
Laser Pose Estimation and Tracking Using Fuzzy
Extended Information Filtering for an Autonomous
Mobile Robot

Hung-Hsing Lin & Ching-Chih Tsai

Received: 2 August 2007 /Accepted: 5 March 2008 /
Published online: 25 April 2008
# Springer Science + Business Media B.V. 2008

Abstract This paper presents methodologies and techniques for posture estimation and
tracking of an autonomous mobile robot (AMR) using a laser scanner with at least three retro-
reflectors. A three-point laser triangulation method is presented to find an initial posture of the
robot and then a fuzzy extended information filtering (FEIF) method is used to improve the
accuracy of the robot’s posture estimation. With the odometric information from the driving
wheels, a FEIF-based posture tracking algorithm is proposed to continuously keep trace of the
robot’s posture at slow speeds. Simulation and experimental results are conducted to show the
efficacy and usefulness of the proposed methods.

Keywords Extended information filtering (EIF) . Fuzzy logics . Laser scanner .

Mobile robot . Self-localization . Posture tracking . Sensor fusion

1 Introduction

Posture estimation and tracking have become increasingly important and critical for
autonomous mobile robots (AMRs) navigating in any flat environment. The robots with
such self-localization capabilities are easy to achieve a free-ranging path tracking or a
reactive navigation with a goal seeking behavior. In recent years, the laser technology has
been considered as a powerful and accurate scheme for self-localization of the AMR. For
navigation purpose, laser sensors can be divided into two technical categories: one is the
scanning range-measuring time-of-flight laser; the other is an angle-measuring laser scanner
with reflectors. Many studies have been done on applying laser range finders to solve for
the robots’ localization problems [6–9, 20]. Similarly, much attention has also been paid to
the angle-measuring laser scanner [5, 13, 17] in both academia and industry. For instances,
several international commercial companies, such as BT industries, have successfully
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produced angle-measuring laser-scanner-guided vehicles for industrial material handling in
automatic factories.

The triangulation method for angle-measuring laser localization systems has been explored
by several researchers [3, 11]. Toshihiro et al. [21] proposed an onboard angle-measuring
laser localization system and the maximum likelihood estimation method to correct the
estimated position of a mobile robot with the laser projector and the reflector. Tsumura et al.
[19] proposed a 3-D position and attitude measurement system using laser scanners and
corner cubes; in the system, each laser scanner rotated a fan-shaped laser beam for detecting
the retro-reflections by the corner cubes and measures their azimuth angles. Rupp et al. [14]
presented the optimized arrangement of artificial landmarks and then gave a solution for
building an accurate and reliable localization system based on combining artificial and natural
landmarks. Tsai et al. [17] developed and implemented using a complete and useful
triangulation method an experimental angle-measuring laser scanning system; the main
feature of their proposed method hinged on that both static position and orientation, termed
the pose, of an AMR with respect to a reference frame can be determined uniquely by means
of measuring the angles between the laser scanner and the retro-reflectors.

Although the extended Kalman filtering (EKF) method has already found extensive
applications in robot navigation, it has been proven to have filter divergence problems due
to noise variations or modeling errors. In order to deal with these disadvantages, the
exponential data weighting method [12] was presented to improve the performance of this
kind of filter by tuning both process and measurement noise covariance matrices.
Abdelnour et al. [1] applied the fuzzy logics to on-line detection and correction of Kalman
filter apparent and true divergence; they presented a fuzzy logic supervisor with three
inputs, two outputs and 24 fuzzy rules. Other approaches of using fuzzy logics to adapt the
Kalman filter for sensor fusion applications have been documented in [6, 9, 10, 15, 16]. On
the other hand, the information form of the Kalman filter was well discussed in [12], who
recently employed information estimation as a principal filtering technique. Although the
information filter is algebraically equivalent to the Kalman filter, the former has been
shown to possess advantages, such as low computational complexity, ease of initialization
and decentralization, over the latter in multi-sensor data fusion applications. However, like
EKF, the extended information filtering (EIF) method is still subjected to filter divergence
problems due to noise variations or modeling errors. To prevent the EIF from divergence,
the authors in [18] proposed a fuzzy extended information filter (FEIF) which consists of a
fuzzy tuner to automatically adjust its exponential weightings for both process and
measurement noise covariance matrices. Chang et al. [4] applied a fuzzy extended
information filter to address the posture tracking problem of a mobile robot with the angle-
measuring laser scanner; however, their proposed method was impractical because several
bearing measurements were assumed to obtain simultaneously.

The paper is written with two principal objectives. The first one is to apply the fuzzy
extended information filter (FEIF) in [18] to improve the accuracy of the static posture
estimation or posture initialization for the AMR with an experimental angle-measuring laser
scanner. With the same filtering approach, the second one is to find the optimal position and
orientation estimates of the AMR using the dead-reckoning information and only one angle
reflector measurement; this technique is proposed to not only circumvent the difficulty
encountered in [4], but also improve the accuracy and robustness of the moving vehicle’s
position and orientation estimates under system modeling errors or measurement noise
processes with variable covariance matrices.

The remainder of the paper is outlined as follows. Section 2 briefly introduces the fuzzy
extended information filtering method. Section 3 describes the laser triangulation method
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and the static posture estimation for initializing or localizing the mobile robot. In Section 4,
we show how to apply the fuzzy extended information filtering to achieve robot pose
tracking. Computer simulations and experimental results are conducted in Section 5 to
verify the efficacy of the proposed posture estimation and tracking algorithms. Section 6
concludes this paper.

