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Abstract. This paper considers the nonlinear system identification and control for flexible ser-
vomechanisms. A multi-step-ahead recurrent neuro-fuzzy model consisting of local linear ARMA
(autoregressive moving average) models with bias terms is suggested for approximating the dynamic
behavior of a servomechanism including the effects of flexibility and friction. The RLS (recursive
least squares) algorithm is adopted for obtaining the optimal consequent parameters of the rules.
Within each fuzzy operating region, a local MDPP (minimum degree pole placement) control law
with integral action can be constructed based on the estimated local model. Then a fuzzy controller
composed of these local MDPP controls can be easily constructed for the servomechanism. The
techniques are illustrated using computer simulations.
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1. Introduction

Servomechanisms play a key role in mechatronics, and for satisfying stringent per-
formance requirements their accurate models need to be built for dynamic analysis
and control design. Due to the complex transmission mechanism, the complete
model of a servomechanism is usually difficult to construct based on the first
principles. Thus, system identification based on some suitable model structure
and input–output data is a practical approach to developing a more accurate and
tractable model. Many model-based control designs can be found in the literature,
such as those surveyed in [5, 6]. Recently, fuzzy model-based control design has
obtained great interest in the control community since fuzzy logic provides a simple
and straightforward way to decompose the task of modeling and control design into
a group of local tasks easier to handle, and elegant linear control design tools can
be used [11, 12].
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For dynamic systems modeling, the recurrent neuro-fuzzy approach [8, 15] and
the TS fuzzy system approach [11] are promising since a complex global non-
linear dynamic model instead of conventional static nonlinear mappings can be
constructed in terms of only several fairly simple local models via fuzzy theory.
One possible limitation of conventional “black-box” neural-network models is that
they could be difficult to interpret and lack robustness for unseen data. Zhang and
Morris [15] propose a type of recurrent neuro-fuzzy network for nonlinear process
modeling. The process operation is partitioned into several fuzzy operating regions,
and within each region, a local linear AutoRegressive Moving Average (ARMA)
model is used to model the process. The global model output is obtained through
the center average defuzzification [13] which is essentially the nonlinear smooth
interpolation of local model outputs. This approach can improve model robustness
and open up the “black-box” neural models. Process knowledge can be used to
decompose the process operation into several fuzzy operating regions and to set
up their membership functions definition. Process input/output data can be used to
train the parameters of the recurrent neuro-fuzzy network (actually it is also a type
of TS fuzzy model).

The TS fuzzy model proposed by Takagi and Sugeno [11] is a universal ap-
proximator and has found great potential for the fields about fuzzy systems and
control [10, 12]. The main feature of a TS fuzzy model is to describe the complex
dynamics of a nonlinear process by fuzzy IF–THEN rules with local linear input–
output relations, such as linear state space model or linear discrete-time ARMA
model. The overall fuzzy model of the nonlinear process is then achieved by fuzzy
“blending” of the local linear system models. In general, there are two approaches
to constructing a TS fuzzy model for a nonlinear process: (1) analytical deriva-
tion from its nonlinear physical model, and (2) systematic identification using its
input–output data.

In this paper, we will consider the application of recurrent neuro-fuzzy model-
ing (that is also a type of TS fuzzy modeling) using the efficient RLS algorithm [2],
and the design of a fuzzy MDPP (minimum degree pole placement) control based
on the identified fuzzy model with local linear models for servomechanisms includ-
ing the effects of transmission flexibility and nonlinear friction. The techniques are
illustrated using representative computer simulations.

2. A Servomechanism with Flexibility and Friction Effects

The effects of transmission flexibility and complex nonlinear friction on a mecha-
tronic system are two main problems to be considered for improving its dynamic
performance and control accuracy. In this paper, we consider a torque-motor driven
servomechanism shown in Figure 1.

The rotational motion of a vector-controlled three-phase brushless torque motor
is transformed to the nut’s translational motion of the ball screw through a pair of
speed reduction gears. The linear motion of the nut is then used for driving the pay-
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Figure 1. A torque motor driven servomechanism.

