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Abstract. A combined PD and hierarchical fuzzy control is proposed for the low-speed control of
theC-axis of CNC turning centers considering the effects of transmission flexibility and complex
nonlinear friction. Learning of the hierarchical structure and parameters of the suggested control
strategy is carried out by using the genetic algorithms. The proposed algorithm consists of two
phases: the first one is to search the best hierarchy, and the second to tune the consequent center
values of the constituent fuzzy logic systems into the hierarchy. For the least total control rule number,
the hierarchical fuzzy controller is chosen to include only the simple two-input/one-output fuzzy
systems, and both binary and decimal genes are used for the selection, crossover and mutation of the
genetic algorithm. The proposed approach is validated by the computer simulation. Each generation
consists of 30 individuals: ten reproduced from its parent generation, ten generated by crossover,
and the other ten by mutation. In the simulations, theC-axis is assumed to be driven by a vector-
controlled AC induction motor, and the dynamic friction model suggested by Canudas de Wit et al.
in 1995 is used.

Key words: hierarchical fuzzy control, genetic algorithms, flexibleC-axis, dynamic friction, low-
speed control.

1. Introduction

Consideration of the effects of transmission flexibility and complex nonlinear fric-
tion often plays a key role in precision control systems design. Usually flexural
couplings are introduced to accommodate undesirable error motions while being
relatively rigid (with finite stiffness) along the desired motion direction. Modeling
of the flexible motion and advanced control design are thus indispensable for a
mechatronics device to achieve faster response and higher accuracy [1]. Nonlinear
friction presents great impact on the servo dynamics especially for the fine motions
and corresponding low speeds [2–4]. Stick-slip would occur when the commanded
motion speed is below system’s critical speed. To avoid stick-slip for much lower
speed applications, such as the Czochralski silicon crystal growth systems [5] and
theC-axes of CNC (computer numerical control) turning centers [6], is, thus, a
challenging task considering both the effects of flexibility and friction.

Many model-based researches on friction control are known (we mention adap-
tive pulse width control [7], stiff PD feedback control [2], and model-based feed-
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256 L.-C. LIN AND G.-Y. LEE

forward control [3]). Kato et al. [4] proposed to express the static and kinetic
friction coefficients through simple formulas. Dahl [8] proposed a dynamic model
for describing the spring like behavior during stiction (the so-called Dahl effect).
Bo and Pavelescu [9], Hess and Soon [10] suggested traditional static friction mod-
els. Armstrong-Helouvry [3] proposed a seven-parameter friction model. Recently,
Canudas de Wit et al. [11] proposed an elegant dynamic model useful for friction
control and simulation. This model can capture most of the friction behaviors ob-
served experimentally, including the Stribeck effect (the destabilizing effect at a
very low velocity), hysteresis, Dahl effect, and varying break-away force.

There exist few model-free approaches for the control design of precision mo-
tion systems. Tung et al. [12] proposed a repetitive control for friction compensa-
tion to reduce the contouring error of anX-Y table. Lin and Uen [13] suggested an
error back propagation-based fuzzy learning control for friction compensation. Lin
and Lin [14] proposed a genetic algorithm-based fuzzy control for enhancing the
transient performance and robustness of a stable adaptive control system. Genetic
algorithms are the global search/optimization methods developed from the theory
of biological evolution [15–18]. The structure and parameters of a fixed-parameter
or adaptive fuzzy system can be systematically learned using genetic algorithms
[e.g., 19, 20].

Even a single-axis system which takes into consideration the flexibility and dy-
namic friction behavior, is a high-order uncertain dynamical system. Introduction
of a suitable fuzzy control system for enhancing its performance would need not
merely two input variables but the multiple ones. As the number of the input vari-
ables increases, the required number of fuzzy rules to construct a complete fuzzy
system will grow exponentially, which is identified as “the curse of dimensionality”
[21–23]. The hierarchical fuzzy system is one approach to deal with the difficulty
of the design and implementation of a multi-input fuzzy system [22-24]. In this
paper, we will propose a combined PD and hierarchical fuzzy control with five
input variables for low-speed control of the single-axis drive systems using the
C-axis (servo control of the spindle) of a CNC turning center as the simulation
example. The effects of the flexibility and dynamic friction are included in the
learning using genetic algorithms. The suggested algorithm consists of two phases:
the first one is for searching the best hierarchical structure, and the second for tun-
ing the consequent values of the two-input/one-output constituent fuzzy systems
into the hierarchy. In the simulations, vector-controlled AC induction motor and
dynamic friction model suggested by Canudas de Wit et al. [11] are adopted.

