
J Intell Robot Syst (2011) 62:103–123
DOI 10.1007/s10846-010-9460-5

Adaptive Robust Self-Balancing and Steering
of a Two-Wheeled Human Transportation Vehicle

Shui-Chun Lin · Ching-Chih Tsai · Hsu-Chih Huang

Received: 20 June 2009 / Accepted: 10 August 2010 / Published online: 27 August 2010
© Springer Science+Business Media B.V. 2010

Abstract This paper presents adaptive robust regulation methods for self-balancing
and yaw motion of a two-wheeled human transportation vehicle (HTV) with varying
payload and system uncertainties. The proposed regulators are aimed at providing
consistent driving performance for the HTV with system uncertainties and parameter
variations caused by different drivers. By decomposing the overall system into the
yaw motion subsystems and the wheeled inverted pendulum, two proposed adaptive
robust regulators are synthesized to achieve self-balancing and yaw motion control.
Numerical simulations and experimental results on different terrains show that the
proposed adaptive robust controllers are capable of achieving satisfactory control
actions to steer the vehicle.

Keywords Adaptive control · Wheeled inverted pendulum · Self-balancing ·
Human transportation vehicle · Yaw motion steering

1 Introduction

Recently, much research has been done on design and applications of self-balancing
two-wheeled human transportation vehicles (HTVs), such as Segway™ [1] and PMP
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[2], which have been well recognized as powerful personal transportation vehicles.
In particular, these HTVs have been shown useful in the field of neighborhood
patrolling and emergency response by police departments [3] and transportation
applications [4]. In general, this type of self-balancing two-wheeled HTV can be
usually constructed by a synthesis of mechatronics, control techniques and software.
For example, the Segway™ is made by quite high-tech and high-quality dedicated
components, such brushless servomotor with neodymium magnets, precision gear-
box, NiMH batteries, two silica-based wheels, a digital signal processor as a main
controller, motor drivers, a gyroscope, and several safety accessories. In contrast
to the Segway™, many researchers [5–13] presented low-tech and low-cost self-
balancing two-wheeled HTV and claimed that the vehicle can be constructed using
the off-the-shelf inexpensive components. Along with the design concepts in [5–13],
many human transportation vehicles have been made inexpensive so that they,
like bicycles, have highly potential to become prevalent self-balancing two-wheeled
vehicles, satisfying human short-distance transportation requirements.

Design and control of self-balancing two-wheeled human transportation vehicles
have attracted considerable attention in both industry and academia over the past
decade. Sasaki et al. [2] constructed a lightweight self-balancing personal riding-type
wheeled mobile platform (PMP), and then achieved the PMP steering control by
changing the position of the rider’s center of gravity. Grasser et al. [4] presented
an unmanned mobile inverted pendulum, called JOE, and Pathak et al. [5] studied
the dynamic equations of the wheeled inverted pendulum by partial feedback
linearization. Lee et al. [6] investigated the optimal parking of the HTV by a hybrid
artificial intelligent approach. Furthermore, Klančar et al. [7] presented a control
method for wheeled mobile robots in a linear platoon. However, those HTVs in
[2–7] were built for test prototypes, aiming at providing theoretical designs and
analytical approaches. The above-mentioned survey reveals that little attention has
been paid to design a high-performance but pragmatic controller for this kind of
self-balancing HTV.

Although the working principle of these HTVs is similar to that of the wheeled
inverted pendulums, these HTVs have more complicated dynamic characteristics
than the inverted pendulums do. Moreover, some parameters of the HTV could be
altered due to different riders, namely that different riders have different weights,
thereby causing some parameter variations on the HTVs. The rider-dependent pa-
rameters may deteriorate the controllers which are originally designed to achieving
desired control performance. This motivates us to develop model-reference adaptive
robust controllers in order to exhibit consistent control performance in the presence
of parameter variations. Some adaptive control approaches in [14, 15] and [16] have
been documented in some detail. Based upon a reference model which specifies the
transient control performance specifications, the synthesis of such a control approach
first requires a controller with adjustable parameters, and then finds its parameter
adjustment laws via Lyapunov techniques. Huang and Tsai [17] proposed an adaptive
robust control for three-wheeled omnidirectional mobile robots; nevertheless, this
method can not be applicable to the kind of two-wheeled human transporter.

The objective of the paper is to synthesize two adaptive robust controllers for the
human transporter in order to achieve consistent control performance regardless of
the riders’ weights and parameter variations. In comparison with the state feedback
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design by Grasser et al. [4], the key features of the proposed controllers hinge on their
adaptivity and robust against static and viscous frictions, and parameter variations.
Like the JOE in [4], on basis of the system decomposition into two subsystems: a
yaw motion subsystem and an inverted pendulum subsystem, two adaptive robust
regulators are designed for not only accomplishing out yaw motion control and self-
balancing, but also attaining almost same driving performance for different riders.

