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ABSTRACT

Multiple-gyre ocean models have a weaker mean subtropical circulation than single-gyre calculations with
the same viscosity and subtropical forcing. Traditionally, this reduction in circulation is attributed to an
intergyre eddy vorticity flux that cancels some of the wind input, part of which does not require a
Lagrangian mass exchange (theory of dissipative meandering). Herein the intergyre eddy vorticity flux is
shown to be a controlling factor in barotropic models at high Reynolds number only with exactly antisym-
metric gyres and slip boundary conditions. Almost no intergyre flux occurs when no-slip boundary condi-
tions are used, yet the subtropical gyre is still significantly weaker in multiple-gyre calculations. Sinuous
modes of instability present only in multiple gyres are shown here to vastly increase the eddy vorticity
transport efficiency. This increase in efficiency reduces the mean circulation necessary for equilibrium. With
slip boundary conditions, the intergyre eddy transport is possibly much larger. However, with wind forcing
relevant for the ocean—two unequal gyres—a mean flow flux of vorticity rather than an eddy flux between
the regions of opposing wind forcing is increasingly important with increasing Reynolds number. A physical
rationalization of the differing results is provided by diagnosis of the equilibrium vorticity budget and eddy
transport efficiency. Calculations varying 1) boundary conditions, 2) sources and sinks of vorticity, 3) eddy
transport efficiency, and 4) the degree of symmetry of the gyres are discussed.

1. Introduction nonlinear barotropic models. A contrast is drawn be-
tween the vorticity dynamics of models with single-gyre
wind forcing (vorticity input always negative) and mul-
tiple-gyre wind forcing (vorticity input of both signs).
Different boundary conditions and frictional operators
are also shown to have meaningful effects. Analysis of
the vorticity budget proves a powerful tool in the oce-
anically relevant parameter range far from the onset of
instability.

A fixed-depth barotropic model is used, which obeys
the nondimensional vorticity equation, (1):

Since the introduction of frictional western boundary
current models by Stommel (1948) and Munk (1950),
less viscous models capable of producing strongly west-
ern-intensified flows have been sought. Reducing the
friction while maintaining a realistic circulation is a dif-
ficult task. The ocean is a forced—dissipative system, so
purely inertial theories (e.g., Fofonoff 1954; Charney
1955; Carrier and Robinson 1962) are unable to close
the budgets of energy and vorticity and determine the
circulation strength for a wind-driven ocean.

This paper focuses on the mechanisms by which the a A 5 3 _
vorticit}FI) brl)ldget1 is closed in a number of related highly at V&Y dug = 8V V) = wp, (1)

where

(=Vi (2

! The energy budget is not as easily handled, as energy input is
solution dependent (Scott and Straub 1998) and energy fluxes are

difficult to define (Plumb 1982). In practice, much of the energy
analysis is redundant with vorticity analysis (Fox-Kemper 2003).
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The variables s [streamfunction: u = (—ad/dy, d/ox)]
and { (relative vorticity) are determined during integra-
tion. The calculations are differentiated by the values of
the parameters: §, (Charney 1955: inertial boundary
layer width), 8¢ (Stommel 1948: frictional boundary
layer width), and §,, (Munk 1950: frictional boundary
layer width). A unit vector in the zonal direction is X.


https://core.ac.uk/display/4168682?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1264

All of these widths are relative to the zonal basin ex-
tent. The time mean of (1) yields

V- &+ sl + sl — 85,V + 8V =wp.  (3)

Overbar denotes a mean, and primes denote perturba-
tions about it. Following Haynes and Mclntyre (1987),
note that (1) and (3) are in flux form, and so vorticity is
neither created nor destroyed between its input by the
wind (wj) and its removal through the basin walls by
either lateral or bottom friction. The fluxes in the
square brackets will be called respectively B flux, mean
flux, eddy flux, lateral friction flux, and bottom friction
flux.

Consider for a moment a time mean calculated over
a time interval longer than the eddy time scales, but
shorter than the total postequilibration time interval. If
the vorticity fluxes are not in balance, as during spinup,
then a circulation adjustment must occur since the vor-
ticity contained within a mean streamline (where § =
) is directly related to the circulation about the
streamline, I":

IT| = fjvztpdA = 3ng!f'ﬁds =[wlL. @)
V=i e

If the vorticity contained increases, either the mean
velocity magnitude (|{z7)|) increases or the length of the
mean streamline (L) increases. (The angle brackets de-
note the average value along the streamline.) Vorticity
trapped between two streamlines has a similar effect on
the difference in circulation of the two streamlines. In
this sense, the transport and pooling of vorticity con-
trols the circulation strength. For the remainder of the
paper, the time mean will be considered to be taken
over the second half of the total integration, thus after
equilibration.

Many fluxes play a role in balancing the vorticity
budget within each streamline and within the entire
basin. In the basin interior, away from the boundary
currents and recirculations, the Sverdrup (1947) bal-
ance often dominates (i.e., the wind input balances the
B flux divergence). However, the 8 flux cannot trans-
port net vorticity across a closed mean streamline, as
integrating (3) indicates:

\(ﬁ ('l + 8V — 83,V -hids = ff wgrdA. (5)
"ll( Ezwc
The B flux can affect the vorticity distribution within a
mean streamline, but it cannot reduce or increase the
total. The same is true for the mean flux; only the fric-
tional and eddy fluxes can affect the total. At the
streamline coinciding with the basin boundary only fric-
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tional fluxes can act to ultimately remove any net vor-
ticity input as 0 = u’ - fi at the boundary.

To achieve (5), either frictional fluxes or eddy fluxes
must act prominently somewhere along every stream-
line enclosing a net source of vorticity (as noted by
Niiler 1966). The nondimensional parameters antici-
pate which fluxes are expected to be important in
this process; the frictional widths, §,, and &g, can be
compared to the inertial width, 5, A boundary layer
Reynolds number (Re = §;/83,) is useful in this com-
parison.?

When the Reynolds number is less than 1, frictional
effects are expected to dominate in the boundary cur-
rent. For example, in the Munk (1950) problem where
Re = 0, a B flux receives the wind vorticity input [Sver-
drup (1947) balance] and transports it westward to the
boundary current. There it is exchanged to a frictional
flux and removed from the basin. If 0 < Re = 1, then
the B flux and mean flux combine to transport the wind
vorticity input to the frictional region of a western
boundary current, in that case a visco—inertial boundary
current.

