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Abstract – In this paper we address the problem of localizing active hydrothermal vents on the 

seafloor using an Autonomous Underwater Vehicle (AUV). The plumes emitted by hydrothermal 

vents are the result of thermal and chemical inputs from submarine hot spring systems into the 

overlying ocean. The Woods Hole Oceanographic Institution's Autonomous Benthic Explorer 

(ABE) AUV has successfully localized previously undiscovered hydrothermal vent fields in 

several recent vent prospecting expeditions. These expeditions utilized the AUV for a three-stage, 

nested survey strategy approach (German et al., 2008).  Each stage consists of a survey flown at 

successively deeper depths through easier to detect but spatially more constrained vent fluids. 

Ideally this sequence of surveys culminates in photographic evidence of the vent fields themselves.  

In this work we introduce a new adaptive strategy for an AUV's movement during the first, 

highest-altitude survey: the AUV initially moves along pre-designed tracklines but certain 

conditions can trigger an adaptive movement that is likely to acquire additional high value data for 

vent localization. The trigger threshold is changed during the mission, adapting the method to the 

different survey profiles the robot may find. The proposed algorithm is vetted on data from 

previous ABE missions and measures of efficiency presented. 

Keywords: AUV, adaptive survey, hydrothermal vents prospecting, chemical 

plume tracing 

1. Introduction 

Since the first discovery of hydrothermal vents in 1979 (Corliss et al., 1979), 

these deep ocean phenomena have catalyzed an enormous interest in the scientific 

community for different reasons: the hydrothermal circulation of seawater through 
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the oceanic crust influences many geological and oceanographic processes such as 

loss of heat from the earth, aging of the oceanic crust, geochemical cycling of the 

elements, biogeochemistry of deep ocean waters, and possibly general ocean 

circulation (Kadko et al., 1995). Also the biology of hydrothermal vents 

communities presents unique features (Fisher, 1995) and these biotas can be 

useful in understanding the origin of life on Earth (Zierenberg et al., 2000).  On a 

series of recent expeditions we have shown that an AUV can aid the scientific 

characterization of seafloor venting in a way that is complementary to an 

approach reliant on ship borne assets alone (German et al., 2008).  Providing 

scientific access to seafloor vent sites requires first localizing the vents 

themselves, the aspect of AUV-based hydrothermal exploration investigated here. 

1.1. Hydrothermal exploration 

A hydrothermal plume consists of hot, chemically altered seawater that is 

persistently discharged, or vented, as a turbulent buoyant plume (BP) that rises 

from the seafloor (Fig. 1). As it rises, the BP expands in diameter by incorporating 

surrounding seawater through the process of turbulent entrainment  (Turner, 

1986).  Turbulent entrainment of denser seawater gradually reduces the buoyancy 

of the plume until neutral buoyancy is attained, at which point the remaining 

momentum causes the plume to overshoot and then sink back down until neutral 

buoyancy is again attained (McDuff, 1995).  Eventually it forms a layer on the 

order of 100 m thick known as the non-buoyant plume (NBP) and spreads 

laterally. The NBP evolves under the combined effects of further turbulent mixing 

and advection driven by large-scale, tidally-forced, and self-induced currents 

(Helfrich and Speer, 1995). 

The spatial scale of the NBP and BP are vastly different, a fact which has 

important implications for hydrothermal exploration. Whereas the NBP is 

detectable in situ with standard oceanographic instrumentation up to tens of 

kilometers from the source (Baker, 1995), BPs occupy relatively small spatial 

scales making them valuable indicators of nearby venting. Simulations in 

(Lavelle, 1997) show BPs attaining cross-stream widths of a few tens of meters 

and somewhat longer downstream tails of roughly 100 m in length before rising to 

the height corresponding to the bottom of the associated NBP. Thus if this 

buoyant stem can be found, then its associated vent is on the order of 100 m away. 
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In practice, a kind of gradient search is executed in which lowered and towed 

instrumentation deployed from a surface ship is used to create profiles and vertical 

transects of the NBP in order to reveal high intensity regions of the NBP for 

additional survey (Baker, 1995).  There is no fundamental limit to the resolution 

attainable this way and it has been historically adequate to localize venting; 

however, the process can be slow. Towed instrumentation on up to several 

kilometers of cable is difficult to maneuver, necessitating large excursions to 

execute turns. Lowered instrumentation requires hauling instruments up and down 

through the entire water column at each sampling location just to capture the 

deepest few hundred meters where NBPs reside. The speed with which such 

surveys can be completed is important in order to utilize ship time effectively. 

On recent expeditions we have shown that AUVs can offer a capability that is 

complementary to lowered and towed assets (Yoerger et al., 2007; German et al., 

2008).  To date AUV endurance limits have required the use of ship borne assets 

to constrain survey areas to a few square kilometers; however, at this scale an 

AUV’s maneuverability permits the rapid creation of high resolution maps of the 

NBP while freeing the support ship to conduct other activities. These maps are 

interpreted in terms of likely vent locations, after which we have employed a 

series of targeted nested surveys at successively lower heights above the seafloor 

to home in on vent sites.  The procedure is described in detail in (German et al., 

2008) and Fig. 3 shows an example set of tracklines.  This nested strategy 

capitalizes on our AUV’s multimodal imaging capabilities to generate 

bathymetric maps and photomosaics around the vent sites themselves.  These 

maps provide important geological context and a preliminary assessment of 

available habitat and macrofaunal assemblages to guide subsequent scientific 

investigation (German et al., 2008).   

This nested strategy for homing in on vent sites has been particularly successful 

when BPs can be directly identified in data from a NBP survey.  AUVs have 

limited energy capacity, so that while decreasing trackline spacing makes direct 

BP interception more likely, it also reduces the area that can be covered by a 

survey, and a high resolution survey with tightly spaced tracklines is worthless if 

conducted in the wrong place. For completely preplanned surveys of the type 

reported in (German, 2008), this trade-off places a substantial burden on the 

scientific party to decide when to complete towed and lowered survey efforts in 
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favor of deploying the AUV, and then how to arrange the tracklines of its mission.  

Improving the coverage attainable from a single AUV dive without compromising 

the ability to directly intercept BPs would require a less precisely defined survey 

area. We present simulation studies using real data collected by an AUV 

surveying in NBPs that suggest this is possible by capitalizing on an AUV’s 

inherent capacity to react to sensed data in real time.  