Figure 2. A simplified model for the servomechanism.

load via a pinned lever link (with flexibility) to perform its rotational motion within
a finite range, e.g., ±15◦, about the hub drive axis. While dynamic operation the
ribbed payload may have severe vibration, and there exists transmission flexibility
and serious friction in the whole servomechanism. In order to derive a tractable dy-
namics model for the servomechanism by the first principles, a simplified model is
considered in Figure 2, where the payload flexibility is lumped using a simplifying
coefficient α and the equivalent stiffness kL and viscous damping coefficient bL.
For payloads of the type of large thin plates, α ≈ 0.5.

By the Newton laws of motion, we can derive the dynamics model of the
servomechanism as follows:

Jmφ̈m + bmφ̇m + 1

N

[
b

(
φ̇m

N
− φ̇s

)
+ k

(
φm

N
− φs

)]
+ τf = Tm,

J ∗
s φ̈s = b

(
φ̇m

N
− φ̇s

)
+ k

(
φm

N
− φs

)
− bL(φ̇s − φ̇L)− kL(φs − φL),

αJLφ̈L = bL(φ̇s − φ̇L)+ kL(φs − φL)

(1)

where τf is the equivalent friction torque reflected to the motor rotor; Tm is the
motor driving torque, Tm = KT ia , ia = KAu, ia and KT are respectively the
armature current and torque constant of the motor, and KA and u are the current



216 C.-S. LIN ET AL.

amplification gain and the input current command of the motor driver, respectively;
Jm is the moment of inertia of the transmission mechanism reflected to the rotor
side; N = (N2/N1)·(2πr/p) is the total speed reduction ratio from the motor rotor
angle φm to the payload hub angle φs about its drive axis, here N1 and N2 are re-
spectively the numbers of teeth at the rotor and screw sides, r is the effective length
of the forked lever arm, and p is the pitch of the ball screw; (φm/N)−φs represents
the transmission flexibility; J ∗

s = Js + (1 − α)JL, here Js and JL are the moments
of inertia of the payload’s drive axis and payload itself, respectively, and α is a
simplifying coefficient for considering the flexibility effect of the payload; bm, b,
and bL are the equivalent viscous damping coefficients (refer to Figure 2); k is the
equivalent stiffness of the transmission system; kL is the equivalent stiffness of the
payload; and φL is the rotation angle of the payload.

The dynamic friction model suggested by Canudas de Wit et al. [3] is shown
below and will be used in the dynamics simulation for generating the training data
set:

τf = σ0z+ σ1
dz

dt
+ σ2φ̇m (2)

where

dz

dt
= φ̇m − |φ̇m|

g(φ̇m)
z, (3)

σ0g(φ̇m) = Tc + (Ts − Tc)e
−(φ̇m/ωs)2. (4)

Here, z is the average deflection of the bristles (which can deflect like springs)
between the two contact surfaces and modeled by Equation (3); σ0 and σ1 are
the stiffness and the damping coefficient of the bristles, respectively; σ2 is the
viscous coefficient; parameterization of σ0g(φ̇m) using (4) is used for describing
the Stribeck effect; Tc is the Coulomb friction torque; Ts is the stiction torque; and
ωs is the Stribeck velocity. Thus, the friction torque can be expressed as

τf =
(
σ0 − σ1

|φ̇m|
g(φ̇m)

)
z+ (σ1 + σ2)φ̇m. (5)

By defining the state variables as x1 = φm, x2 = φ̇m, x3 = φs , x4 = φ̇s ,
x5 = φL, x6 = φ̇L, and x7 = z, the state equation of the flexible servomechanism
can be expressed as follows:

ẋ1 = x2,

ẋ2 = φ̈m = 1

Jm

{
−bmx2 − 1

N

[
b

(
1

N
x2 − x4

)
+ k

(
1

N
x1 − x3

)]

−
(
σ0 − σ1

|x2|
g(x2)

)
x7 − (σ1 + σ2)x2

}
+ 1

Jm
KTKAu,

ẋ3 = x4, (6)



RECURRENT NEURO-FUZZY MODELING AND MDPP CONTROL 217

ẋ4 = φ̈s = 1

J ∗
s

{
b

(
1

N
x2 − x4

)
+ k

(
1

N
x1 − x3

)
− bL(x4 − x6)

− kL(x3 − x5)

}
,

ẋ5 = x6,

ẋ6 = φ̈L = 1

αJL

{
bL(x4 − x6)+ kL(x3 − x5)

}
,

ẋ7 = x2 − |x2|
g(x2)

x7

where

g(x2) = Tc

σ0
+ 1

σ0
(Ts − Tc)e

−(x2/ωs)
2
. (7)

And the output variable y can be selected as

y = x5. (8)

3. Recurrent Neuro-Fuzzy Modeling for Flexible Servomechanisms

In this section, we will consider a type of recurrent neuro-fuzzy modeling (be-
ing also a type of TS fuzzy modeling), based on input/output data with sufficient
persistent excitation (PE) for flexible servomechanisms with nonlinear friction.

