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ABSTRACT

The triad instability of the large-scale, first-mode, baroclinic Rossby waves is studied in the context of the
planetary scale when the Coriolis parameter is to its lowest order varying with latitude. Accordingly, rather
than remain constant as in quasigeostrophic theory, the deformation radius also changes with latitude,
yielding new and interesting features to the propagation and triad instability processes. On the planetary
scale, baroclinic waves vary their meridional wavenumbers along group velocity rays while they conserve
both frequencies and zonal wavenumbers. The amplitudes of both barotropic and baroclinic waves would
change with latitude along a ray path in the same way that the Coriolis parameter does if effects of the
nonlinear interaction are ignored. The triad interaction for a specific triad is localized within a small
latitudinal band where the resonance conditions are satisfied and quasigeostrophic theory is applicable
locally. Using the growth rate from that theory as a measure, at each latitude along the ray path of the basic
wave, a barotropic wave and a secondary baroclinic wave are picked up to form the most unstable triad and
the distribution of this maximum growth rate is examined. It is found to increase southward under the
assumption that triad interactions do not cause a noticeable decrease in the quantity of the basic wave’s
amplitude divided by the Coriolis parameter. Different barotropic waves that maximize the growth rate at
different latitudes have almost the same meridional length scale, on the order of the deformation radius.
With many rays starting from different latitudes on the eastern boundary and with wavenumbers on each
of them satisfying the no-normal-flow condition, the resulting two-dimensional distribution of the growth
rate is a complicated function of the relative relations of zonal wavenumbers or frequencies on different
rays and the orientation of the eastern boundary. In general, the growth rate is largest on rays originating
to the north.

1. Introduction

As revealed by analysis of the Ocean Topography
Experiment (TOPEX)/Poseidon data of sea surface
height (Chelton and Schlax 1996), the first-mode baro-
clinic Rossby waves emanating from the eastern bound-
ary of the Pacific Ocean can propagate westward across
the basin only in low-latitude regions (see their Fig. 4).
In middle-latitude regions, the wave patterns of the sea
level signals fade soon after they leave the coast and, at

the same time, an eddy field emerges. To explain this
latitudinal structure, Qiu et al. (1997) studied the decay
of the first-mode baroclinic Rossby waves due to a pre-
scribed horizontal eddy viscosity and found that the
e-folding distance of the decaying waves is smaller to-
ward higher latitudes, indicating that those signals tend
to be more trapped to the eastern boundary. This be-
havior is due entirely to the much slower Rossby wave
speed in high-latitude regions where the Rossby defor-
mation radius, Ld, is smaller.

In their recent study, LaCasce and Pedlosky (2004),
using a two-layer quasigeostrophic model, investigated
the instability of the free, first-mode baroclinic Rossby
waves. They described the confinement of the wave
patterns to the eastern boundary as the process by
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which the basic wave loses energy to an eddy field
growing out of instability. Whether the basic wave can
successfully cross the basin is determined by the critical
parameter Z, the ratio of the time for the long basic
wave to traverse the basin to the e-folding growth time
of parasitic instabilities. Here Z is proportional to the
characteristic fluid velocity V of the basic wave divided
by L3

d, where Ld is the deformation radius. More spe-
cifically,

Z �
VL

�Ld
3 ,

where L is the characteristic length scale of the basin
and the zonal length scale of the wave. Within the
quasigeostrophic framework, the Coriolis parameter to
the lowest order is constant despite its meridional gra-
dient �, so the deformation radius, the gravity wave
speed divided by the Coriolis parameter, is constant
with latitude and the key factor for the size of Z is
the shear associated with the basic wave. For small Z
or small characteristic fluid velocity, the instability is
manifested as the triad interaction between the basic
wave and two “daughter” waves that feed on its energy,
but the decay of the basic wave by the instability is
so slow that it can successfully cross the basin without
losing its wave character. For large Z, conventional
baroclinic instability is the main mechanism of de-
cay, and the basic wave breaks down rapidly into an
eddy field before it reaches the western boundary. By
considering the parametric dependence of the ratio on
latitude, possible only on the planetary scale, one could
draw the conclusion that Z increases toward the high-
latitude regions as the Coriolis parameter increases
northward, which, as suggested by LaCasce and Ped-
losky, is the reason for the confinement of wave pat-
terns found in satellite measurements. This argument
is promising; however, by only examining the ratio Z
parametrically, it failed to consider any other effects
that the latitudinal variation of the deformation ra-
dius has on the instability process. One obvious short-
coming of the application of the quasigeostrophic
theory in this case is that the latitudinal variation of the
Coriolis parameter, as it alters the deformation radius
on the planetary scale, is not consistently treated. For
example, the characteristics of the waves themselves
will change with latitude as they propagate, which can
in turn affect the instability process, but we do not
know in what way the waves change and how the in-
stability is influenced as long as we are still within the
quasigeostrophic framework. Thus, an important further
step is to reconsider the issue on the planetary scale,
which is the primary motivation of the present study.

In this paper, we study the propagation and instabil-
ity of the planetary baroclinic Rossby waves, and only
examine the triad instability corresponding to the re-
gime of small Z. Our aim is to find out how the plan-
etary-scale propagation of waves as well as the parasitic
triad instability varies with latitude when the deforma-
tion radius is varying with latitude.