The rest of the paper is constructed as follows. Section 2 briefly describes the
mathematical modelling of a self-balancing two-wheeled HTV, while Section 3 is
devoted to developing the two adaptive robust regulators for self-balancing and
steering. In Section 4, particular attention is paid to describe the system structure of
the experimental self-balancing HTV and discuss digital implementation issues of the
proposed controllers, and then several simulations and experiments are conducted
to show the feasibility and effectiveness of the proposed control method. Some
conclusions are stated in Section 5.

2 Mathematical Modeling

This section briefly describes a mathematical model of the HTV with two kinds of
frictions between the wheels and their motion surface. The first one is the coulomb
friction fc relying on the motion direction of a wheel, namely that fc = μcsign(v)

where v denotes the speed of the wheel and μc represents the coulomb friction
coefficient which varies with the property of the surface. The other friction, called
the viscous friction, depends on the speed of the wheel and opposite to its moving
direction, i.e., fv = bvv where bv represents the coefficient of the viscous friction.

To simplify the derivation of the modeling processing, Table 1 lists all the symbols
and their definitions and Fig. 1 illustrates the defined state-space variables for the
modeling process. Under the assumption of pure rolling, the mathematical model of
the HTV with the friction forces can be modified from Grasser et al. [4] using the

Table 1 Symbols definition

Symbol and unit Parameter and variable name

xRM [m], vRM [m/s] Movement position and speed of the Chassis
θp [rad], ωp [rad/s] Pitch angle, pitch angular velocity
δ [rad],

.

δ [rad/s] Yaw angle, yaw angular velocity
CL [N · m] Applied torque on left wheel
CR [N · m] Applied torque on right wheel
JRR [kg · m2], JRL [kg · m2] Moment of inertia of the yaw mass with respect to the z axis
MRR [kg], MRL [kg] Mass of the yaw mass connected to the left and right wheel
JPθ

[
kg · m2] Moment of inertia of the chassis with respect to the z axis

Jpδ

[
kg · m2] Moment of inertia of the chassis with respect to the y axis

MP [kg] Mass of the chassis
R [m] Radius of the wheels
D [m] Lateral distance between the contact patches of the wheels
L [m] Distance between the z axis and the CG of the chassis
bv, bθ Viscous friction coefficients for wheel motion and vehicle rotation
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Fig. 1 Illustrations of the
defined state-space variables
in the proposed HTV

Newtonian mechanism, and the linearized model about the equilibrium of the origin,
xRM = 0, θp = 0 and δ = 0, is then obtained from the following state equation.

.
x =

⎡

⎢⎢
⎢⎢⎢
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⎣

0 1 0 0 0 0
0 A22 A23 0 0 0
0 0 0 1 0 0
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0 0 0 0 0 1
0 0 0 0 0 A66

⎤

⎥⎥
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⎥
⎦
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⎢
⎣
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]
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⎡
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0
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0
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0
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⎥
⎦

(1)

where the bounded term fi, i = 2, 4, 6, consists of the coulomb friction forces of
the two wheels, external disturbances and system uncertainties; the state vector is
denoted by x = [

xRM vRM θp ωp δ
.

δ
]T ; the parameters in (1) are given as below;

A22 = −R2

JR

bv

α
, A23 = − R2

2JR

γ

αβ
, A43 = γ

JPθ

(
1 − L

β

)
, A66 = −

(
D2bv + 2bδ

2JPδ p

)
,

B2 = B21 = B22 = R
2JR

[
1
α

+ R
αβ

]
, B23 = B24 = R2

2JRα
, B25 = R2

2JR

1
αβ

· JPθ

MP L
,

B45 = 1
βMp

, B4 = B41 = B42 = 1
JPθ

(
L
β

− 1
)

, B6 = B61 = −B62 = D
2pJPδ R

,

B63 = −B64 = D
2JPδ p

.

where p = 1 + D2·(JR+MR R2)
2Jpδ R2 , α = MR R2

JR
+ 1, β = JPθ

MP L + L, γ = LMpg. Using the
facts that B2 = B21 = B22, B4 = B41 = B42, B6 = B61 = B62 and utilizing the well-
known decoupling matrix developed in [4],

(
CL

CR

)
=

(
0.5 0.5
0.5 −0.5

) (
Cθ

Cδ

)
(2)



J Intell Robot Syst (2011) 62:103–123 107

the system model (1) is then decomposed into two independent subsystems: one is
concerned with the wheeled inverted pendulum subsystem describing by

⎛

⎜⎜
⎝

.
x RM
.
v RM
.