3.1. STRUCTURE OF RECURRENT NEURO-FUZZY MODEL

A TS fuzzy model can be used to describe the complex dynamics of a nonlinear
process by fuzzy IF–THEN rules with local linear state space model or discrete-
time ARMA (autoregressive moving average) model. We consider the following
TS fuzzy estimate model:
Ri: IF operating condition i

THEN ŷi (t) =
no∑
j=1

−aij ŷ(t − j)+
ni∑
j=1

bi,j−1u(t − d − j + 1)+ ci,

i = 1, 2, . . . ,M, (9)

where M is the number of fuzzy rules; u(t) is the input at time instant tT , T is
the sampling period; ŷ(t) is the total output of the TS fuzzy model at time tT ;
ŷi (t) is the output value suggested by the ith local ARMA model at time tT ; no
and ni are the orders of the autoregressive (feedback) and moving average (feed-
forward) parts of the local ARMA structure, respectively; d = no − (ni − 1) is the
time delay; aij , j = 1, 2, . . . , no, are the (AR) feedback coefficients, and bi,j−1,
j = 1, 2, . . . , ni , are the (MA) feedforward coefficients for the ith local linear
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model; ci is a bias term for the ith local model. The local models adopted are
multi-step-ahead prediction models. Thus, the suggested TS fuzzy estimate model
can also be used for long-term global prediction about the system output variable.
The total output of the TS fuzzy model can be obtained through center average
defuzzification [12, 13] as

ŷ(t) =
∑M

i=1 µiŷi(t)∑M
i=1 µi

=
M∑
i=1

ξiŷi (t) (10)

Figure 3. Network representation of the recurrent neuro-fuzzy model.
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where µi is the matching degree (or degree of firing) of the ith model, and ξi =
µi/

∑M
i=1 µi is its normalized matching degree. Substituting the consequent local

output ŷi (t) in Equation (10), we can obtain

ŷ(t) =
M∑
i=1

no∑
j=1

−
[
ξiŷ(t − j)

]
aij +

M∑
i=1

ni∑
j=1

[
ξiu(t − d − j + 1)

]
bi,j−1

+
M∑
i=1

ξici . (11)

The antecedent “operating condition i” of the ith rule means the ith fuzzy op-
erating region of the process that can be defined using fuzzy sets on the operating
variables. If there are nf operating variables, xi , i = 1, 2, . . . , nf , then the ith rule
can be represented as
Ri: IF x1 is Ai1 and x2 is Ai2 and . . . and xnf is Ai,nf

THEN ŷi (t) =
no∑
j=1

−aij ŷ(t − j)+
ni∑
j=1

bi,j−1u(t − d − j + 1)+ ci,

i = 1, 2, . . . ,M. (12)

The matching degree µi for the ith rule can be evaluated as

µi =
nf∏
j=1

Aij (xj ) (13)

using the product inference engine [13, 14].
The above TS fuzzy model can be represented using the recurrent network

with model output feedback as shown in Figure 3. While suitable training/learning
algorithms used in the neural network field are adopted for the optimal parame-
ters learning/estimation of this TS fuzzy model, it can then be called a recurrent
neuro-fuzzy model [14, 15].