2 Fuzzy Extended Information Filtering

This section is dedicated to elucidating the fuzzy extended information filtering method.
Consider the following nonlinear discrete-time system model and measurement model as
follows:

X k þ 1ð Þ ¼ f X kð Þ;U kð Þ; kð Þ þW kð Þ ð1Þ

Z kð Þ ¼ h X kð Þ; kð Þ þ V kð Þ ð2Þ
where f �ð Þ and h �ð Þ are nonlinear functions of the state X(k) and the input U(k), and twice
differentiable. The vectors, W(k)∼N(0,Q(k)) and V(k)∼N(0,R(k)) are the associated process
noise and the measurement noise, respectively. In order to obtain the best posture estimation
and tracking of the mobile robot, the fuzzy extended information filtering algorithm is
briefly stated as follows.

2.1 Exponential Weighted Extended Information Filter

The essential part of the fuzzy extended information filter (FEIF) is that this filter consists
of a fuzzy tuner to automatically adjust its exponential weightings for both process and
measurement noise covariance matrices. Given the state Eq. 1 and the measurement Eq. 2,
we assume that the process and measurement noise covariance matrices are described by

R kð Þ ¼ R � a�b kþ1ð Þ ð3Þ

Q kð Þ ¼ Q � a�b kþ1ð Þ ð4Þ

where a is the weighting factor near one, β is the variation of exponential function, and
constant matrices R and Q are with right dimensions. Given an initial state estimate bX 0=0ð Þ,
an initial information state ya 0=0ð Þ, and an initial information matrix Ya 0=0ð Þ, the well-
known exponential weighted EIF whose prediction and estimation equations can be easily
derived as follows:

(1) One-step-ahead Prediction

by! k k � 1jð Þ ¼ Y! k k � 1jð Þ � f bX k � 1 k � 1jð Þ;U k � 1ð Þ; k � 1ð Þ
� �

ð5Þ

Ya k k � 1jð Þ ¼ abrfX k � 1ð ÞY�1
a k � 1 k � 1jð Þ � rf

T

X k � 1ð Þ þ Q
h i�1

ð6Þ

J Intell Robot Syst (2008) 53:119–143 121



(2) Estimation (Measurement Update)

by! kjkð Þ ¼ by! k k � 1jð Þ þ rhTX kð Þ R

!β

� ��1

� r kð Þ þ rhX kð ÞbX k k � 1jð Þ
h i

ð7Þ

Ya k kjð Þ ¼ Ya k k � 1jð Þ þ rhTX kð Þ R

ab

� ��1

rhX kð Þ ð8Þ

where

r kð Þ ¼ Z kð Þ � h bX k k � 1jð Þ
� �

ð9Þ

rfX k � 1ð Þ ¼ @f

@X

����
X¼bX k�1 k�1jð Þ

; rhX kð Þ ¼ @h

@X

����
X¼bX k k�1jð Þ

:

Note that if α=1, then this filter becomes a regular EIF.

2.2 Fuzzy Tuner

The proposed fuzzy tuner is employed to monitor the innovations, to avoid divergence of
the EIF and to tune the value of α in Eqs. 7–9. There are three inputs and one output
designed for the fuzzy tuner. The mean value, the second-order moment and moment slew
rate of the innovations are considered as the inputs to monitor the degree of filter
divergence. By selecting certain sample number l, the three inputs of the fuzzy tuner are
given as follows;

1. Statistical mean of the innovations:

r ffi 1

l

Xl

k¼1

r kð Þ ð10Þ

2. Statistical second-order moment of the innovations:

s2
r ffi

1

l

Xl

k¼1

r2 kð Þ ð11Þ

3. The variation of the innovation second-order moment:

Slew rate ¼ s2
r kð Þ � s2

r k � k1ð Þ ð12Þ

where the parameter k1 is positive and can be chosen by designers. Throughout the paper,
we set k1=50 and l=500.

The membership functions for input variables are defined by triangular functions, due to
the fact that they are suitable for statistical data and are easy to implement. The membership
functions can be designed via genetic algorithms, and they are illustrated in Figs. 1, 2 and 3,
respectively [2]. The output of the fuzzy tuner is the weighting factor α, as shown in Fig. 4.
The basic tuning idea is given as follows. When the mean of the innovations is near zero, α
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is selected according to the moment s2
r and its slew rate to tune noise the moment s2

r
identical to the actual noise magnitude. When the mean value moves away from zero and
the second-order moment becomes large, the EIF will be unstable and a large value of α is
then applied to reduce the noise moment s2

r and to avoid the instability. Note that has a
more direct effect on the moment s2

r of the innovations, and small R results in more
confident on the measurement data. This ensures that the filter can avoid divergence due to
modeling errors or system uncertainties. When the mean and the moment s2

r are extremely
large, the readings may have some problems such that the filter cannot trust the
measurements any more, and a small value of α is used. By selecting an appropriate value
of α, the fuzzy tuner tunes the EIF so as to keep the innovation sequence act as a zero-mean
white noise process with a suitable moment s2

r .
Based on the above-mentioned tuning ideas, the proposed fuzzy tuner uses 45 rules; for

example, three rules are illustrated in the following;

& IF the mean is small r , AND the moment s2
r is large, AND the slew rate is positive,

THEN α is Medium.
& IF the mean r is large, AND the moment s2

r is medium, AND the slew rate is zero,
THEN α is Large.

& IF the mean r is medium, AND the moment s2
r is medium, AND the slew rate is

negative, THEN α is Large.

Tables 1, 2 and 3 summarizes these 45 fuzzy rules, in which negative large (NL),
negative medium (NM), small (S), medium (M), large (L), positive, zero and negative
represent the corresponding fuzzy sets. The proposed fuzzy tuner adopts the Mamdani-style

Fig. 1 Membership function for
the mean of the innovations

2
rσFig. 2 Membership function for

the second-order moment of the
innovations
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inference engine and the max-min method for defuzzification. Figure 5 depicts a flow chart
of the FEIF algorithm.