θP
.
ωP

⎞
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⎠ =
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⎠

⎛
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⎝
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θP

ωP

⎞

⎟⎟
⎠ +

⎛

⎜⎜
⎝

0
B2

0
B4

⎞

⎟⎟
⎠

[
Cθ

] +

⎡

⎢⎢
⎣

0
f2

0
f4

⎤

⎥⎥
⎦ (3)

and the other is the yaw motion subsystem about the y axis, i.e.,
( .

δ
..

δ

)

=
(

0 1
0 A66

) (
δ
.

δ

)
+

(
0

B6

) (
Cδ + f 6

)
, f 6 = f6/B6,

∣
∣ f 6

∣
∣ ≤ K6 max (4)

where A66 < 0 and B6 > 0. From (3) and (4), it is clear that two controllers for Cθ

and Cδ can be synthesized independently from each other and combined together to
accomplish out the control goals. Worthy of mention is that the controlled torque
Cθ is applied to maintain the subsystem at the inclining angle imposed by the rider;
hence the torque Cθ is designed via the following simplified equation.

(
θ̇P

ω̇P

)
=

(
0 1

A43 0

) (
θP

ωP

)
+

(
0

B4

) (
Cθ + f̄4

)
, f 4 = f4/B4,

∣∣ f̄4
∣∣ ≤ K4 max (5)

Note that A43 > 0 and B4 < 0.
Moreover, from (3), it follows that once the pitch angle θp has reached a constant

angle and
.
vRM = 0, then the steady-state linear speed of the HTV νRMss will stabilize

the vehicle at a constant speed vRMss = (A43 B2 − B4 A23)θp/(A22 B4). This means
that when the diver maintains the pitch angle at a specified angle θp, the HTV must
run at the constant speed νRMss in order to stabilize the vehicle without falling.

On the derived wheeled inverted pendulum with both sensors of inclination and
rate gyroscope, the control goal of the subsystem is to maintain the vehicle upright,
i.e., to stabilize the inclination angle at origin. Hence, the self-balancing control of the
HTV obviously falls into the category of the regulation problem. On the developed
yaw motion control subsystem with the potentiometer as the main sensor, the yaw
motion control problem can also be reduced to the regulation problem because
the potentiometer merely measures the angular error between the angle the rider
intended to achieve, and the actual yaw angle of the mobile platform. For this kind
of yaw motion control, the reference command is always set to be zero. This simple
yaw motion control system avoids the use of a gyroscope, thus circumventing the
difficulty of the gyroscope calibration issue.

3 Design of Adaptive Robust Regulators

This section is devoted to developing two adaptive robust regulation laws for Cθ and
Cδ to steer the HTV by simultaneously stabilizing it at a desired balancing angle
θP = θ PC = 0 and a yaw motion setpoint δC = 0 under parameter variations and
uncertainties, namely that both controllers are designed to achieve consistent control
performance for different riders. Although the dynamics of this self-balancing two-
wheeled HTV is nonlinear, both self-balancing and yaw motion controllers can be
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independently synthesized by either linearized control technique [4] or nonlinear
control approach [5] or. In [5], the partial feedback linearization scheme requires
exact system parameters; however, the controller may fail to velocity control and
position control due to parameter variations. In [18], an adaptive linearized control
method with radial basis function networks was used to achieve self-balancing and
yaw motion control in the presence of parameter variations caused by riders’ weights.
However, the parameter learning of the radial basis function networks in [18] may
not converge to their true values due to input signals. To circumvent the shortcoming,
the following proposes an adaptive robust PD controller to accomplish out both
control goals.

3.1 Adaptive Robust Self-Balancing Regulation

This subsection is devoted to designing an adaptive robust regulator so as to maintain
the system at the desired angle θPC = 0 in the presence of both unknown but constant
parameters B4 and A43, which are caused by different riders. Figure 2 shows the
block diagram of the proposed adaptive robust self-balancing control law (6),

Cθ = −K̂Pθ θp − K̂Dθωp + us1 (6)

where us1 is the robust self-balancing control against weight variations of riders; K̂Pθ

and K̂Dθ are estimates of their true parameters Ko
Pθ and Ko

Dθ . In what follows, the
design procedure is elucidated for this proposed controller.

Step 1 re-express the subsystem (5) in the subsequent form

.

X1 =
(

0 1
A43 0

)
X1 +

(
0

B4

) [
Cθ + f 4

]
(7)

where X1 = [ θP ωP ]T . Assume that the two state variables θp and ωp can
be directly available. Then the compatible condition [16] gives the appro-
priate parameter values of the parameters Ko

Pθ and Ko
Dθ for perfect model

matching

Ko
Pθ = (

ω2
n1 + A43

)
/B4, Ko

Dθ = 2ξ1ωn1/B4 (8)

Fig. 2 Block diagram of
the proposed adaptive
regulator for the decoupled
self-balancing subsystem

DK
θ

P
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With (8) the subsystem (7) becomes

.

