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Abstract 
 
Dynamic behaviors of ball-type contact surfaces under unbalanced bending loads are studied using point-to-point analysis, three-

dimensional finite element simulation based on the Hertz Contact Theory, and a modal test. Results derived from these models are very 
similar but the Finite Element Model provides the best results since it allows for more elements of study, such as the steel ball, carriage, 
rail etc. In the study, results also show that frequencies vary slightly, but there is an obvious change in shapes. Therefore, the contact 
stiffness in simulations must be properly selected with the conclusion that different external loadings may affect the dynamic characteris-
tics of such structures significantly.   
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1. Introduction 

Growth of demand for precision machinery technology in 
the field of modern science and industry is fast. To achieve 
high-speed and precise positioning, it is important to under-
stand the mechanical behaviors of such a mechanism. Ball-
type linear guideways are now widely used in the drive system 
because of low friction. In the ball-type linear guideway, force 
transferred between the carriage and rail is performed via balls. 
During the analysis of static and dynamic behaviors, a linear 
spring element is generally used to simulate the mechanical 
behavior of balls. During implementation, a guideway is usu-
ally pre-stressed between the balls and the carriage/rail. If the 
guideway is under uniform downward loads only, deforma-
tions for each ball are identical and the normal stiffness (Kn) 
adopted in the Hertz Contact Theory is also assumed to be 
identical. Because of the symmetry of the system, each mode 
shape, i.e. RYLf ( Yf ), PVLf ( Pf ), PVHf ( Vf ) or RYHf ( Rf ), is 
related to one parameter only. However, once the bending 
moments are added, loadings in balls are not symmetrical and 
the Kn becomes unequal. Mode shapes RYLf ( Rf .+ Yf ), 

PVLf ( Pf + Vf ), PVHf ( Pf + Vf ) and RYHf ( Rf .+ Yf ) become 
relative to two parameters each (see following derivations in 
this report). Therefore, in a guideway the influence of these 
moments upon dynamic behavior is worthy of study here. 

In the past, there have been numerous studies using Hertz 
Contact Theory. For example, Lynagh [1] and Hernot [2] sep-
arately discussed the vibration and stiffness matrix of ball 
bearings via nonlinear relationships from the Hertz Contact 
Theory. Pimsarn and Kazerounian [3] also put forward the 
theory of PISE (pseudo-interference stiffness estimation) 
based on Hertz’s theory, which can be used to rapidly obtain 
gear stiffness. In terms of the study of ball-type linear guide-
ways, Ohta and Hayashi used an energy balance method to 
analyze the lower rolling, yawing, pitching, vertical and high-
er rolling of the carriage, as well as natural vibration fre-
quency of first/second/third flexural, in combination with La-
grange’s Equation and the finite element models [4, 5]. Wu 
and Chang [6] studied dynamic behaviors between the balls 
and the carriage/rail using a three-dimensional surface-to-
surface Hertz Contact Finite Element Model, and verifying 
with experiments they found that the finite element model was 
more accurate than the generally used one-dimensional and 
two-dimensional point-to-point contact simulations. In previ-
ous works, we only considered the dynamic behaviors of a 
single linear guideway in absence of external forces [6]. Re-
cently, Yi [7] investigated the dynamic properties of the LM 
Guide System, by using the equivalent stiffness of the Hertz 
Contact Model. 

Our current work studied the changes of contact interface of 
balls due to the external moment loadings applied to the slide 
block, and further explored the impact effect of such moments 
to understand the dynamic characteristics of a linear guideway. 
Here, the simulation of a contact element algorithm from our 
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previous work [6] was applied to the contact interface of balls 
to study the nonlinear characteristics. In the study, first the 
normal stiffness of one-dimensional point-to-point contact 
was calculated and vibration frequencies were derived to dis-
cuss the differences from the combined energy balance from 
Lagrange’s Equation. With a view of the contact between the 
ball and the carriage/rail, Hertz’s interface mode initiated by 
our previous work was used to derive the interface stiffness in 
all contact components to obtain the dynamic behaviors of a 
linear guideway under bending loads. Then, the finite element 
method was used to simulate such a ball-type linear guideway. 
Discussion is provided regarding the difference in frequencies 
and modal shapes between various models compared with 
experiments, and the effects of dynamic characteristics are 
shown by drawing up various modal patterns in the last part of 
this report.  

