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Abstract. A general nonlinear model with six degree-of-freedom rotor dynamics and electromag-
netic force equations for conical magnetic bearings is developed. For simplicity, a T–S (Takagi–
Sugeno) fuzzy model for the nonlinear magnetic bearings assumed no rotor eccentricity is first
derived, and a fuzzy control design based on the T–S fuzzy model is then proposed for the high speed
and high accuracy control of the complex magnetic bearing systems. The suggested fuzzy control
design approach for nonlinear magnetic bearings can be cast into a linear matrix inequality (LMI)
problem via robust performance analysis, and the LMI problem can be solved efficiently using the
convex optimization techniques. Computer simulations are presented for illustrating the performance
of the control strategy considering simultaneous rotor rotation tracking and gap deviations regulation.

Key words: magnetic bearing, rotor dynamics, T–S fuzzy model, fuzzy control, linear matrix in-
equality, robust performance.

1. Introduction

Due to the noncontact nature of a magnetic suspension, motion resolution of the
suspended object either in translation or in high-speed rotation is limited only by
the actuators, sensors, and servo system used [33, 38]. The active control problem
of a magnetic bearing is complicated due to its inherent nonlinearities associated
with the electromechanical dynamics, e.g., gap nonlinearity, gyroscopic effects,
and mass unbalance induced vibration. Traditional decentralized PID control used
for magnetic bearings still has some limits to fully exploit the possible active poten-
tials for permitting a much higher degree of control of rotor vibration, positioning,
and alignment [1]. Many of the previous active magnetic bearing (AMB) control
techniques are based on the approximately linearized model. For example, LQR
method is used in [22, 40, 26], LQG/LTR and quantitative feedback theory (QFT)
are considered in [29], linear Q-parameterization theory is used in [24, 23], and
gain scheduled H∞ control is proposed in [21].

Since an MIMO magnetic bearing system is highly nonlinear, nonlinear control
techniques are natural choices that can provide more complete consideration of
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the gyroscopic effects and rotor unbalance response [25, 8] based on the complex
nonlinear (or simplified linear) model, and even permit greater use of available
clearance during operation [15]. Feedback linearizations are used in [34, 19, 3] for
globally exactly linearized control of nonlinear bearing systems. Sliding mode con-
trols are considered in [34, 27, 30] for better robustness with respect to uncertainty.
A backstepping-type control is proposed in [5] for a planar rotor disk AMB system
to yield global exponential position tracking over the entire clearance. An adaptive
autocentering method for reducing the control response to imbalance is proposed
in [20], where on-line estimation of the center of mass position and velocity and in-
corporation of these into a feedback control are considered. Recently, some nontra-
ditional (model free) nonlinear methods are considered for robust and/or learning
control of AMB systems, e.g., fuzzy controls in [19, 10, 18], and neural network
controls in [6, 13]. Since the difficulty of obtaining an accurate model for a complex
AMB system, Schroder et al. [28] propose an on-line tuning control for enhancing
the AMB’s robustness with respect to disturbance and uncertainty.

Recently, fuzzy model-based control for nonlinear systems via linear matrix
inequality (LMI) has found great interests, e.g., [36, 39, 31, 32, 11, 17]. Through
a suitable fuzzy partitioning of the whole operation region of a complex nonlinear
system, the T–S fuzzy model comprised of a family of local linear models can be
constructed for approximating the nonlinear dynamics. A stable fuzzy controller
composed of local controllers for each fuzzy subregion can then be constructed
based on the T–S fuzzy model. In practice, the T–S fuzzy controller is much easier
to implement than the conventional nonlinear controllers that are synthesized based
on the plant’s original complex nonlinear model derived via first principles. The
stability and control design issues using T–S fuzzy model via LMI are discussed
in [36, 39]. Practical predictive functional control based on fuzzy model is con-
sidered in [31, 32]. Since the dynamics model of a multiple degree-of-freedom
(DOF) AMB system is highly complex, the T–S fuzzy model-based control is very
promising for the AMB applications [9].

In this paper, we consider the T–S fuzzy modeling and control for the general
six-DOF conical magnetic bearings [24, 19, 16]. Based on some simplifying as-
sumptions, a T–S fuzzy model with very small number of local models can be
analytically constructed for the complex AMB systems. The parallel distributed
compensation (PDC) approach [39, 36] is then adopted for synthesizing a stable
fuzzy control for the high speed and high accuracy control of the six-DOF AMB
systems, based on the derived T–S fuzzy model. Through the robust performance
analysis for disturbance rejection the control problem is translated into a linear ma-
trix inequality problem. By considering it as a generalized eigenvalue minimization
problem (GEMP), the required common Lyapunov matrix and the local feedback
gain matrices can be determined. The performance of the suggested control strategy
can be well tested via computer simulations.

The paper is organized as follows: Section 2 presents the dynamics model
derivation of a conical magnetic bearing system. A T–S fuzzy model for magnetic
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bearing systems is proposed in Section 3.1. In Section 3.2, an LMI-based fuzzy
control design using the derived T–S fuzzy model is suggested, and the LMI condi-
tions are found. Representative simulation results are shown in Section 4. Finally,
conclusions are made in Section 5.