 

                           
Fig. 1 Hydrothermal plume schematic with characteristic dimensions. The plume’s rise height can reach 100-400 m in 

typical hydrographic settings. In a time-averaged sense a buoyant plume expands laterally, during its rise,  from a diameter 

of few cm to a diameter on the order of 100 m. The non-buoyant plume presents a vertical thickness on the order of 100 m. 

 

1.2. Autonomous Benthic Explorer (ABE) and three-stage strategy  

The specific AUV considered here is the Woods Hole Oceanographic 

Institution’s Autonomous Benthic Explorer (ABE) (Yoerger et al. 1991) AUV 

(Fig. 2). Large amount of data from historic missions are available so we can 

assess the method. 

The Woods Hole Oceanographic Institution’s Autonomous Benthic Explorer 

(ABE) (Yoerger et al. 1991) AUV (see Fig. 2)  has been successfully used in 

several hydrothermal vents prospecting missions, (German et al., 2005; Jakuba et 

al., 2005; Yoerger et al., 2007). ABE is highly maneuverable and it can achieve a 

precision in self-localization of the order of meters using external acoustical 

beacons (Yoerger et al., 2007). Its cruise speed is about 0.6 m/s and for its 

payload it can carry different sensors for detecting anomalies in the water caused 

by venting activities. All these features allow ABE to build a map with higher 

spatial resolution (improved maneuverability) and temporally closer to a synoptic 

view (faster speed) with respect to those achievable using towed assets. Its 

autonomy during the missions, peculiar of AUVs, allows the vessel crew to do 
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other work during the surveys. Finally, the computational capabilities available 

aboard on ABE enable data-driven strategies. This could increase the efficiency of 

single surveys in acquiring information about hydrothermal activity. 

 

 
 

Fig. 2 Deployment of the Autonomous Benthic Explorer (ABE) vehicle. 

 

Recently, a three-stage, nested approach to vents localization has been 

introduced with success (Langmuir et al., 2004) consisting in surveys at different 

depths to finally photograph the venting structures flying very close to the 

seafloor (German et al., 2008). ABE performs surveys at three successively lower 

altitudes. It covers pre-designed tracklines that become finer spaced and cover a 

smaller area as the survey heights decrease (see Fig. 3). At the end of each survey, 

the data collected by the robot are scrutinized by the scientific party on the ship, 

together with any available ancillary data and a new dive is planned. Ideally this 

sequence of surveys culminates in photographic evidence of the vent fields 

themselves.  

In this paper, we propose a new movement strategy called triggered spirals 

prospecting (TSP) exploiting ABE’s computational capabilities and particularly 

suited to surveys at higher altitude (200-400 m) (Phase-1), that is the most 

difficult for several reasons: 

 high altitude implies weaker signals revealing a plume and that the 

measurement of water current is difficult or misleading; 

 the wide-spaced tracklines of Phase-1 cause difficulties in covering the search 

area. 

It aims at triggering additional tightly spaced survey tracklines at locations 

likely to contain active venting areas. These additional tracklines increase the 
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probability of direct contact with buoyant plumes thus helping to constrain vent 

field location. Our strategy avoids relying on often misleading and difficult to 

analyze information carried by the water current direction and intensity. 

In the following section we will describe the difficulties related to Phase-1 and 

to the use of data-driven strategies. Next, TSP is described. In Section 3, results 

using data coming from ABE’s previous surveys are presented and discussed. 

Finally conclusions and recommendations for future research are presented.   

 

 

 

 

 

 

 

 

Fig. 3  (Top) Schematic of a hydrothermal plume with the different altitudes for the three-phase surveys. (Bottom) Three-

stage surveys tracklines covered by ABE at “Kilo Moana” vent field on Eastern Lau Spreading Center  (20° 3´ S, 176° 12´ 

W) (Mid-Pacific Ridge). The Phase-1 survey continues several km to the south of the region plotted. 

1.3. Phase-1 and data-driven strategies issues 

The three-stage, nested approach has proved to work with success in different  

expeditions to localize active hydrothermal sites (Langmuir et al., 2004; German 

et al., 2005; German et al., 2008). An automation or a support to human operator 

in analyzing the acquired information would improve reliability and efficiency in 
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designing next surveys. For example, the ratio of time associated with inter-

survey recovery, maintenance and deployment related to the time spent collecting 

data is roughly 2:1. 

Most importantly, the ability of ABE to move autonomously driven by the 

collected data can increase the possibility to explore interesting areas thereby 

enhancing the useful amount of information available for the design of successive 

dives and reducing the number of dives (time) necessary to localize the buoyant 

plumes. 

Autonomous decisions made by ABE in Phase-1 based on collected data have 

the greatest potential for improving the efficiency of the three-phase strategy. 

We focus in this paper exclusively on this phase. The altitude of the survey 

implies that the measured anomalies are lower in magnitude but of increased 

spatial extent relative to those encountered to lower heights. Turbulence makes 

the detectable anomalies patchy (Lupton, 1995). These features make it difficult, 

at the height of Phase-1 surveys, to correlate measured anomalies with likely 

venting sources positions on the seafloor. Direct interceptions with rising stems 

(typical diameters are O(100 m)) are rare given the large survey area and wide 

trackline spacing (we have employed trackline spaces during Phase-1 surveys 

between 200 m and 1000 m). The wide spacing is needed to cover the large areas 

typical of Phase-1 (20-25 km2) before the batteries are depleted  (up to 30 hrs of 

battery life). To further complicate the situation, ambient crossflows tend to bend 

the buoyant plumes and also tidal oscillatory currents can produce areas with 

strong anomalies not connected with nearby nascent plumes (Veirs, 2003). 

Measurements at the Endeavour Segment of the Juan de Fuca Ridge (Thompson 

et al., 2003) reveal tidally-forced oscillatory currents of up to 10 cm/s with 

superimposed steady current of 5 cm/s. The maximum crossflow magnitude 

observed by ABE from on-board ADCP measurements as of 2006 was 16 cm/s at 

a site on the Southern Mid-Atlantic Ridge (SMAR). Tidal currents have a 

dominant 12 hrs period, for this reason the plume can change significantly on 

scales of O(10 h), the same timescale of one of ABE’s dives (Jakuba et al., 2005). 