 
2. Contact stiffness of rolling interface 

In Hertz’s Contact Theory it is assumed that the relationship 
between the applied load and deformation at the contact point 
is nonlinear when two objects come into contact (Johnson [8]). 
So, for a linear guideway mechanism, the deformation of the 
groove will become greater with the increase in the applied 
load on the rolling ball and hence the contact stiffness of the 
interface also rises. Thus, the dynamic behavior of the linear 
guideway is presented with more complicated phases. There-
fore, in order to understand the correct dynamic characteristics 
of a linear guideway, the contact stiffness must be properly 
defined, referring to Johnson [8] and Goldsmith [9]. The algo-
rithm for calculating the stiffness based on Hertz’s Contact 
Theory is described in the following. 

Fig. 1 shows the contact relationship between the deforma-
tion and the applied load. When a compressive load F is ap-
plied, the contact area of these two objects deforms a value of 
α in the normal direction and presents an elliptic shape. The 
configuration of deformation can be expressed as 
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where α is the normal deformation of the contact area, Kh is 
the constant and δ i, δ1, δ2 are material properties of 
Hertz’s Contact Theory, E is Young’s Modulus, μ is Poisson’s 
Ratio of Materials, and a is the semi-major and b is the semi-
minor of the contact ellipse. Constants A, B, qa, qb, and qk are 
taken from the surface geometry (Goldsmith [9]). In this study, 

the configuration of contact in a linear guideway is simplified 
with a sphere of radius R1 and a cylindrical cup of radius R2 
(see Fig. 2). Therefore, we have
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From Eq. (1), the normal stiffness can be obtained as 
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3. Analytical approach 

3.1 Natural frequency of the rigid-body carriage 

In mathematical modeling, the linear guideway is consid-
ered as a spring mass system in which the rail and carriage are 
modeled as rigid bodies and connected with a series of spring 
elements with adequate spring stiffness. The coordinate sys-
tem and vibration mode of the carriage are illustrated in Fig. 

 
       (a) Front view                  (b) Side view 
 
Fig. 1. Loadings and deformed shapes at contact boundary. 
 

 
(a) 
 

 
(b) 

 
Fig. 2. (a) Schematic of a linear guide system; (b) geometry of the 
rolling ball in contact with rail and carriage. 
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3(a), where the origin of the coordinate is located at the mass 
center of the carriage block and the sliding direction of the 
carriage block is along the x-axis, β is the contact angle of the 
rolling ball, d and e are the distances from the contact point 
between the rolling ball and carriage to the x-y plane and the 
x-z plane, respectively, and lL is the length of the loading zone 
of the balls. For such a spring mass system, we can define the 
vibration mode associated with the motion degrees of freedom. 
As shown in Fig. 3(b) (NSK [10]), the main motion in a verti-
cal direction is called the vertical vibration mode, the rocking 
motion θ about the y-axis is called the pitching vibration mode, 
the rocking motion ψ about the z-axis is called the yawing 
vibration mode and the rocking motion φ about the x-axis is 
called the rolling vibration mode. 

Since the linear spring is perpendicular to the x-axis, the 
displacement along the x-axis is not considered. In addition, in 
Fig. 3(a), a spring element is introduced at the location of the 
ball bearing and quantified with the stiffness Kn in the normal 
contact direction, which is the contact stiffness of the rolling 
ball against the raceway groove and is determined based on 
the Hertzian Theory. Using this simplified model and follow-
ing Ohta and Hayashi [5], the governing equations of the five 
degrees of a freedom model were derived in terms of the ap-
plication of Lagrange’s approach to the potential energy of the 
linear guideway system. 