3.2. PARAMETER OPTIMAL ESTIMATION OF TS FUZZY MODEL

By defining the parameters vector and the regression vector for the ith local model
as

θi(t − 1) = [ai1, ai2, . . . , ai,no , bi0, bi1, . . . , bi,ni−1, ci]T, i = 1, 2, . . . ,M,

(14)

ϕT(t − 1) = [−ŷ(t − 1) − ŷ(t − 2) − · · · − ŷ(t − no)

u(t − d) u(t − d − 1) · · · u(t − d − ni + 1) 1], (15)
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the parameters vector and the regression vector for the whole fuzzy model can be
defined as

-̂(t − 1) = [
θT

1 (t − 1), θT
2 (t − 1), . . . , θT

M(t − 1)
]T
, (16)

.(t) = [
ξ1(t)ϕ

T(t − 1), ξ2(t)ϕ
T(t − 1), . . . , ξM(t)ϕ

T(t − 1)
]T
. (17)

Then the TS fuzzy model output (11) can be expressed in a linear parameterization
form as

ŷ(t) = .T(t)-̂(t − 1). (18)

Equation (18) is called a regression model for the TS fuzzy estimate model if
the fuzzy sets definition in the antecedents of all the fuzzy rules is kept fixed based
on process knowledge, and only ARMA parameters of the local models are to be
estimated using some training input–output data set. The input u(t) and output
y(t) data pairs with sufficient persistent excitation (PE) are usually obtained from
an experiment. For illustration, we simply use simulated data pairs from a closed-
loop simulation shown in Figure 4 for testing the suggested modeling technique,
where a more complex controller than usual simple PID controller, such as an
approximate feedback linearization controller is chosen for tracking a sufficient
PE trajectory to obtain sufficiently excited data.

Figure 4. Estimation in a closed-loop configuration.
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The parameter estimation problem is to determine the parameters of all the local
ARMA parameters in such a way that the outputs computed from the TS fuzzy
model agree as closely as possible with the real outputs of the servomechanism in
the sense of least squares. Minimizing the following least-squares loss function,

V (-̂, t) = 1

2

t∑
i=1

(
y(i)−.T(i)-̂(i − 1)

)2
(19)

the well-known recursive least-squares (RLS) estimation algorithm can be derived
as follows [2, pp. 42–53]:

-̂(t) = -̂(t − 1)+ K(t)
(
y(t)−.T(t)-̂(t − 1)

)
, (20)

K(t) = P(t).(t) = P(t − 1).(t)
(
1 +.T(t)P(t − 1).(t)

)−1
, (21)

P(t) = (
I − K(t).T(t)

)
P(t − 1). (22)

The above RLS algorithm can be started with initial conditions

-̂(0) = 0,

P(0) = diag(P1(0),P2(0), . . . ,PM(0))

where the initial covariance matrices Pi(0), i = 1, 2, . . . ,M, are chosen positive
definite and sufficiently large [2] for having fast convergence rate.

4. TS Fuzzy Model-Based Fuzzy MDPP Control Design

After the TS fuzzy model has been identified, within each fuzzy operating region,
an individual MDPP (minimum-degree pole placement) control law can be synthe-
sized based on the local ARMA model of that region. The local MDPP control law
is selected as the following two degree-of-freedom general linear control:

R(q)u(t) = T (q)uc(t)− S(q)y(t) (23)

where R, S, and T are polynomials of q,R is assumed monic, and q is the forward
shift operator; uc(t) is the command signal, and u(t) and y(t) are the input and
output variables of the process, respectively; −S/R and T /R are a negative transfer
feedback operator and a feedforward transfer operator, respectively. The degrees of
R, S, and T are selected as degR = deg S = deg T = no−1, where no is the degree
of the local model’s AR part, that is, the order of the local ARMA model. Equation
(23) can be written in terms of backward operator q−1 as

R∗(q−1)u(t) = T ∗(q−1)uc(t)− S∗(q−1)y(t) (24)

where

R∗(q−1) = 1 + r1q
−1 + · · · + rno−1q

−(no−1),

S∗(q−1) = s0 + s1q
−1 + · · · + sno−1q

−(no−1), (25)

T ∗(q−1) = t0 + t1q
−1 + · · · + tno−1q

−(no−1).
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Thus the control law can be implemented as

u(t) = [
1 − R∗(q−1)

]
u(t)+ T ∗(q−1)uc(t)− S∗(q−1)y(t) (26)

where 1 − R∗(q−1) = −r1q
−1 − · · · − rno−1q

−(no−1).
Consider the fuzzy controller with local MDPP control rules as follows:
Ri: IF operating condition i

THEN ui(t) = [
1 − R∗

i (q
−1)

]
u(t)+ T ∗

i (q
−1)uc(t)− S∗

i (q
−1)y(t),

i = 1, 2, . . . ,M, (27)

where ui(t) is the control signal suggested by the ith MDPP control rule, and
R∗
i , S

∗
i , and T ∗

i are the polynomials of the ith MDPP control law. The total control
signal generated by the fuzzy MDPP controller can be obtained through center
average defuzzification as

u(t) =
∑M

i=1 µiui(t)∑M
i=1 µi

=
M∑
i=1

ξiui(t) (28)

where µi is the matching degree (or degree of firing) of the ith control rule, and
ξi = µi/

∑M
i=1 µi is its normalized matching degree.