2. Modeling of a FlexibleC-Axis with Nonlinear Dynamic Friction

In this study, we consider the servo control of the spindle, theC-axis, of a CNC
turning center as shown in Figure 1. Precision and the low-speed controls are
the main problems of aC-axis design. For performance improvement, a more
complete model of the flexible drive system is needed for computer simulation
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Figure 1. A flexible spindle system.

during the genetic algorithm-based design process. Mathematical model consid-
ering transmission flexibility, actuator dynamics, and friction, can be derived in a
straightforward way and is listed below:

Jrθ̈r + brθ̇r + k(θr −Nθc) = Te, (1a)

Jcθ̈c+ (τcf + τc) = Nk(θr −Nθc), (1b)

Lσ i̇qs+ Rσiqs+ Lsλr

Lm
θ̇r = vqs, (1c)

Te = P

2

(
Lmλr

Lr

)
iqs, (1d)

τcf = σ0z+ σ1
dz

dt
+ σ2θ̇c, (1e)

dz

dt
= θ̇c− |θ̇c|

g(θ̇c)
z, (1f)

σ0g
(
θ̇c
) = Tc+ (Ts− Tc)e−(θ̇c/ωs)

2
. (1g)

Here θr and θc are, respectively, the rotor angle of the vector-controlled AC in-
duction motor and the spindle angle;Jr andJc are, respectively, the moments of
inertia of the motor rotor and spindle;br is the viscous damping coefficient on the
motor rotor side;k is the equivalent spring stiffness representing the transmission
flexibility; N is the speed reduction ratio;Te is the motor torque modeled by (1c)
and (1d);τc is the load torque resulting from the cutting force;τcf is the friction
torque modeled by (1e)–(1g), i.e., the new dynamic friction model suggested by
Canudas de Wit et al. [11].

In the dynamics model (Equations (1c) and (1d)) of a vector-controlled AC
induction motor [25],vqs is the stator voltage component in the quadrature axis (q-

JINT1478.tex; 14/06/1999; 8:24; p.3
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axis) of the rotating rotor field frame;θ̇r is the rotor velocity;iqs is the stator current
component in theq-axis of the rotating field frame;Ls is the stator self-inductance;
Lm is the mutual inductance;Lr is the rotor self-inductance;λr = constant, is the
rotor flux linkage;

Lσ = Ls− L
2
m

Lr
; Rσ = Rs+ Rr

Ls

Lr
,

Rs andRr are, respectively, the stator and rotor resistance;P is the number of poles.
In the dynamic friction model (1e)–(1g),̇θc is the spindle velocity;z is the

average deflection of the bristles (which can deflect like springs) between the two
contact surfaces and modeled by Equation (1f);σ0 is the stiffness, andσ1 is the
damping coefficient of the bending bristles;σ2 is the viscous coefficient; parame-
terization ofσ0g(θ̇c) using (1g) is used to describe the Stribeck effect;Tc is the
Coulomb friction torque;Ts is the stiction torque, andωs is the Stribeck velocity.

Defining the state variables asx1 = iqs, x2 = θr, x3 = θ̇r, x4 = θc, x5 = θ̇c,
andx6 = z, the state equation of the dynamicalC-axis system can be expressed as
follows:

ẋ1 = −Rσ
Lσ
x1 − Lsλr

LσLm
x3 + 1

Lσ
vqs,

ẋ2 = x3,

ẋ3 = − k
Jr
x2− br

Jr
x3 + kN

Jr
x4+ P

2Jr

(
Lmλr

Lr

)
x1, (2)

ẋ4 = x5,

ẋ5 = kN

Jc
x2− kN

2

Jc
x4− 1

Jc
τc− 1

Jc
τcf,

ẋ6 = x5− |x5|
g(x5)

x6.