Finally, the flow measurements are not always accurate due to the loss of bottom 

track. 

In these conditions, the use of gradient ascent-based (Burian et al., 1996) and 

bio-mimetic methods (Li et al., 2006) appears to be problematic. The absence of a 
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well defined gradient and the fact that high intensity anomalies caused by tidal 

currents may be found far away from the source imply gradient ascent-based 

methods are liable to wander or to get “stuck” near local maxima. Bio-mimetic 

schemes usually rely on measurement of  wind/crossflow to trace the plume up to 

the source (Li et al., 2006). In Phase-1 surveys, the oscillatory tidal components 

and the difficulties in having a precise measure of the flow can confound them. 

We emphasize that given the intrinsic multiple-source nature of the problem, the 

use of a purely reactive/behaviour based algorithm does not guarantee the needed 

exploration of the survey area. Most reactive or behavior-based plume tracing 

algorithms implicitly assume that only a single source is present in the 

environment and they offer no guidance on how to continue searching for other 

sources once a source has been found, or how to avoid re-finding the same source.  

Some work has been done to move ABE autonomously. An algorithm, planning 

autonomously the robot’s path based on acquired data, has been proposed and 

tested (Jakuba et al., 2005; Yoerger et al., 2007) for hydrothermal vents 

prospecting: at the end of the pre-planned survey new tracklines are added starting 

on interesting locations chosen after the tracers anomalies are propagated to the 

seafloor using a plume model and crossflow measurements. This method was 

applied in Phase-3 dives. Even if it is quite conservative it improved the efficiency 

of Phase-3 dive: additional tracklines comprised only 5% of total mission time 

and resulted in a 36% of high-value data collected (Yoerger et al., 2007). This 

shows how autonomously data-driven strategies can improve the efficiency of 

dives. However, the main obstacle to apply this method to Phase-1 surveys is that 

it chooses the locations to investigate further once all the pre-planned tracklines 

have been covered. The large spatial extension of Phase-1 would make it not 

feasible for ABE to come back on the chosen locations. 

 The two paradigms for searching for a chemical source (data-driven approach 

and pre-designed tracklines) have therefore different features: while data-driven 

strategies are able to increase the efficiency of missions, they do not assure a 

uniform covering of the whole search area guaranteed by fixed pre-planned 

trajectories. Preplanned tracklines guarantee coverage but at a fixed resolution. 

When much of a dataset can consist of relatively uninteresting background as is 

the case of Phase-1 surveys, preplanned surveys are likely to return with 

insufficiently high resolution data in the few areas of interest. Data-adaptive 
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surveys can alleviate this problem to an extent but an accurate coverage of the 

area remains important. 

The TSP approach aims at mixing the achieving of the guaranteed coverage of 

pre-designed tracklines with the efficiency of data-driven strategies without 

considering the often misleading information carried by the water current. 

2. TSP algorithm 

 

The objective of TSP is to enable ABE to further explore areas that are likely to 

contain nascent hydrothermal plumes while nominally executing a pre-planned 

path. Since these additional tracklines are likely to result in direct contact with BP 

water, the additional collected information is likely to be invaluable for delimiting 

regions likely to contain vents. In the event that the data do not suggest a nearby 

BP the additional data will likely disambiguate otherwise uncertain locations.  

The large spatial extent of Phase-1 surveys imposes the constraint that the robot 

has to choose the locations to explore when it is not too far from them going on its 

pre-planned path. In this way, it can come back to the chosen locations without 

wasting too much mission time. This constrains TSP to trigger the movements 

based only on past acquired information: we cannot complete the survey and then 

decide which locations to investigate (this strategy is pursued in the method 

proposed in (Jakuba et al., 2005; Yoerger et al., 2007)  where the smaller areas 

covered in Phase-3 allow to pursue this approach). 

In our approach, ABE moves along pre-designed tracklines sampling the 

seawater. When an area containing clues of the presence of young hydrothermal 

waters (anomalous values of some hydrothermal activity tracers) is found, a spiral 

movement is triggered to acquire more information about that area. The number 

of spirals is constrained by ABE’s energy capacity so only the highest anomalies 

locations have to be investigated. The spiral arms length, shape and orientation are 

pre-designed.  

The problems to solve in this strategy are: 

 determine which tracers to consider as clues for nearby nascent hydrothermal 

plumes in order to realize when the robot is crossing areas containing      

potentially useful information; 
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 develop a methodology to elaborate the data to compute anomalies in real-

time; 

 a method aiming at maximizing the likelihood of considering as possible 

triggers during the surveys only the locations with the highest intensity clues 

of the whole survey.  

 

2.1. Tracers for nearby nascent hydrothermal plumes 
 

Different tracers can be used to reveal the presence of hydrothermal plumes 

(Baker et al., 1995). In our case, we need  tracers that present two features: they 

have to be reliable clues of nearby nascent hydrothermal plumes (not exclusively 

buoyant) and the anomalies with respect to background waters have to be 

computable in real-time.  

From the different tracers collected by ABE during recent missions (Jakuba, 

2007) the most suited tracer presenting these two features is the Eh anomaly in the 

water column. 

Reduction-oxidation potential (Eh) is a measure of the capability of chemical 

species in water to oxidize (positive Eh) or to reduce (negative Eh). The Eh 

potential has been measured by ABE using a sensor developed by Dr. Ko-ichi 

Nakamura1 and has been shown to be a good tracer to detect nascent hydrothermal 

fluid (Nakamura et al., 2000). The nascent rising plume contains reducing 

chemicals that are rapidly oxidized as the plume matures (Nakamura et al., 2000). 

A low value of Eh, therefore, is a distinctive feature of young hydrothermal 

plumes. The Eh sensor has a complicated response characterized by a fast onset 

and a slow recovery time. Ongoing work by Dr. Nakamura suggests that the 

magnitude of d/dt(Eh) is strongly correlated with the chemicals typically present 

in young hydrothermal plumes (Nakamura, personal communication 2006): 

steeply decreasing Eh signals appear to be a reliable sign of the interception of the 

younger part of hydrothermal plumes (not exclusively buoyant plumes). The 

instrument presents a relatively flat response in unaltered water allowing to 

compute a background in real-time.. 