2. Modeling of Six-DOF Magnetic Bearings

In this section, three-dimensional dynamics equations for a rotating rigid shaft with
eccentricity will be first developed. Then the electromagnetic system model for the
magnetic bearings with conical air gaps at two sides of the rotor (refer to Figure 1)
will be formulated for constructing the complete mathematical model of the AMB
system. Since conical gaps are considered, no axial electromagnets are needed and
two pairs of electromagnets at each side of the rotor are sufficient for regulating
the floating rotor with eccentricity.

2.1. SIX DEGREE-OF-FREEDOM ROTOR DYNAMICS MODEL

Consider the rigid rotor with eccentricity e = [e1 e2 e3]T shown in Figure 1, where
Gc and G are the centers of mass and geometry of the whole rotor, respectively. Let
O be the geometric center of the magnetic bearing’s stators. The operation of the
magnetic bearing system is to keep the geometric centers of the rotor and the stator
consistent with each other under arbitrary desired rotor-rotating motion, driven by
the motor’s electromagnetic torque Tm.

Each electromagnet in the left- and right-side stators generates its electromag-
netic force fi , i = l1, l2, l3, l4, and r1, r2, r3, r4, which has radial and axial compo-

Figure 1. Scheme of a conical magnetic bearing system.
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Figure 2. Magnetic and disturbance forces.

nents to control the radial and axial movements of the rotor, respectively. To con-
sider the effects of load disturbance, five external disturbance forces: fd1, fd2, fd3,

fd4, and fd5, shown in Figure 2, are included in the derivation of the dynamics
model.

Let frame OXYZ ({0}) be the inertial reference frame fixed at stator’s geomet-
ric center O; frame Gx4y4z4 ({4}) be the moving frame attached to the geomet-
ric center G of the floating and rotating rotor; and frame Gcxcyczc ({C}) be the
frame attached to the center of mass Gc and parallel to frame {4}. Then the three-
dimensional translation and rotation of the rotor can be described by the motion
of frame Gx4y4z4 by defining three intermediate moving frames: Gx1y1z1 ({1}),
Gx2y2z2 ({2}), and Gx3y3z3 ({3}). Frame Gx1y1z1 is assumed attached to the
geometric center G of the rotor with its x1, y1, and z1 axes parallel to the x, y,
and z axes of frame {0}, respectively, and obtained by assuming that the rotor is
translated from O to the current position (x0, y0, z0) with respect to frame OXYZ.
Frame Gx2y2z2 is obtained by rotating frame Gx1y1z1 about y1 axis with angle ϕ,
frame Gx3y3z3 is obtained by rotating frame Gx2y2z2 about z2 axis with angle θ ,
and frame Gx4y4z4 is defined by a rotation φ of Gx3y3z3 about x3 axis (rotor axis).
Thus the position and orientation of the floating and rotating rotor with respect to
the inertial frame {0} can be expressed as [4]

0
4T = 0

1T 1
2T 2

3T 3
4T =

[
0
4R rG
0 1

]
(1)

where 0
4R = [rij ]3×3 is the rotation matrix, and rG = [x0 y0 z0]T.

The position vector 0Gc of the center of mass of the rotor with eccentricity
4e = [e1 e2 e3]T can be expressed as

0Gc = 0G + 0
4R 4e (2)

where 0G = [x0 y0 z0] is the position vector of the geometric center G of the rotor.
Its velocity vector in terms of {0} is thus 0vc = [vx vy vz]T = 0Ġc. The angular
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velocity vector of the rotor can be expressed as ω = ϕ̇ĵ1 + θ̇ k̂2 + φ̇ î3, where
ĵ1 = ĵ, k̂2 = sin ϕ î + cos ϕk̂, î3 = cos θ cos ϕ î − cos θ cos ϕk̂ + sin θ ĵ, and î, ĵ,
and k̂ are the unit vectors of the x, y, and z axes of {0}, respectively. Hence, the
angular velocity of the rotor in terms of {0} is

0ω = [sin ϕθ̇ + cos ϕ cos θφ̇ ϕ̇ + sin θφ̇ cos ϕθ̇ − sin ϕ cos θφ̇]T. (3)

The translational and rotational kinetic energy of the whole rotor can then be
expressed, respectively, as [35]

Tm = 1

2
Mc

(
v2
x + v2

y + v2
z

)
, (4)

Tr = 1

2
cωT Ic

cω = 1

2
0ωT I0

0ω (5)

where Mc is the total mass of the rotor, cω is the angular velocity of the rotor in
terms of {C}, and cω = 4ω = 4

0R0ω. Here Ic and I0(= 0
cR Ic

0
cRT) are the inertia

tensors of the rotor with respect to {C} and {0}, respectively. Since the eccentricity
is usually very small, the products of inertia with respect to {C} are negligible.
Thus, Ic = diag[Icxx, Icyy, Iczz], where Icxx, Icyy , and Iczz are the mass moments
of inertia of the rotor about the x-, y-, and z-axes of {C}, respectively. The total
kinetic energy T and total potential energy U of the rotor are