X 1 =
[

0 1
B4

(
K0

Pθ − K̂Pθ

) − ω2
n1 B4

(
K0

Dθ − K̂Dθ

) − 2ξ1ωn1

]
X1

+
[

0
B4

(
us1 + f 4

)
]

(9)

Step 2 this step desires to find the rules to adjust the controller’s parameters
such that X1 →0 i.e., θ p →θC = 0 and ωp →ωC = 0 as t → ∞. In doing
so, let the proportional gain error K̃Pθ be denoted by K̃Pθ = K0

Pθ − K̂Pθ

and the derivation gain error K̃Dθ be represented by K̃Dθ = K0
Dθ − K̂Dθ ,

thus obtaining
.

K̃Pθ = −
.

K̂Pθ and
.

K̃Dθ = −
.

K̂Dθ . Accordingly, with these
two gain errors, (9) turns out

.

X1 = Am1X1 + �1

[
B4 K̃Pθ

B4 K̃Dθ

]
+

[
0

B4
(
us1 + f 4

)
]

(10)

where Am1 =
[

0 1
−ω2

n1 −2ξ1ωn1

]
and �1 =

[
0 0
θp ωp

]
. Since Am1 is

of the Hurwitz type, there exists a symmetric and positive matrix

P1 =
[

(ξ1/ωn1) + [(
ω2

n1 + 1
)
/4ξ1

]
1/2ω2

n1

1/2ω2
n1

(
ω2

n1 + 1
)
/4ξ1ω

3
n1

]
such that AT

m1P1 +
P1Am1 = −I. To show the asymptotical stability of the overall system
(10), the following Lyapunov function candidate is proposed as

V1 = 1
2

XT
1 P1X1 + 1

2B4γ1

[
B4 K̃Pθ B4 K̃Dθ

] · [
B4 K̃Pθ B4 K̃Dθ

]T
, B4γ1 > 0

(11)

Note that B4 < 0, γ 1 < 0. Taking the time derivative of V1 along its
trajectories yields

.

V1 = −1
2

XT
1 X1 +

[
B4 K̃Pθ

B4 K̃Dθ

]T

·
⎡

⎣�T
1 P1X1 + 1

γ1

⎡

⎣

.

K̃Pθ
.

K̃Dθ

⎤

⎦

⎤

⎦

+
[

0
B4

(
us1 + f 4

)
]T

P1X1 (12)

If the parameter adjustment rule is chosen as follows;

�T
1 P1X1 + 1

γ1

⎡

⎣

.

K̃Pθ
.

K̃Dθ

⎤

⎦ = 0

which leads to the following parameter adjustment rules
⎡

⎣

.

K̂Pθ
.

K̂Dθ

⎤

⎦ = γ1�
T
1 P1X1, γ1 < 0 (13)
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Moreover, if the robust control law is designed as

us1 = −Kθ sgn
(
θP/

(
2ω2

n1

) + ωP
(
ω2

n1 + 1
)
/
(
4ξ1ω

3
n1

))
, Kθ = K2 max (14)

then
.

V1 = −XT
1 X1/2 ≤ 0 in which

.

V1 is negative semidefinite. From (14),
Barbalat’s lemma implies that X1 → 0 as t → ∞. However, the parameter
K2max is constant and unknown and varies with the unknown parameter
B4 such that the control gain Kθ is not easily found. To circumvent the
difficulty, another parameter updating law for Kθ is proposed by modifying
the Lyapunov equation (11) as

V2 = V1 + 1
2B4γ2

(
B4 K̃θ

)2
, K̃θ = K2 max − Kθ , B4γ2 > 0 (15)

which yields the parameter adjustment rule (13) and the following rule
.

Kθ = γ2
∣∣θP/

(
2ω2

n1

) + ωP
(
ω2

n1 + 1
)
/
(
4ξ1ωn

3
1

)∣∣ , γ2 < 0 (16)

Therefore, the following theorem summarizes the aforementioned result.

Theorem 1 Let γ 1 < 0 and γ 2 < 0. Then the origin of the closed-loop error system,
composed of the system (5) and the adaptive robust self balancing controller (6) with
the robust control law (14) and the parameter adaptation rules (13) and (16), is globally
uniformly bounded. Furthermore, θp → θpc = 0, and ωp → ωpc = 0 as t → ∞.

