Original Papers – PLAMED-2009-04-0294-OP.R3

Supporting Information

Acetogenin and Prenylated Flavonoids from *Helminthostachys* zeylanica with Inhibitory Activity on Superoxide Generation and **Elastase Release by Neutrophils**

Yaun-Chao Huang¹, Tsong-Long Hwang², Yu-Liang Yang³, Shih-Hsiung Wu³, Mei-Hua Hsu¹, Jih-Pyang Wang⁴, Sheng-Chih Chen¹, Li-Jiau Huang¹, Chih-Chuang Liaw^{1,5}

Affiliation

¹Graduate Institute of Pharmaceutical Chemistry, College of Pharmacy, China

Medical University, Taichung 404, Taiwan

² Graduate Institute of Natural Products, College of Medicine, Chang Gung University,

Taoyuan 333, Taiwan

³ Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan

⁴ Department of Education and Research, Taichung Veterans General Hospital,

Taichung 407, Taiwan

⁵ Department of Life Sciences, National Chung-Hsing University, Taichung 402, Taiwan

Correspondence

Dr. Chih-Chuang Liaw

Graduate Institute of Pharmaceutical Chemistry College of Pharmacy China Medical University 91 Hsueh-Shih Road Taichung 40402 Taiwan Tel.:+886/4/2205/3366 ext. 5611 Fax: +886/4/2207/8083 ccliaw@mail.cmu.edu.tw

Measurement of rat mast cell degranulation and neutrophil degranulation [1-5]

A compound stock solution (30 µg/mL in DMSO) was prepared and stored at -25 °C. It was then diluted with DMSO to 1-30 µg/mL range at room temperature before the experiment. The final percentage of DMSO in the reaction mixture was less than 0.5% (v/v). Rat (Sprague Dawley, 250-300 g) peritoneal mast cells and peripheral blood neutrophils were isolated and incubated with test compounds for 5 min at 37 °C before stimulation with 10 µg/mL of the compound 48/80 for another 15 min or with 1 µM FMLP/CB for another 45 min, respectively. The degranulation of mast cells and neutrophils was assessed by the determination of histamine and β -glucuronidase, as

well as β -glucuronidase and lysozyme in the supernatant, respectively. The total content of lysozyme and β -glucuronidase was measured from the *Micrococus lysodeikticus*-treated cells and phosphoglucuronide.

- 1 Wang JP, Raung SL, Kuo YH and Teng CM. Daphnoretin-induced respiratory burst in rat neutrophil is probably mainly through protein kinase C activation. Eur J Pharmacol 1995; 288: 341-348
- 2 Barrett AJ. Lysosomes. In: Dingle JT, editor. A laboratory handbook. Amsterdam: Elsevier; 1972: 118-120
- 3 Absolom DR. Basic methods for the study of phagocytosis. Methods Enzymol 1986;132: 92-179
- 4 Wang JP, Hsu MF, Ouyang C, Teng CM. Edematous response caused by[Thi^{5,8}
 D-Phe]bradykinin, αβ₂ receptor antagonist, is due to mast cell degranulation. Eur J
 Pharmacol 1989; 161: 143-149
- 5 Hakanson R, Ronnberg AL. Improved fluorometric assay of histamine. Analyt Biochem 1974; 60: 560-567

Compounds	λ_{\max}^{MeO}	^{OH} (nm)	λ_{\max}^{Me0}	$^{\text{OH}+\text{AlCl}}_{3}$ (nm)	$\lambda_{\max}^{MeOH + Ale}$	$^{\text{Cl}_{3}+\text{HCl}}_{3}$ (nm)
	Bd II	Bd I	Bd II	Bd I	Bd II	Bd I
2	271	349	275	333, 425	283	361
3	271	331	274	359, 465	273	340, 415
4	292	344	292	418	296,	350
5	251	300, 351	264	418	264	334, 393