3 Laser Triangulation and Static Posture Estimation

3.1 Laser Triangulation

This section aims to describe a laser triangulation method using an experimental 360° laser
scanner, and then propose a static posture estimation algorithm. In doing so, there must
have at least three reflectors in order to uniquely determine the absolute position and
orientation of the robot with respect to the reference world frame. From Fig. 6, the position
and orientation of the robot, denoted by (xc,yc) and θ, respectively, can be derived by the
triangulation method. Suppose that the positions of the three reflectors are known and
located at (x1,y1), (x2,y2) and (x3,y3), respectively. The laser scanner detects the three
bearing measurements, θ1, θ2 and θ3, representing the angles from the orientation of the
robot to the reflectors. The triangulation method is stated as below. Given three distinct
bearing measurements, consider the following three measurement equations

tan q þ q1ð Þ ¼ y1 � yc
x1 � xc

ð13Þ

Slew rate

Negative Zero Positive

-1.0 -0.2 -0.1 0.1 0.2 1.0

Fig. 3 Membership function for
the slew rate of the second-order
moment σ2r

Fig. 4 Membership function for
the weighting factor α

124 J Intell Robot Syst (2008) 53:119–143



tan q þ q2ð Þ ¼ y2 � yc
x2 � xc

ð14Þ

tan q þ q3ð Þ ¼ y3 � yc
x3 � xc

ð15Þ

Solving for xc and yc yields

xc ¼ 1
�
m2 � m1ð Þ 1þ m2

� 	
 �
m2m� 1ð Þ m1 þ mð Þx1 þ m1m� 1ð Þy1½ � � m1m� 1ð Þ m2 þ mð Þx2 þ m2m� 1ð Þy2½ �f g

ð16Þ

yc ¼ 1
�
m2 � m1ð Þ 1þ m2

� 	
 �
� m1 þ mð Þ m2 þ mð Þx2 þ m2m� 1ð Þy2½ � � m2 þ mð Þ m1 þ mð Þx1 þ m1m� 1ð Þy1½ �f g

ð17Þ
where m1= tanθ1, m2= tanθ2, m3= tanθ3 and m= tanθ is calculated by

m ¼ m3 � m1ð Þ y1 � y2 � m1x1 þ m2x2ð Þ � m2 � m1ð Þ y1 � y3 � m1x1 þ m3x3ð Þ
m3 � m1ð Þ m1y1 þ x1 � m2y2 � x2ð Þ � m2 � m1ð Þ m1y1 þ x1 � m3y3 � x3ð Þ ð18Þ

Consequently, from Eq. 13, the orientation θ can be uniquely determined by

q ¼ A tan 2 y1 � yc; x1 � xcð Þ � q1 ð19Þ

Table 1 Fuzzy rule matrix for positive slew slope

σg g

NL NM S M L

S Large Small Small Small Large
M Large Large Small Large Large
L Large Large Medium Large Large

Initialization

Prediction

Measurement

Estimation

Fuzzy
Tuner α

innovations

Fig. 5 Flow chart of the FEIF
algorithm
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where A tan 2(y1–yc, x1–xc) is the two-argument arc tangent function defined as follows;

A tan 2 y1 � yc; x1 � xcð Þ ¼

0; x1 � xc > 0; y1 � yc ¼ 0
:=2; x1 � xc ¼ 0; y1 � yc > 0
3:=2; x1 � xc ¼ 0; y1 � yc < 0
:; x1 � xc < 0; y1 � yc ¼ 0
tan�1 y1�yc

x1�xc
; x1 � xc > 0; y1 � yc > 0

tan�1 y1�yc
x1�xc

þ :; x1 � xc < 0; y1 � yc > 0

tan�1 y1�yc
x1�xc

þ :; x1 � xc < 0; y1 � yc < 0

tan�1 y1�yc
x1�xc

þ 2:; x1 � xc > 0; y1 � yc < 0

8>>>>>>>>>>><>>>>>>>>>>>:
ð20Þ

and tan�1 �ð Þ 2 �p=2;þp=2ð Þ:
In addition, if the special conditions θ=p/2 or 3p/2, i=1,2,3 occur, then mi is hardly

calculated. Thus, other auxiliary equations can be utilized to solve this problem.
Rearranging Eqs. (13–15) gives

tan qi ¼ yc � yið Þ � xc � xið Þ tan q
xc � xið Þ þ yc � yið Þ tan q ; i ¼ 1; 2; 3 ð21Þ

Since θi=p/2,3p2, from Eq. 21, one can yield

xc � xið Þ þ yc � yið Þ tan q ¼ 0; i ¼ 1; 2; 3 ð22Þ
Let m= tanθ, and rearranging Eq. 22 gives

ycm� yimþ xc ¼ xi; i ¼ 1; 2; 3 ð23Þ
Now, we have three cases to solve m, xc, yc and θ:

Case 1: if the conditions θi=p/2 or 3p/2, i=1,2,3 occurs, three equations of Eq. 23 can be
applied to solve m, xc, yc and θ.
Case 2: if the conditions θi=p/2 or 3p/2, i=1,2 occurs, two equations of Eq. 23 and Eq.
(15) can be applied to solve m, xc, yc and θ.

Table 3 Fuzzy rule matrix for negative slew slope

σg g

NL NM S M L

S Medium Small Small Small Medium
M Large Large Small Large Large
L Large Large Medium Large Large

Table 2 Fuzzy rule matrix for zero slew slope

σg g

NL NM S M L

S Large Small Zero Small Large
M Large Medium Small Medium Large
L Large Medium Small Medium Large
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Case 3: if the conditions θi=p/2 or 3p/2 holds, one equation of Eq. 23 and Eqs. 14–15 can
be applied to solve m, xc, yc and θ.

Before closing this section, the proposed three-point triangulation method is summarized
as follows; given three distinct and exact bearing measurements θ1, θ2 and θ3, the position
and orientation of the robot can be uniquely determined without errors.