                                                 
1 National Institute of Advanced Industrial Science and Technology (AIST), Institute for Marine Resources and 
Environment, Seafloor Environment and Resources Research Group 1, Tsukuba, Ibaraki, 305- 8567 Japan 
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For these reasons we will consider Eh anomalies as a trigger signal for spiral 

movements. In the next two sections we show how anomalies are quantified and 

declared.  

2.2. Eh anomaly measure 

Quantifying anomalies in Eh is not a trivial task. In our experience, they are 

characterized by anomalously low d/dt(Eh) and by a relatively significant variance 

in d/dt(Eh) values in a small number of samples (this is evident from Fig. 4). The 

first step to declare Eh anomalies is to find a way of quantifying what our 

experience suggests. We consider the median absolute deviation (MAD) as a 

measure of variability of the d/dt(Eh) signal in an interval. MAD is defined as the 

median absolute deviation from the median,  

 

MAD(x)=med|x-med(x)|                                                                    (1) 

 

where x is a data vector and med is the median operator. MAD is a measure of 

the variability of data in an interval robust to outliers eventually present in the 

data set (Huber, 1981).   

To process Eh data during the survey we compute MADs on a fixed temporal 

window as the data are being collected by ABE. To do this, the Eh signal acquired 

from the sensor is first low pass filtered and then a numerical derivative is 

computed. Then, every N samples, a MAD is computed on d/dt(Eh) signal (N is 

chosen to create a new window every 50 s). As a result, we produce for every 

temporal window i one MAD, denoted MADi. 

We have now a number (MADi) that represents a measurement of the variability 

of d/dt(Eh) in each N-sample temporal window. A high MADi means the temporal 

window i exhibits strong variations in d/dt(Eh) signal showing that the robot is 

crossing waters likely altered by nascent hydrothermal waters. 

A method to declare a MADi as an anomaly has to be specified. 

2.2.1. Background creation and anomaly detection 

We approach the problem of anomalies declaration as a problem of outliers 

detection on computed MADi. The idea is to consider as outliers MADi whose 

distance from the median of a reference vector of data is greater than a fixed 

threshold. The reference vector has to contain MADi computed in an area where 
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the water is not altered by hydrothermal vents. We considered a reference vector 

fixed in time during the survey because we assume no valuable drifts in Eh signal 

measurements: it is considered a background fixed in time with respect to which 

anomalously high MADi can be detected. On the computed MADi we calculate the 

median (MEDB) and the MAD (MADB), that is MEDB = med(MADi) and MADB = 

MAD(MADi) in both cases for all i in the descent. During the survey, a new 

computed MADi is considered as an outlier detection if: 

 

BBi MADcMEDMAD  4286.1)(                                                                               (2) 

               

where c=9 is a constant derived from analysis of previous and 1.4286 is a 

normalization used to make the MAD an unbiased estimate of the standard 

deviation for Gaussian data (Huber, 1981). The idea behind using data-dependent 

threshold to discriminate an outlier is to first estimate the range of variation of the 

nominal data sequence and then assess each new element with respect to the 

median value of the nominal data sequence (considered as representative of the 

center of the sequence) and this estimated range of variation. To create the 

threshold we chose the MAD because it is a good measure of statistical dispersion 

and is more resilient to eventual outliers contamination than the usual standard 

deviation estimate (Menold et al., 1999). (2) allows us to compute the outliers in 

real-time and is similar to the method used in (Menold et al., 1999) for online 

outlier removal in data sequence. However, while in (Menold et al., 1999) the 

discriminating threshold is computed on a moving data window to detect outliers 

from data sequences, in our case is computed using the data of the background 

built during the robot’s descent (during the survey we search for MADi that are 

outliers with respect to the MADi composing the background).  

In our trials, we considered NB (number of MADi used for the background 

creation) in order to compute the background on a temporal window of 50 

minutes: a trade-off between assuring a less variable MADB (wider windows) and 

avoiding the inclusion in the computation of altered areas potentially encountered 

towards the end of the descent. Finally, we exclude from anomalies declaration 

MADi originated from windows with always positive d/dt(Eh) signal (these 

windows derive from periods of slow recovery of Eh sensor with high variability 

of the signal). In Fig. 4 the process of MADi creation from Eh measurements is 

shown.  
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The MADi declared as detections are related to periods (and areas) of the survey 

that are characterized by an increased variability of d/dt(Eh). Methods to choose 

areas with the highest anomalies of the survey (highest values of MADi) have to 

be introduced. To decide which computed anomalies are worth triggering a spiral 

we adopt two methods: the first one is to group detections and the second one 

consists in lowering/raising the probability of triggering based on the data 

acquired so far (see Sec. 2.4. Trigger threshold).  
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Fig. 4 Process of MADi creation starting from Eh measurements coming from a Phase-1 at “Kilo Moana” vent field on 

Eastern Lau Spreading Center  (20° 3´ S, 176° 12´ W) (Mid-Pacific Ridge) are reported. At the top Eh signal and the 

filtered and derivated signal are reported. Finally, at the bottom, the computed MADi are shown with grey dots marking the 

detected anomalies. The dashed line represents the threshold above which a MADi is considered a detection. From the 

figure it is clearly visible how high MADi are correlated with portions of d/dt(Eh) signal characterized by high variability. 
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2.3. Patches and clusters creation 

The computed detections are grouped using a two-layered procedure: first they 

are aggregated into groups of detections (patches), and then the patches are 

grouped into clusters. The best patch (we have still to define what “best” patch 

means) of one cluster triggers a spiral movement. The creation of patches 

simplifies the description of widespread detections: patches carry information 

about groups of nearby detections. The clusters are a method for considering the 

information carried by nearby patches while choosing where to trigger: this helps 

in selecting the most interesting locations allowing at the same time to limit 

trigger movements in near locations.        

 

Patches creation: a patch is started once a detection is encountered. Next MADi 

declared as detections are assigned to the patch until the patch is finished. The 

patch is considered finished when there are no detections in consecutive Npatch 

MADi  (see Fig. 5). Npatch is chosen equal to 6 such that a time of about 5 minutes 

without detections cause the end of  the patch (a length of the order of magnitude 

of a BP without a detection ends a patch). The patches are stored in memory, each 

one with its centroid chosen as the location of the highest MADi belonging to the 

patch (the highest MADi is called the patch value (Vpatch)). The location of a MADi 

is chosen as the position of the middle d/dt(Eh) sample in the N-long data vector 

from which the MADi is computed.  