T = Tm + Tr, (6)

U = −McgT 0pc, (7)

where g = [0 0 –gc]T, and gc is the gravity constant.
By substituting the total kinetic and potential energies into the Lagrange equa-

tion [4, 35]:

d

dt

[
∂

∂q̇i
(T − U)

]
− ∂

∂qi
(T − U) = Qqi (8)

where qi , i = 1, 2, . . . , 6, are the generalized coordinates of the rotor system,
and q = [q1, q2, . . . , q6]T = [x0, y0, z0, ϕ, θ, φ]T;Qqi , i = 1, 2, . . . , 6, are the
generalized forces/torques, we can obtain the dynamics model of the rotor with
eccentricity and disturbance forces as follows:

Mq̈ + C(q, q̇)q̇ + Fg = Q (9)

where M = [mij ]6×6 is the symmetric positive-definite inertia matrix; C = [cij ]6×6

is the coefficient matrix for the velocity-dependent terms; Fg = [fg1 . . . fg6]T is
the gravity forces/torques vector; and Q = [Qx0,Qy0 ,Qz0,Qϕ,Qθ ,Qφ]T is the
generalized forces/torques vector. Since M, C, and Fg are lengthy, they are not
included here.
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The generalized forces/torques can be derived by

Qqi = 0FT
r

∂0rr
∂qi

+ 0FT
l

∂0rl
∂qi

+ (Tm − Tl)
∂φ

∂qi
, i = 1, 2, . . . , 6, (10)

where 0Fr and 0Fl are the resultant forces acting at the right- and left-side geometric
centers of the bearings, respectively [12] (refer to Figures 1 and 2); 0rr and 0rl
are the position vectors of the right- and left-side geometric centers, respectively;
Tm and Tl are the motor driving and disturbance toques, respectively; and

0Fr = [
(fr1 + fr2 + fr3 + fr4) sin δ + fdr5, (fr3 − fr4) cos δ

+ fdr3, (fr1 − fr2) cos δ + fdr1
]T
,

0Fl = [−(fl1 + fl2 + fl3 + fl4) sin δ, (fl3 − fl4) cos δ + fdl3,

(fl1 − fl2) cos δ + fdl1
]T
,

0rr = [x0 + lr11, y0 + lr21,z0 + lr31]T,
0rl = [x0 − lr11, y0 − lr21, z0 − lr31]

where fdr1, fdr3, fdr5 and fdl1, fdl3 are the disturbance forces shown in Figure 2.

2.2. AIR GAP DEVIATIONS

The air gap widths between the stators of the electromagnets and the rotor can be
expressed as

gi = doi + g′
i , i = r1, . . . , r4, l1, . . . , l4, (11)

where d0i is the steady-state gap width and g′
i is the gap deviation from d0i . Refer

to Figures 1 and 2, the position vector of the geometric center P of the right-side
rotor in terms of {0} can be represented as 0P = 0

4T 4P, where 4P = [l 0 0 1]T. The
gap deviations g′

r1, g′
r3, g′

l1 and g′
l3 can be computed as follows:

g′
r1 = [0 0 1 1]([l 0 0 1]T − 0P

)
cos δ ≈ (l sin ϕ − z0) cos δ, (12)

g′
r3 = [0 1 0 1]([l 0 0 1]T − 0P

)
cos δ ≈ (−l sin θ − y0) cos δ (13)

where δ is the conical angle of the bearings; and ϕ and θ are assumed very small.
Similarly,

g′
l1 = [0 0 1 1] · ([−l 0 0 1]T − 0

4T · [−l 0 0 1]T)
cos δ

≈ (−l sin ϕ − z0) cos δ, (14)

g′
l3 = [0 1 0 1] · ([−l 0 0 1]T − 0

4T · [−l 0 0 1]T)
cos δ

≈ (l sin θ − y0) cos δ. (15)

Since the rotor is assumed rigid, we have

g′
r2 = −g′

r1, g′
r4 = −g′

r3, g′
l2 = −g′

l1, g′
l4 = −g′

l3. (16)
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2.3. ELECTROMAGNETIC EQUATIONS

For simplicity and without loss of generality, we consider the electromagnetic
subsystem with following assumptions [24, 19]:
(1) reluctances of the iron cores are negligible compared with the air gap reluc-

tances;
(2) laminated cores are used and thus the effects of eddy currents are negligible;
(3) speed electromotive forces are very small and negligible;
(4) all electromagnets have identical geometries and properties.

Assume that current power sources are used for driving the electromagnets, then
the magnetic circuit equation describing the relation between input current ii , air
gap flux $i , and air gap width gi for each electromagnet can be expressed as

$i = µ0AgNii

gi

, i = r1, . . . , r4, l1, . . . , l4, (17)

where N is the number of turns in each magnetic coil; A is the effective area under
each magnetic pole; and µ0 is the permeability of free space. The electromagnetic
force fi generated by the ith electromagnet can then be expressed as

fi = k$2
i

(
1 + 2gi

πh

)
, i = r1, . . . , r4, l1, . . . , l4, (18)

where k is the proportional constant; $i is the air gap flux; gi is the air gap width;
and h is the pole width shown in Figure 1.