3.2 Static Posture Estimation

This section presents a static posture estimation algorithm for the AMR based on the laser
scanning measurements. Figure 7 shows the locations of the AMR and three more
reflectors, where p denotes the number of the reflectors installed on the surrounding walls
of the workspace. In this scenario, the laser scanner mounted on the AMR takes a 360°
scanning to measure all the bearings of the reflectors with respect to the orientation of the
AMR. Note that all the bearings’ measurement errors are realistically assumed to be white
Gaussian processes with zero mean. To obtain a better pose estimate of the AMR with
respect to the reference frame, the algorithm is divided into two stages: the first stage is an

X

Y

AMR

cx

cy θ

1θ2θ

3θ

1 1 1( , )R x y
2 2 2( , )R x y

3 3 3( , )R x y

Reflector 1
Reflector 2

Reflector 3

Vehicle heading

Laser scanner

Fig. 6 Illustration of laser trian-
gulation using the laser scanner
and three reflectors

R: Reflector

AMR
),,( θcc yx

2 2 2( , )R x y

1 1 1( , )R x y

3 3 3( , )R x y

4 4 4( , )R x y

( , )p p pR x y

Fig. 7 Illustration of the loca-
tions of the robot and p reflectors
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initial estimation utilizing the three-point triangulation presented in the previous section, and
the second stage is a precise estimation utilizing FEIF to fuse all the reflectors’ readings.

Stage 1: Initial Posture Estimation (Three-point Triangulation)

Step 1: Select three distinct reflectors whose mutually separate angles are as large as
possible, and perform the measurements of their bearings with respect to the
orientation of the AMR n times to obtain n sets of three measured values, θ1(i),
θ2(i) and θ3(i), i=1, 2, 3,.., n.

Step 2: Apply a simple averaging method to obtain the means of θ1, θ2 and θ3 as
follows;

θ1 ¼ 1

n

Xn
i¼1

θ1 ið Þ; θ2 ¼ 1

n

Xn
i¼1

θ2 ið Þ; θ3 ¼ 1

n

Xn
i¼1

θ3 ið Þ

Step 3: Calculate the corresponding terms: m1 ¼ tan θ1;m2 ¼ tan θ2 and m3 ¼ tan θ3;
respectively, and obtain the initial estimate of the robot pose bxc;byc;bθ� �

using
Eqs. 16–19.

Stage 2: Precise Posture Estimation (FEIF-based Sensor Fusion)

In applying the FEIF to significantly reduce the initial estimation error in the first stage,
a state equation describing the static pose of the AMR is required and simply expressed by

X k þ 1ð Þ ¼ X kð Þ
or,

xc k þ 1ð Þ
yc k þ 1ð Þ
θ k þ 1ð Þ

264
375 ¼

xc kð Þ
yc kð Þ
θ kð Þ

264
375 ð24Þ

The bearing measurements from the all reflectors are rewritten is a vector form.

Z kð Þ ¼ h X kð Þð Þ þ V kð Þ ð25Þ
or,

θ1 kð Þ
θ2 kð Þ
..
.

θp kð Þ

2666664

3777775 ¼

A tan 2 y1 � yc kð Þ; x1 � xc kð Þ½ � � θ kð Þ
A tan 2 y2 � yc kð Þ; x2 � xc kð Þ½ � � θ kð Þ

..

.

A tan 2 yp � yc kð Þ; xp � xc kð Þ
 �� θ kð Þ

2666664

3777775þ

v1 kð Þ
v2 kð Þ
..
.

vp kð Þ

2666664

3777775 ð26Þ

where the function A tan 2 �; �ð Þ is defined in Eq. 20, the measurement noises v1(k), v2(k), ,
vp(k) are assumed to be mutually independent, zero-mean white Gaussian processes with a
covariance matrix R kð Þ ¼ diagfσ2

v1;σ
2
v2; � � � ;σ2

vpg. In order to obtain the best pose estimate
of the mobile robot, a discrete-time FEIF-based posture estimation algorithm is proposed in
the following.

Step 1: Initialization. Select β=–2, initial values of the information state bya 0 0jð Þ and
the information matrix Ya 0 0jð Þ at time k=0. Note that bya 0 0jð Þ ¼
Ya 0 0jð ÞbX 0 0jð Þ where bX 0 0jð Þ ¼ ½bx 0 0jð Þ;by 0 0jð Þ;bθ 0 0jð Þ�T .
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Step 2: One-step Prediction. Let the optimal information estimate at time k bebya k=kð Þ and its information matrix be Ya k=kð Þ. Use Eqs. 27–28 to calculate
the best prediction, byaðk þ 1jkÞ and its information state vector Ya k þ 1 kjð Þ.

by! k þ 1 kjð Þ ¼ Y! k þ 1 kjð ÞY�1
! k kjð Þby! k kjð Þ ð27Þ

Y! k þ 1 kjð Þ ¼ Y! k kjð Þ ð28Þ
Step 3: Generation of the weighting factor α from the fuzzy tuner. The localization

controller reads a new data Z(k+1), calculates the innovation r(k+1) using
Eq. 29 and uses the fuzzy tuning algorithm to generate an appropriate a.

Step 4: Estimation (Measurement Update).
At time k+1, the localization controller reads the incoming measurement data Z(k+1)

and then uses Eqs. 7–8 to obtain the updating information state estimate bya k þ 1 k þ 1jð Þ
and information matrix Ya k þ 1 k þ 1jð Þ: The innovation r(k+1) is given by

r k þ 1ð Þ ¼ Z k þ 1ð Þ � h bX k þ 1 kjð Þ
� �

ð29Þ

Furthermore, the Jacobian matrix of rhX k þ 1ð Þ evaluated at bX k þ 1 kjð Þ ¼
Ya k þ 1 kjð Þ�1� bya k þ 1 kjð Þ is given by

rhX k þ 1ð Þ ¼ @h

@X

����
X¼bX kþ1 kjð Þ

¼

y1�yc
x1�xcð Þ2þ y1�ycð Þ2

xc�x1
x1�xcð Þ2þ y1�ycð Þ2 �1

y2�yc
x2�xcð Þ2þ y2�ycð Þ2

xc�x2
x2�xcð Þ2þ y2�ycð Þ2 �1

..