The ith local model of the fuzzy model for the servomechanism

ŷi (t) =
no∑
j=1

−aij ŷ(t − j)+
ni∑
j=1

bi,j−1u(t − d − j + 1)+ ci,

d = no − (ni − 1),

can be written as

A∗
i (q

−1)ŷ(t) = B∗
i (q

−1)(u(t − d)+ νi(t − d)) (29)

where

A∗
i (q

−1) = 1 + ai1q
−1 + · · · + ainoq

−no ,
B∗
i (q

−1) = bi0 + bi1q
−1 + · · · + bi,ni−1q

−(ni−1), (30)

νi = ci

bi0 + bi1 + · · · + bi,ni−1
.

For control design, estimated local model of Equation (29) can be represented as

Ai(q)y(t) = Bi(q)(u(t) + νi) (31)

where

Ai(q) = qno + ai1q
(no−1) + · · · + aino ,

Bi(q) = bi0q
(ni−1) + bi1q

(ni−2) + · · · + bi,ni−1.
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Notice that νi is a constant and can be considered as a step disturbance. Thus,
the standard pole placement procedure can be modified for taking disturbance into
account. A step disturbance can be modeled as

A∗
d(q

−1)νi = νiδ(t) (32)

where A∗
d(q

−1) = 1 − q−1, and δ(t) is the unit impulse at t = 0. Equation (32) can
be expressed in terms of forward shift operator q as

Ad(q)νi = νiδ(t + 1) (32a)

where Ad(q) = q − 1. With local controller (consequent part of Equation (27))

Ri(q)ui(t) = Ti(q)uc(t)− Si(q)y(t) (33)

and by substituting (33) in (31), we can obtain the local closed-loop system as

y(t) = BiTi

AiRi + BiSi
uc(t)+ BiRi

Ad(AiRi + BiSi)
νiδ(t + 1). (34)

In order to maintain a finite output y(t), Ri must contain a factor Ad , i.e., Ri =
AdR

′. First, find the solution R0
i and S0

i that satisfies the Diophantine equation for
the ith local model

AiR
0
i + BiS

0
i = A0

c,i (35)

where A0
c,i = Ao,iAm,iB

+
i ; Ao,i is the observer polynomial (monic, and stable),

and degAo,i = degAi − degB+
i − 1;Bi is factored as Bi = B+

i B
−
i , here B+

i (q)

is a monic, stable, and well-damped factor with zeros to be shifted by the feed-
forward compensation, and B−

i (q) is the other factor with unstable and weakly-
damped zeros that cannot be shifted; and the ith local reference model is selected
as Am,iym(t) = Bm,iuc(t) with Am,i monic and stable, degAm,i = degAi = no,
degBm,i = degBi , and Bm,i = B−

i B
′
m,i . Since

Ri = XiR
0
i + YiBi, (36)

Si = XiS
0
i − YiAi (37)

satisfy the following equation

AiRi + BiSi = XiA
0
c,i (38)

where Xi is a stable polynomial that represents the augmented closed-loop poles
for disturbance rejection and Yi can be arbitrary, we can select

Ri = XiR
0
i + YiBi = AdR

′. (39)

By the identity

XiR
0
i + YiBi = AdR

′, (40)
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we can determine R′ and Yi . Thus, from (39) we can obtain Ri , and using (37) we
can obtain Si . The feedforward polynomial Ti of the ith local control law can be
obtained by the MDPP algorithm:

Ti = Ao,iB
′
m,i. (41)

Notice that the above obtained fuzzy MDPP controller (27) can compensate for
the constant bias terms very well because that it possesses integral control action
(since Ri = AdR

′, Ad(q) = q − 1).