3. Fuzzy Model-Based Control Design for Conical Magnetic Bearings

Recently there has been found great interest in fuzzy model-based control for non-
linear systems using the LMI approach. The factors that make the LMI techniques
so appealing for control design are that a variety of design specifications and con-
straints can be recast into the forms of LMIs, and the problem in terms of LMIs
can be solved efficiently by convex optimization algorithms [7]. In the procedure
of designing a fuzzy model-based control, a suitable T–S fuzzy model must be
first constructed for the complex nonlinear systems. Tanaka and Wang [36], and
Kirirkidis [14] have shown that T–S fuzzy models are universal approximators for
nonlinear systems.

Conventional nonlinear model-based control for complex magnetic bearing sys-
tems is rather difficult, and the derived nonlinear control law usually needs complex
computation for implementation. The fuzzy model control has the advantage of
making the controller much simpler and easier to implement, however, how to
construct a simple T–S fuzzy model for the nonlinear AMB system is still challeng-
ing. For simplicity, in this study we consider only the six-DOF magnetic bearing
system with negligible eccentricity (the case with eccentricity based on this result
is to be considered in another study), and an analytically derived T–S fuzzy model
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with small number of local models is presented. Then the PDC approach [39] can
be easily applied for synthesizing a stable fuzzy control that is promising in the
sense of easy implementation. In the followings, we will show the procedure for
constructing a T–S fuzzy model for the nonlinear AMB systems, and for deriving
a stable fuzzy control via LMIs based on the T–S fuzzy model.

3.1. DERIVATION OF T–S FUZZY MODEL FOR CONICAL AMB SYSTEMS

Since the dynamics model of a six-DOF magnetic bearing system is highly com-
plex, the task for constructing a tractable T–S fuzzy model seems difficult. How-
ever, we can consider the model of the rotor subsystem from Equation (9) excluding
the eccentricity,

M0q̈ + C0(q, q̇)q̇ + F0g = Q0 (19)

for designing a simple control law, where the subscript “0” means the case with no
eccentricity. That is, M0, C0, and F0g are obtained by substituting zero eccentricity
into M, C, and Fg in (9), respectively. The state variables are defined as: x1 = x0,

x2 = y0, x3 = z0, x4 = ϕ, x5 = θ, x6 = φ, x7 = ẋ0, x8 = ẏ0, x9 = ż0, x10 = ϕ̇,

x11 = θ̇ , x12 = φ̇.
Tanaka and Wang propose the idea of “sector nonlinearity”, “local approxi-

mation”, or a combination of them to construct fuzzy models from given nonlinear
dynamical models [36]. In this section, we first use the concept of local approxima-
tion, and assume that ϕ and θ are very small, thus sin ϕ ≈ ϕ, sin θ ≈ θ, cos ϕ ≈ 1,
cos θ ≈ 1, sin2 ϕ ≈ 0, and sin2 θ ≈ 0. Then Equation (19) can be simplified as

Mcẍ0 = (fr1 + fr2 + fr3 + fr4) sin δ−(fl1 + fl2 + fl3 + fl4) sin δ + fdr5,

Mcÿ0 = (fr3 − fr4 + fl3 − fl4) cos δ + fdr3 + fdl3, (20)

Mcz̈0 + Mcgc = (fr1 − fr2 + fl1 − fl2) cos δ + fdr1 + fdl1,

Id ϕ̈ + Icxxθφ̈ + 2(Icxx − Id)θϕ̇θ̇ + 2Idθ sinφ cosφθ̇2 + Icxxθ̇ φ̇

= (−fr1 + fr2 + fl1 − fl2)l cos δ + (−fdr1 + fdl1)l,

Id θ̈ + (−Icxx + Id)θϕ̇
2 − Icxxϕ̇φ̇ (21)

= (fr3 − fr4 − fl3 + fl4)l cos δ + (fdr3 − fdl3)l,

Icxxθϕ̈ + Icxxφ̈ + Icxxϕ̇θ̇ + Id sinφ cosφθ̇2 = Tm − Tl

where Id = Icyy = Iczz. With further assumptions of θϕ̇θ̇ , θ̇2, θϕ̇2 and ϕ̇θ̇ being
small compared to the other terms, Equation (21) can be rewritten as

Idϕ̈ + Icxxθφ̈ + Icxxθ̇ φ̇ = (−fr1 + fr2 + fl1 − fl2)l cos δ + (−fdr1 + fdl1)l,

Id θ̈ − Icxxϕ̇φ̇ = (fr3 − fr4 − fl3 + fl4)l cos δ + (fdr3 − fdl3)l, (21′)
Icxxθϕ̈ + Icxxφ̈ = Tm − Tl.
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The simplified dynamic equations (20) and (21′) can be expressed in the state
variable form as