. ..
. ..

.

yp�yc

xp�xcð Þ2þ yp�ycð Þ2
xc�xp

xp�xcð Þ2þ yp�ycð Þ2 �1

2666664

3777775 ð30Þ

Step 5: Repeat Step 2 to Step 4.

4 Pose Tracking

In fact, the proposed triangulation method in the previous section can not be directly
applied to obtain the correct pose of a moving AMR at any speed unless the laser scanner
takes an infinite rotation speed. In realistic situations, the laser scanner has the scanning
speed at the rate of 6.0 rev/sec such that the proposed triangulation method fails to keep
trace of continuous poses of the AMR. This is because the poses of the moving AMR are
distinct at the time instants while the laser scanner is detecting any retro-reflectors. Worthy
of mention is that the proposed triangulation method is very useful for the pose
initialization problem which is encountered not only at start-up, but also during operation
for robot pose recovery in case of pose tracking failures.

To circumvent the aforementioned difficulty, only one laser bearing measurement, not
three measurements, along with the odometric information from the two driving wheels is
employed to update the continuous poses of the AMR via the proposed FEIF-based pose
tracking method. Figure 8 shows the angular measurements of the four reflectors one by
one. Notice that the odometric information is easily obtained from two encoders amounted
on the driving motors. The proposed pose tracking method will work well once the
proposed triangulation method has been adopted to find an almost correct initial robot pose.
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The proposed pose tracking algorithm will also perform well for an autonomous robot with
differential driving at speeds less than 1.0 m/s. This is due to the validity of the robot’s
kinematic model, which has been shown valid for speeds less than 1.0 m/s. If a dynamic
model of the robot is used, then the proposed pose tracking algorithm can be applicable to
find the continuous robot’s pose at any admissible speeds.

With proven estimation accuracy and robustness, the fuzzy extended information
filtering (FEIF) method is again used in the section to estimate the continuous pose of the
AMR by employing only one bearing measurement to accomplish the posture tracking
goal. Hence, the measurement equation now becomes

z kð Þ ¼ h1 X kð Þð Þ þ v kð Þ ð31Þ
where

X kð Þ ¼
xc kð Þ
yc kð Þ
θ kð Þ

264
375; z kð Þ ¼ θ kð Þ½ �;

h1 X kð Þð Þ ¼ A tan 2 yi � yc kð Þ; xi � xc kð Þ½ � � q kð Þ½ �; i ¼ 1; 2; � � � ; p:
Furthermore, the measurement noise, v(k), is again assumed to be an independent, zero-

mean white Gaussian process with variance s2
v .In fact, one reflector reading is insufficient

and will result in slow convergent rate, but if the number of the reflectors is large, then a
better estimate can be obtained. To fuse the laser scanner’s reading with the odometer
information from the driving wheels, the kinematics model of the robot with two
differential driving wheels and pure rolling is needed and described by the following
nonlinear state equation

d

dt

x tð Þ
y tð Þ
θ tð Þ

264
375 ¼

vc tð Þ cos θ tð Þ
vc tð Þ sin θ tð Þ
wc tð Þ

264
375 ð32Þ

Fig. 8 Angular measurements of
the four reflectors
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where vc tð Þ is the linear velocity and wc tð Þ is the angular velocity of the AMR. The
discrete-time nonlinear state equation with an additive noise can be obtained by applying
the Euler’s formula to Eq. 32.

X k þ 1ð Þ ¼ f1 X kð Þð Þ þW kð Þ ð33Þ
or,

x k þ 1ð Þ
y k þ 1ð Þ
θ k þ 1ð Þ

264
375 ¼

x kð Þ þ $d cos θ kð Þ
y kð Þ þ $d sin θ kð Þ
θ kð Þ þ $θ

264
375þ

wx kð Þ
wy kð Þ
wθ kð Þ

264
375 ð34Þ

where Δd ¼ ΔT � vc, Δq ¼ ΔT � wc tð Þ, ΔT is the time between two successive reflectors’
detections; noise processes, wx kð Þ; wy kð Þ and wq kð Þ, denote the errors due to the wheel
slippage, surface roughness, etc., and they are modeled as uncorrelated zero-mean white
Gaussian processes with a covariance matrix Q kð Þ ¼ diag s2

wx; s
2
wy; s

2
wq

n o
, i.e., W(k)∼N(0,

Q(k)). In fact, one bearing reading during one sampling interval is insufficient and thus results
in estimation errors and slow convergence rates. Therefore, it is anticipated that more angle
readings will result in pose estimation. In what follows proposes a real-time FEIF algorithm.

Step 1: Initialization. Select β=–2, initial values of the information state byα 0 0jð Þ and the
information matrix Ya 0 0jð Þ at time k=0. Note that the initial information state is
given by by! 0 0jð Þ ¼ Y! 0 0jð ÞbX 0 0jð Þ where bX 0 0jð Þ ¼ ½bx 0 0jð Þ;by 0 0jð Þ;bθ 0 0jð Þ�T :

Step 2: One-step Prediction. Let the optimal estimate of Ya kð Þ at time k be byα k kjð Þ and its
information matrix be Ya k þ 1 kjð Þ: Use Eqs. 5–6 to calculate the best prediction,bya k þ 1 kjð Þ and its information state vector Ya k þ 1 kjð Þ; where the Jacobian
matrix rf1X k � 1ð Þ is given by

rf1X k � 1ð Þ ¼ @f1
@X

����
X¼bX k�1 k�1jð Þ

¼
1 0 �$d sin θ

0 1 $d cos θ

0 0 1

264
375 ð35Þ

Step 3: Generation of the weighting factor α from the fuzzy tuner. The localization
controller reads a new bearing measurement Z(k), computes the new innovation
r(k+1) and uses the fuzzy tuning algorithm to find an appropriate α.