3. Hierarchical Fuzzy Control Using Genetic Algorithms

The idea of hierarchical fuzzy control systems proposed by Raju et al. [22] is to
put the multi-input variables into a collection of lower-dimensional fuzzy systems,
instead of only a single high-dimensional fuzzy system. In this section, design
methodology of an integrated PD and hierarchical fuzzy control with five input
variables using genetic algorithms [19, 20] will be proposed for the low-speed
control ofC-axis of a CNC turning center.

The PD control is included in the control strategy due to its well-known damp-
ing improvement capability. The hierarchical fuzzy control part is for the potential
enhancement of the transient and steady state performances due to its nonlinear
universal approximation characteristics [24, 26]. The possible best gains of the PD
control, and the optimal structure and consequent center values of the hierarchical
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Figure 2. Membership functions of the linguistic terms for each input variable of the
hierarchical fuzzy system.

fuzzy rule bases will be learned using genetic algorithms. The hierarchical fuzzy
controller is set to be composed of only usual simple two-input/one-output fuzzy
systems. The linguistic terms (fuzzy subsets) defined in the normalized universe,
say [−1,1], of each input of the hierarchical fuzzy system are chosen as shown
in Figure 2. The membership functions of used seven linguistic terms are listed as
follows:

f1(u
∗) =

{
exp

[− 4
(∣∣u∗ − (−1)

∣∣− 0.1
)2]

for |u∗ − (−1)| ≥ 0.1,
1 for |u∗ − (−1)| ≤ 0.1,

(3a)

f2(u
∗) =

{
exp

[− 8
(∣∣u∗ − (−0.6)

∣∣− 0.05
)2]

for
∣∣u∗ − (−0.6)

∣∣ ≥ 0.05,
1 for

∣∣u∗ − (−0.6)
∣∣ ≤ 0.05,

(3b)

f3(u
∗) = exp

[− 32
(∣∣u∗ − (−0.2)

∣∣)2], (3c)

f4(u
∗) = exp

[− 32
(∣∣u∗∣∣)2], (3d)

f5(u
∗) = exp

[− 32
(|u∗ − 0.2|)2]

, (3e)

f6(u
∗) =

{
exp

[− 8
(|u∗ − 0.6| − 0.05

)2]
for |u∗ − 0.6| ≥ 0.05,

1 for |u∗ − 0.6| ≤ 0.05,
(3f)

f7(u
∗) =

{
exp

[− 4
(|u∗ − 1| − 0.1

)2]
for |u∗ − 1| ≥ 0.1,

1 for |u∗ − 1| ≤ 0.1.
(3g)
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Therefore, each constituent fuzzy system has only 49 rules, and their consequent
values (called parameters of the hierarchical fuzzy controller) can be systematically
learned using genetic algorithms.

Simplified fuzzy reasoning method using singleton fuzzifier, product inference
engine, and center average defuzzifier [24, 26] is chosen for the nonlinear in-
put/output mapping evaluation of each constituent fuzzy system:

y∗ =
∑nr

j=1µjwj∑nr
j=1µj

,

µj = f1j
(
u∗1
)
f2j
(
u∗2
)
,

(4)

whereµj is the degree of firing (DOF) of thej th rule of some fuzzy system unit
for the crisp input pair(u∗1, u

∗
2); f1j (u

∗
1) is the membership degree of the first crisp

inputu∗1 in j th rule’s first antecedent linguistic termf1j ; f2j (u
∗
2) is the membership

of the second crisp inputu∗2 in j th rule’s second antecedent linguistic termf2j ; wj
is j th rule’s consequent center value; andnr = 7×7= 49 is the number of control
rules of the fuzzy unit;y∗ is the crisp output value for the crisp input(u∗1, u

∗
2).

3.1. BASICS OF GENETIC ALGORITHMS

Most genetic algorithms (GAs) have at least three types of operators: selection,
crossover, and mutation [18].