The natural frequencies of the vibration of the carriage are 
shown at the conclusion of our paper (for details, see Appendix). 
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In Eqs. (9)-(14), M is the mass of the carriage, ZL is the av-

erage number of balls existing at the load zone, Jx, Jy and Jz 
are the moments of inertia about the x-axis, y-axis and z-axis, 
respectively, l1i, l2i, li are the locations of the ith ball or spring 
element measured from the y-z plane, and subscripts 1 and 2 
represent the left and right rows of raceways, respectively 
(shown in Fig. 4). 

 
3.2 Moment effects on natural frequency of the rigid-body 

carriage 

Moments are usually produced by unbalanced loads distrib-
uted on the carriage. Under such a condition, rolling balls on 
both sides of the raceway may experience different extents of 
contact loading, which in turn induce different normal stiff-
ness Kn at the rolling interface and hence affect the vibration 
characteristics of the guideway. To consider the moment ef-
fect on the natural frequency of the rigid-body carriage, we 

    (1) Pitching (θ )    (2) Rolling ( φ )     (3) Yawing (ψ ) 
 
Fig. 3. Coordinate system describing the motion mode of carriage, in 
which β is the contact angle, u and v are the displacements in the y-axis 
and z-axis, respectively. φ, θ and ψ are the angular displacements
about the x-axis, y-axis and z-axis, which are termed pitching, rolling
and yawing motion, respectively (NSK Ltd.).  

 

 
 
Fig. 4. Location of the ith ball or spring element at right row or left 
row of raceways, which is measured from y-z plane. 

 

 
 
Fig. 5. Modeling of the rolling contact by using a spring element with 
normal stiffness Kn. 
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derived an equilibrium equation for the carriage subjected to 
moment loading cases, represented by MY here. In Fig. 5, the 
moment is applied on the carriage block along a y-axis direc-
tion, and the natural frequencies of the vibrations of the car-
riage are stated later in the paper (for details, see Appendix). 
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In Eqs. (22) and (23), the normal stiffness Kni is the ith ball 

or spring element existing at load zone. 

 
4. Finite element approach 

Apart from the analytical approach, factors influencing the 

dynamics of a linear guide system are considered in this study. 
All components in the linear guideway are assumed to be elas-
tic and the contact status coming from the elastic contact de-
formation of the groove of the raceway and carriage is consid-
ered as a three- dimensional surface mode. 

Fig. 6 shows the 3-D finite element model of a linear gui-
deway mechanism with the specifications listed in Table 1. 
The contact configuration within this mechanism is depicted 
in Fig. 7, in which the two rows of balls roll between the car-
riage and raceway. Each ball is meshed with an adequate 
number of brick elements, having a total mass equivalent to 
the ball mass. In order to model the contact characteristic of 
the rolling interface, the contact elements with zero thick-
nesses are applied to the upper and lower sides of each ball. 
The stiffnesses Kn of such contact elements are calculated 
according to the formulae described in section 2. In the finite 
element simulation, hexahedron solid elements are adopted. 
The carriage block, with end caps at both sides, is modeled 
with 3830 elements and 480 elements, respectively, while the 
rail is modeled using 2158 elements. As a whole, there are 
6648 elements and 9396 nodes applied in this system for finite 
element analysis. The material of the components, such as the 

Table 1. Specifications of the linear guide system. 
 