When a patch is closed, the value of the patch is compared with a trigger 

threshold (trigger): if it is greater, that is, if 

 

Vpatch  ≥ trigger                                                                        (3) 

 

a cluster is started. The trigger threshold trigger is the threshold that discriminates 

if a patch of anomalies is able to trigger a spiral movement. It is adaptively chosen 

to limit the number of spirals and to modify the trigger threshold on the basis of 

the data acquired during the survey. This is described in Sec. 2.4. 

 

Clusters creation: when the condition                                                       (3) is 

verified for one patch, a cluster is started and the patch is added to the new cluster. 

Next created patches for which                                                       (3) is true are 
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added to the current cluster. The cluster is closed after a distance of Dcluster meters 

from the centroid of the first patch of the cluster has been covered; if one patch is 

being created after Dcluster meters the cluster is closed at the end of that patch (see 

Fig. 5). The Dcluster value is a tunable parameter and represents how near we 

permit different spirals can be triggered. In our trials we chose a Dcluster value 

constituting about the 2.5% of the total length of the tracklines covered by ABE. 

Once a cluster is closed, the patch in the cluster with the highest Vpatch (we 

consider this as the merit value for patches) is chosen and a spiral movement 

starting from the centroid of that patch is triggered. 

The second method aiming at selecting only the highest Vpatch patches relies on 

how the trigger threshold is dynamically modified during the survey. 

 

 
Fig. 5 (Top) Activity diagram of the patch creation and (bottom) activity diagram of the cluster creation. 
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2.4. Trigger threshold 

Phase-1 dives present different d/dt(Eh) profiles: some present many areas with 

high intensity perturbations, others present low intensity anomalies. A static 

trigger threshold is not therefore the best solution: a threshold low with respect the 

values of MADi created during a survey can cause too many spirals thereby 

consuming the batteries before something interesting is encountered; while a too 

high threshold can rarely trigger losing possible interesting areas. 

We approach this problem using an adaptation mechanism for the threshold. At 

the beginning of the survey trigger is fixed to the value trigger_B. The unit of 

measure of trigger is the normalized MADB. This avoids the difficult problem of 

providing an absolute value for the threshold. We use the value trigger_B =180 

based on our experience with Phase-1 collected data. The adapting mechanism 

depends on the approximate number of spirals we would like ABE to execute (SS) 

and on how the survey is progressing. The number of suggested spirals is a design 

parameter and is an indication of how many spirals ABE is able to start. This is an 

important element of survey design. We want to be sure ABE has enough energy 

to cover the whole survey. However, it is not a constraining parameter in the sense 

that TSP allows that more or less spirals than SS can be started even if it can be 

considered as a maximum number of allowed spirals. In all our trials we 

considered a value for SS equal to 5 (see Sec.3 for further details on the choice of 

this parameter).  

The adaptation works as follows: if the percentage of triggered spirals with 

respect to the suggested ones is lower than the percentage of covered tracklines 

then the threshold is lowered, otherwise it is increased. The threshold 

modifications depend on so far created Vpatch to modify the threshold in a way 

suitable to the conditions encountered during the actual dive. At the beginning of 

the survey, the threshold is slightly modified. As the robot covers a higher 

percentage of the scheduled tracklines the threshold is more liable to changes 

considering the increased knowledge about the area of the survey acquired by 

ABE. The algorithm for adapting the threshold is run whenever a new patch is 

closed. The adaptation algorithm is shown in Table 1. 
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Table 1. Algorithm for adaptive threshold. 

 

 

 

 

 

 

 

 

 2.5. Spiral movement 

One spiral movement is started whenever a cluster is closed. ABE comes back 

and reaches the centroid of the patch with the highest Vpatch in the cluster and 

starts a spiral. The spiral arms are predefined in extent, orientation and spacing 

(see Fig. 6). The basic spiral length D is chosen in function of the trackline 

spacing: a wider spacing involves longer arms to allow ABE exploring the area 

between two tracklines. The choice of a spiral movement is not critical for the 

algorithm, however it is an effective way of exploring an area and can be used in 

the future (see Sec. 4) to propagate successive spirals like in the method proposed 

in (Ferri et al., 2009).  

A state diagram of  TSP algorithm is shown in Fig. 7. 

 
Fig. 6 Sketch of the pre-designed spiral movement. The only parameter changing the spiral is the basic spiral length D. 

The black arrow shows the direction of ABE on the trackline. 

 

If  %Spirals ≤  %Tracklines         / /trigger  has to be lowered 
 

   LowThr=median(Non_hit_patches(Vpatch)) 
   trigger=max(trigger_B x (1-%Tracklines) + LowThr x K x  

%Tracklines, trigger_Min) 
trigger=min(trigger,trigger_B) //for the rare case of trigger  >trigger_B 
 
else                                                 //trigger  has to be raised 
   RaiseThr=median(Patches(Vpatch)) 
trigger=max(trigger_B x (1-%Tracklines)+ RaiseThr x K x  

%Tracklines,trigger_B ) 
 

%Spirals is defined as the number of done spirals divided by the 
number of suggested spirals;  
%Tracklines  is defined as covered distance of tracklines divided by 
the scheduled total length of tracklines; 
Non_hit_patches is a function that selects among all the created 
patches only Vpatch of patches that were not able to trigger a spiral; 
Patches is a function that selects the Vpatch of all the created patches;  
K is a weighting constant equal to 2; 
trigger_Min  is a minimum threshold value that has been fixed to 100. 
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Fig. 7 State diagram of TSP algorithm. 

 

3. Results using TSP with data collected by ABE in 

previous surveys 

The proposed algorithm was tested using data collected by ABE in previous 

Phase-1 surveys. It was tested on 7 datasets of different dives. The values of the 

used parameters have been presented in previous sections. The only remaining 

parameter to be specified is the basic spiral length: in all the trials except one 

D=55 m. In one trial, given the wide spaced tracklines, we considered D=150 m.  