The individuals (or called chromosomes) in a GA population (or called gen-
eration) typically take the form of binary (0 and 1) bit strings. However, decimal
chromosomes could also be used for ease of computation while the number of
parameters is large [27]. Each individual represents one candidate solution in the
defined search space. The GA successively processes generations of individuals
by replacing one parent generation with one new generation through the operators.
A suitable fitness function is required for assigning a score (fitness) to each indi-
vidual in the current generation. The fitness of an individual stands for how well
it solves the problem. In this study, we consider the following fitness function for
servo control requirement:

f = a
(

1000∑T
t=1 |e(t)|

)
+ b

(
1000∑T
t=1 |ė(t)|

)
, (5)

wheret is the discrete time index,T is the final time step, and the weights are set
asa = 3 andb = 0.1 in the simulations.

SELECTION. The selection operator selects individuals in the population for re-
production. The fitter the individual, the more probability of selection it is likely to
be selected to reproduce.

CROSSOVER. The crossover operator randomly chooses a locus and exchanges
the subsequences before and after that locus between two selected individuals
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to create two offspring. This is the so-called “single-point crossover.” There are
also “multi-point crossover” versions of crossover. For example, two parent strings
11000001 and 00111110 could be crossed over by randomly choosing two points
m = 2 andn = 7, and exchanging the subsequences between these two points to
produce the two offspring 11111111 and 00000000. Two decimal individuals could
be crossed over using weighted average operator [27]. For example, by randomly
choosing a numberγ ∈ (0,1), two individualsA andB might be crossed over to
produce two offspring:A′ = γA+ (1− γ )B andB ′ = γB + (1− γ )A.

MUTATION. The mutation operator randomly flips some of the bits in an indi-
vidual. For example, the string 11111111 might be mutated in its third and seventh
bits to yield the new string 11011101. Mutation can occur at each bit position in
an individual with some mutation rate. A decimal individualA could be mutated
by randomly selecting a mutation rateβ ∈ (0,1) to produce the new individual
A′ = A+ (2β − 1)Amax, whereAmax is the selected maximum mutation.

3.2. A GENETIC ALGORITHM FOR LEARNING THE COMBINED PD AND

HIERARCHICAL FUZZY CONTROLLER

Multi-input fuzzy systems are rather difficult to design via heuristic approach due
to the curse of dimensionality. Hierarchical structure is a very effective way for
reducing the required total rule number of a complete multivariable fuzzy system
with selected fixed fuzzy partitioning of the domain. If the basic fuzzy systems
constructing the hierarchical system are all two-input/one-output fuzzy systems,
then the required total number of rules is minimal [24]. Usually a mechatronic
system is governed both by flexibility and nonlinear friction, either for fast or low-
speed operations, these effects should be considered in the servo control design for
enhancing its transient and steady state performances. In this study, we consider
the low-speed control forC-axis of a CNC turning center, and select a hierarchical
fuzzy controller with five input variables:e (spindle tracking error),δ (deflection
of the equivalent spring),̇δ (time derivative of the deflection),̇θc(t) (current spindle
velocity), andθ̇c(t − 1) (past spindle velocity at timet − 1).

The learning flow chart of a combined PD and hierarchical fuzzy control using
genetic algorithms with two phases can be shown in Figure 3, where the PD control
part is

vc1 = kpe + kdė. (6)

Here,e is the spindle tracking error,kp andkd are the proportional and derivative
(PD) control gains. One phase is for the search of the most suitable hierarchy with
all constituent two-input/one-output fuzzy systems, and the other for the search of
PD gains and all the consequent centers of the constituent simple fuzzy systems.

The off-line learning algorithm is proposed as follows:
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262 L.-C. LIN AND G.-Y. LEE

Figure 3. Learning flow chart for the combined PD and hierarchical fuzzy control system.

Figure 4. Initial hierarchical structure for the case with five input variables.

1. First determine the required numberU of the constituent fuzzy systems:U =
2i−2, wherei is the number of input variables of the hierarchical fuzzy con-
troller [19], and construct the hierarchical fuzzy system with binary tree struc-
ture in a top-down and left-right manner. For example, wheni = 5 for the
C-axis system, we could construct the hierarchy with at most 8 fuzzy units as
shown in Figure 4;ki, i = 1,2, . . . ,5, are the scaling factors of the input vari-
ables. Each input variable is allocated a gene in the individual for representing
which fuzzy unit it will be connected to. For example, as shown in Figure 5, a
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Figure 5. Connection of the input variables for the gene code 0123 wheni = 4.

set of gene codes 0123 means that the input variableA is to be connected to the
fuzzy unit 0,B connected to the fuzzy unit 1,C connected to the fuzzy unit 2,
andD connected to the fuzzy unit 3.