Even though eddies may be present, eddy vorticity
fluxes are weak when Re = O(1). In this regime, many
useful studies exist of steady solutions (Moro 1987,
1988; Cessi and Ierley 1990; Ierley and Sheremet 1995;
Speich et al. 1995; Primeau 1998) and the onset of time
dependence through unstable perturbations about the
mean (Moro 1990; Speich et al. 1995; Sheremet et al.
1997; Dijkstra and Katsman 1997; van der Vaart et al.
2002). Low-frequency variability onset is particularly
interesting (e.g., Berloff and Meacham 1998; Berloff
1998; Nauw and Dijkstra 2001; Chang et al. 2001) and is
related to the onset of gyre symmetry-breaking modes,
a subject that will be important here. However, since
these analyses begin with a steady solution where eddy
fluxes cannot contribute, only the existence of eddies
can be studied, not the effects of eddy fluxes on the
equilibrium flow.

The focus here is on Reynolds number greater than
1, where inertial and eddy effects are expected to domi-
nate. The boundary layer Reynolds number relevant
for oceanic flows is likely to be O(10-1000).> In this
regime, II'in and Kamenkovich (1964) and Ierley and
Ruehr (1986) demonstrate that a steady western
boundary current cannot exist. Heuristically, the sea-

2 Other authors use a basin-dimension Reynolds number that is
a factor of L/§; larger.

3 The Reynolds number depends on what the model friction
represents, e.g., eddy viscosity or proxy for bottom topography,
and is best taken as a model-specific quantity rather than a mea-
surable quantity.
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ward portion of the visco-inertial boundary current
does not enter the frictional sublayer and thus cannot
dissipate enough relative vorticity. Thus, in this highly
nonlinear regime, equilibrium occurs by 1) the current
becoming unsteady (Edwards and Pedlosky 1998; Fox-
Kemper and Pedlosky 2004), 2) formation of a recircu-
lation gyre (Ierley 1987), or 3) vorticity exchange with
an opposing wind forcing region (Harrison and Holland
1981; Marshall 1984). In case 1, eddy fluxes transport
vorticity across closed interior streamlines to a fric-
tional region nearer the boundary, thus eddy fluxes sat-
isfy (5) for interior streamlines and frictional fluxes do
so for near-boundary streamlines. This process will be
called an eddy flux to the frictional sublayer, and results
in a boundary current where eddy fluxes are important
at first order (Fox-Kemper 2004). In case 2, the stream-
lines are rearranged—which also affects the frictional
and eddy fluxes—and thereby (5) is satisfied. For ex-
ample, contact of the recirculation gyre with the eastern
boundary radically changes the source of frictional vor-
ticity and the eddy fluxes (Fox-Kemper and Pedlosky
2004). In case 3, vorticity is transported from a region of
vorticity input to a region with opposing input, and thus
the net burden is reduced. This reduction can occur
either by intergyre mean flux, where the mean stream-
lines move to enclose opposing wind input, thus reduc-
ing the right-hand side of (5), or by an intergyre eddy
flux, where eddies flux vorticity across mean stream-
lines (Harrison and Holland 1981; Marshall 1984). An
intergyre eddy flux does not require a permanent ex-
change of fluid; Lozier and Riser (1990) propose that
dissipative meandering also occurs, where fluid is tem-
porarily exchanged and acted on by dissipation before
returning.

A large feedback from eddies to the mean flow re-
quires determination of the eddy fluxes to find the
mean flow, but the eddy fluxes prove rather sensitive
and subtle, even in a barotropic model. Thus for sim-
plicity, baroclinic and topographic effects are ignored
here, although they are undoubtedly significant (see
Ghil et al. 2002; Berloff 2005; Marshall and Stephens
1998; Griffiths and Veronis 1997; Griffiths 1998; Becker
and Salmon 1997; Hughes and de Cuevas 2001). The
simplicity of the models used here allows for careful,
well-resolved study of a higher and wider range of
Reynolds numbers than is possible in more inclusive
models. The more extensive analysis of the barotropic
model readily extends to understanding more complex
models.

Though simple, the barotropic model has rich eddy
dynamics. Eddy fluxes are often assumed to behave
similarly to frictional or “eddy viscosity” fluxes, mixing
more where mean gradients are largest. Yet in this
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model, the location of the largest gradients in the mean
vorticity do not coincide with the largest eddy fluxes
because the largest gradients act as barriers to eddy
transport (Bower and Lozier 1994; Rogerson et al.
1999; Yuan et al. 2004). Heuristically, eddy viscosity
treats eddy mixing as an analog to the mixing by mol-
ecule movement. However, molecules are similar to
each other and have only limited interaction, while ed-
dies have structure and interaction with each other and
the mean flow related to their origin as an instability of
the mean flow. Here, eddy structure and interaction are
demonstrated to have a pronounced effect on the eddy
fluxes. Also, the diagnostic separation of the flow into
“eddy” and “mean” contributions understates the po-
tential interchange of the eddy and mean fluxes (a good
discussion on dynamically based categorization is Ber-
loff 2005). As the model obeys (1) not (3), the model
need not recognize the averaging done in postintegra-
tion calculation of (3). It is demonstrated that with a
change of boundary conditions or gyre symmetry the
role played by the eddy fluxes may go to the mean
fluxes. Thus resolved eddies have a rather different re-
sponse to parameter changes than frictional or eddy
viscosity fluxes.