As shown in Fig. 6, the length of a spiral is 33D (1815 m for D=55 and 4950 m 

for D=150). Considering the robot’s speed of 0.6 m/s, 30 hrs battery life and a 

10% caution factor, ABE can traverse roughly 50 km per deployment, thus one 

spiral costs between 4% and 10% of the entire mission. The suggested spirals 

parameter (SS) was set to 5 because, including also the space covered by ABE to 

come back to a spiral starting location once a cluster is closed, 5 spirals compose 

from about 25% (D=55) to more than 50% (D=155) of the mission greatly 
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reducing the amount of area that can be covered. From a temporal point of view, it 

takes about 50 minutes or 2.3 hrs to the robot to cover a small or large spiral.  

The algorithm was implemented by use of Matlab ®, from The MathWorks, Inc. 

The program acquires raw Eh signal recorded by ABE during the mission, the 

positions of the robot and computes the trajectory produced by TSP. The Eh data 

are sequentially fed into the program as they would be collected by the AUV; 

every 50 acquired samples, a new MADi is generated. On ABE robot the Eh data 

are read from Dr. Nakamura’s instrument with 1 Hz frequency. The execution of 

TSP would be therefore a periodic task with 1 Hz frequency. For what concerns 

the computational capability, ABE’s main control board during the time frame in 

question was a MicroSys SBC1586-1-ET, with a 266 MHz Low-Power Pentium 

CPU and 256 MB of RAM memory. The ABE code used only a few percent of 

the CPU, nearly all the time the code was waiting for serial transactions to 

complete. Recently, ABE's main control board was upgraded to a Cool 

Roadrunner. With the new Cool Roadrunner and the same code, < 1% of the CPU 

time is used. Considering the operations performed by TSP and its frequency of 

execution, the computational power available on ABE allows an easy integration 

of the algorithm in the navigation and control system. The known locations of the 

vents are used to assess the performance of TSP algorithm in terms of the 

positions where the spirals are triggered.  

We discuss in detail the results for three datasets showing different degrees of 

difficulty: the first dataset is from a Phase-1 survey at “Kilo Moana” site on 

Eastern Lau Spreading Center (ELSC) (20° 3´ S, 176° 12´ W) (Mid-Pacific 

Ridge), the second one is from a site at Southern Mid-Atlantic Ridge (SMAR) (4° 

54´ S, 12° 28´ W) and the third one is from a vent site at “ABE” site on ELSC 

(20° 46´ S, 176° 16´ W). In all these areas the seafloor positions of the venting 

locations were discovered using ABE. 

Fig. 8 shows results from Kilo Moana vent site. This site was relatively easy. As 

is evident from the 3D image of the MADi, relatively strong anomalies are 

encountered by ABE only in the north-east corner of  the survey. The proposed 

algorithm selects the highest intensity anomaly and triggers only one spiral. The 

spiral is triggered in a good location, because it causes the robot to fly over 

several hydrothermal vents locations that were confirmed in subsequent dives.   
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A more difficult dataset is that from SMAR (see Fig. 9). This is the survey for 

which a basic spiral length of 150 m is used given that the tracklines are 1 km 

spaced. Even if the tracklines spacing is very wide, the MADi show clearly three 

different regions of anomalies. In all three cases, a spiral is started causing the 

robot to fly over or very near vent fields: all three perturbations were later 

revealed to be related to nearby buoyant plumes. Only the three highest intensity 

anomalies triggered spirals: other lower Eh perturbations to the north are ignored.  

Finally, a third site on the ELSC presents an even more difficult situation. From 

Fig. 10 it is evident that perturbations in Eh signal are present in a large part of the 

survey. In this survey, TSP chooses four points to trigger spirals. The two 

northern spirals result in trajectories that pass over or near vents. The area covered 

by the southern-most spiral is likely to contain some venting activity but was 

never confirmed: a vertical velocity anomaly has been detected in that area 

(Jakuba, 2007). That spiral movement suggests an interesting area to explore in 

next missions. The fourth spiral may be caused by the known vents’ activity to the 

north. Finally a known venting area is “missed” by the algorithm. We consider “to 

miss” a venting area if the robot, during a spiral movement, does not pass at a 

distance shorter than 150 m from the area. For unknown reasons, at the locations 

near the missed venting area, the perturbations in Eh are very low (also 

perturbations in other tracers do not reveal nearby hydrothermal activity (Jakuba, 

2007)). 

To investigate the efficiency of the method we have analyzed the results from 

all 7 addressed surveys quantifying how much the triggered spirals are related to 

nearby hydrothermal activities. 

To do this we group the spirals triggered in the different trials in three different 

categories:  

 spirals with known nearby vents: this category includes spiral movements 

passing at less than 150 m from a vent (the diameter of a buoyant stem is 

O(100 m)). So passing at that distance from a vent increases the likelihood of 

direct contact with a buoyant plume. The movements in this category are 

connected to confirmed venting activities and are the movements that we 

considered the best ones generated by TSP;  
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 spirals with likely nearby vents: this category consists of spirals triggered in 

areas where off-line analysis suggests venting activity but where Phase-3 

dives were never conducted to confirm that activity; 

 other spirals: this category includes all other spirals. Spirals in this category 

are considered avoidable if the energy capacity does not permit to cover all 

the trajectories suggested by TSP. 

In Table 2 we report the results using TSP with the available previously 

collected data in terms of these categories. To investigate how the adapting 

threshold mechanism works we report both the results with the use of adapting 

mechanism and with a fixed trigger threshold (trigger = 180).  

The results of the table show the efficiency of TSP approach. The high 

percentage of spirals belonging to the first two categories together with the limited 

total number of triggered spirals (the average is under the suggested maximum 

number of spirals (5)) indicates robustness to variable environmental conditions. 

The suggested number of spirals was reached only in one trial. In that trial, 

particularly diffuse Eh perturbations triggered 5 spirals for TSP with the 

adaptation mechanism and 6 spirals without adaptation. The analysis of the two 

versions of TSP shows that using an adapting threshold is preferable. The 

adaptive TSP presents a higher percentage of triggers in the first two categories 

and, more importantly, the TSP with a fixed trigger threshold missed two more 

venting areas. 

However, as for every method using some thresholds to make decisions, one 

delicate issue is how to choose the starting threshold. In a previous section we 

said we chose it to be 180 times the normalized MADB basing on our experience 

from data from previous surveys. To investigate the robustness of the chosen 

threshold we also ran the program with two other trigger thresholds: 140 and 220. 