ẋ = A(x)x + Bu + Gc + Bdud (22)

where x12×1 = [xT
1 xT

2 ]T = [xT
1 ẋT

1 ]T is the state vector; u = [fr1, fr2, fr3, fr4, fl1,

fl2, fl3, fl4, Tm]T is the 9 × 1 input vector consisting of the magnetic levitation
forces generated by the electromagnets and the motor driving torque for rotor ro-
tation; ud = [fdr1, fdr2, fdr3, fdl1, fdl3, Tl]T is the 6 × 1 disturbance forces/torque
vector, here Tl is the load torque; and

A =
[

06×6 I
06×6 A22

]
, A22 =

[
03×3 03×3

03×3 A′
22

]
,

A′
22 =


 0 −Irx12 0

Irx12 0 0
0 Irx5x12 0


 ,

B = [
09×6,BT

2

]T
, Bd = [

06×6,BT
d2

]T
,

B2 =




b11 b12 b13 b14 b15 b16 b17 b18 0
0 0 b23 b24 0 0 b27 b28 0
b31 b32 0 0 b35 b36 0 0 0
b41 b42 0 0 b45 b46 0 0 0
0 0 b53 b54 0 0 b57 b58 0
0 0 0 0 0 0 0 0 b69




,

b1j = sin δ/Mc, j = 1, 2, 3, 4; b1j = − sin δ/Mc, j = 5, 6, 7, 8,
b2j = cos δ/Mc, j = 3, 7; b2j = −cos δ/Mc, j = 4, 8,
b3j = cos δ/Mc, j = 1, 5; b3j = −cos δ/Mc, j = 2, 6,
b4j = −lcos δ/Id, j = 1, 6; b4j = lcos δ/Id, j = 2, 5,
b5j = lcos δ/Id, j = 3, 8; b5j = −lcos δ/Id, j = 4, 7,
b69 = 1/Icxx;

Bd2 =




0 0 bd,13 0 0 0
0 bd,22 0 0 bd,25 0

bd,31 0 0 bd,34 0 0
bd,41 0 0 bd,44 0 0

0 bd,52 0 0 bd,55 0
0 0 0 0 0 bd,66




,

bd,13 = bd,22 = bd,25 = bd,31 = bd,34 = 1/Mc;
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bd,41 = bd,55 = −l/Id; bd,44 = bd,52 = l/Id;
bd,66 = −1/Icxx;

Gc = [01×6 0 0 − gc 0 0 0]T,

here Mc is the mass of the rotor; l is one half of the rotor length (Figure 1); and
Ir = Icxx/Id .

While A(x) is still dependent of the state vector, it is a function of x5 and x12

only, and its entries become very simple. Moreover, since B is only a constant
matrix, the derivation of a T–S fuzzy model and then the control design and finding
of solution of LMIs become much less difficult than the approaches directly based
on the original complex model.

Next, in accordance with the idea of sector nonlinearity [36], we can assume that
x5 ∈ [θmin, θmax] and x12 ∈ [ωmin, ωmax], for the nonlinear terms in Equation (22).
By the definition of z1 ≡ x12 and z2 ≡ x5 · x12, the maximal and minimal values of
z1(t) and z2(t) can be deduced as:

max
x12

z1(t) = ωmax, min
x12

z1(t) = ωmin,

max
x5,x12

z2(t) = βmax, min
x5,x12

(z2) = βmin.
(23)

Choose z1(t) and z2(t) as the antecedent variables of the T–S fuzzy model, and de-
fine two fuzzy sets for each variable with membership functions shown in Figures 3
and 4, respectively.

Figure 3. Definition of two membership functions for z1.

Figure 4. Definition of two membership functions for z2.
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Then a T–S fuzzy model with four fuzzy IF–THEN rules for approximating the
nonlinear AMB system can be constructed analytically as follows:

MODEL RULE i.

IF z1 is Ci
1 and z2 is Ci

2
THEN ẋ = Aix + Bu + Gc + Bdud, i = 1, 2, 3, 4,

(24)

where

C1
1 = M1, C1

2 = N1; C2
1 = M1, C2

2 = N2;
C3

1 = M2, C3
2 = N1; C4

1 = M2, C4
2 = N2;

Ai =
[

06×6 I6×6

06×6 Ai,22

]
, i = 1, 2, 3, 4,

and

Ai,22 =
[

03×3 03×3

03×3 A′
i,22

]
, i = 1, 2, 3, 4,

A′
1,22 =


 0 −Irωmax 0

Irωmax 0 0
0 Irβmax 0


 , A′

2,22 =

 0 −Irωmax 0

Irωmax 0 0
0 Irβmin 0


 ,

A′
3,22 =


 0 −Irωmin 0

Irωmin 0 0
0 Irβmax 0


 , A′

4,22 =

 0 −Irωmin 0

Irωmin 0 0
0 Irβmin 0


 .