Carriage length 65.9 mm 

Carriage width 59 mm 

Carriage height 22 mm 

Rail length 500 mm 

Rail width 20 mm 

Rail height 15.5 mm 

Diameter of steel ball 4.763 mm 

Total number of balls 50 

Number of row 2 

Contact angle β 45° 

Load zone length lL 43 mm 

Mass of carriage, M 0.313kg 

Inertial moment about the x-axis, JX 9.938 x 10-5 kg-m2 

Inertial moment about the y-axis, JY 6.136 x 10-5 kg- m2 

Inertial moment about the z-axis , JZ 1.394 x 10-4 kg- m2 

d 7.37 mm 

e 10.3 mm 

 

 
 
Fig. 6. The finite element model of linear guide system, including rail, 
carriage, rolling ball and end caps. 
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ball, carriage and rail, is steel with the properties of Young’s 
Modulus E = 206GPa, and Poisson’s Ratio ν = 0.30, density 
ρ = 7800 Kg/m3, while the end caps have properties of 
E = 3.57GPa, and Poisson’s Ratio ν = 0.30, density ρ = 1400 
Kg/m3. Again, the stiffness KC was assigned between the car-
riage block and the ball bearing, and the stiffness KR between 
the ball bearing and rail. For simplification in computation, all 
contact surfaces were assumed to have the same values, name-
ly, KC = KR = Kn. 

 
5. Experimental measurements 

Here, modal tests were conducted to measure the vibration 
characteristics of workshop-supplied guideways. Fig. 8 shows 
the experimental configuration for measuring the vibration of 
the linear guide system. An accelerometer was attached to 
different positions on the carriage. Accelerometer A was used 
to measure the vertical mode of the carriage, accelerometer B 
measured the pitching mode and accelerometer C measured 
the yawing and rolling modes. To investigate the preload ef-
fect, two linear guideways with different moments in the y-
axis direction were employed during experiments (refer to Fig. 
5). In these experiments, the vibration amplitudes were re-
corded and stored in a digital spectrum analyzer after hammer-
ing the carriage along the measuring direction. 

The vibration spectra corresponding to the three measuring 

points A, B and C are depicted in Fig. 9. The main peaks of 
each measurement point were generalized to obtain the fun-
damental frequency, and the associated vibration modes can 
be identified by comparing them to the mode shapes predicted 
by the finite element approach. 

 
6. Results and discussions 

6.1 Natural frequency of carriage 

The natural frequencies, Yf , Pf , Vf  and Rf , corresponding 
to different vibration modes were calculated by substituting 
the constants in Tables 1 and 2 into the mathematical models 
described previously. The results obtained from an analytical 
approach and finite element simulation are listed in Table 3 
and depicted in Fig. 10 for comparison. It can be seen from 
Fig. 10 that the 1-D contact model predicts the natural fre-
quencies to be higher than the frequency corresponding to the 
finite element contact model. This can be easily realized be-
cause the ball, carriage block and rail were all assumed to be 
rigid and only the deformation of the contact interface was 
considered in the analytical calculations. 

Comparison of results obtained from finite element simula-
tion and analytical calculations also shows that the 1-D point-

 
 
Fig. 7. Finite element mesh of transverse cross section, showing the 
contact configuration between carriage and rail, in which each rolling
ball is meshed using brick elements with a mass equivalent to the ball.
 

 
 
Fig. 8. Configuration of modal experiment and accelerometer positions 
(A, B, C) for measuring various vibration modes. 
 

Table 2. Normal stiffness Kn of the linear guide system. 
 

ith ball MY = 0 MY =1.45 N-m MY = 2.90 N-m MY = 4.35 N-m

Kn1 17.8 x 106 N/m 15.7 x 106 N/m 12.9 x 106 N/m 7.6 x 106 N/m

Kn2 17.8 x 106 N/m 16.3 x 106 N/m 14.5 x 106 N/m 12.0 x 106 N/m

Kn3 17.8 x 106 N/m 16.8 x 106 N/m 15.7 x 106 N/m 14.5 x 106 N/m

Kn4 17.8 x 106 N/m 17.3 x 106 N/m 16.8 x 106 N/m 16.3 x 106 N/m

Kn5 17.8 x 106 N/m 17.8 x 106 N/m 17.8 x 106 N/m 17.8 x 106 N/m

Kn6 17.8 x 106 N/m 18.2 x 106 N/m 18.6 x 106 N/m 19.0 x 106 N/m

Kn7 17.8 x 106 N/m 18.6 x 106 N/m 19.4 x 106 N/m 20.2 x 106 N/m

Kn8 17.8 x 106 N/m 19.0 x 106 N/m 20.2 x 106 N/m 21.2 x 106 N/m

Kn9 17.8 x 106 N/m 19.4 x 106 N/m 20.8 x 106 N/m 22.1 x 106 N/m

 