Much of the action of eddy fluxes can be diagnosed
with an eddy efficiency. Eddies are both formed by and
destroyers of shear, so what equilibrium is struck is a
function of how efficient the eddies are at mixing away
the shear versus how unstable the shear is. A quantita-
tive measure of eddy efficiency can be constructed by
comparing the eddy fluxes to the frictional fluxes, simi-
lar to the Nusselt number of thermal convection. The
measure is defined as a ratio of integrals of fluxes across
a mean streamline ()

§ ('l + 8V — 83,V0) - i ds

Nug(,) == . (6
fﬁ (8, — 83,V0) - i ds

e

These integrals are calculated easily and accurately as
area integrals of the flux divergence (using Gauss’s
theorem) and, if more convenient, u may be substi-
tuted for u’{” since the uZ contribution vanishes due to
the region of integration:

j j V- (8l + 8V — 83,V0) dA

Nu,(p,) ==

Y (7)
f f V- (8;V — 83,V0) dA

b=y
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This definition naturally and uniquely selects for the
divergent eddy fluxes and ignores the rotational fluxes
(Fox-Kemper et al. 2003). For each mean streamline,
Nu, compares the total amount of cross-streamline vor-
ticity flux to the purely frictional flux.* If the eddies are
inconsequential, this number will be one. The more ef-
ficient the eddies are at fluxing vorticity across stream-
lines and reducing vorticity gradients, the larger Nu,
becomes. If the eddies are working upgradient (against
the friction), then Nu, is less than one. More discussion
of cross-streamline fluxes and Nu, can be found in Fox-
Kemper and Pedlosky (2004).

The following section provides details about the nu-
merical model and forcing used. The next section pre-
sents and analyzes the numerical results of the calcula-
tion and is broken into thematic subsections comparing
different sensitivities of the eddy fluxes. The final sec-
tion summarizes and concludes.

2. Models

As in Fox-Kemper and Pedlosky (2004), a Chebyshev
polynomial pseudospectral numerical barotropic model
is used in a B-plane rectangular basin. A single constant-
depth layer is assumed, so the flow is nondivergent and
only the vorticity equation is solved. The nondimen-
sional equations governing the model are (1) and (2).

The calculations are differentiated by the values of
the constant parameters (§,, 8, 8,,), as well as the initial
conditions, frictional boundary conditions on the
“solid” boundaries, and the wind forcing. The initial
conditions are usually resting (y = 0), except for the
double-gyre calculations. Most of the double-gyre cal-
culations are not started from a symmetry-breaking ini-
tial condition, which reduces the spinup time for rea-
sons discussed in section 3c. The boundary conditions
are slip ({ = 0) on the northern and southern “fluid”
boundaries and either slip or no slip (dy/dx = 0) on the
eastern and western solid boundaries. Impermeability
is imposed on all boundaries (¢ = 0). For most calcu-
lations §; = 0.02 and 8¢ = 0, except for the calculations
in Figs. 13 and 14.

Three different wind forcings (wg) are used, each
with a corresponding basin dimension. These forcings
and basins are constructed so that the subtropical gyre
is relatively unchanged as the subpolar gyre changes.
The single gyre has only subtropical forcing:

*Note that Nu, is a function of the mean streamline across
which it is calculated.

5 The calculations in Fig. 14 were unresolvable with §, = 0.02
and available computers, hence the increase to 8, = 0.06 for those
calculations.
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FiG. 1. Wind vorticity input, w, in the three models.

wp = —sin(my), V:0<x<1,0<y<1. (8

The double gyre has antisymmetric subtropical and
subpolar forcing:

wy = —sin(my), V:0<x<1,0<y<2. (9

The double-gyre forcing can be a misleading repre-
sentation of the ocean, as the two gyres are exactly
antisymmetric. The two-gyre forcing is a polynomial
approximation to smoothly combine the standard sub-
tropical wind forcing to a smaller, weaker subpolar
forcing than in the double-gyre forcing. The two-gyre
wy in (10) guarantees that the integrated vorticity input
rate to the subtropical gyre is 2/ as in the single- and
double-gyre forcings and that w, = 0 at the southern
boundary, at y = 1, and at the northern boundary. The
relative area and vorticity input to each gyre in the
two-gyre model are matched approximately to Pacific
Ocean conditions. The expression for the two-gyre wy; is

S5y 16y°  16y* Sy

2( N LF L 12 L

I GO D S
BT a L)1 59 12 4 5
3Ly sLy Ly 3L, 2L,

C11+4/21
==

v ~1.56, V:0<x<1,0<y<L,.
(10)
The three forcings are shown in Fig. 1.

Sufficient resolution is assured by the spectral decay
of relative vorticity and by comparison of calculations
at different resolutions. Typical resolutions are 257 X
257 modes for single gyre and 513 X 257 for double
gyre and two-gyre (although 769 X 257 was required for
some calculations). The calculations involving bottom
friction were run at marginal (257 X 129) resolution,
but the additional damping from the bottom friction
provides fair accuracy. It should be noted that the ir-
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F1G. 2. Contours of the time-mean streamfunction for different basins, wind forcing, and boundary conditions with Re = 5: (a) no-slip
single-gyre, (b) no-slip two-gyre, (c) no-slip double-gyre, and (d) slip double-gyre model. The wind input to the subtropical gyre is 2/
in all the calculations. The labeled arrows on the figure give the eddy vorticity flux as a percentage of the subtropical wind input across
the zero streamfunction contour dividing the gyres. The contour interval is 0.2, and shading indicates negative streamfunction.

regular Chebyshev collocation grid provides much
higher resolution in the boundary current: ten times
more “grid points” than is common in finite difference
calculations.

3. Numerical results

a. The effect of boundary conditions on intergyre
vorticity flux

Surprisingly, the frictional boundary conditions exert
a controlling influence on the amount of intergyre eddy
vorticity flux. Figure 2 shows that there is almost no
intergyre eddy vorticity flux with no-slip boundary con-
ditions. Double-gyre calculations with slip boundary
conditions result in the more traditional finding—that
there is a large intergyre eddy flux. The eddy flux across
y = 1is shown in Fig. 3.

Both dissipative meandering and Lagrangian fluid
exchange contribute to the intergyre eddy flux in the
slip double gyre. Snapshots of the relative vorticity evo-
lution where the boundary currents separate are shown
in Fig. 4. At time ¢ = 5035, the subpolar western bound-
ary current overshoots across the mean streamline de-
noting the gyre boundary (the gyre-dividing stream-
line), bringing anomalous positive relative vorticity into
the mean subtropical gyre. This intrusion produces a
negative vorticity flux. Note how the frictional flux
anomaly shown next to each snapshot reflects the over-
shooting boundary current. By r = 5070, the subpolar
vorticity anomaly left the boundary, partly by the

anomalous dissipation through the western boundary
(dissipative meandering), and the remainder has moved
into the basin interior. Note that the core of this sub-
polar eddy does not cross permanently into the sub-
tropical gyre; it returns to the subpolar gyre.