The output of the T–S fuzzy model can be inferred as

ẋ =
4∑

i=1

hi(z)Aix + Bu + Gc + Bdud (25)

where

hi(z) = wi(z)∑4
i=1 wi(z)

, z = [z1, z2]T, (26)

wi(z) = Ci
1(z1)C

i
2(z2), i = 1, 2, 3, 4 (27)

here Ci
j (zj ) is the grade of membership of zj in fuzzy set Ci

j . By the membership
function definitions in Figures 3 and 4, we have

wi(z) > 0, i = 1, 2, 3, 4,
4∑

i=1

wi(z) > 0 (28)
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and

hi(z) > 0, i = 1, 2, 3, 4,
4∑

i=1

hi(z) = 1. (29)

Notice that by substituting (27) and (26) into (25) we can obtain the simplified
dynamic model (22), hence the above four-rule T–S fuzzy model is sufficient for
the AMB rotor subsystem.

3.2. FUZZY CONTROL DESIGN VIA LINEAR MATRIX INEQUALITY

In this section we will propose a robust fuzzy control design for the nonlinear AMB
system based on the derived T–S fuzzy model. For arbitrary trajectory tracking, first
define the tracking error vector as

e = x − xd (30)

where

xd = [
xT
d1 xT

d2

]T = [x0d, y0d , z0d, ϕd, θd, φd, ẋ0d , ẏ0d , ż0d, ϕ̇d, θ̇d , ωd]T

is the desired trajectory vector. Notice that φd(t) and ωd(t) are the desired an-
gular displacement and velocity trajectories of the rotor about its rotating axis,
respectively. Differentiating Equation (30), we have

ẋ = ė + ẋd . (31)

Substituting (31) into the model rules (24), we can obtain the T–S fuzzy model for
the error dynamics as follows:

ERROR RULE i.

IF z1 is Ci
1 and z2 is Ci

2
THEN ė = Aie + Aixd + Bu + Gc + Bdud − ẋd , i = 1, 2, 3, 4,

(32)

and the output of the error T–S fuzzy model is inferred as

ė =
4∑

i=1

hi(z)Aie +
4∑

i=1

hi(z)Aixd + Bu + Gc + Bdud − ẋd . (33)

In this study, the PDC (Parallel Distributed Compensation) [39, 36] with control
rules constructed based on the T–S fuzzy model rules is adopted for the fuzzy
control design. Each control rule has a linear state feedback part and a feedforward
part to compensate for the effect of gravity, that is,
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CONTROL RULE i.

IF z1 is Ci
1 and z2 is Ci

2
THEN u = −Kie − B+Aixd − B+(Gc − ẋd), i = 1, 2, 3, 4

(34)

where B+ = [09×6 BT
2 (B2BT

2 )
−1]. So the design objective is to determine the local

feedback gains Ki in the consequent parts of the control rules via LMI.
The output of the PDC controller can be inferred as:

u = −
4∑

i=1

hi(z)Kie − B+
4∑

i=1

hi(z)Aixd − B+Gc + B+ẋd = udc + 2u (35)

where

udc = −B+Gc (36)

2u ≡ −
4∑

i=1

hi(z)Kie − B+
4∑

i=1

hi(z)Aixd + B+ẋd . (37)

By substituting (35) into (33), and since B is a constant matrix in the T–S fuz-
zy model and

∑4
i=1 hi(z) = 1, the error dynamics for the whole closed-loop system

can be derived as

ė =
4∑

i=1

hi(z)(Ai − BKi)e + Bdud. (38)

For the consideration of robustness with respect to the disturbance ud , the fol-
lowing robust performance requirement [37] for the tracking error is to be met:∫ tf

0 eT Qe dt∫ tf
0 uT

d ud dt
< ρ2 (39)

where Q = αP, α > 0, and P is a symmetric positive definite matrix. Equation (39)
means that the effect of ud on the error must be attenuated below a prescribed
level ρ. To synthesize the fuzzy controller that can reject the external disturbances
of the AMB system, we can select a positive definite function

V = eTPe. (40)

The requirement (39) for a prescribed ρ > 0 can be shown to be equivalent to
the following condition:

V̇ + αeTPe − ρ2 uT
d ud � 0. (41)

By integrating (41) from 0 to tf with initial condition e(0) = 0, we have

V +
∫ tf

0

(
eTQe − ρ2 uT

d ud

)
dt � 0. (42)
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Thus,∫ tf

0

(
eTQe − ρ2 uT

d ud

)
dt � −V � 0. (43)

Equation (43) implies (39). Therefore if (41) holds, the robust performance
requirement can be guaranteed under ud .

The LMI constraints can be derived from (41). First, rewrite (41) as

ėTPe + eTPė + αeTPe − ρ2 uT
d ud � 0 (44)

and substituting (38) into (44), we can obtain

4∑
i=1

hieT[
(Ai − BKi)

TP + P(Ai − BKi)
]
e + uT

d BT
d Pe + eTPBdud

+αeTPe − ρ2uT
dud � 0 (45)

That is,

4∑
i=1

hi

[
e

ud

]T [
(Ai − BKi)

TP + P(Ai − BKi) + αP PBd

BT
dP −ρ2I

] [
e

ud

]
� 0.