The three thresholds (140, 180 and 220) were used as the basic trigger threshold 

(trigger_B) for the adapting mechanism and as the fixed trigger in the fixed 

threshold TSP version.
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Fig. 8 3D image of created MADi (top) and trajectory generated by TSP (bottom). The 3D image shows nascent 
hydrothermal waters intercepted to the north-east part of the survey. Robot trajectory shows one triggered spirals covering 
an area containing different vents (grey circles). Dots along the tracklines represent the locations of created MADi: black 
dots are non-detections, grey ones are the detections. Triangles mark the positions of patches centroids. Finally, the black 
arrow shows the direction of movement of ABE. The two plots are produced using TSP with data collected in a Phase-1 
dive at “Kilo Moana” site at ELSC (20° 3´ S, 176° 12´ W) (Mid-Pacific Ridge). 
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Fig. 9 3D image of created MADi (top) and trajectory generated by TSP (bottom). The 3D image shows nascent 
hydrothermal waters intercepted in three different regions. Robot trajectory shows three triggered spirals, one for each of 
the three regions. The triggered movements sweep areas containing all the vents (grey circles) currently known in the site. 
Dots along the tracklines represent the locations of created MADi: black dots are non-detections, grey ones are the 
detections. Triangles mark the positions of patches centroids. Finally, the black arrow shows the direction of movement of 
ABE. The two plots are produced using TSP with data collected in a Phase-1 dive at SMAR site (Southern Mid-Atlantic 
Ridge)  (4° 54´ S, 12° 28´ W). 
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Fig. 10 3D image of created MADi (top) and trajectory generated by TSP (bottom). The 3D image shows nascent 
hydrothermal waters intercepted in a large areas of the survey. Robot trajectory shows four triggered spirals. Three of the 
triggered movements are related to the activity of the vents (grey circles) currently known in the site. The most southern 
spiral sweeps an area that has not been explored, but presents clues of very likely nearby hydrothermal activity (a vertical 
velocity anomaly has been detected there). Dots along the tracklines represent the locations of created MADi: black dots are 
non-detections, grey ones are the detections. Triangles mark the positions of patches centroids. Finally, the black arrow 
shows the direction of movement of ABE. The two plots are produced by TSP from data collected in a Phase-1 dive at 
“ABE” site at ELSC (20° 46´ S, 176° 16´ W) (Mid-Pacific Ridge). 
 

In Table 3 the results are shown. From the results, it is clear that the adaptive 

mechanism gives more guarantees of robustness; for it, the resulting spirals, 

changing the basic trigger threshold, change only in one dataset: it is the above 

cited survey with diffuse perturbations. In that survey one more movement is 

triggered for a total of 6 spirals. 
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The fixed threshold version, instead, presents more variability in the number of 

triggered spirals. If the threshold is lowered, the number of spirals increases 

producing the same results of the TSP in the adaptive form in terms of number of 

triggers (19), but with one more missed venting area. Even if the average number 

of spirals (2.71) is smaller than the suggested number, in the dataset with diffuse 

and strong Eh perturbations the number of triggers raises to 7. This is a relatively 

large number that could not be sustainable in a real survey and, therefore, some 

other vents might have been missed. Otherwise, if the trigger threshold is raised, 

the total number of spirals for all surveys decreases to 14 causing an increased  

number of missed venting areas (5 representing a percentage of 38.5% on the total 

known venting areas). The percentage of missed known venting areas with the 

adaptive mechanism remains the same with all the three thresholds (15.4%). 

To summarize, even if the chosen threshold appears to be quite robust, the 

mechanism of threshold adaptation gives more robustness to TSP algorithm. This 

is due to the capability of dynamically lowering and raising the threshold based on 

acquired knowledge about the environment in the ongoing dive. This mechanism 

can be also used as a method to control the percentage of the mission assigned to 

spirals: a higher number of suggested spirals tends to decrease the threshold, a 

lower number to increase it. 

Finally we show in Table 4 the total distance traversed, the total distance 

covered in spirals, the total estimated time of the survey and the total energy cost 

for just Phase-1 tracklines and for Phase-1 with spirals for the 7 datasets using 

TSP with threshold adapting mechanism and with a basic threshold of 180. In all 

the surveys the energy cost of TSP is below ABE’s endurance limit. In two cases, 

however, it is close to ABE’s endurance limit: in the survey with D=155 (~96 % 

of available energy consumed) due to the large spirals covered caused by the 

wide-spaced tracklines and in the cited survey with diffuse perturbations (5 spirals 

lead to ~90 % of available energy consumed).  

The results presented in this section show that TSP approach can be a reliable 

method to increase the amount of  useful information about hydrothermal activity 

collected during Phase-1 surveys. The computed Eh anomalies proved to be well 

related to nearby nascent hydrothermal plumes. The created MADi give also a 

readily interpretable map of Eh anomalies either from an intensity point of view 

(the intensity of MADi) or from a spatial point of view (patches delineate the Eh 
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perturbed areas). Attention must be paid to cases  (we have one in our datasets) in 

which a relatively high number of triggers occur. They may happen in particularly 

Eh perturbed areas. The relatively large number of triggers would not allow ABE 

to cover all the pre-designed  tracklines. A trade-off between the portion of survey 

assigned to eventual triggers and the portion assigned to cover the pre-designed 

tracklines has to be achieved by the scientific party.  

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2. Results using TSP with threshold adapting mechanism 

and with a fixed trigger threshold. TSP has been used on 7 datasets 

coming from previous ABE’s Phase-1 dives. The shown 

percentages are with respect to the total number of triggered spirals 

and to the total number of known venting areas. 

 TSP with threshold 

adapting 

mechanism 

TSP with fixed 

threshold 

# spirals with 

confirmed 

nearby vents 
 

11 (61.1%) 9 (56.3%) 

# spirals with 

likely 

nearby vents 
 

5 (27.7%) 4 (25%) 

# other spirals
 

2 (11.1%) 3 (18.8%) 

# missed 

venting areas 
 

 

2 (15.4%) 4 (30.8%) 

# triggered 

spirals 
 

 

total=18 

2.57

1.4

total=16 

2.29

1.67
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Table 3. Number of triggered spirals and missed venting areas, using TSP 

with adapting mechanism and TSP with a fixed threshold. Three different 

basic thresholds are considered. These results are produced by TSP using 7 

datasets coming from previous ABE’s Phase-1.  The percentages are with 

respect to the total number of known venting areas. 