2. Phase (a):

(i) Start with a randomly generated population ofn (= 30, in the simulation
study) binary individuals. Each individual containsi (i − 2)-bit genes
representing the connection between the input variables and the fuzzy
units.

(ii) Check the connection between the input variables and the fuzzy units for
each individual. Delete those fuzzy units with no input variables con-
nected to them. If a fuzzy unit has only one input (including the interme-
diate output from a lower-level fuzzy unit) connected to it, then it should
be deleted from the structure and the very input is directly re-connected
to its next higher-level fuzzy unit.

(iii) Check whether the reduced hierarchy is composed of all two-input fuzzy
units. If not, the individual must be replaced by a new randomly gen-
erated individual, untiln individuals with desired simplest hierarchy are
generated.

3. Phase (b):

(i) Start with a randomly generated population ofn (= 30) decimal individu-
als with each composed ofkp andkd gains.

(ii) Start with a randomly generated population ofn (= 30) decimal individ-
uals with each composed of all the consequent center values of the rule
bases of the constituent fuzzy units. Each individual thus has 49(i−1) (i is
the total number of input variables) real numbers belong to the normalized
universes of the outputs of the fuzzy units.
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Notice that the three sets of respectiven individuals constitute then composite
individuals in a generation of the genetic algorithm. Each individual represents a
candidate structure and parameters design of the combined PD and hierarchical
fuzzy controller.
4. Conduct closed-loop system simulation and calculate the fitnessf (Equat-

ion (5)) for each composite individual.
5. Repeat the following steps untiln offspring have been created:

(a) Select the topn/3 individuals with best fitness to reproduce the firstn/3
composite offspring.

(b) With crossover probabilitypc1, two individuals (only the part describing
the hierarchical structure) are crossed over using “two-point crossover”
operation to form two new genes. Check whether the two genes are with
simplified hierarchy, and take only the suitable genes as offspring. Repeat
this crossover process untiln/3 offspring are created. From thesen/3
offspring, find two offspring with identical hierarchical genes. Find two
parent individuals with this same hierarchical gene. With crossover proba-
bility pc2, their gene codes representing consequent center values and PD
gains are respectively crossed over using weighted average crossover, and
then integrated with the hierarchical gene part to create two composite off-
spring. Find the other pairs with their same hierarchical gene and do their
respective crossovers. For the remaining single new hierarchy individuals,
randomly generate their respective center values and PD gains to form the
secondn/3 composite offspring.

(c) Randomly selectn/3 parent individuals and perform their respective mu-
tations to produce the thirdn/3 composite offspring.

6. Replace the parent population with the new population.
7. Go to step 4 until the fitness converges.
8. Select the composite chromosome with largest fitness as the desired combined

PD and hierarchical fuzzy controller.

4. Simulation Examples

In this section, the suggested genetic algorithm for the search of the best hierarchi-
cal structure, rule bases, and PD gains forC-axis of a turning center will be tested.
Extensive simulations are conducted and only the representative examples are to
be illustrated.

The parameters of theC-axis are selected as follows:

λr = 0.6 H A, Rs = 1.12�, Rr = 1.05�,

Ls = 0.341 H, Lr = 0.306 H, Lm = 0.225 H,

Jr = 0.11 kg m2, br = 2.05 N m s/rad, Jc = 5.102 kg m2,

N = 1.0, k = 200 N m/rad, σ0 = 17000.0, σ1 = 126.5, σ2 = 0.4,

Tc = 0.7 N m, Ts = 1.2 N m, and ωs = 0.003 rad/s.
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The scaling factors for the input variables of the hierarchical fuzzy controller
are selected as:k1 = 50, k2 = 80, k3 = 20, k4 = 20, k5 = 10. The scaling factor
for the output variable isk6 = 10. The number of chromosomes in each population
is n = 30; the crossover probability and mutation rate for the structure genes are:
pc1 = 0.3,α = 0.5; the crossover probability and mutation rate for the consequent
center values and PD gains are:pc2 = 0.7, β = 0.8; and the maximum mutation
value isAmax= 10