Table 1S UV spectral properties of compounds 2-5

Drugs (µg/mI	L)						Percent	t Release					
	_	β-gl	ucuro	onides	(µg/mL) or	(Inh %)]	hista	mine	(µg/mL)	or ([nh %)
Control				14	2 ± 1.6					8	83.1 ± 2.2	2	
Methanol extract	10	14.8	±	1.0	(3.8	±	8.9)	85.8	±	7.9	(-3.0	±	9.4)
	30	11.6	±	0.9	(24.5	±	6.3) *	76.3	±	3.9	(8.3	±	4.6)
<i>n</i> -Hexane extract	10	12.5	±	1.3	(15.3	±	4.4) **	92.3	±	3.3	(-10.8	±	4.1)
	30	13.3	±	0.7	(12.9	±	8.8)	93.2	±	3.6	(-11.9	±	4.6)
Chloroform extract	10	12.5	±	0.5	(-6.1	±	9.5)	81.6	±	5.8	(-1.6	±	6.6)
	30	7.8	±	0.3	(33.4	±	6.4) *	53.4	±	0.3	(33.2	±	3.0) **
Water extract	10	13.0	±	1.7	(16.7	±	6.9)	89.1	±	1.5	(-7.0	±	1.9)
	30	8.9	±	1.5	(43.5	±	6.6) **	79.3	±	2.3	(4.8	±	2.1)
Mepacrine	10 µM	12.1	±	0.4	(18.1	±	2.5) *	64.1	±	2.3	(21.3	±	2.5) *
	30 µM	7.2	±	0.2	(46.3	±	3.2) **	34.8	±	1.1	(53.7	±	1.3) **
	100 µM	3.1	±	0.2	(81.9	±	1.4) **	14.2	±	1.3	(85.2	±	1.7) **
	IC ₅₀	27	±	9.2				26.2	±	1.6			

Table 2S Inhibitory effects of crude extracts from H. zeylanica on β -glucuronidase and histamine by rat mast cell in response to compound 48/80

Mepacrine was used as positive control. Results are presented as mean \pm S.E.M. (n = 3).* p < 0.05, ** p <

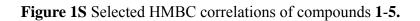
0.01, compared with the control value.

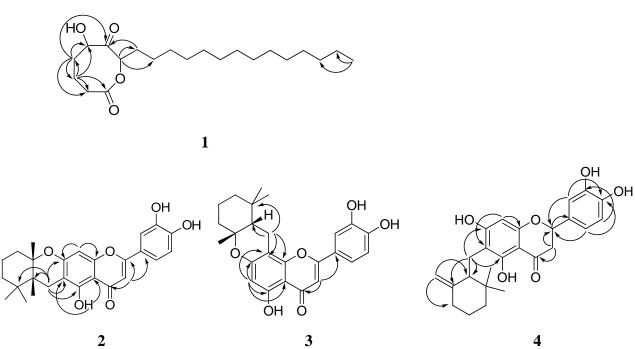
Table 3S Inhibitory effects of crude extracts from *H. zeylanica* on β -glucuronidase and lysozyme by rat neutrophils in response to FMLP/C

Dress	β -glucuronides	lysozyme	
Drugs	IC ₅₀ (µg/mL)	IC ₅₀ (µg/mL)	
Control	30.0 ± 0.7	29.3 ± 1.4	
Methanol extract	1.1 ± 0.1	Ν	
<i>n</i> -Hexane extract	2.0 ± 0.7	9.0 ± 2.9	
Chloroform extract	1.3 N 0.1	Ν	
Trifluoperazine	9.8 ± 0.4	9.6 ± 0.4	

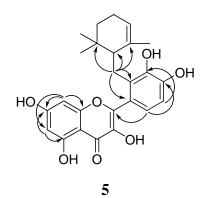
Trifluoperazine (TFP) was used as positive control. Results are presented as mean \pm S.E.M. (n = 3).* p < 0.05,