At t = 5075, some subtropical water intrudes into the
subpolar gyre. Because the subtropical water has
anomalous negative vorticity, the eddy flux across the
gyre boundary is negative, as for the subpolar over-

10-0 1 1 1 1 1 1 1 1 1
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S
5 0.0
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x
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= .
o
o .
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©-10.0 A
c
o .
he)
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X

FiG. 3. Direct estimates of eddy vorticity fluxes across y = 1 for
Re = 5 double-gyre calculations with different boundary condi-
tions. (The mean fluxes across y = 1 are negligibly small in com-
parison.)
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FIG. 4. Snapshots of the separation region of jet from the coast (0 < x < 0.6, 0.7 <y < 1.3) in the slip, double-gyre Re = 5 calculation.
Relative vorticity is shaded, darker is more negative, and lighter is more positive. The solid line denotes the average position of the
intergyre boundary streamline. Arrows denote the local instantaneous value of eddy vorticity flux, u’¢’. The line plot to the left of each
snapshot shows the anomalous frictional flux through the western boundary as a function of y. The lower right image shades the
time-mean eddy flux divergence with dark (light) for divergences (convergences).

shoot at r = 5035. The frictional flux anomaly again
reveals dissipative meandering. The last image in Fig. 4
shows that the eddy flux divergences agree with this
analysis of the intergyre eddy fluxes.

Significant dissipative meandering must occur near
the western boundary. A vorticity anomaly displaced
across the gyre-dividing streamline in the interior will
propagate as a Rossby wave packet and only dissipate
mildly. However, as shown in Fig. 4, if the anomaly is
near the boundary, significant dissipation can occur via

a frictional flux through the boundary before the
anomaly returns to its native gyre.

If it is assumed that the majority of dissipative me-
andering is at the boundary, a lower estimate of the
portion of the intergyre eddy flux due to dissipative
meandering may be calculated. The frictional flux per-
turbations shown in Fig. 4 are sometimes many times
larger at a given point than the mean frictional flux for
a given snapshot, but isolated in space near the gyre-
dividing jet. When only the frictional perturbations that
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FI1G. 5. (a), (b) Meridional velocity and (c), (d) relative vorticity near the boundary layer at y = 0.5 in the subtropical gyre for (a),
(c) no slip and (b), (d) slip calculations.

are of different sign than the mean are considered (i.e.,
those associated with vorticity anomalies from the
other gyre) and they are integrated along the boundary
of a gyre and averaged in time, 2.6 times as much vor-
ticity is fluxed through the boundary by dissipative me-
andering perturbations as by the mean frictional flux
for the calculation shown in Fig. 4. Since the intergyre
eddy flux including the dissipative meanders is 89% of
the total vorticity input to the subtropical gyre, this
indicates that approximately 28% of the total is due to
dissipative meandering.

As noted by Berloff et al. (2002), the initial crossing
of fluid parcels that are ultimately exchanged also oc-
curs primarily near the western boundary. Once a fluid
parcel crosses the gyre-dividing streamline in the west-
ern boundary current, it is usually swept in the jet to the
east and often they return to their native gyre as in Fig.
4. Occasionally, they end up crossing permanently into
the other gyre at the eastern end of the jet. A passive
tracer study (as in Berloff et al. 2002) or a lobe dynam-
ics study (as in Coulliette and Wiggins 2001) is needed
to determine how often this occurs and is beyond the
scope here, but the results of Berloff et al. (2002) sug-
gest that O(10%) of the trajectories switch gyres at this
Reynolds number [slightly larger than the largest Ber-
loff et al. (2002) used].

Both intergyre eddy flux mechanisms thus depend
critically on alternating overshooting of the boundary
current. The weak vorticity flux away from the bound-
ary in Fig. 3 reflects this dependence.

The intergyre eddy flux in the no-slip calculations
differs from that in the slip calculations for two reasons
(see Fig. 5). 1) Boundary current overshoot is reduced
due to the zero tangential velocity at the wall in the
no-slip calculations. Thus, the maximum magnitude of
no-slip vorticity flux is smaller than the slip maximum
in Fig. 3. 2) Even when an overshoot or eddy shedding
does occur from a no-slip boundary current, the relative
vorticity is not sign-definite as in the slip boundary cur-
rent (Fig. 5c versus Fig. 5d). As Stewart (1964, 1989)
points out, a no-slip boundary current under many cir-
cumstances transports no net vorticity because it ad-
vects both positive and negative relative vorticity (Fig.
5c). The vortices shed from the boundary current keep
approximately the vorticity distribution of the current,
thus a dipole of eddies typically results from the insta-
bility of the boundary current. If the dipole makes its
way into the other gyre, the vorticity advected tends to
cancel, which explains the positive-peak, negative-peak
shape of the no-slip flux in Fig. 3. The details of each
eddy shedding event determine if there is any differ-
ence between the two vortices in the pair, for example,
by viscous interactions with the boundary. The inter-
gyre eddy flux in no-slip calculations typically slightly
increases the amount of vorticity friction must remove
(e.g., Figs. 2b,c).

Thus, the boundary conditions strongly affect the
structure of the boundary current through their effect
on the structure of the eddies formed. Intergyre eddy
flux, by dissipative meandering or fluid parcel ex-
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FIG. 6. Comparison of two-gyre slip calculations with increasing Reynolds number. The arrow indicates the eddy flux across the mean
streamline dividing the gyres as a percentage of the wind input in the 0 < x < 1,0 < y < 1 region: (a) Re = 2.5, (b) Re = 5, and (c)

Re = 10.

change, seems limited to slippery boundary conditions
and occurs primarily in a narrow region near the
boundary.

b. Effects of gyre symmetry

The previous subsection shows that intergyre eddy
flux results from alternating overshooting of the bound-
ary current into the opposing gyre. This section ex-
plores the role of the relative strength of the gyres in
this overshooting process.