4.1. NO-DISTURBANCE TORQUE CASE

The fitness convergence is shown in Figure 6(a) for the flexibleC-axis system
with nonlinear friction when ramp commandθc,d(t) = 0.02t (rad) is used and no-
disturbance torque occurs. The learned best structure of the hierarchical fuzzy con-
troller is shown in Figure 6(b) where the fuzzy system units are all two-input/one-
output fuzzy systems with their rule bases listed in Tables I(a)–I(d). These tables
show the learned consequent center values of the fuzzy rules. Notice thatθ̇c(t) and
θ̇c(t − 1) are fed to the lowest level’s fuzzy system unit 7. Output of fuzzy system
unit 7 andδ̇ are fed to fuzzy system unit 3. Output of fuzzy system unit 3 ande

are fed to fuzzy system unit 1. Output of fuzzy system unit 1 andδ are fed to the
highest level’s fuzzy system unit 0. The output of fuzzy unit 0 is the normalized
control signal of the hierarchical fuzzy controller, and the scaling factor for it is
selected as 10. Fuzzy units 2, 4, 5 and 6 are not necessary and thus excluded in the
hierarchy. The learned PD gains arekp = 758.405,kd = 743.010. The simulation
results are shown in Figures 6(c)–6(f). Figures 6(c) and 6(d) illustrate the ramp
tracking response and the tracking error (θc(t) − θc,d(t)). Figure 6(e) shows the
deflection of the equivalent spring, and Figure 6(f) presents the required control

Table I. Consequent center values of the learned hierarchical fuzzy controller: (a) rule table
of fuzzy unit 7; (b) rule table of fuzzy unit 3; (c) rule table of fuzzy unit 1; (d) rule table of
fuzzy unit 0

(a)

Unit 7 Input 1 (̇θc(t))

f1 f2 f3 f4 f5 f6 f7

f1 0.4479 0.4644 0.5193 0.4429 0.4474 0.5092 0.4609

f2 0.4410 0.4987 0.4532 0.4395 0.4500 0.4598 0.4580

Input 2 f3 0.4668 0.4753 0.4449 0.5077 0.4519 0.4792 0.4425

(θ̇c(t − 1)) f4 0.4250 0.4246 0.4523 0.4853 0.4826 0.4942 0.4673

f5 0.4944 0.3906 0.4204 0.4767 0.4868 0.4666 0.4747

f6 0.4420 0.4209 0.5052 0.4113 0.4799 0.5038 0.5241

f7 0.4585 0.4143 0.4921 0.3954 0.4478 0.5427 0.4560
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266 L.-C. LIN AND G.-Y. LEE

Table I. (Continued.)
(b)

Unit 3 Input 1 (Output of unit 7)

f1 f2 f3 f4 f5 f6 f7

f1 0.4532 0.4958 0.4149 0.4290 0.4036 0.4592 0.4785

f2 0.4434 0.4608 0.4974 0.5115 0.4442 0.4814 0.4595

Input 2 f3 0.4346 0.4562 0.4834 0.4323 0.4926 0.4106 0.4683

(δ̇) f4 0.4544 0.4411 0.4944 0.4539 0.5006 0.5174 0.4226

f5 0.4803 0.5058 0.4063 0.4360 0.4516 0.4327 0.5117

f6 0.4652 0.4699 0.4651 0.4706 0.4882 0.4699 0.5079

f7 0.5049 0.4577 0.4851 0.5124 0.4849 0.4643 0.4265

(c)

Unit 1 Input 1 (Output of unit 3)

f1 f2 f3 f4 f5 f6 f7

f1 0.5577 0.4663 0.5001 0.4778 0.4531 0.4599 0.4630

f2 0.4112 0.4472 0.4321 0.5126 0.4383 0.5112 0.4697

Input 2 f3 0.4869 0.4392 0.3917 0.4488 0.4576 0.5630 0.4529

(e) f4 0.4915 0.5307 0.5026 0.4494 0.4507 0.4332 0.4437

f5 0.4631 0.4287 0.4371 0.4660 0.4821 0.3741 0.4612

f6 0.4608 0.4472 0.4977 0.4970 0.4787 0.4856 0.4357

f7 0.4318 0.4751 0.4934 0.5007 0.4625 0.4824 0.4604

(d)