5. Simulation Examples

In this section, the proposed recurrent neuro-fuzzy modeling and fuzzy MDPP
control design for servomechanisms will be tested. Extensive simulations are con-
ducted and only the representative cases are to be illustrated.

The parameters of the torque-motor driven servomechanism are selected as
follows:

Jm = 8.1 × 10−5 Kg m2, Js = 5.0 × 10−3 Kg m2, JL = 6.8 × 10−2 Kg m2,

J ∗
s = Js + (1 − α)JL, α = 0.5, KL = 2.81 × 104 N m/rad,

K = 2.8 × 104 N m/rad, bL = 0, bm = 2.7 × 10−4 N m s/rad,

b = 7.3 × 10−4 N m s/rad, N = 166, KT = 0.25 N m/A,

KA = 20 × 1.6 A/V, σ0 = 105 N, σ1 = √
105 N s, σ2 = 0.4 N m s,

Tc = 1 N m, Ts = 1.5 N m, ωs = 0.001 rad/s, and

T (integration time step) = 0.0004 s.

5.1. RECURRENT NEURO-FUZZY MODELING USING SIMULATED DATA

Usually the nonlinear friction torque is mostly governed by the relative speed
between the two contact surfaces, and it can be approximated using piecewise
linear friction characteristics, that is, τf,i(t) = di θ̇s(t)+hi within the ith operation
region, where di and hi are local viscous damping coefficient and Coulomb friction
(intercept), respectively. For simplicity, thus the angular velocity of the payload θ̇L
can be selected as the only operating variable of the servomechanism, and the TS
fuzzy model is
Ri: IF θ̇L(t) is Ai

THEN ŷi (t) =
no∑
j=1

−aij ŷ(t − j)+
ni∑
j=1

bi,j−1u(t − d − j + 1)+ ci,

i = 1, 2, . . . ,M, (42)

where Ai is the ith fuzzy set defined in the operating variable range and represents
the ith fuzzy operation region; no = ni = 5 is selected since the servomechanism
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Figure 5. Definition of the fuzzy sets.

Table I. The estimated optimal aij

aij j = 1 2 3 4 5

i = 1 −0.045404 −0.049882 −0.05385 −0.053408 −0.046356

2 −0.11569 −0.10541 −0.093058 −0.075361 −0.050062

3 −0.059179 −0.044554 −0.027555 −0.0089454 0.010030

4 −0.010015 −0.0052427 7.4873×10−5 0.0047150 0.0082064

5 −0.058261 −0.042296 −0.024248 −0.0050522 0.014325

6 −0.12599 −0.11606 −0.10218 −0.081411 −0.052313

7 −0.037934 −0.040865 −0.042027 −0.039362 −0.03268

is a fifth-order system from input u(t) to output θ̇L(t) and the number of finite zeros
of a discretized dynamic system model is equal to the number of finite poles minus
one [2, 1]. In the simulations, seven (M = 7) triangular fuzzy sets are defined for
simplicity in the normalized universe of discourse [−1,+1] as shown in Figure 5.
The scaling factor for θ̇L is 0.0295. Using triangular membership functions for the
definition of fuzzy sets has the advantage that at most two neighboring rules are
fired for evaluation the model output at any time. The matching degree µi for the
ith rule is

µi = Ai(θ̇L). (43)

The training input–output data set is obtained using a closed-loop dynamic sim-
ulation with approximate feedback linearization control (refer to Figure 4) using
command signal (desired payload velocity)

yd(t) = Gsf

50∑
i=1

ai sin(2πfit),

where 0.01 � ai � 3.01, 0.1 � fi(Hz) � 199.9, and Gsf is a scaling factor
for obtaining the command signals with different ranges. If all the amplitudes
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Table II. The estimated optimal bij