The double-gyre wind forcing can be misleading as a
representation of the ocean because, unlike the oceans,
it has exactly antisymmetric vorticity input. In the
ocean, the region occupied by the subpolar gyre is sig-
nificantly smaller, and the wind stress curl is also
smaller there. Thus the circulation input to the subpolar
gyre should be much weaker.

The two-gyre wind forcing is designed to study the
effects of gyre asymmetry. At low Reynolds number,
there is little difference in the dynamics of the two-gyre
and double-gyre calculations. The steady solutions in
both forcing/basin configurations exhibit separation
near the zero wind stress curl line, and the removal of
vorticity is frictional.

However, at higher Reynolds number, there is a sig-
nificant change in the structure of the slip two-gyre and
double-gyre models—the boundary current from the
stronger, subtropical gyre in the two-gyre model per-
manently overshoots (Fig. 6). The intergyre eddy flux in

the double-gyre solution requires alternation between a
subtropical and subpolar boundary current overshoot,
but this strict alternation is a singular case restricted to
the antisymmetric double-gyre model.

Intergyre mean flow appears to be the preferred
mechanism for sharing vorticity between the gyres in
slip calculations at high Reynolds number. As Fig. 6
reveals, the amount of eddy intergyre vorticity flux de-
creases and the mean flux increases as the Reynolds
number increases. It seems that at sufficiently high
Reynolds number, the recirculation of the stronger gyre
would take over the weaker gyre, leaving only one ba-
sin-filling gyre. This gyre would only require friction to
balance the net circulation input, as wind forcing of
both signs would contribute to the right-hand side of
(5). Figure 7b shows the mean streamfunction in a slip
calculation with no subpolar wind forcing. By compar-
ing with Fig. 6b, it is clear that the mean flow from the
subtropical gyre is strongly reduced by its exposure to
the subpolar wind forcing in Fig. 6b.

The no-slip, two-gyre calculation (Fig. 2b) does not
permanently overshoot. Cessi (1991) shows that, when
boundary currents of unequal strength meet, the degree
of overshoot depends strongly on the boundary condi-
tions. For slip conditions, the stronger current over-
shoots, while for no-slip conditions, the stronger cur-
rent undershoots (to a lesser degree). Haidvogel et al.
(1992) also found this effect in a model that smoothly
adjusted from slip to no-slip boundary conditions. The
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F1G. 7. Time-mean streamfunction for Re = 5 calculations with
single-gyre wind forcing between y = 0 and 1 and no wind forcing
for y > 1. The basin dimension is the same as in the two-gyre
calculations. The contour interval is 0.2, and shading indicates
negative streamfunction.

analysis of Cessi (1991) gives a local explanation for the
difference between the two-gyre no-slip and slip calcu-
lations (Fig. 2b versus Fig. 6b).

The eddy intergyre vorticity flux is critically impor-
tant to one remaining region in the slip two-gyre model.
The remaining subpolar gyre is cut off from the western
boundary, so cannot dissipate its vorticity with a mean
western boundary current. Thus, an eddy flux out of the
subpolar gyre is required and is nearly equal to the
wind input within that gyre. This eddy flux occurs pri-
marily by interruptions of the subtropical western
boundary current overshoot with subpolar waters.

In summary, in slip calculations with asymmetric
gyres, the preferred mechanism for interchange be-
tween the gyres is by an Eulerian mean overshoot of
the stronger gyre boundary current (which averages a
rather unsteady current due to interruptions by the
weaker gyre waters). No-slip calculations do not over-
shoot, at least in this range of Reynolds numbers. Thus,
the alternating boundary current overshoot resulting in
intergyre eddy fluxes is limited to only the singular case
of the antisymmetric double gyre at Reynolds numbers
much greater than 1.

c. Effects of eddy symmetry and efficiency

The first surprising result of the no-slip calculations
shown in Fig. 2 is that the intergyre eddy vorticity fluxes
are so small. The second, perhaps more surprising re-
sult, is that despite the lack of intergyre eddy fluxes, the
circulation strength of each gyre is still greatly reduced
in the two-gyre and double-gyre calculations compared
to the single-gyre case. Figure 7a shows that the re-
duced circulation is not due to internal cancellation of

1271

vorticity, as no subpolar wind forcing is required to
reduce the circulation! The preceding subsection dem-
onstrates that the symmetry of the gyres about the jet is
important. This section demonstrates that the symme-
try of the eddies is also important through its effect on
the eddy efficiency.

Eigenmodes of instability on a jet are usually catego-
rized by symmetry across the jet. The sinuous modes
are even in streamfunction perturbation about the jet
center and therefore produce a wiggling, meandering
advection pattern (Fig. 8). The varicose modes are odd
in streamfunction perturbation and therefore produce
mirror-reflection-symmetric, knotted advection pattern
about the jet center (Fig. 8).

A solid, slip boundary condition is similar to a mirror
reflection about the boundary. Thus, analogues of vari-
cose modes are free to form in the extension of the
western boundary current along the northern boundary
in a single-gyre model with northern boundary slip con-
ditions. The formation of sinuous modes in the single-
gyre model is prohibited, as the sinuous modes cause
the jet to meander but the solid boundary cannot me-
ander. The critical difference between the no-slip
single-gyre and multiple-gyre calculations is not an in-
tergyre eddy flux of vorticity, but the arrival of new
modes of instability on the jet.

It is well known that sinuous modes typically have
larger growth rates and lead to more mixing than the
varicose modes. Balmforth and Piccolo (2001) present
an excellent analysis of eigenmodes and their mixing in
a zonal jet obeying equivalent dynamical equations to
(1). Their results indicate that the sinuous mode growth
is much faster than the varicose mode growth and that
sinuous modes induce strong mixing to either side of
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Fi1G. 8. Schematic of sinuous and varicose modes of instability
on a jet. The solid lines represent initial jet streamlines, the
dashed lines represent streamlines after the instability has grown
somewhat. The pluses and minuses denote streamfunction
anomalies.
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FIG. 9. The ratio Nu, as a function of mean streamfunction. The
ratio is shown for the no-slip Re = 5 calculations (single, double,
and two-gyre) and the Re, = 0.25, Re; = 5 no-slip, single-gyre
calculation. See (11) for a definition of Re, and Re;.

the jet, although not in the jet core. Numerical simula-
tions find similar results (e.g., Pratt et al. 1995; Roger-
son et al. 1999).