** p < 0.01, compared with the control value. Water extract was inactive.

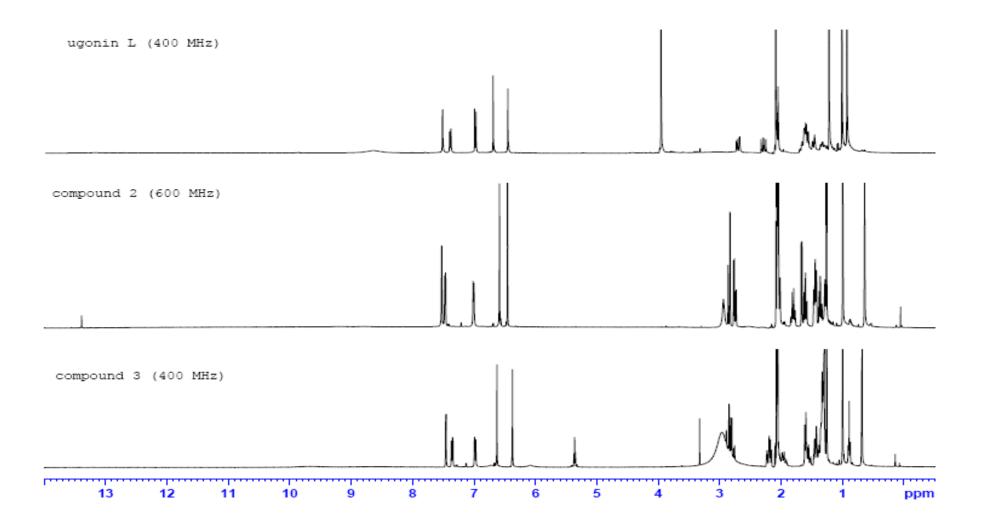

Common da	HL-60 ^a	U937 ^a IC ₅₀ (µg/mL) ^a or (Inh %) ^b		
Compounds ·	IC ₅₀ $(\mu g/mL)^a$ or $(Inh \%)^b$			
Methanol extract	19.9	21.0		
<i>n</i> -Hexane extract	5.1	5.3		
Chloroform extract	19.3	14.6		
Ethyl acetate extract	7.8	5.9		
Retinoic acid (0.03 µg/mL)	(34.2 ± 3.3)	(31.3 ± 1.3)		

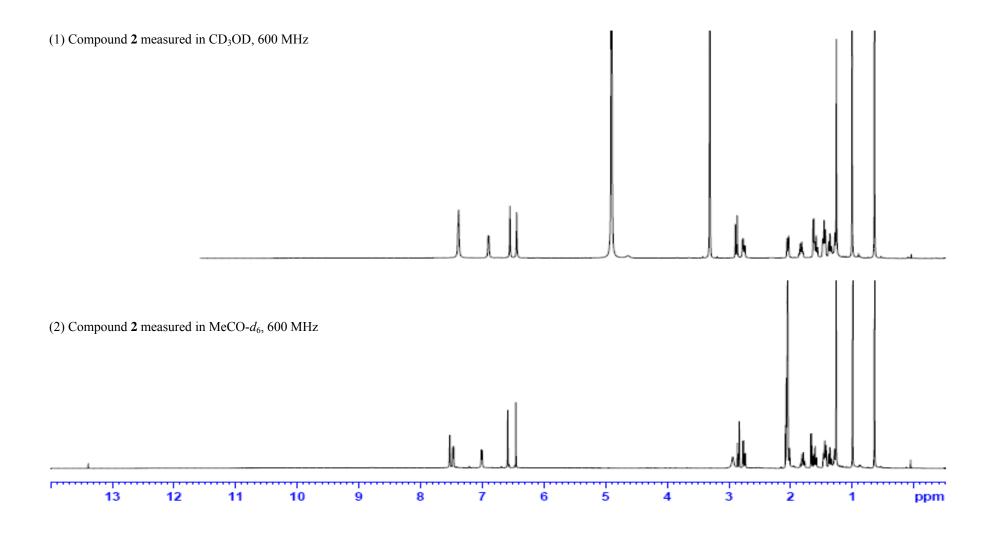

Table 4S Cytotoxicity activities of crude extracts from *H. zeylanica*

Retinoic acid (0.03 μ g/mL) was used as positive control. Results are presented as mean \pm S.E.M. (n = 3).


^a HL-60 and U937 cells (2 x 10^4 cells) were incubated with different concentration in 96 hours.

^b Percentage of inhibition (Inh %) at 0.03 µg/mL concentration.




Figure 2S The ¹H-NMR spectrums of ugonin L and compounds **2** and **3**.

 $\ensuremath{\mathbb{C}}$ Georg Thieme Verlag KG \cdot DOI 10.1055/s-0029-1186221 \cdot Planta Med \cdot Huang Y-C et al.

9

Figure 3S The ¹H-NMR spectrums of compound **2** measured in different *d*-solvents.