bij j = 0 1 2 3 4

i = 1 2.2387×10−3 7.0127×10−4 6.1476×10−5 4.0058×10−4 1.6478×10−3

2 1.3388×10−3 −2.9473×10−4 −9.1071×10−4 −4.6606×10−4 9.3295×10−4

3 −2.929 × 10−5 −1.2006×10−5 3.4758×10−6 −4.0119×10−6 −3.8778×10−5

4 3.5259×10−5 −9.2916×10−6 −2.3211×10−5 −6.4954×10−6 4.1056×10−5

5 1.0784×10−4 −3.5567×10−5 −7.7507×10−5 −3.6621×10−5 7.6706×10−5

6 1.0289×10−3 −2.9643×10−4 −7.8812×10−4 −3.9792×10−4 8.15 × 10−4

7 1.5283×10−3 6.9933×10−4 4.1215×10−4 7.1934×10−4 1.5788×10−3

Table III. The estimated optimal ci

i = 1 2 3 4 5 6 7

ci −0.0044241 −0.011304 −0.0084998 −0.000058231 0.0085762 0.011491 0.0028688

and frequencies of the 50 sinusoidal components are selected different and not
in integer multiples, the persistent exciting (PE) order of yd(t) is 100 (2 × 50)
that is high enough to obtain the unique optimal parameters. The control signal
u(t) and the payload angular velocity θ̇L(t) are the input and output variables, and
their simulated data pairs within [0, 40] seconds are used for training the recurrent
neuro-fuzzy model using the RLS algorithm with initial values: �̂77×1(0) = 0, and
P(0) = diag[P1(0),P2(0), . . . ,P7(0)], where Pi(0) = diag[6.0 × 10−5I5×5, 5.0 ×
107I5×5, 5.0 × 107], i = 1, 2, . . . , 7. The optimal consequent parameters are ob-
tained as shown in Tables I–III. Notice that since the training data pairs (u(t) and
y(t)) are obtained by closed-loop simulations in the system structure of Figure 4
for tracking a complex desired command yd(t) composed of 50 sinusoidal compo-
nents, the training data pairs contain the complex flexibility and friction effects of
the servomechanism. Thus the estimated fuzzy model can approximate the whole
dynamic behavior of the nonlinear plant as shown in the following two validation
simulations.

For validating the above estimated TS fuzzy model (also a recurrent neuro-
fuzzy model), first consider the test input signal u(t) shown in Figure 6(a) and the
corresponding plant output signal y(t) shown in Figure 6(b). Notice that they are
also obtained by a closed-loop simulation, and thus include the complex flexibility
and friction effects. The model output ŷ(t) computed by the above obtained fuzzy
model is shown in Figure 6(c), where y(t) is also shown for comparison. From
Figures 6(c) and 6(d), where the estimation error y(t) − ŷ(t) is shown, we know
that the estimate performance is excellent since the high-PE real output signal y(t)
can be followed very well by the output estimate ŷ(t).
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Figure 6. Model validation using the input/output signals shown in (a) and (b).
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Figure 6. (Continued) (c) y(t) and ŷ(t), (d) estimate error y(t)− ŷ(t).
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Figure 7. Model validation using the input/output signals shown in (a) and (b).
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Figure 7. (Continued) (c) y(t) and ŷ(t), (d) estimate error y(t)− ŷ(t).



RECURRENT NEURO-FUZZY MODELING AND MDPP CONTROL 231

Another test input signal u(t) shown in Figure 7(a) and its corresponding plant
output shown in Figure 7(b) are used for further validating the estimate perfor-
mance. From Figures 7(c) and 7(d), the excellent estimate performance can also be
seen. Notice that the above two input signals are not the training input signal used
for the system identification. From these results we know that the thus obtained TS
fuzzy model can have very high accuracy and can then be used for control design.

5.2. FUZZY MDPP CONTROL DESIGN BASED ON RECURRENT NEURO-FUZZY

MODEL

Within each operation region, the local MDPP control law with integral action can
be constructed based on the local linear ARMA model:

y(t)

u(t)
= Bi(q)

Ai(q)
= bi0q

4 + bi1q
3 + bi2q

2 + bi3q + bi4

q5 + ai1q4 + ai2q3 + ai3q2 + ai4q + ai5
, i = 1, 2, . . . , 7.

(44)

Since each local model (44) of the above obtained TS fuzzy model has unstable and
weakly damped zeros, no zeros are canceled in the design procedure in this sim-
ulation study. Thus, the factorization of Bi = B+

i B
−
i is simple and with B+

i = 1,
and B−

i = Bi . The reference models for the local models are selected as

Bm,i(q)

Am,i(q)
= Bm,i(q)

Am(q)
, i = 1, 2, . . . , 7, (45)

where

Am(q) = (q − p1)
2(q − p2)

2(q − p3),

Bm,i(q) = βiBi(q), (46)

p1 = 0.02465(ς = 1, ωn = 9257.4), p2 = 0.06829(ς = 1, ωn = 6710.0),

p3 = 0.08729(ς = 1, ωn = 6096.3),

with

βi = Am(1)

Bi(1)
= (1 − p1)

2(1 − p2)
2(1 − p3)

(bi0 + bi1 + bi2 + bi3 + bi4)
.