The difference between the single gyre and the
double gyre is in the eddy efficiency, Nu,. The sinuous
modes do not flux vorticity between gyres in no-slip
calculations, so the eddy flux can only be to the fric-
tional sublayer of the same gyre, just as in the single
gyre. Thus, the eddy flux sources and sinks are identical
in the multiple-gyre and the single-gyre cases. Figure 9
shows that the double-gyre and two-gyre calculations
have a Nu, for interior streamlines (approximately
0.2 < . < 1) that indicates that the combination of
sinuous and varicose eddies in these multiple-gyre cal-
culations is 30 times more efficient at fluxing vorticity in
the basin interior than the friction alone. The combi-
nation of sinuous and variance modes in the multiple-
gyre case leads to a Nu, 15 times the Nu, in the single-
gyre calculation, which is the mixing efficiency of vari-
cose eddies alone (Table 1, columns for Figs. 2a and 2b).
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Figure 10 depicts a numerical demonstration of the
effects of sinuous modes. Just as sinuous modes are
prevented in the single gyre, they are also prevented by
the initial symmetry about y = 1 of double-gyre calcu-
lation started from rest. Two double-gyre calculations
that differ only in initial conditions are shown in Fig. 10.
One is started with symmetry-breaking initial condi-
tions, rapidly develops sinuous modes, and soon equili-
brates about a mean (Fig. 10d). The one started from
rest has no initial infinitesimal sinuous perturbations, so
it first spins up to a near equilibrium strongly resem-
bling the single-gyre calculation (Fig. 10a versus Fig.
10b). Eventually, small numerical errors break the gyre
symmetry,® and the sinuous modes grow rapidly. Once
the excess vorticity buildup has been removed by fric-
tion, a new equilibrium is reached (Fig. 10c) that re-
sembles that of the model begun with symmetry-
breaking initial conditions (Fig. 10d).

Varicose modes and eddies, the growth of sinuous
modes and eddies, and their effects on the jet and re-
circulations are shown in Fig. 11. The upper row of this
figure shows snapshots from before the symmetry be-
tween the gyres breaks (as in Fig. 10a). The recircula-
tion gyre and gyre-dividing jet cross the entire basin,
despite the fact that there are a number of strong eddies
formed by varicose instabilities. The second, third, and
fourth rows show the progress of the sinuous modes
and eddies soon after the antisymmetry is broken. The
gyre-dividing jet shortens, and many eddies pierce the
recirculation region. The bottom row shows a typical se-
ries of snapshots after equilibration with sinuous modes

% The duration of model runs before the numerics break the
symmetry is a strong function of resolution. The calculation in Fig.
10a has 513 X 257 modes, which is close to the minimum needed
to arrive at a near equilibrium resembling the single gyre (401 X
257 is suggestive but insufficient). The initial conditions make
little difference at lower resolutions, as symmetry is immediately
broken by truncation errors.

TABLE 1. Values of Nu,(¢. = 0.5) and percentage of subtropical wind input removed from the subtropical gyre by intergyre eddy,
lateral friction, and bottom friction fluxes for various calculations. A typical mean streamline, iy, = 0.5 (halfway between 0 and the linear
Munk solution maximum), is used. Percentages may not add up to 100% because fluxes are independently determined and contain

small averaging errors.

Figure

2a 2b 2c 2d 13a 13b 13¢ 13d 13e 13f
Boundary condition No slip No slip No slip Slip Slip No slip Slip No slip Slip No slip
Re 5 5 5 5 5 5 5 5 25 25
8 0 0 0 0 0.001 0.001 0.003 0.003 0.005 0.005
Nu, (¢, = 0.5) 1.9 29 29 28 33 32 13 1.1 1.4 23
Intergyre eddy 0 —0.06% —2% 89% 56% —1% 16% —1% 30% —2%
Bottom friction 0% 0% 0% 0% 6% 1% 31% 10% 41% 7%
Lateral friction 100% 100% 101% 11% 39% 100% 55% 92% 28% 94%
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F1G. 10. Comparison of the time-mean streamfunction for no-slip Re = 5 calculations. (a), (c) Averages over different time intervals
for a calculation with an at-rest (symmetric) initial condition. (a) The time mean over an interval just before exact antisymmetry is
broken by numerical errors (r = 2000 to 2750), and (c) averaged over the time interval + = 8990 to 13 710. (b) The time-mean
streamfunction for the single-gyre calculation. (d) The time-mean streamfunction for the calculation with symmetry-breaking initial
conditions. The contour interval is 0.2 and shading indicates negative streamfunction.

has occurred (as in Fig. 10c); Nu, is 1015 times as large
after equilibration than just before symmetry breaks.’

Thus, qualitatively different multiple equilibria exist
in the time-dependent double gyre, and the availability
of each equilibrium depends on the eddies and their
symmetry. The difference between the single gyre and
the double gyre with no-slip conditions on solid bound-
aries is not due to an intergyre vorticity flux. Rather it
is the lack of sinuous modes in the single gyre that
prohibits equilibria available to the double-gyre model.
Figure 12 is an attempt to map the phase space of these
equilibria. It shows the trajectory of the different spin-
ups as a function of maximum and minimum time-
smoothed streamfunction. Note how the initial sym-
metric double gyre first approaches a state with maxi-
mum and minimum streamfunction equal and opposite
(gyre antisymmetry) at nearly the same magnitude as
the single-gyre maximum streamfunction. Then the
symmetry breaks and its trajectory moves off of the
diagonal and into the same region as the initial asym-
metric double gyre.