Step 4: Estimation (Measurement Update). At time k+1, the localization controller reads
the incoming measurement data Z(k+1) and then uses Eqs. 7–8 to obtain the
updating information state estimate byα k þ 1 k þ 1jð Þ and information matrix
Ya k þ 1 k þ 1jð Þ; where the Jacobian matrix▿hX (k) is now replaced by▿h1X (k).

rh1X kð Þ ¼ @h1
@X

����
X¼bX k k�1jð Þ

¼ y1 � yc

x1 � xcð Þ2þ y1 � ycð Þ2
xc � x1

x1 � xcð Þ2þ y1 � ycð Þ2�1

" #
; i ¼ 1; 2; � � � ; p:

ð36Þ
Simultaneously, use Eq. 29 to compute the mean and covariance of the innovation r(k)

and detect the degree of filter divergence by the fuzzy tuner.
Step 5: Repeat Step 2 to Step 4.

Notice that if the robot failed to pose tracking, then initialization can be easily done
using the proposed triangulation method presented in Section 3, assuming that the vehicle
move slowly or stops at a certain position.
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5 Simulations, Experimental Results and Discussion

In this section, simulation and experimental results are performed to examine the
performance of the proposed laser posture estimation and tracking algorithms. Three
computer simulations using MATLAB codes investigated the effectiveness of the proposed
posture estimation and tracking algorithms while noise variation and modeling errors
occurred. Four experiments were conducted to verify the performance of the proposed
FEIF-based posture estimation and tracking algorithms of the AMR using the laser scanner
and three reflectors. The last two experiments compared the performance of the EIF-based
and FEIF-based posture tracking algorithms.

5.1 Computer Simulations and Discussion

Simulation 1 this simulation was used for illustration of the proposed static posture estimation
method. It is assumed that the AMR equipped with a laser scanner was in a 1,000 cm×1,000 cm
square workspace, and in the surrounding space eight reflectors were installed whose positions
are respectively (x1, y1)=(560 cm, 920 cm), (x2, y2)=(160 cm, 920 cm), (x3, y3)=(160 cm,
520 cm), (x4, y4)=(160 cm, 120 cm), (x5, y5)=(560 cm, 120 cm), (x6, y6)=(960 cm, 120 cm),
(x7, y7)=(960 cm, 520 cm), (x8, y8)=(960 cm, 920 cm). The bearing measurements of the
reflectors were corrupted with noise processes modeled as a zero-mean identical white
Gaussian vector process with a covariance matrix R kð Þ ¼ diagfσ2

v1;σ
2
v2; � � � ;σ2

vpg; where
sv1 ¼ sv2 ¼ sv3 ¼ sv4 ¼ sv5 ¼ sv6 ¼sv7 ¼ sv8 ¼ 0:020 rad 1:146�ð Þ:The true position and
orientation of the AMR were given by (xc,yc,θ)=(580 cm, 555 cm, 50°). To compare the
proposed FEIF with the conventional EIF, one assumes that both filters take the same but
incorrect covariance matrix, i.e., R kð Þ ¼ diagfσ2

v1;σ
2
v2; � � � ;σ2

vpg; and σv1 ¼ σv2 ¼ σv3 ¼
σv4 ¼ σv5 ¼ σv6 ¼ σv7 ¼ σv8 ¼ 0:050 rad 2:866�ð Þ: With the static posture estimation
algorithm, Fig. 9(a) compares the true and estimated positions of the AMR and Fig. 9(b)
depicts the time history of the estimated and true orientations of the AMR. In Fig. 9(a), the
circle represents the true position, the triangle means the initial estimate using the three-point
triangulation, the cross represents the EIF estimate, and the star inside the circle denotes the
more accurate estimate obtained from the FEIF-based sensor fusion algorithm. The results in
Fig. 9 reveal that the pose estimate using the first stage algorithm had errors due to
measurement noise and finite measurements, but the FEIF-based precise estimation method in
the second stage significantly reduced the errors and obtained the optimal final posture
estimate ðbxc;byc;bθÞ ¼ 580:25 cm; 554:75 cm; 49:993�ð Þ with the steady-state pose errors of
(−0.25 cm, 0.25 cm, 0.007°).

Simulation 2 this simulation aimed at observing the performance of the posture tracking
algorithm for the AMR where the measurement noise varies with the smoke or mist in the
air, or other light interferences. The four reflectors’ positions were respectively amounted at
(x1, y1)=(270 cm, 275 cm), (x2,y2)=(203 cm, 273 cm), (x3,y3)=(150 cm, 243 cm), and (x4,y4)=
(260 cm, 196 cm). The initial pose of the AMR was X(0)=[140 cm, 200 cm, 14.9°]T, the
initial information state and information matrix were respectively bya 0 0jð Þ ¼ 1:5; 1:9; 0½ �T
and Ya 0 0jð Þ ¼ diag 0:01; 0:01; 0:01f g: Moreover, Q ¼ diag 0:0001; 0:0001; 0:00001f g;
and R ¼ σ2v ¼ 0:0002: Since the robot was moving along its predetermined path, all the
bearings from the reflectors could not be taken at the same time. Hence, only one reflector
bearing reading was assumed to obtain at a sampling instant. The AMR was assumed to move
along a line path with a constant velocity vc=1 cm/s so that Δd=1*ΔT cm and Δθ=0° in
Eq. 34, whereΔT is the time between two successive reflectors’ detections. The measurement
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noise covariance was actually changed up to R=0.02 after the 2,400th sample. The
innovations of the reflector measurements are depicted in Fig. 10, where the innovations
became large after the 2,400th sample due to the noise variation. The true and estimated states
of the AMR are shown in Fig. 11. Since the noise parameters, Q and R, in FEIF are able to
adapt to the actual noise characteristics, we observe in Fig. 11 that the FEIF has a better
estimation performance than the EIF while noise variation occurs.

