/2

e−γ

(([ −s

ln r

]

+ γ

)

(1 − r)
)γ

∼ 1
Γ(γ + 1)

(([ −s

r − 1

]

+ γ

)

(1 − r)
)γ

→ sγ

Γ(γ + 1)

as r ↑ 1. Here a(r) ∼ b(r) as r ↑ 1 means that the ratios a(r)/b(r) and b(r)/a(r) are
both bounded in some interval (δ, 1). This implies that (D1) holds for all s0 > 0.

Next we check (D2). In fact, we have

lim
m,n→∞

(
Γ(m + γ + 1)

Γ(γ + 1)Γ(m + 1)

)/( Γ(n + γ + 1)
Γ(γ + 1)Γ(n + 1)

)

= lim
m,n→∞

(
(m+γ

e )m+γ
√

2π(m + γ)

(m
e )m

√
2πm

)
/
(

(n+γ
e )n+γ

√
2π(n + γ)

(n
e )n

√
2πn

)

= lim
m,n→∞

[(
m + γ

m

)m+1/2/(n + γ

n

)n+1/2
](

m + γ

n + γ

)γ

= lim
m,n→∞

(
m + γ

n + γ

)γ

,

which is equal to 1 if m/n → 1.
Thus Theorem 3.4 applies. Since

lim
n→∞

(
Γ(n + γ + 1)

Γ(γ + 1)Γ(n + 1)

)/( (n + 1)γ

Γ(γ + 1)

)

= lim
n→∞

Γ(n + γ + 1)
Γ(n + 1)(n + 1)γ

= lim
n→∞

(n+γ
e )n+γ

√
2π(n + γ)

(n
e )n

√
2πn(n + 1)γ

= lim
n→∞

(
n + γ

n

)n+1/2

e−γ

(
n + γ

n + 1

)γ

= 1,

the conclusion of Theorem 3.4 reduces to the assertion. �
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Remark. In the above, we deduce Theorems 4.1 and 4.2 from Theorems 3.2 and
3.4, respectively, and the latter are deduced from Proposition 1.1 and Propo-
sition 3.1, which in turn follow from Corollary 2.3. One can also deduce Theo-
rems 4.1 and 4.2 more directly from Corollary 2.2. We refer to [6, Propositions
4.2 and 4.4] for such different approaches.

5. Counter-examples

In this section, we show by examples that the assumption of positivity of the
sequence {xn} and conditions (D1) and (D2) are essential in Theorem 3.4.

Example 2. Let a0 = 1 and an = n−1 − (n+1)−1 for n ≥ 1. Since
∞∑

k=0

ak = 2 < ∞,

(D1) and (D2) hold automatically (see Remark (ii) after Theorem 3.4).
Thus we can apply Theorem 3.4 to this sequence {an}, and we have that for

any positive sequence {xn} in a Banach lattice, x = lim
r↑1

∞∑

n=0
rnxn exists if and only

if x = lim
n→∞

n∑

k=0

xk. This is also the case γ = 0 of Theorem 4.2.

But, if we let bn = (−eiθ)n for n ≥ 0, where i =
√−1 and θ �= π(mod 2π),

then
n∑

k=0

bk = 1−(−eiθ)n+1

1+eiθ . While

lim
r↑1

∑∞
n=0 rnbn∑∞
n=0 rnan

= lim
r↑1

1
2

∞∑

n=0

rn(−eiθ)n = lim
r↑1

1
2(1 + reiθ)

=
1

2(1 + eiθ)
,

limn→∞
(∑n

k=0 bk

)/(∑n
k=0 ak

)
does not exist. This sequence {bn} is bounded

but not positive and supn≥0 |bn|/an = ∞, so this shows that the assertion in The-
orem 3.4 (resp. Remark (i) after Theorem 3.4) may fail if {xn} is not a positive
sequence (resp. supn≥0 ‖xn‖/an = ∞).

Example 3. Let {an} be a sequence of numbers with lim sup
n→∞

|an|1/n ≤ 1, and let

b0 = 0 and bn = an−1 for all n ≥ 1. Then we have for every 0 < r < 1

∞∑

n=0

rnan = r−1
∞∑

n=1

rnbn = r−1
∞∑

n=0

rnbn.

Hence
∑∞

n=0 rnbn∑∞
n=0 rnan

= r → 1 as r → 1.
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If we define an :=
{

n if n = 2k for some k = 0, 1, . . . ;
0 otherwise, then both {an} and

{bn} are positive sequences, and for every k = 0, 1, 2, . . .

2k
∑

j=0

bj =
2k−1∑

j=0

aj =
k−1∑

j=0

2j = 2k − 1,

2k+1∑

j=0

bj =
2k
∑

j=0

aj =
k∑

j=0

2j = 2k+1 − 1,

and
2k+1∑

j=0

aj =
2k−1∑

j=0

aj + a2k + a2k+1 = 2k − 1 + 2k = 2k+1 − 1.

Hence
∑n

j=0 bj
∑n

j=0 aj
=

{
2k−1

2k+1−1
if n = 2k;

1 if n = 2k + 1.

Thus the limit does not exist as n → ∞. In the following we check that (D1) holds
but (D2) does not.

Letting S(r) =
∞∑

n=0

2nr2n

= r + 2r2 + 4r4 + . . . for 0 < r < 1, we have

r

1 − r
= r + (r2 + r3) + (r4 + . . . + r7) + . . . < S(r),

and

S(r) < r + 2{r2 + (r3 + r4) + (r5 + . . . + r8) + . . . }
=

r

1 − r
+

r2

1 − r
=

r(1 + r)
1 − r

,

so that S(r) ∼ (1 − r)−1 as r ↑ 1.
On the other hand, since lim

r↑1
(ln r)/(r − 1) = 1, we have

2[ln( −s
ln r )/ ln 2]+1 ∼ 2ln( −s

ln r )/ ln 2 = (21/ ln 2)ln( −s
ln r ) =

−s

ln r
∼ s

1 − r
as r ↑ 1.

Therefore we have for every s > 0
⎛

⎝
[−s/ ln r]∑

n=0

an

⎞

⎠
/
( ∞∑

n=0

rnan

)

=

⎛

⎝
∑

1≤2k≤−s/ ln r

a2k

⎞

⎠
/
( ∞∑

n=0

rnan

)

=

(
m−1∑

k=0

2k

)
/
( ∞∑

n=0

2nr2n

)

= (2m − 1)
/
( ∞∑

n=0

2nr2n

)

∼ s

1 − r

/ 1
1 − r

= s
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as r ↑ 1, where m := [ln(−s/ ln r)/ ln(2)] + 1. This implies that (D1) holds for all
s0 > 0.

If m = 2k and n = 2k − 1, then m/n → 1 as k → ∞, but we have that
(

m∑

k=0

ak

)
/
(

n∑

k=0

ak

)

=
2k+1 − 1
2k − 1

→ 2.

Hence condition (D2) of Theorem 3.4 is not satisfied. This example shows that
Theorem 3.4 may fail if condition (D2) is not satisfied.
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