The removal of sinuous modes by using resting initial
conditions provides compelling evidence as to the dif-
ference between the single-gyre and double-gyre mod-
els in no-slip calculations (i.e., when there is no inter-

7 The duration of the single-gyre regime before symmetry
breaks is too short for a better estimate.

gyre eddy flux). The specific case of resting initial con-
ditions is only of limited direct applicability (e.g.,
decreasing the time to equilibration of double-gyre cal-
culations), but reveals an important fact about eddy
fluxes: vorticity flux efficiency plays as large a role as
vorticity sinks and sources in determining circulation
strength. In a more complicated model than the one
here, such as a general circulation ocean model, the
circulation strength will similarly depend on what type
and how well resolved the eddies present are, even if
the vorticity sources and sinks are correct.

d. Adding bottom friction

One might suppose that with increased bottom fric-
tion, the difference between slip and no-slip multiple-
gyre calculations would diminish as lateral friction—
and hence boundary conditions required by lateral fric-
tion—become less important. However, calculations
including bottom friction reveal that the frictional
boundary conditions always affect the intergyre vortic-
ity flux (Figs. 13a—f and Table 1). Even when Re is
substantially increased (lowering lateral viscosity) and
8y increased, there is still a large difference between slip
and no-slip eddy fluxes (Figs. 13e—f and Table 1). Ulti-
mately, no matter how small the lateral friction coeffi-
cient is, the boundary current continues to transport
both positive and negative relative vorticity in no-slip
calculations, so the net transport is small (per Stewart
1964, 1989).



£=2000 t=2050

As Symmetry Breaks...

t=3450
At o Much Later Time...

JOURNAL OF PHYSICAL OCEANOGRAPHY

VOLUME 35

t=9130 t=9140

FI1G. 11. Snapshots of relative vorticity in the region surrounding the jet (0 < x < 1,0.5 <y < 1.5) of the double-gyre calculation begun
with symmetric initial conditions before antisymmetry is broken (upper row), as antisymmetry is broken (second, third, and fourth
rows), and snapshots after the circulation strength has reached equilibrium (bottom row) (lighter: more positive vorticity, darker: more

negative).

Bottom friction does have an effect, however. The
bottom friction fluxes vorticity across mean streamlines
and out of the basin, as anticipated in (5). The addition
of a small amount of bottom friction (85 = 0.001) takes
a share (6%; Table 1) of vorticity flux and removal and
thus reduces the burden for the intergyre eddy flux and
lateral friction in the slip case (Fig. 2d versus Fig. 13a
and Table 1).

The bottom friction also affects the instability pro-
cesses that form eddies. In particular, the instabilities

are damped, so the eddies grow more slowly and mix
less efficiently than without bottom friction. This reduc-
tion in eddy efficiency is partly responsible for the re-
duction in intergyre vorticity flux in the slip case (Fig.
2d versus Fig. 13a) and in the no-slip case (Fig. 13b
versus Fig. 13c). Curiously, there are occasions when
the reduction in eddy efficiency outweighs the in-
creased ease of removal of vorticity by friction; the
mean circulation may strengthen with increased drag!
(cf. Fig. 13a with Fig. 13c.) Only if the eddy efficiency is
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F1G. 12. Phase diagram of maximum and minimum streamfunc-
tion trajectory (smoothed with Hanning filter over 250 time unit
window) during spinup of the single gyre, initially resting double
gyre, and initially asymmetric double gyre shown in Fig. 10. The
smoothing prohibits plotting the first few time intervals that con-
nects the trajectories to the origin.

reduced does this result make sense, and a reduction
in efficiency is observed (Fig. 13a versus Fig. 13c in
Table 1).

The length of the gyre-dividing jet is strongly affected
by the eddy efficiency as well (cf. Nu, in Table 1 with jet
extents in Fig. 6 and Fig. 13). Holland and Schmitz
(1985) and Marshall and Marshall (1992) argue that an
eddy process determines the zonal penetration of the
jet, and here it is clear that the friction affects the eddies
that in turn affect the jet penetration. Le Provost and
Verron (1987) present a scaling analysis of the penetra-
tion depth under varying bottom and lateral friction.

In conclusion, while bottom friction does affect the
flow, especially the eddy growth rate and efficiency, the
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slip and no-slip calculations remain quite different in
intergyre eddy flux, and the framework of eddy effi-
ciency still aptly diagnoses the effects of eddies on the
mean circulation.

e. Ultimate vorticity removal

Despite the increased efficiency of vorticity removal
by the sinuous modes, at sufficiently high Reynolds
number they are no longer capable of controlling the
circulation strength (Fig. 14a). At this point, if the cir-
culation is to be controlled then new physics must be
introduced to the model, such as new vorticity sinks or
increased eddy efficiency. For example, 1) vertical
structure may further increase the efficiency of the
eddy mixing as by baroclinic instability, or 2) sloping
bottom topography may act as sink of vorticity in con-
cert with bottom velocities (Hughes and de Cuevas
2001).

Increased viscosity in a narrow region near the
boundary can be used as a proxy for these effects. Fox-
Kemper and Pedlosky (2004) demonstrate the single-
gyre circulation by boundary-enhanced viscosity. Here
the same form of boundary-enhanced viscosity is used,
but in a two-gyre calculation:

53 83 63

3 _ I e e —x/84 —(1—x)/84
= - X

Sy Rei+<Reb Re,-> [e +e 1, 11)
and

)
8= —r—. (12)

Re

i

In (11), 8,, varies so that the Reynolds number
smoothly changes from a constant boundary Reynolds
number (Re,) to a constant interior Reynolds number

a. Re=5, dg=0.001, Slip

b. Re=5, ds=0.001, No-Slip c. Re=5, dg=0.003, Slip

d. Re=5, ds=0.003, No-Slipe. Re=25, dg=0.005, Slip

f. Re=25, dg=0.005, No~Slip

F1G. 13. Comparison of the time-mean streamfunction and intergyre eddy flux for calculations with bottom friction. The contour
interval is 0.2, and shading indicates negative streamfunction.



a. Re;=Re,=25

b. Re;=25, Re,=0.25

FIG. 14. Time-mean streamlines of the (a) no-slip, two-gyre
calculation with constant viscosity (Re = 25, §, = 0.06) and (b)
no-slip, two-gyre calculation with boundary-enhanced viscosity
(Re, = 0.25, Re; = 25, §; = 0.06). The contour interval is 0.2, and
shading indicates negative streamfunction.

(Re,). Figure 14b shows that a narrow region® of in-
creased viscosity in the two-gyre calculation controls
the two-gyre circulation as well. The increased viscosity
is associated with increased eddy efficiency for the
streamlines away from the boundary (Fig. 9).