Remark 1 From the Lyapunov equation AT
m1P1 + P1Am1 = −I, one obtains

[
0 −ω2

n1
1 −2ξ1ωn1

] [
P11 P12

P12 P22

]
+

[
P11 P12

P12 P22

] [
0 1

−ω2
n1 −2ξ1ωn1

]
=

[−1 0
0 −1

]

Solving the matrix P1 attains

P1 =
[

(ξ1/ωn1) + [(
ω2

n1 + 1
)
/4ξ1

]
1/2ω2

n1

1/2ω2
n1

(
ω2

n1 + 1
)
/4ξ1ω

3
n1

]

It is easy to prove that the matrix P1 is symmetric and positive-definite for any
positive ωn1 and ξ 1.

3.2 Adaptive Robust Yaw Motion Regulation

Similar to the previous section, the subsection will be aimed at developing the adap-
tive robust regulation law for the yaw motion subsystem with unknown parameters
A66 and B6 caused by different riders. Figure 3 shows the system structure of the
adaptive yaw motion control system under the assumptions of direct measurements
of the two variables δ and

.

δ. The control aim presented here is to find the following
PD-like adaptive control Cδ

Cδ = −K̂Prδ − K̂Dr
.

δ +us2 (17)

so as to stabilize the yaw motion subsystem. In (17), us2 is the robust yaw motion
control law to be determined, and K̂Pr and K̂Dr are estimates of their two true
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Fig. 3 Block diagram of
the proposed adaptive
regulator for the decoupled
yaw motion subsystem PrK

DrK

δ

δ
.

–

–

parameters Ko
Pr and Ko

Dr. The design procedure of this adaptive yaw motion con-
troller is delineated in the following.

Step 1 Rewrite the dynamic equation of the yaw motion subsystem in a state-space
model form

.

X2 =
[

0 1
0 A66

]
X2 +

[
0

B6

]
[
Cδ + f 6

]
(18)

where X2 = (
δ

.

δ
)T . Substituting the control law (17) into the system model

(18) gives

.

X2 =
[

0 1
B6 K̃Pr − ω2

n2 B6 K̃Dr − 2ξ2ωn2

]
X2 +

[
0

B6
(
us2 + f 6

)
]

(19)

where K̃Pr = K0
Pr − K̂Pr; K̃Dr = K0

Dr − K̂Dr; Ko
Pr = ω2

n2/B6, Ko
Dr = (2ξ2ωn2 +

A66)/B6 and ξ 2 and ωn2 respectively represent desired damping ratio and
natural frequency of the yaw motion. Note that Ko

Pr and Ko
Dr are obtained

from the compatible condition due to perfect model matching [16].
Step 2 this step is devoted to finding the parameter adjustment rules of the con-

troller such that δ→0 and
.

δ → 0 as t→ ∞. Thus, equation (19) can be
rewritten by

.

X2 = Am2X2 + �2

[
B6 K̃Pr

B6 K̃Dr

]
+

[
0

B6
(
us2 + f 6

)
]

(20)

where �2 =
[

0 0
δ

.

δ

]
and Am2 =

(
0 1

−ω2
n2 −2ξ2ωn2

)
is a stability matrix.

Because Am2 is of the Hurwitz type, there must exist a symmetric and

positive matrix P2 =
[

(ξ2/ωn2) + [(
ω2

n2 + 1
)
/4ξ2

]
1/2ω2

n2

1/2ω2
n2

(
ω2

n2 + 1
)
/4ξ2ω

3
n2

]
such

that AT
m2P2 + P2Am2= − I. To prove the asymptotical stability of the closed-

loop system (20), one postulates the following Lyapunov function candidate

V3 = 1
2

XT
2 P2X2 + 1

2B6γ3

[
B6 K̃Pr B6 K̃Dr

] [
B6 K̃Pr B6 K̃Dr

]T
, B6γ3 > 0

(21)
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Notice that B6 > 0, γ 3 > 0. Differentiating V3 with respect to time along its
trajectory yields

.

V3 = −1
2

XT
2 X2 +

[
B6 K̃Pr

B6 K̃Dr

]T
⎡

⎣�T
2 P2X2 + 1

γ3

⎡

⎣

.

K̃Pr
.

K̃Dr

⎤

⎦

⎤

⎦

+
[

0
B6

(
us2 + f 6

)
]T

P2X2 (22)

If the following parameter adjustment rule is adopted

1
γ3

⎡

⎣

.

K̃Pr
.

K̃Dr

⎤

⎦ + �T
2 P2X2 = 0

which leads to the parameter adaption law.
⎡

⎣

.

K̂Pr
.

K̂Dr

⎤

⎦ = γ3�
T
2 P2X2, γ3 > 0 (23)

If the robust control law is designed by

us2 = −Kδ sgn
[
δ/

(
2ω2

n2

) + .

δ
(
ω2

n2 + 1
)
/
(
4ξ2ω

3
n2

)]
, Kδ = K6 max (24)

then
.

V3 = −XT
2 X2/2 ≤ 0, indicating that

.