 
         (a) MY =1.45 N-m            (b) MY =2.90 N-m 
 
Fig. 9. Vibration spectra of linear guideway. 
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to-point contact model predicts a higher frequency than the 
finite element method using a surface contact model. This is 
due to the fact that the finite element model was assumed to be 
an elastic structure and hence possesses a lower structural 
stiffness than a rigid one in an analytical approach. Because of 
this, the surface-to-surface contact mode with Hertzian contact 
stiffness demonstrates the contact characteristic of the rolling 
contact interface in a realistic way. The predicted finite ele-
ment vibration modes of the linear guide system correspond-
ing to each frequency are further depicted in Fig. 11. This 
figure clearly shows the variety of mode shapes in a linear 
guide system, which includes the mode shape of yawing, 
pitching, vertical and rolling vibration. The frequencies of 
these modes are in the sequence: yawing < pitching < vertical 
< rolling. 

 
6.2 Effect of moments 

The natural frequencies, RYLf , PVLf , PVHf  and RYHf , 
corresponding to different vibration modes were calculated by 
substituting the constants in Tables 1 and 2 into the mathe-
matical models. The natural frequencies of the carriage block, 
estimated by the proposed analytical method and finite ele-
ment approach, are listed in Table 3. Both approaches pre-
dicted the same vibration modes. The vibration modes of the 
linear guide system corresponding to each frequency are fur-
ther depicted in Fig. 11. 

To investigate the effect of the loading conditions on the vi-

Table 3. Natural frequencies at different vibration mode of a linear 
guide system. 
 
(a) MY ＝ 0 N-m 
 

Frequency (kHz) 
Degree of 
freedom Mode Experimental 

measurement FEM 
1-D  

Point-to-point
contact model

ψ Yawing 2.2( Yf ) 1.82( Yf ) 2.10( Yf ) 

θ Pitching 2.7( Pf ) 2.65( Pf ) 3.16( Pf ) 

v Vertical 2.9( Vf ) 3.26( Vf ) 3.60( Vf ) 

φ ,u Rolling 4.7( Rf ) 4.55( Rf ) 5.08( Rf ) 

 
(b) MY ＝1.45 N-m 
 

Frequency (kHz) Degree 
of  

freedom
Mode Experimental 

measurement FEM 
1-D  

Point-to-point
contact model

ψ,φ ,u Lower 
rolling - yawing 2.1( RYLf ) 1.81( RYLf ) 2.08( RYLf )

θ,v Lower 
Pitching - vertical 2.4( PVLf ) 2.63( PVLf ) 3.12( PVLf )

v ,θ Higher 
Pitching - vertical 3.0( PVHf ) 3.26( PVHf ) 3.61( PVHf )

φ ,u,ψ Higher  
rolling - yawing 4.7( RYHf ) 4.54( RYHf ) 5.06( RYHf )

 
(c) MY ＝2.90 N-m 
 

Frequency (kHz) 
Degree of 
freedom Mode Experimental 

measurement FEM 
1-D  

Point-to-point
contact model

ψ,φ ,u Lower 
rolling - yawing 1.7( RYLf ) 1.78( RYLf ) 2.03( RYLf )

θ,v Lower 
Pitching - vertical 2.5( PVLf ) 2.56( PVLf ) 2.99( PVLf )

v ,θ Higher 
Pitching - vertical 3.1( PVHf ) 3.27( PVHf ) 3.66( PVHf )

φ ,u,ψ Higher  
rolling - yawing 4.7( RYHf ) 4.51( RYHf ) 5.03( RYHf )

 

 
 
Fig. 11. Mode shapes of carriage at different vibration frequencies, 
predicted by finite element analysis. Flow chart for the correction of 
the roll forming process design. 