Simulation 3 this simulation focused on exploring the performance of the posture tracking
of the robot while the modeling errors occur. Four reflectors were respectively installed at
(x1,y1)=(75 cm, 50 cm), (x2,y2)=(200 cm, 340 cm), (x3,y3)=(450 cm, 120 cm) and (x4,y4)=
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estimated orientations of the AMR
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Fig. 10 The behavior of the innovations, r(k), of the reflector measurements

134 J Intell Robot Syst (2008) 53:119–143



(350 cm, 0 cm). The initial pose of the robot was set by bX 0ð Þ ¼ 150 cm 150 cm 5:73�½ �T,
and the initial information state and information matrix were given by byað0j0Þ ¼
1:25; 1:75; 0½ �T and Ya 0 0jð Þ ¼ diag 0:01; 0:01; 0:01f g: The values of noise covariance
matrices were set by R=0.0001 and Q=diag{0.0001, 0.0001, 0.00001}. The sampling
interval is ΔT=0.05 s, and the AMR traveled along a line path with constant unit velocity
so that Δd=0.05 cm and Δθ=0 in Eq. 34. The robot was expected to navigate along a
certain direction with constant velocity, but it had an abrupt acceleration and made a sharp
turn (Δd=0.2, Δθ=0.005) actually after the 1,500th sample. Hence, the modeling error
occurred due to the difference between the filter’s internal model and the actual model. It is
observed that the means of the innovations in the EIF move away from zero, but the means
in the FEIF still remain zero after a short computation time, while modeling errors occur.
Figure 12 displays the true and estimated states of the robot. The results in Fig. 12 indicate
that the FEIF has a better robustness property than the EIF under the occurrence of
modeling errors.

5.2 Experimental Results and Discussion

Experiment 1 the first experiment was performed to investigate the validity and accuracy of
the proposed triangulation localization method for the AMR. The real range and bearing
measurements are corrupted with measurement noise. For the static posture determination
of the AMR, Fig. 13 depicts the schematic diagram of the experiment laser scanner and
reflectors. The four reflectors were installed at the positions pre-specified by (x1,y1)=
(320 cm, 310 cm),(x2,y2)=(190 cm, 310 cm), (x3,y3)=(190 cm, 180 cm) and (x4,y4)=
(320 cm, 180 cm) with respect to the reference world frame. The robot was precisely
located at different eight positions inside the square space surrounded by the reflectors in
order to examine the accuracy of the proposed method. These eight true positions and

Fig. 11 Simulated results of the true and estimated positions of the AMR while noise variations occur
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orientations of the robot were depicted in Table 4 and their heading angles were given by
0°, 45°, 90°, 135°, 180°, 225°, 270° and 315°, respectively.

While the experiment was being performed, the statistical properties of bearing measure-
ments from the all reflectors were well evaluated in order to investigate the nature of the
measurement noise processes in Eq. 25. The real noise processes v1(k), v2(k), v3(k) and v4(k)
are indeed shown to be mutually independent and Gaussian ones with a zero vector-valued
mean and a covariance matrix R kð Þ ¼ diag s2

v1; s
2
v2; s

2
v3; s

2
v4

� 
; where σvi=0.0262 rad for

i=1,.., 4. Table 4 shows the experimental results for the static robot posture estimation of
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the robot located at eight positions and orientations. The results in Table 4 indicate that the
proposed triangulation method is proven capable of having a maximal position error of less
than 1.5 cm and a maximal orientation error of less than 2°.

Experiment 2 the second experiment was conducted to explore the feasibility and
performance of the proposed static posture estimation algorithm. Moreover, the experiment
aimed at studying what accuracy the proposed algorithm achieves. Figure 14(a) shows the
block diagram of the experimental 360-degree laser scanner, and Fig. 14(b) displays the
picture of the experimental laser scanner. For the experimental setup, the laser scanner
mounted on the robot was located at the position (−134 cm, 35 cm, 90°) and the three laser
reflectors were prespecified at three three-dimensional positions: P1 (0 cm, 0 cm, 59 cm),
P2 (−20 cm, 110 cm, 59 cm), P3 (−200 cm, 0 cm, 59 cm) with respect to the world frame.
While the experiments were being performed, two encoders’ outputs were used to fuse with
the angle readings from the laser scanner. Before proceeding with the experiments, all
important components, such as the laser scanner and the dead-reckoning module were
correctly calibrated. The FEIF-based posture estimation algorithm using standard C++
programming techniques was implemented on an Intel Pentium 586 PC. The proposed laser
scanner is efficiently designed to detect the existence of any reflector around the robot’s
environment within approximately 60 μs, depending upon the response tine of the photo
detector. The detected signal is quickly interfaced to the host PC via digital input/output
device and then processed by the PC. In comparison with the speed of the autonomous
mobile robot (less than 1 m/s) and the rotation speed of the scanner (6 rev/s), this
communication delay between the proposed laser scanner and the host PC is rather small
and can be ignored. However, if the robot navigates around its working environment at vary
fasts speeds (>>100 cm/s), the communication delay would be taken into account. The
initial settings of Y! 0=0ð Þ ¼ diag 1=20; 1=20; 1=5f g; R=0.001 and Q=diag{0.01, 0.01,
0.001} were considered for initializing the FEIF. Figure 15 depicts the behavior of
the proposed static robot pose estimates, assuming the initial pose estimate be