Unit 0 Input 1 (Output of unit 1)

f1 f2 f3 f4 f5 f6 f7

f1 0.4862 0.5139 0.4347 0.4917 0.5337 0.3605 0.4005

f2 0.4510 0.4805 0.4721 0.4811 0.4628 0.4058 0.3632

Input 2 f3 0.4478 0.4526 0.4254 0.4876 0.4564 0.4322 0.4714

(δ) f4 0.4656 0.4698 0.4782 0.5103 0.4640 0.5429 0.5347

f5 0.4422 0.4434 0.5106 0.4357 0.4315 0.5088 0.5191

f6 0.4970 0.4342 0.4846 0.4121 0.4244 0.5335 0.5114

f7 0.5285 0.4817 0.4522 0.4152 0.4627 0.4970 0.4745

voltage. From these results we know that there exists no stick-slip and the control
performance is excellent even in this very low speed (0.02 rad/s).

4.2. WITH-DISTURBANCE TORQUE CASE

Consider that theC-axis has a disturbance torque due to the metal cutting process
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(a)

(b)

Figure 6. Learned combined PD and hierarchical fuzzy controller for low-speed control:
(a) fitness convergence; (b) best hierarchical structure; (c) control response; (d) tracking error;
(e) spring deflection; (f) control voltage.
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(c)

(d)

Figure 6. (Continued.)

τc = 5+ 2 sint + sin

(
50t + π

4

)
(N m) (7)

The fitness convergence of a GA learning is shown in Figure 7(a). The structure
of the best hierarchical fuzzy controller is shown in Figure 7(b). Notice thate and
θ̇c(t − 1) are fed to the lowest level’s fuzzy unit 3; output of fuzzy unit 3 andδ are
fed to fuzzy unit 1;θ̇c(t) andδ̇ are fed to fuzzy unit 2; outputs of the fuzzy unit 1 and
2 are fed to fuzzy unit 0. The output of fuzzy unit 0 is the normalized control signal
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(e)

(f)

Figure 6. (Continued.)

of the hierarchical fuzzy controller, and the scaling factor for it is also selected
as 10. Fuzzy units 4–7 are not necessary and thus excluded in the hierarchy. The
learned four rule bases of the fuzzy units 0–3 are shown in Table II. The learned PD
control gains arekp = 1002.076,kd = 135.007. The simulation results are shown
in Figures 7(c)–7(f). From these we know that the low-speed tracking purpose can
still be obtained while the system has severe disturbance torque. And the effect
of disturbance can be greatly attenuated by the learned PD and hierarchical fuzzy
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(a)

(b)

Figure 7. Learned combined PD and hierarchical fuzzy controller for low-speed control with
cutting torque disturbance: (a) fitness convergence; (b) best hierarchical structure; (c) control
response; (d) tracking error; (e) spring deflection; (f) control voltage.
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(c)

(d)

Figure 7. (Continued.)

controller. Notice that the suggested learning algorithm can automatically search
the most suitable input variables pairing of the required constituent fuzzy systems.
In order to compensate for the severe disturbance torque, the learned hierarchy
is different from that for the nominal case. In the above two cases for low-speed
smooth control, the controlled systems would find serious stick-slip phenomena
while only using simple PD control.
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(e)

(f)

Figure 7. (Continued.)