 
(a) Yawing and vertical modes 

 

 
(b) Pitching and rolling modes 

 
Fig. 10. Comparisons of the natural frequencies of rolling guides with 
different preloads. Results are obtained from numerical predictions and 
experimental measurements, respectively, in which the bold symbols 

 represent experimentally measured values. 
 



 J. S.-S. Wu et al. / Journal of Mechanical Science and Technology 26 (3) (2012) 671~680 677 
 

  

bration mode, some special modes are depicted in Fig. 12 for 
comparison. It was found that when the carriage block is free 
of moment, it will vibrate at natural frequencies Yf , Pf , Vf  
and Rf . However, if a moment MY is applied to the carriage 
block, it will vibrate at frequencies RYLf , PVLf , PVHf  and 

RYHf . As observed in Fig. 12, the carriage block behaves with 
different mode shapes under the absence of moment or in the 
event of moment. Take the second and third modes, for exam-
ple, when the carriage block is not subjected to moment, the 
natural frequencies Pf  and Vf  of the carriage block are 
only related to the variable θ rotating about the y-axis and 
variable v shifting along the z-axis, respectively. In cases 
where the carriage block is subjected to moment, the natural 
frequencies PVLf and PVHf  of the carriage block are obviously 
related to both displacement components of θ and v. 

To manifest such differences in vibration modes more 
clearly, we depicted the mode shapes in different views. It can 
be seen from Fig. 13 that the third mode in the z-direction was 
induced by the moment loading and resulted in a vibration 
mode with pitching and vertical motion, instead of the only 

vertical mode occurring under the absence of moment; while 
the front and top views of the third mode show that the domi-
nating vibration mode will change from vertical motion into a 
combination of pitching and vertical motion. This vertical 
motion is contributed to by the displacement component v that 
is initiated by moment loading. 

Based on findings from this study, some other factors af-
fecting the dynamic behavior of the guide can be presumed. 
For example, the moment loading effect may arise due to an 
unevenly distributed load on the carriage or a load applied 
from a different direction, which is expected to cause different 
contact forces acting on the rolling balls. This may further 
generate various contact stiffnesses at different rolling inter-
faces, especially at each row of ball grooves and hence enable 
the guide to exhibit unexpected vibration characteristics, in-
cluding mode shapes and frequencies. Such an effect was 
demonstrated by the currently proposed finite element ap-
proach. The final results obtained from this study further sug-
gest that the load acting on the carriage should be held ade-
quately in place to maintain the rolling guideway’s operation 
with good dynamic performance. 

 
7. Conclusions 

This study focused on the investigation of unbalanced bend-
ing effects on the dynamic behaviors of a rolling guideway. 
Some conclusions can be summarized from the experimental 
results, the analytical and the finite element approach as fol-
lows: 

(1) We can obtain suitable stiffness using the nonlinearity 
of the Hertzian Contact Theory, according to the contact ge-
ometry between the rolling ball and raceway of the carriage 
block or linear guideway system. 

(2) When the bending moment is applied to the carriage, the 
contact stiffness at each rolling contact site varies with the 
contact force of the rolling ball, which is due to unevenly dis-
tributed loading on the carriage of the guideway system. 

(3) When the carriage block is not subjected to loadings like 
a bending moment, some modal frequencies, such as rolling, 
yawing, pitching, and vertical frequencies, are only related to 
one motion degree of freedom. However, when the carriage is 
subjected to loading moments from different directions, the 
rolling guideway behaves in a vibration mode, coupled by 
multi-degrees of freedom. In this paper, the vibration behavior 
includes different mode shapes at (a) a lower rolling-yawing 
natural frequency, (b) a higher rolling-yawing natural fre-
quency, (c) a lower pitching-vertical natural frequency, and 
(d) a higher pitching-vertical natural frequency. 