V3 is negative semidefinite. Hence,
the use of Barbalat’s lemma shows that X2 → 0 as t → ∞. Like the ar-
gument in Section 3.1, the control gain Kδ is time-varying because the
parameter K6max is constant and unknown, and could vary with the unknown
parameter B6. To circumvent the difficulty, another parameter updating law
for Kδ is proposed by modifying the Lyapunov equation (21) as

V4 = V3 + 1
2B6γ4

(
B6 K̃δ

)2
, K̃δ = K6 max − Kδ, B6γ4 > 0 (25)

which gives the following rule
.

Kδ = γ4
∣
∣δ/

(
2ω2

n2

) + .

δ
(
ω2

n2 + 1
)
/
(
4ξ2ω

3
n2

)∣∣, γ4 > 0 (26)

Before closing this section, one summarizes the main result of this subsection as
follows.

Theorem 2 Assume that γ 3 > 0 and γ 4 > 0. Then all the trajectories of the closed-loop
system, composed of the system (20) and the adaptive robust yaw motion controller
(17) with the robust control law (24) and the parameter adjustment rules (23) and (26),
are globally uniformly bounded. Moreover, δ → 0 and

.

δ → 0, as t → ∞.

3.3 Smooth Adaptive Robust Regulators

As motioned previously, both adaptive robust control laws (14) and (24) with
their parameter updating rules (16) and (26) have been designed to eliminate the
steady-state errors caused by the two uncertain but bounded forces f 4 and f 6.
However, these robust controllers are composed of two signum functions which
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provide switching accelerations for the vehicle at the self-balancing moment. These
abrupt and switching forces will cause the rider feel uncomfortable. On the other
hand, from the viewpoint of digital implementation, they are difficult to be realized
by digital computation devices. Hence, the signum function should be replaced by
or approximated by continuous equivalents, for instance, the hyperbolic tangent
function which is defined by

tanh(x) = ex − e−x

ex + e−x
, x ∈ R (27)

The hyperbolic tangent function has been shown powerful in achieving the same
control goal without chattering phenomena [19]. In the subsection, this hyperbolic
tangent function is employed to carry out smooth adaptive robust controls instead
of both original signum functions. Thus, with two positive real numbers a and b, the
robust control law (14) is then modified by

us1 = −Kθ tanh((a + bt)s1), s1 = θP/
(
2ω2

n1

) + ωP
(
ω2

n1 + 1
)
/
(
4ξ1ω

3
n1

)
(28)

and the robust control law (24) is changed to

us2 = −Kδ tanh((a + bt)s2), s2 = δ/
(
2ω2

n2

) + .

δ
(
ω2

n2 + 1
)
/
(
4ξ2ω

3
n2

)
(29)

Note that both smooth adaptive robust controllers use the hyperbolic tangent func-
tion instead of the signum functions, in order to avoid possible chattering phe-
nomena. When the signum function is replaced by the hyperbolic tangent function,
the stability issue of the proposed smooth controller can be similarly proven by using
the same argument of the method presented in [19].

4 Simulations, Experimental Results and Discussion

In this section, three simulations and two experiments are performed to investigate
the effectiveness and performance of the proposed self-balancing and yaw motion
regulators. The first two simulations are conducted to verify the feasibility and effec-
tiveness of the proposed control methods, and the third simulation is used to show
the superiority of the proposed controllers in comparison with the state feedback
controllers in [5]. The first experiment is conducted to examine the performance
and applicability of the proposed adaptive self-balancing regulators for two riders
with weights of 85 kgw and 60 kgw, respectively. The second experiment attempts
to investigate the usefulness of the proposed adaptive yaw motion regulator for the
same two riders.

4.1 Brief Description of Experimental Self-Balancing HTV

4.1.1 Mechatronic Design

Figure 4 displays the photograph of the laboratory-built personal self-balancing HTV
with two differential driving wheels. This vehicle is composed of one foot plate, two
24V DC servomotors with gearbox and two stamped steel wheels with 16-in. tires,
two 12-V sealed rechargeable lead-acid batteries in series, two motor drives, one
digital signal processor (DSP) board TMS 320LF240 from Texas Instrument used
to implement the controller, one handle-bar with a potentiometer as a yaw motion
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Fig. 4 The experimental
self-balancing two-wheeled
HTV: a front view;
b bottom view