4. Summary and discussion

The wind-driven barotropic ocean model is quite
simple, but it is useful as a toy duplicating the real
ocean’s dynamics. Multiple gyres have been studied for
almost the whole history of such models (Munk and
Carrier 1950), but the importance of multiple gyres on
eddy dynamics proposed by Harrison and Holland
(1981) and Marshall (1984) continues to provide inter-
esting results.

a. Intergyre fluxes and boundary current overshoot

The boundary conditions play an unexpectedly im-
portant role, as both dissipative meandering and per-
manent fluid exchange are initiated by a boundary cur-
rent overshoot. Of course, neither slip nor no-slip
boundary conditions correctly represent the compli-
cated multiple-scale interaction of the real ocean and its
boundary. However, the ocean’s western boundary cur-
rents have their maximum velocity in the center (as in
no-slip calculations), rather than on one side (as in slip
calculations), and the separation point migrates little
along the coast. Thus, the intergyre eddy flux possibili-
ties seem limited.

8 The increased viscosity scale is narrower by a factor of 5 than
the inertial boundary layer scale here.

JOURNAL OF PHYSICAL OCEANOGRAPHY

VOLUME 35

The correspondence between alternating overshoot-
ing boundary currents in the slip, double-gyre model
and a permanent overshooting boundary current in the
slip, two-gyre model nicely relates the global vorticity
balance to the local confrontation of two opposing
boundary currents. Categorizing these effects differ-
ently is in part an error of diagnosis, as the alternating
boundary current is only categorized as an “eddy” ef-
fect due to the exact antisymmetry of the double-gyre
model. In fact, the physics of the overshooting bound-
ary current is identical in the two cases.

As to the difference between the boundary current
overshoot and intergyre vorticity flux in no-slip and slip
calculations, two key results offer explanation. First,
the cancellatory relative vorticity in the no-slip bound-
ary current limits the intergyre vorticity flux (Fig. 5 and
Stewart 1964, 1989). Second, the tendency for the stron-
ger of two colliding boundary currents to over/under-
shoot with slip/no-slip boundary conditions (Cessi 1991)
provides the additional distinction between the models.

b. The important, revised role of eddy vorticity
fluxes in the barotropic gyre

Because of the differences in the boundary current
from which they form, no-slip and slip eddies have quite
different vorticity fluxes, and thus no-slip and slip cal-
culations strike quite different equilibrium vorticity
budgets. The eddies in the multiple-gyre, no-slip calcu-
lations play the same role as those in the single-gyre
calculations here and in Fox-Kemper and Pedlosky
(2004). That is, they allow a flux of vorticity across
mean streamlines. Thus, the wind input can be removed
from the basin without requiring every streamline pass
through a frictional region or requiring an unrealisti-
cally large circulation. In slip calculations, the eddies
flux vorticity primarily to the other gyre, both by dissi-
pative meandering and fluid exchange. However, this
flux is restricted to calculations with slippery boundary
conditions. Often, general circulation models are writ-
ten to allow for only one type of frictional boundary
condition or run with insufficient resolution to resolve
the positive and negative relative vorticity in the no-slip
boundary current, the evidence of the disparate behav-
ior of this simple model under different boundary con-
ditions accentuates how perilous these practices may be.

c. The eddy transport efficiency

It is not only the removal of vorticity that is impor-
tant in controlling the circulation, but the efficiency of
the eddies in transporting vorticity to the removal re-
gion. Less efficient eddies require larger vorticity gra-
dients from which to form and across which to mix.
Seemingly paradoxical results are explained by changes
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in eddy efficiency, such as the calculations (Fig. 13a
versus Fig. 13¢) where increasing the drag strengthened
the mean flow.

In the no-slip calculations, it is the inefficiency of the
single-gyre eddies that allows the circulation to be so
much larger than in the multiple-gyre calculations. The
sinuous modes are significantly more efficient than the
varicose modes, so the resulting mean circulation is
much weaker when they are present.

Observations of “meanders” are common in the Gulf
Stream Extension and Kuroshio Extension (e.g., Hogg
1994; Spall and Robinson 1990; Cornillon et al. 1994).
The sinuous modes are the analog of these meanders in
this simple model. While it is difficult to imagine a real
ocean where sinuous modes were prohibited as in the
spinup from rest of the double gyre, the efficiency of
the sinuous modes makes them rather important to ob-
serve and analyze as they seem to be the most likely
eddies to play a role in fluxing near- conservative prop-
erties such as vorticity.

Other aspects of the three-dimensional problem will
require adaptation of the methods used here. The bud-
get of vorticity becomes a budget of vorticity for each
isopycnal layer (Haynes and McIntyre 1987). Momen-
tum fluxes can be achieved by layer-to-layer “form
drag” (Rhines and Holland 1979), and this will have a
corresponding vorticity flux within each layer. Further-
more, the pattern of streamlines may be much more
complicated in three dimensions (Yang and Liu 1997).
Obviously, the cross-jet transport of vorticity is quite
different in this case, especially when the isopycnals
outcrop into the mixed layer along the jet. Progress on
the three-dimensional problem (Holland and Rhines
1980; Lozier and Riser 1990; Bower and Lozier 1994;
Berloff 2005; Yuan et al. 2004) has been substantial, but
the problem of determining the circulation at each level
is not fully addressed, in part because of the unexpected
importance of boundary conditions and the role of eddy
flux efficiency addressed here.

There has been a tacit assumption in eddy flux analy-
sis: to increase eddy fluxes one must strengthen the
circulation or alter the sources and sinks of vorticity.
This is not true when multiple types of eddies of differ-
ing efficiency are available. In that case, the eddy fluxes
can be increased by increasing the eddy efficiency. The
lack of topography and vertical structure in this model
leaves out many important effects and potentially effi-
cient eddy processes that may be studied via a similar
approach in the future. It is clear from the evidence
presented here that including slightly different eddies—
from replacing a parameterization with resolved eddies
or from introducing new physics such as baroclinic in-
stability or nonhydrostatic effects—may have a pro-
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found effect on even large-scale flow and the global
vorticity budget.
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