5. Conclusions

Since the effects of transmission flexibility and friction govern the dynamic be-
havior of a precision motion control system, to systematically take them into ac-
count for advanced servo system design is a very important problem in mecha-
tronics. A combined PD and hierarchical fuzzy control for theC-axis (the spindle
with servo control) of CNC turning centers is considered in this paper. A genetic
algorithm-based evolutionary learning approach to the search for the best hierar-
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Table II. Consequent center values of the learned hierarchical fuzzy controller with
cutting torque disturbance: (a) rule table of fuzzy unit 3; (b) rule table of fuzzy unit 1;
(c) rule table of fuzzy unit 2; (d) rule table of fuzzy unit 0

(a)

Unit 3 Input 1 (e)

f1 f2 f3 f4 f5 f6 f7

f1 1.6274 1.5921 1.6097 1.6199 1.6045 1.5911 1.6524

f2 1.5891 1.7120 1.6551 1.6073 1.6550 1.6539 1.6666

Input 2 f3 1.7289 1.6791 1.6704 1.5821 1.5578 1.5965 1.6874

(θ̇c(t − 1)) f4 1.5751 1.6794 1.7115 1.5599 1.6412 1.7350 1.5893

f5 1.6101 1.6358 1.7218 1.6973 1.7003 1.6141 1.5716

f6 1.6441 1.6205 1.7027 1.5643 1.6284 1.5693 1.7080

f7 1.6110 1.6884 1.5447 1.6461 1.7235 1.5700 1.7241

(b)

Unit 1 Input 1 (Output of unit 3)

f1 f2 f3 f4 f5 f6 f7

f1 1.6790 1.5474 1.5589 1.6914 1.5413 1.6040 1.7148

f2 1.6924 1.5467 1.6181 1.6121 1.6728 1.5617 1.6870

Input 2 f3 1.6796 1.6509 1.6670 1.7081 1.6772 1.6103 1.7385

(δ) f4 1.5738 1.7142 1.6031 1.6291 1.6026 1.7385 1.7287

f5 1.6004 1.6147 1.6563 1.7202 1.6357 1.5469 1.7013

f6 1.7246 1.6249 1.7282 1.6421 1.7210 1.5457 1.7171

f7 1.5920 1.5647 1.6161 1.6574 1.6331 1.5496 1.6425

(c)

Unit 2 Input 1θ̇c(t))

f1 f2 f3 f4 f5 f6 f7

f1 1.6777 1.7269 1.6951 1.6542 1.5526 1.6286 1.5916

f2 1.7209 1.6318 1.7346 1.6994 1.6461 1.7005 1.6017

Input 2 f3 1.6260 1.5830 1.5456 1.6801 1.6394 1.5843 1.5478

(δ̇) f4 1.6630 1.6502 1.6043 1.7377 1.7236 1.6872 1.5940

f5 1.5909 1.6124 1.6317 1.6590 1.7134 1.5647 1.6970

f6 1.5778 1.7378 1.6295 1.6442 1.7166 1.5922 1.5602

f7 1.7161 1.5997 1.5529 1.7294 1.5466 1.6912 1.5605

chical structure of the five input-variable fuzzy controller and the parameters of
the combined controller is proposed for the low-speed control. The hierarchical
fuzzy controller is chosen to be composed of all two-input/one-output fuzzy logic
systems for minimal total number of control rules. The fuzzy control part is inte-
grated with the PD control to enhance the low-speed tracking capability and the
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Table II. (Continued.)

(d)

Unit 0 Input 1 (Output of unit 1)

f1 f2 f3 f4 f5 f6 f7

f1 1.6153 1.5485 1.7101 1.6215 1.6595 1.5460 1.7333

f2 1.6592 1.5394 1.7326 1.6754 1.6099 1.7286 1.5729

Input 2 f3 1.6610 1.7154 1.5563 1.6631 1.7280 1.5571 1.6598

(Output f4 1.5977 1.6623 1.6958 1.5498 1.6162 1.6549 1.6549

of unit 2) f5 1.6526 1.6956 1.7355 1.6140 1.6696 1.5714 1.6333

f6 1.6516 1.6522 1.6434 1.6397 1.6955 1.7299 1.6140

f7 1.5670 1.7337 1.5858 1.6401 1.6442 1.7360 1.7340

steady-state performance. From simulations, we show that the controlledC-axis
can obtain very low speed tracking without stick-slip using the learned combined
PD and hierarchical fuzzy controller. The applications of genetic algorithms to con-
struct optimal hierarchical fuzzy control for complex drive systems are challenging
in precision machine design, and the efficiency improvement of the evolutionary
learning algorithms deserves further studies.
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