position sensor, one gyroscope and one tilt sensor. The two motor drives use dual
H-bridge circuitry to deliver PWM-based power to drive the two DC servomotors.
Sending PWM signals to the H-bridge circuit, the DSP controls linear speed and
yaw motion of the HTV as well as maintains the self-balancing of the HTV. The
used piezoelectric vibrating gyroscope is the mode1 ENV-05H-02 Gyrostar supplied
by Murata electronics, in which the vibrating prism inside the gyroscope is used as
the sensing element by measuring the phase differences of surface acoustical waves
across the prism. The signal from the Gyrostar ranges from 0 VDC to 5 VDC, with
the output 2.5 VDC at zero angular velocity. This gyroscope is adopted to measure
the pitch angle rate of the HTV, and the title sensor CXTA02 from Crossbow uses
a micro-machined acceleration sensing element with a DC response to measure
inclination relative to gravity. The tilt sensor measures the pitch angle and its
output is an offset voltage plus the voltage response proportional to the amount of
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Fig. 5 Block diagram of the
overall HTV control structure
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gravity measured by the sensor. Note that voltage response of the sensor CXTA02 is
proportional to the sine of the tilt angle.

4.1.2 Control Architecture

The block diagram of the control system for the transporter is shown in Fig. 5,
which is equipped with a tilt sensor, a gyroscope, a potentiometer, an adaptive self-
balancing regulator and an adaptive yaw motion regulator. Figure 6 shows the system
structure of the entire HTV control system. The DSP controller with built-in A/D
converter is responsible for executing the control algorithms including yaw motion
control and self-balancing control. The feedback signals from the gyroscope and tilt
sensors are utilized via the controller to maintain the human body on the footplate
without falling. Note that the two first-order filters can be employed to remove
the unwanted signal in both the pitch angle rate reading ωP from the gyroscope
and the pitch angle reading θP from one tilt sensor, thus reducing high-frequency
noise effects. Worthy of mention is that the filtering method proposed in [18] can be
employed to obtain more accurate estimates of ωP and θP.

Transporter

Gyroscope and
Tilt Sensor

Steering
Potentiometer

Sensor

Right
Motor

Left
MotorController

Drives
R

L

TMS
320F240DSP

ω
ω

Fig. 6 Block diagram of control Signals in the entire HTV control system
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Table 2 Parameters for
computer simulations

Parameters Adaptive robust Adaptive robust
self-balancing controller yaw motion controller

A43 7 –
A66 – −0.04
B4 −0.0102 –
B6 – 0.57
ωn 10 10
η 0.707 0.707
γ −4. 2

4.2 Simulation Results and Discussion

The self-balancing HTV with the proposed adaptive control laws (6) and (17) was
simulated on a digital computer using Matlab package. The parameters given in
Table 2 are adopted in this simulation. The simulations examined the performance
of the proposed regulators for a rider with an unknown weight and a given external
force applied to the HTV. Figures 7b and 8b respectively depict the output responses
of the proposed yaw motion and self-balancing regulators when left and right yaw
motion commands and then forward and backward moving command were applied
to the HTV, as shown in Figs. 7a and 8a. The results in Figs. 7b and 8b indicate that
the proposed regulators are capable of giving satisfactory regulation performance for
a rider with unknown weight and given external disturbance.

For showing the superiority of the proposed controller, the third simulation is con-
ducted for the self-balancing two-wheeled HTV using the state-feedback controllers
proposed in [5]. Figure 9 compares the simulation results of the pitch angle responses
for the state-feedback controller and the proposed adaptive controller. As shown in

Fig. 7 Regulation performance for the yaw motion profile: a yaw motion tracking; b simulated yaw-
angle output
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Fig. 8 Regulation performance for the motion profile: a tilt command; b simulated tilt-angle output

Fig. 9, the proposed adaptive self-balancing controller has a faster transient response
with a smaller error of 0.0004 rad/s than the state-feedback controller does. Figure 10
presents the yaw angle control performance for the state-feedback controller and
the proposed yaw controller. The results in Fig. 10 clearly indicate that the proposed
adaptive yaw controller has a better response than the state-feedback controller does.
The results in Figs. 9 and 10 show that the proposed controllers outperform the state-
feedback controllers.

Fig. 9 Comparison between both simulation results of the pitch angle tracking for the state-feedback
controller and the smooth adaptive self-balancing controller
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Fig. 10 Comparison between both simulation results of the yaw angle tracking for the state-feedback
controller and the smooth adaptive yaw motion controller

4.3 Digitalization of the Proposed Adaptive Regulators

Before experimentation, the two proposed adaptive regulators with the parameter
update laws, (6) and (17) must be digitalized such that they can be executed by
the DSP-based controller in real time. These can be easily done by using backward
difference and bilinear transformation. For the adaptive robust self-balancing regu-
lator, its digital equivalent is given by

Cθ (k) = −K̂Pθ (k)θp(k) − K̂Dθ (k)

(
θp(k) − θp(k − 1)

T

)
+ us1(k) (30)

and
[

K̂Pθ (k)

K̂Dθ (k)

]

=
[

K̂Pθ (k − 1)