(46)

Therefore, if the following constraints are satisfied:[ −(Ai − BKi)
TP − P(Ai − BKi) − αP −PBd

−BT
dP ρ2I

]
� 0, i = 1, 2, 3, 4,

(47)

then Equation (46) holds. Applying the Schur complements for nonstrict inequali-
ties [2], (47) becomes

−(Ai − BKi)
TP − P(Ai − BKi) − αP − 1

ρ2
PBdBT

dP � 0, i = 1, 2, 3, 4.

(48)

Conditions (48) can be solved by considering it as a generalized eigenvalue min-
imization problem (GEMP), that is, to maximize α subject to the following con-
straints:

1. P > 0,

2. (Ai − BKi)
TP + P(Ai − BKi) + 1

ρ2
PBdBT

dP � −αP, i = 1, 2, 3, 4

(49)

Since the second inequalities in (49) are not jointly convex in P and Ki , it is difficult
to find a common solution P and the feedback gains Ki . Fortunately, the inequal-
ities can be transferred into linear matrix inequalities by variable transformation.
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Defining new variable X = P−1, and multiplying the inequalities on the left and
right by X, we have

X(Ai − BKi)
TPX + XP(Ai − BKi)X + 1

ρ2
XPBdBT

dPX � −αXPX,

i = 1, 2, 3, 4. (50)

Equation (50) can be rewritten as

XAT
i + AiX − (BMi)

T − BMi + 1

ρ2
BdBT

d � −αX, i = 1, 2, 3, 4, (51)

where Mi ≡ KiX. That is, the PDC control design problem can be transformed
to the problem of maximizing α subject to the following linear matrix inequality
constraints:

1. X > 0,

2. XAT
i + AiX − (BMi )

T − BMi + 1

ρ2
BdBT

d � −αX, i = 1, 2, 3, 4.
(52)

If there exists a common X and Mi’s satisfying the above LMI constraints, then the
common P and the feedback gains can be obtained as

P = X−1 and Ki = MiP, i = 1, 2, 3, 4. (53)

There exist methods in the literature for solving the LMI problems, such as the
interior point algorithm [2]. The MATLAB software package has incorporated this
algorithm into the solvers of LMI control toolbox. In this study, the instruction
gevp is used to solve the above GEMP problem. Based on the proper choice of
suitable α,P and the feedback gains Ki , i = 1, 2, 3, 4, can thus be determined,
and the design of the control law (35) is accomplished.

Control law (35), derived based on the T–S fuzzy model for the rotor subsystem,
can be used for computing the required control magnetic forces and motor driving
torque for the operation of a six-DOF AMB system. In this study, we assume that
CSI (current source inverter)-based drives for the electromagnetic subsystems are
adopted, so (35) can be directly implemented for evaluating the required driving
current commands, based only on the algebraic magnetic force relations:

fi = k$2
i

(
1 + 2 · gi

πh

)
, i = r1, . . . , r4, l1, . . . , l4, (54)

where the air gap flux $i of each magnetic pole is

$i = µ0AgNii

gi

, i = r1, . . . , r4, l1, . . . , l4. (55)

That is,

fi = k

(
µ0AgN

gi

)2(
1 + 2 · gi

πh

)
· i2

i = Kii
2
i , i = r1, . . . , r4, l1, . . . , l4,

(56)
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where

Ki ≡ k

(
µ0AgN

gi

)2(
1 + 2 · gi

πh

)

and ii is the input current through the ith electromagnetic coil.
Since we consider the attractive type AMB, the electromagnetic force must meet

the constraints:

fi > 0, i = r1, . . . , r4, l1, . . . , l4, (57)

in (20) and (21′). udc = [fr1,d , fr2,d, fr3,d, fr4,d , fl1,d, fl2,d , fl3,d, fl4d
, 0]T com-

puted by (36) is used for levitating the rotor and maintaining the balance of the
system at steady state. The components of udc can be equivalently rescaled as:

udc = [2fr1,d, 0, 0, 0, 2fl1,d, 0, 0, 0, 0]T. (58)

For meeting the constraints (57), a constant and positive bias force f0 can be intro-
duced into (58), that is, the dc parts of the suspension control forces can be chosen
as

u′
dc = [2fr1,d + f0, f0, f0, f0, 2fl1,d + f0, f0, f0, f0, 0]T. (59)

In summary, the control law (35) used for implementing the derived control strat-
egy is

u = u′
dc + 2u. (60)

4. Simulation and Results

In this section representative computer simulations are used for illustrating the
control performance of the proposed T–S fuzzy model control strategy for a conical
magnetic bearing with no rotor unbalance. The nominal values of the parameters
used in the simulation are chosen as:

A = 1.532 × 10−3 m2, h = 0.04 m, l = 0.27 m,

d0i = 5.5 × 10−4 m, i = r1, . . . , r4, l1, . . . , l4,
MC = 10.2667 kg, gc = 9.81 m/sec2, Icxx = 0.0113 kg–m2,

Icyy = Iczz = 0.333 kg–m2, k = 4.67555760 × 108 nt/Wb2,

N = 100, δ = π/18 rad [19, 23].
Setting the operating ranges for x5 and x12 as: θmin = −π/100 rad, θmax =