Table 4 Experimental results of the static robot posture estimation at eight positions and orientations

Parameter Value

The first four poses
True positions (xc,xc) cm (253,245) (280,234) (266,267) (277,279)
True orientations θ (degree) θ° 45° 90° 135°
Estimated positions bxc;bycð Þ cm (254.36,244.89) (280.86,234.35) (266.25,267.26) (277.54,279.42)
Estimated orientations bθ (degree) 1.88° 44.13° 91.19° 135.62°
x-axis errors jbxc � xcj 1.36 cm 0.86 cm 0.25 cm 0.42 cm
y-axis errors jbyc � ycj 0.11 cm 0.35 cm 0.26 cm 0.42 cm
Orientation errors jbθ� θj 1.88° 0.87° 1.19° 0.62°
The last four poses
True positions (xc, yc) cm (225,221) (221,264) (260,213) (230,241)
True orientations θ (degree) 180° 225° 270° 315°
Estimated positions bxc;bycð Þ cm (225.31,222.49) (221.03,263.94) (260.76,212.38) (231.18,241.77)
Estimated orientations bθ (degree) 181.34° 226.29° 271.67° 315.82°
x-axis errors jbxc � xcj 0.31 cm 0.03 cm 0.76 cm 1.18 cm
y-axis errors jbyc � ycj 1.49 cm 0.06 cm 0.62 cm 0.77 cm
Orientation errors jbθ� θj 1.34° 1.29° 1.67° 0.82°
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bX 0=0ð Þ ¼ �100 cm; 80 cm; 102�½ �T . As can be seen in Fig. 15, the pose estimates of the
robot quickly converged to their actual position. In this experiment, if the initial condition ofbX 0=0ð Þ is far from its true position, and then the FEIF may not succeed to converge to the actual
values. Note that if the initial state condition of bX 0=0ð Þ is unknown, it can be easily obtained
using the first stage algorithm based on the triangulation method presented in Section 3. To find
the accuracy and precision of the estimates, the actual values of the robot’s pose were precisely
measured by hand and the steady-state pose tracking errors were (−0.086 cm, −0.067 cm, 0.25°).
The experimental result indicates that the proposed posture estimation method can be effectively
and precisely used to find the static pose of the robot.

Experiment 3 the third experiment was used for evaluating the performance of the EIF-
based posture tracking algorithm when the robot navigated along a line path in a structured
environment with a flat, partly smooth surface and a magnetic interference source. All
initial parameter settings and the initial state were identical to the previous set-up, but the
robot moved at a constant linear velocity vc=1 cm/s with the vehicle heading of 86.45°.
Figure 16 displays the time history of the continuous EIF-based robot’s posture estimates,
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assuming the initial estimate be bX 0=0ð Þ ¼ �87cm; 135cm; 99�½ �T . Observe in Fig. 16 that
the steady-state pose tracking error was (−0.14 cm, −0.14 cm, 1.15°) for the robot with
straight-line movement parallel to the y-axis.

Experiment 4 the fourth experiment was used for evaluating the moving performance of the
proposed FEIF-based posture tracking algorithm when the robot moved along the same
path as in Experiment 3. All initial parameter settings and the initial state were identical to
the previous experiment. The constant linear velocity of the robot was vc=1 cm/s and the
vehicle heading was 90°. Figure 17 depicts the time history of the FEIF-based robot’s
posture estimates. To find the accuracy and precision of the estimates, the actual values of
the robot’s pose were precisely measured by hand and the steady-state pose tracking errors
were (−0.018 cm, 0.012 cm, 0.0135 ).

Through the last two experimental results, we observe that the FEIF-based estimates
have precisely converged to the actual robot posture estimates when the robot moved along
a line path. Actually, we have also shown that the FEIF outperforms the EIF in the case of
robot position and orientation recovery at slow speeds.

Experiment 5 The four reflectors’ positions were respectively amounted at (x1,y1)=(162 cm,
325 cm), (x2,y2)=(305 cm, 345 cm), (x3,y3)=(310 cm, 242 cm) and (x4,y4)=(190 cm,
212 cm). In the experiment, the initial pose of the AMR was set by bX 0ð Þ ¼
255 cm; 210 cm; 28:6�½ �T ; and the AMR was steered to move along a circle path with a
constant velocity vc=1 cm/s. Figure 18 depicts the time history of the FEIF-based robot’s
posture estimates. The result in Fig. 18 shows that the proposed posture tracking algorithm
is shown to have satisfactory estimation performance and is able to adapt to the actual noise
characteristics.

Fig. 15 Static robot position estimates using the laser posture estimation algorithm
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Fig. 17 The laser FEIF-based posture tracking algorithm. a Robot position estimates. b Behavior of the
vehicle heading estimate of the navigating robot
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6 Conclusions

This paper has presented posture estimation and tracking methods using fuzzy extended
information filtering for an AMR equipped with a 360° laser scanner with at least three retro-
reflectors. If three reflectors are installed on the walls surrounding the workspace, the static
position and orientation of the AMR with respect to a reference world frame can be
determined uniquely by means of exactly measuring the bearings of the reflectors and the
proposed three-point triangulation method. In order to reduce the sensitivity to measurement
errors, more than three reflectors placed at appropriate positions are required; the static pose
estimation errors can be significantly reduced via the FEIF-based sensor fusion method. With
the same configuration of the laser scanner and the reflectors, the proposed posture tracking
method has been shown capable of continuously keeping trace of the pose of the robot
navigating on a planned path at slow speeds. Through simulations and experimental results,
the proposed methods have been proven to not only reduce the accumulation errors due to the
dead-reckoning method, but also provide more accurate posture estimation and tracking.
Moreover, the developed method can be extensively applied to localize mobile robots in
various occasions and tasks.
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