K̂Dθ (k − 1)

]

+ γ1T
2

(
γ1�

T
1 (k − 1) P1X1 (k − 1) + �T

1 (k − 1) P1X1 (k − 1)
)
, γ1 < 0

(31)

Repeating the same procedure gives the digitalization of the adaptive robust yaw
motion regulator as follows;

Cδ(k) = −K̂Pr(k)δ(k) − K̂Dr(k)

(
δ(k) − δ(k − 1)

T

)
+ us2(k) (32)

and
[

K̂Pr(k)

K̂Dr(k)

]

=
[

K̂Pr(k−1)

K̂Dr(k−1)

]

+ γ2T
2

(
�T

2 (k−1)P2X2(k−1)+�T
2 (k)P2X2(k)

)
, γ2 > 0

(33)
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The speed commands for the right-side and left-side motors of the HTV are respec-
tively computed by the following two torque-to-speed relations

ωL(k) = ωL(k − 1) + T · (Cθ (k) + Cδ(k))

2JL
(34)

and

ωR(k) = ωR(k − 1) + T · (Cθ (k) − Cδ(k))

2JR
(35)

Note that JL and JR are constant moments of inertia of the two motors.
For implementation of the two adaptive robust regulation algorithms, the follow-

ing steps are presented in order to avoid the computation delay problem.

Step 1 Measure signal from the tilt sensor and the potentiometer via the analog-to
digital conversion of the DSP-based controller.

Step 2 Compute Cθ (k) and Cδ(k) from (30) and (31).
Step 3 Calculate both motors’ speed commands from (34) and (35).
Step 4 Output the motor’s speed PWM commands.
Step 5 Estimate the controllers K̂Pθ (k) and K̂Dθ (k) from (31) and the controllers

K̂Pr(k) and K̂Dr(k) from (33).
Step 6 Wait for next sampling instant, and go to Step 1.

Notice that the aforementioned real-time algorithm is synthesized based on the
principle that the control signals must be outputted by 10% time of each sampling
interval, and the remaining time is employed to update the controller parameters of
the two adaptive regulators.

Fig. 11 The moving HTV
ridden by the first rider
(185 cm/87 kg): a moving
forward; b moving backward
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Fig. 12 The moving HTV
ridden by the second rider
(165 cm/60 kg): a moving
forward; b moving backward

4.4 Experimental Results of Adaptive Self-Balancing and Yaw Motion Regulation

This following subsection describes experimental results of the proposed adaptive
self-balancing and yaw motion regulators whose real-time control algorithm was
implemented by standard C language. The relevant parameters used for both ex-
periments are γ 1 = −4.3, γ 3 = 2.34, the damping ratio ξ 1 and the natural frequency
ωn1 for self-balancing are 0.707 and 5 rad/s, and the damping ratio ξ 2 and the natural

Fig. 13 The turning HTV
ridden by a rider
(185 cm/87 kg): a turning left;
b turning right
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Fig. 14 Experimental yaw response of the smooth adaptive yaw controller for both riders

frequency ωn2 for yaw motion are 0.707 and 10 rad/s, respectively. Moreover, both
matrices P1 and P2 are given by

P1 =
[

9.335 0.02
0.02 0.0735

]
, P2 =

[
35.785 0.005
0.005 0.03536

]
(36)

The PWM control signals are limited to 0% and +100%. Extensive experiments
were conducted to verify the performance of the HTV with the proposed real-time
regulation algorithm. Figures 11 and 12 depict the moving HTV ridden by the two
riders while the HTV was moving in a straight line on smooth floor. The results
in Fig. 13 illustrates turning behavior of the turning HTV with the two proposed

Fig. 15 Experimental pitch response of the smooth adaptive self-balancing controller for both riders
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adaptive regulators. Figures 14 and 15 the experimental and simulation results of
the two proposed controllers for both riders. These results have exemplified the
effectiveness of the proposed controller for the two-wheeled human transportation
vehicle. Through those experimental results, the proposed real-time adaptive regu-
lation algorithm has been shown capable of giving satisfactory performance for
the HTV, and the performance of the controller HTV has not been affected by
different riders.

5 Conclusions

This paper has presented two adaptive robust regulators for a two-wheeled human
transportation vehicle which can be decoupled into the wheeled inverted pendulum
and yaw motion subsystems. Both adaptive robust regulators have been designed
such that all the nonzero initial states converge to zero with desired transient
responses. Two sets of parameters adjustment rules have been derived based on
the Lyapunov stability theory. Through simulations and experimental results, the
transporter with both proposed two regulators has been shown capable of giving
satisfactory riding performance for different riders. An interesting topic for future
research would be to develop a nonlinear model and a nonlinear adaptive control
method for the two-wheeled human transportation vehicle.
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