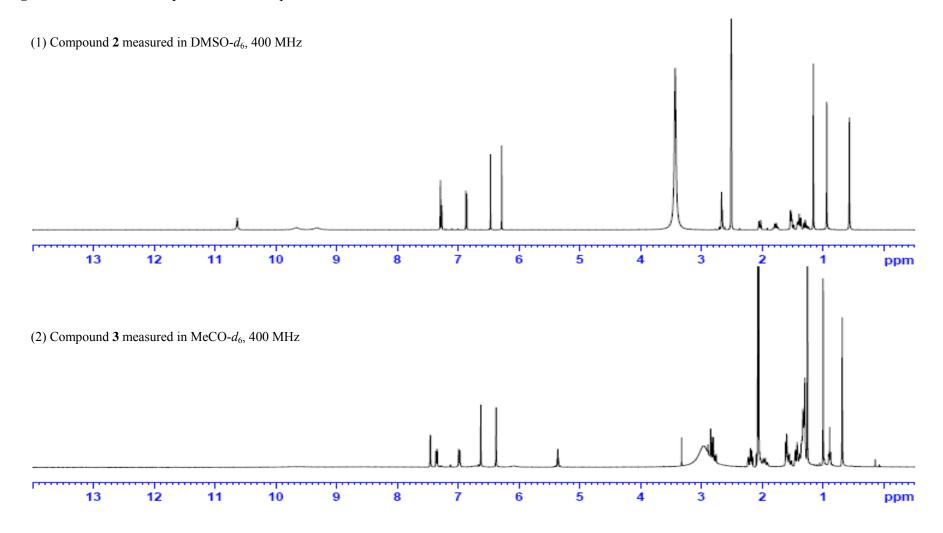

 $\ensuremath{\mathbb{C}}$ Georg Thieme Verlag KG \cdot DOI 10.1055/s-0029-1186221 \cdot Planta Med \cdot Huang Y-C et al.

Figure 4S The ¹³C-NMR spectrums of compound **2** measured in different *d*-solvents.

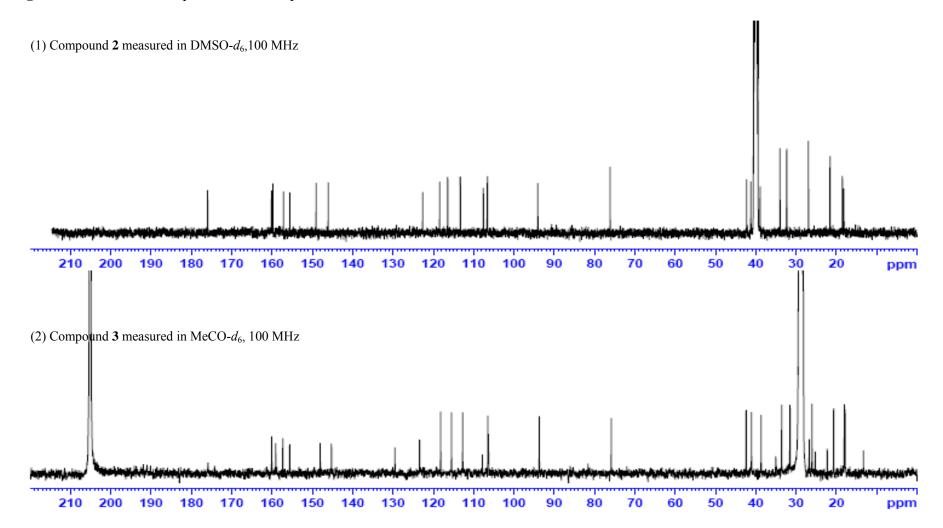

© Georg Thieme Verlag KG · DOI 10.1055/s-0029-1186221 · Planta Med · Huang Y-C et al.

Figure 5S The ¹H-NMR spectrums of compound **3** measured in different *d*-solvents.

 $\ensuremath{\mathbb{C}}$ Georg Thieme Verlag KG \cdot DOI 10.1055/s-0029-1186221 \cdot Planta Med \cdot Huang Y-C et al.

Figure 6S The ¹³C-NMR spectrums of compound 3 measured in different *d*-solvents.

© Georg Thieme Verlag KG · DOI 10.1055/s-0029-1186221 · Planta Med · Huang Y-C et al.