Since degAo,i = degAi − degB+
i − 1 = 5 − 0 − 1 = 4, i = 1, 2, . . . , 7, the

observer polynomial can be selected as

Ao,i(q) = Ao(q) = (q − po1)
2(q − po2)

2 (47)

with po1 = 0.01, po2 = 0.05. Since degR0
i = deg S0

i = deg Ti = degAi − 1 =
5 − 1 = 4, let

R0
i (q) = q4 + ri1q

3 + ri2q
2 + ri3q + ri4,

S0
i (q) = si0q

4 + si1q
3 + si2q

2 + si3q + si4
(48)
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and by Equation (45),

Ti(q) = βiAo(q). (49)

The coefficients of R0
i (q) and S0

i (q) can be obtained by solving the Diophantine
equation (35) through equating coefficients of equal powers of q.

To compensate for the step disturbances, we select Xi = X = q + x0 with
x0 = 0.0, and Yi = yi0, i = 1, 2, . . . , 7. By Equation (39) and letting q = 1, we
can obtain

y0,i = −(1 + x0)R
0
i (1)

Bi(1)
= −(1 + ∑4

i=1 rij )∑5
j=1 bi,j−1

. (50)

Then from Equations (37) and (39), we can find Ri(q) and Si(q) for the ith local
MDPP control law with integral action, i = 1, 2, . . . , 7.

The above fuzzy MDPP controller is tested using the following two command
signals:

Command A : uc(t) =




0.05, 0 � t < 5,
0.0, 5 � t < 10,
−0.05, 10 � t < 15,
0.0, 15 � t � 20,

Command B: uc(t) =




0.04t, 0 � t � 1.25,
0.05, 1.25 � t � 5,
0.05 − 0.04(t − 5), 5 � t � 7.5,
−0.05, 7.5 � t � 11.25,
−0.05 + 0.04(t − 11.25), 11.25 � t � 12.5,
0.0, 12.5 � t � 16.

The trajectory tracking performances using commands A and B are shown in
Figures 8 and 9, respectively, where the results with no integral compensation
(i.e., using only R0

i (q) and S0
i (q) and without compensation for the rejection of

the local constant-disturbances) are also shown. From these results we can know
that the fuzzy MDPP controller with integral action based on the estimated TS
fuzzy model has very good tracking capability and is really better than that without
integral compensation. Since the included integral control design can completely
reject the local constant disturbances (the bias terms in the local models), the sug-
gested fuzzy MDPP control can have satisfactory compensation for the Coulomb
friction. Compared with other fuzzy control approaches, e.g., [5, 6] for flexible
drive systems, the suggested fuzzy MDPP control design based on the estimated
fuzzy model is much simpler and can still meet the control objective very well.
Thus, the proposed design approach is much easier for practical applications.
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Figure 8. Fuzzy MDPP control result using Command A.

Figure 9. Fuzzy MDPP control result using Command B.
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6. Conclusion

A simple and practical nonlinear system identification and control design method-
ology for flexible servomechanisms is proposed in this paper. A recurrent neuro-
fuzzy model composed of local linear ARMA models with bias terms is used for
approximating the dynamic behavior of a servomechanism with effects of flexi-
bility and friction. After expressing the nonlinear fuzzy model in linear regression
form, the most efficient RLS algorithm is adopted for estimating the consequent
parameters of the TS fuzzy model. Corresponding to each fuzzy operation region,
a local MDPP controller with integral action is constructed based on the obtained
local model. Then a fuzzy controller with these local MDPP controllers can be
easily constructed for the real servomechanism. The techniques are tested via repre-
sentative computer simulation results. Since the suggested fuzzy model estimation
is based on a multi-step-ahead prediction model structure, it can also be used for
constructing a multi-step-ahead adaptive control for flexible servomechanisms, and
it is an interesting future study topic.
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