π/100 rad, ωmin =−104.72 rad/s, and ωmax = 4188.8 rad/s, the parameters for the
controller are selected via trial and error as follows: α = 5414, ρ = 0.3027×10−12,
f0 = 10 nt.
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The desired trajectory command, using the path generation methods in [4], for
rotor angular velocity tracking and gap deviations regulation are selected as

ωd(t) =

 ωf

(
t3

t3
f 1

)(
10 − 15

t

tf 1
+ 6

t2

t2
f 1

)
, 0 � t � 10,

ωf , t > 10,

where ωf is the desired final angular velocity after tf 1, and

xd1(t) =

 x1,0

(
1 − 10

t3

t3
f 2

+ 15
t4

t4
f 2

− 6
t5

t5
f 2

)
, 0 � t � 0.5,

0, t > 0.5,

where x1,0 is the initial state vector for x1, and tf 2 is the time xd1 reaches zero.
The initial state vector used in the selected simulations is

x(0) = [
1 × 10−5, 1 × 10−5, 1 × 10−5, 01×9

]T
.

In the simulations tf 1 = 10 s and tf 2 = 0.5 s are set. The simulations are termi-
nated at t = 12 s. The feedback gain matrices Ki , i = 1, 2, 3, 4, and the common
Lyapunov matrix P are computed using MATLAB’s LMI control toolbox. Proper
Ki and P can be obtained by choosing the results with sufficiently high value of
α (Lyapunov function decay-rate scaling factor). They are lengthy and not listed
here.

Simulation results for the nominal case with ωf = 4188.8 rad/s are shown in
Figure 5. From Figures 5(a)–(d), we know that the gap deviations can approach
zero, and their convergence rates are rather fast. The required levitation control
currents for the electromagnetic coils computed by the fuzzy model-based con-
trol strategy are shown in Figures 5(e)–(l). The rotor angular velocity response
and the tracking error are shown in Figures 5(m) and (n). Figure 5(o) shows the
corresponding required motor control torque for the high speed operation of the
rotor.

Notice that the fuzzy controller designed is based on the derived T–S fuzzy
model and not on the original complex dynamics model, thus, from Figure 5(n)
we can see that the tracking error of rotor angular velocity does not approach zero.
However, once the rotor speed reaches the final desired value, the error can fall into
a narrow bound and be very small (determined by the design parameter ρ).

Figure 6 shows the results for the case that is with parametric uncertainty, and
external disturbances during t ∈ [6, 8] s. In this case, the rotor mass assumed
changed to be 12.32 kg and the previous nominal controller parameters are still
used for the simulation. From Figures 6(a)–(d) and 6(n) we know that the gap
deviations and the rotor angular velocity tracking error remain considerably small
in spite of the occurrence of external disturbance and parameter uncertainty. Thus,
when ρ is selected as small as possible, and the common P and the feedback gains
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Figure 5. Simulation results for the nominal case with high speed tracking. (a)–(d) gap devia-
tions; (e)–(l) control currents; (m) rotor velocity response; (n) velocity error; (o) motor control
torque.
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Figure 5. (Continued.)
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Figure 6. Simulation results for the case with external disturbance vector [10 0 5 0 3 2]
at time 6–8 s. (a)–(d) gap deviations; (e)–(l) control currents; (m) rotor velocity response;
(n) velocity error; (o) motor control torque.
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Figure 6. (Continued.)
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Ki , i = 1, 2, 3, 4, are found with a bigger α, the controller can have excellent ca-
pability to reject disturbance and high robustness with respect to mass uncertainty.

5. Conclusions

In this paper, a systematic modeling approach using the Lagrangian method for
deriving the general six-DOF rotor dynamics equation for a conical AMB system
with rotor eccentricity is first presented. A conical AMB system with rotor eccen-
tricity is highly nonlinear and severely coupled due to the conical shape of the
bearings. A procedure for systematically constructing a simple T–S fuzzy model
with very small number of rules that can exactly represent the simplified nonlinear
AMB rotor subsystem assumed no eccentricity is suggested, and a PDC control
design based on the T–S fuzzy model is proposed. Since the number of rules is very
small, it is not difficult to find a common Lyapunov matrix P, and no relaxation
methods are needed. The feedback gain matrices Ki and P can be simultaneously
determined by considering the control design problem as a GEMP problem via
LMI constraints. Proper Ki and P can be obtained by choosing the results with
sufficiently high value of the Lyapunov function decay-rate scaling factor α. The
derived fuzzy controller is much simpler than those derived using conventional
nonlinear control theory based on the complete complex dynamics model. Rep-
resentative computer simulation results show that the controller is applicable for
arbitrary rotor trajectory tracking control within the selected operating range, and
has high robustness with respect to disturbance and uncertainty. In this study we
only consider the case with rigid rotor and no rotor eccentricity is included in the
control design. However, the suggested approach and the derived results might
be useful for considering the cases with rotor eccentricity and/or rotor flexibility.
These interesting problems need further future studies.
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