 

 TSP with threshold 

adapting mechanism

TSP with fixed 

threshold 

# spirals # missed 

venting 

areas 

# spirals 

 

# missed 

venting 

areas 

trigger_B =140 

total=19 

2.71

1.67 

2 (15.4%) 

total=19 

2.71

1.98 

3 (23.1% ) 

trigger_B =180 

 

total=18 

2.57

1.4 

2 (15.4%) 

total=16 

2.29

1.67 

4 (30.8%) 

trigger_B =220 

 

total=18 

2.57

1.4 

2 (15.4%) 

total=14 

2

1.85 

5 (38.5%) 
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Table 4. Total distance traversed (considering the triggered spirals and the additional space covered for backtracking 

when one cluster is closed), total distance covered during spirals, total estimated time for survey using TSP algorithm, 

total energy cost for just Phase-1 tracklines and for Phase-1 with spirals for the 7 considered ABE’s surveys. TSP 

algorithm was run with threshold adapting mechanism and with a basic threshold of 180.  The energy cost is expressed 

in percentage with respect to an available ABE’s energy sufficient for covering 50 km in one survey. The first three 

surveys are those described in detail in the text.  

 Total 

distance 

traversed 

(m) 

Total distance 

in spirals (m)  

Total  

estimated 

time (hrs) 

Total energy 

cost for just 

Phase-1 

tracklines 

(percentage 

with respect 

ABE’s 

available 

energy) 

Total energy 

cost Phase-1 

with spirals 

(percentage 

with respect 

ABE’s 

available 

energy) 

 

Survey 1 (dive at 

“Kilo Moana” site 

at ELSC, Mid-

Pacific Ridge -  

see Fig. 8) 

 

28810 
 

1815 (1 spiral, 

D=55) 

 

13.34 
 

52.4 % 
 

57.62 % 

Survey 2 (dive at 

SMAR site, 

Southern Mid-

Atlantic Ridge -  

see Fig. 9) 

48250 14850 (3 spirals, 

D=155) 

22.33 64.8 % 96.5 % 

Survey 3 (dive at 

SMAR site, 

Southern Mid-

Atlantic Ridge – 

see Fig. 10) 

21480 7260 (4 spirals, 

D=55) 

9.94 25.24 % 42.96 %

Survey 4 14676 1815 (1 spiral, 

D=55) 

6.8 24.82 % 29.35 % 

Survey 5 45124 9075 (5 spirals, 

D=55) 

20.89 63.08 % 90.24 %

Survey 6 22073 3630 (2 spirals, 

D=55) 

10.21 34.31 % 44.14 % 

Survey 7  33890 3630 (2 spirals, 

D=55) 

15.68 56.92 % 67.78 % 
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4. Conclusions and future works 

 
In this paper we address the problem of localizing hydrothermal vents using an 

AUV. We present a method  (TSP) to improve ABE’s movements during Phase-1 

surveys. This phase, due to the largest altitude, appears to be the most difficult 

one in the three-stage nested strategy (German et al., 2008) used in recent ABE’s 

missions. Autonomous movements, driven by acquired data, covering areas 

potentially containing vents, would increase the amount of useful data to localize 

vent fields and reduce the number of dives needed to localize the venting areas 

locations. TSP aims at mixing the robustness of pre-designed tracklines with the 

efficiency of data-driven algorithms without considering the often misleading and 

difficult to analyze information carried by the water current: ABE follows pre-

planned tracklines starting an explorative movement (a spiral) when some 

conditions on acquired data suggest nearby nascent hydrothermal water (the 

considered tracer was the Eh potential).     

Our approach has been tested on 7 datasets collected during Phase-1 dives. It 

proved to work well with a percentage of 88.8% of spirals, carrying likely useful 

information to localize the vents, triggered in very interesting areas. The two- 

layered cluster method, together with the adaptive threshold mechanism (that also 

improves the robustness to changes in starting threshold) appears to be able to 

select the highest anomalies locations of a survey without requiring a complete 

characterization of the survey.  

The number of triggered spirals was on average 2.57: it is an acceptable number 

taking in consideration the additional distance ABE has to cover during the 

spirals. One trial, however, resulted in 5 spirals (6 spirals with the lowest used 

basic threshold), a quite large number. This may happen in surveys with high 

intensity anomalies. They could be avoided fixing the percentage of the mission 

assigned to spiral movements. 

We propose possible solutions that we are going to investigate in the future. A 

possible strategy could be giving the priority to triggered movements, even if this 

implies not covering all pre-designed tracklines: it could be preferable for the 

scientific party to cover a smaller area, but to be reasonably sure that the locations 

likely to contain hydrothermal vents in the covered area have been investigated. 

An alternative strategy could be that of fixing a maximum percentage of the 
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survey time assigned to spirals. These are two possible strategies: the first one 

sacrifices the exploration of the pre-planned area to investigate with spirals 

interesting areas, the second one sacrifices the exploration of eventual interesting 

areas but guarantees the coverage of preplanned tracklines. A more complex 

solution could be not using pre-designed spirals in length. After a spiral is 

triggered, if during the movement no high Eh perturbations are encountered, ABE 

could come back to move on the tracklines aborting the actual spiral. In this way 

ABE would have the possibility to trigger on all interesting areas, but continuing 

the movement only if relatively high Eh perturbations were found. In addition, a 

methodology as in (Ferri et al., 2009) with propagated spirals (a new spiral is 

triggered during a previous one if high anomalies are encountered) could help 

ABE moving towards interesting areas. This approach would minimize the wasted 

time covering areas not presenting interesting clues about hydrothermal activities, 

not losing the possibility of triggering at potentially interesting locations. In the 

future, TSP algorithm will be implemented on ABE and used in Phase-1 surveys 

for hydrothermal vents prospecting. The acquired data will also be useful to 

design the above described strategy. 

Finally, TSP can be also used together with mapping techniques. The data 

carried by spirals triggered at “right” locations can be used by the mapping 

method proposed in (Jakuba, 2007) to produce probabilistic maps of a vent sites: 

these maps would be more accurate with respect to those produced by passing 

only on the tracklines, because more direct interceptions of buoyant plumes would 

be incorporated in the measurements to update the maps. 
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