(4) According to the Hertzian Contact Theory, the contact 
stiffness between the rolling ball and raceway presents a non-
linear changing tendency along with the changing of contact 
force between the two objects in the linear rolling guideway 
system. Therefore, this study first used static balance to ana-
lyze the contact force between each rolling ball and the car-
riage block or raceway, and then calculated the contact stiff-

 
Fig. 12. Vibration modes under different loading conditions Flow chart 
for the correction of the roll forming process design. 

 

 
 
Fig. 13. Moment effect on vibration modes of linear guide system. 
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ness between them using the nonlinearity nature of the 
Hertzian Contact Theory. Finally, they were led into the finite 
elements to analyze the modal of the entire system. 

(5) This paper shows that, the results predicted by a finite 
element approach using a surface contact model are in good 
agreement with the experimental measurements, when com-
pared with the analytical approach using a linear spring ele-
ment. It is believed that the proposed method, as based on the 
Hertzian Contact Theory, can provide a more realistic way for 
modeling a rolling contact interface. 
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Appendix 

Using the notation used in section 3.1 and 3.2, the total ki-
netic energy EK can be expressed as: 

2 2 2 2 21 1 1 1 1 .
2 2 2 2 2K x y zE M u M v J J Jφ θ ψ= + + + +� � �� �
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The potential energy Ep is given by: 
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In the above equations, EP is the potential energy of normal 

spring, δ1i and δ2i are the displacement of the ith ball exist-
ing at the left and right load zone, respectively, ZL is the aver-
age number of balls existing at the load zone, l1i, l2i, li are the 
location of the ith ball or spring element measured from y-z 
plane, and the subscript 1 and 2 represent the left and right 
row of raceways, respectively (shown in Fig. 4).  

Applying the Lagrange’s approach to Eqs. (A1) and (A2), 
we can derive the motion equation with respect to different 
degree of freedom. 
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In the above equations, Kni is the stiffness of the ith ball exist-

ing at the load zone, which is determined base on Hertzian the-
ory, M is the mass of the carriage, Jx、Jy and Jz are the moments 
of inertia about the x-axis, y-axis and z-axis, respectively. 

Since Eqs. (A5), (A7) and (A9), the displacement u along 
the y-axis, the angular displacement φ about x-axis and the 
angular displacement ψ about z-axis are mutually coupled, we 
may assume solution is of the form 
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The three solutions 2

20ω , 2
21ω and 2

24ω  ( 2 2 2
20 21 24ω ω ω< < ) 

can be obtained by solving above Eq. (A11). 
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The lowest rolling-yawing natural frequencies of the vibra-

tion of the carriage are 
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The highest rolling-yawing natural frequencies of the vibra-

tion of the carriage are 
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Since Eqs. (A6) and (A8), the displacement v along the z-

axis is coupled with the angular displacement θ  about y-axis, 
we may assume that the solution is of the following form: 
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Finally, the two solutions 2

22ω  and 2
23ω  ( 2 2

22 23ω ω< ) can 
be obtained by solving above Eq. (A19). 
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The lowest pitching-vertical natural frequencies of the vi-

bration of the carriage are 
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The highest pitching-vertical natural frequencies of the vi-

bration of the carriage are 
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If no moment MY is applied to the carriage block, the nor-

mal stiffness niK  of the ith ball existing at load zone are 
equal. 
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The scalar quantities 24c , 26c  and 28c  become zero. The 

natural frequencies can be obtained as follows: 
The yawing natural frequency of the vibration of the car-

riage is 
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The pitching natural frequency of the vibration of the car-

riage is 
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The vertical natural frequency of the vibration of the car-
riage is 
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The rolling natural frequencies of the vibration of the car-

riage are 
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