2. The model

To simplify the analysis, we use Cartesian coordinates
and approximate the Coriolis parameter as a linear func-
tion of meridional distance from a reference lati-
tude �0, that is, fdim � f0 � �ydim, where � � 2� cos�0 /R
and f0 � 2� sin�0; fdim is allowed to vary by an order-1
amount.

We use a two-layer model with flat surface and bot-
tom. For simplicity, the two layers are set to have the
same depth, H. Motion in the model is hydrostatic and,
to the lowest order, geostrophic. The horizontal mo-
mentum equations and the continuity equations for the
two layers are as follows:

�u1

�t
� u1 · �u1 � f k � u1 � ��p1, �1	

�u1

�x
�

��1

�y
�

�w1

�z
� 0, �2	

�u2

�t
� u2 · �u2 � f k � u2 � ��p2, and

�3	

�u2

�x
�

��2

�y
�

�w2

�z
� 0. �4	

In the above equations pn is the pressure divided by the
mean density 
0.

Adding and subtracting momentum equations lead to

�uB

�t
� uB · �uB � uT · �uT � f k � uB � ��pB �5	

and

�uT

�t
� uB · �uT � uT · �uB � f k � uT � ��pT, �6	

where the subscript B denotes barotropic motion, T
denotes baroclinic motion,

uB �
u1 � u2

2
, uT �

u1 � u2

2
, pB �

p1 � p2

2
,

and

pT �
p1 � p2

2
.
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As to the continuity equations, we can first integrate
them through the depth of each layer and then manipu-
late them in the same way as we did to the momentum
equations:

�uB

�x
�

��B

�y
�

�

�x �uT

�

H� �
�

�y ��T

�

H� � 0

�7	

and

��

�t
� uB · �� � ���uB

�x
�

��B

�y � � H��uT

�x
�

��T

�y � � 0,

�8	

where � is the interface elevation. Equations (5)–(8)
are a complete set because using hydrostatic relation
� can be linearly related to the dynamical pressure
difference between the two layers as g�� � p2 �
p1 � �2pT.

As shown by LaCasce and Pedlosky (2004), the ratio
of two time scales determines the fate of the long baro-
clinic Rossby waves. The first one is the time taken to
traverse the basin by the basic wave, which is

TR �
L

�Ld
2

with the characteristic scale of the basin L, and is also
the characteristic period of the Rossby wave with wave-
length L. The second time scale is the e-folding growth
time of instability, which is Tg � Ld /V for both the triad
interaction and baroclinic instability (LaCasce and Ped-
losky 2004), where V is the characteristic fluid velocity
of the basic wave.

The dispersion relation for linear, freely propagating
baroclinic Rossby waves,

� � �
�k

k2 � l2 � 1�Ld
2 ,

explicitly depends on latitude. For the first mode, Ld is
smaller than 80 km north of 20°N and more than 200
km in the Tropics (Chelton et al. 1998). According to
the wave theory in the Wentzel–Kramers–Brillouin
limit (Schopf et al. 1981), if the dispersion relation only
explicitly depends on the meridional coordinate, the
frequency and zonal wavenumber remain constant fol-
lowing the wave propagating with the group velocity,
while the meridional wavenumber varies with the de-
formation radius. To guarantee the validity of the linear
dispersion relation and yet make the variation of the
meridional wavenumber discernible, we assume the
meridional wavenumbers are small but not much
smaller than 1/Ld. Besides, perturbations growing out

of the baroclinic or triad instability have scales of the
deformation radius, so we pick Ld as the first important
length scale. On the other hand, the largest length scale
that we are dealing with is the scale of the earth’s ra-
dius, much larger than that of the deformation radius.
Therefore, we have two distinct length scales in the
meridional direction: one is Ld, over which the wave
oscillates with a locally constant meridional wavelength
comparable to Ld; the other is L, over which the Co-
riolis parameter varies and the wave responds to that
variation by changing its meridional wavelength as it
propagates along a group velocity ray. In the zonal di-
rection, there is only one scale L, the scale of the basin
and zonal wavelength of the basic wave.

It is natural to define multiple time and length vari-
ables using those scales:

tr �
tdim

TR
, tg �

tdim

Tg
, s �

ydim

Ld
,

Y �
ydim

L
, and x �

xdim

L
.

The nondimensional form of the Coriolis parameter is

f �
fdim

f0
� 1 � b�Y � Y0	,

where b � �L/f0, and is small in quasigeostrophy when
O(L) � O(Ld) but is order 1 on the planetary scale.
Because the meridional length scale is much less than
the zonal one, the characteristic fluid velocity has dif-
ferent scales in the two directions as a result of the
geostrophic balance. In addtion, the scalings for pres-
sure and interface elevation can also be obtained from
that balance:

�u, �	 → V�u
L

Ld
, �� �

�t
→

�Ld
2

L � �

�tr
� Z

�

�tg
�

p → f0VLp
�

�y
→

1
Ld

� �

�s
� �

�

�Y�
� →

f0VL

g	
�

�

�x
→

1
L

�

�x

,

where

Z �
Tr

Tg
�

VL

�Ld
3 and � �

Ld

L
.

Now, the nondimensional forms of the original equa-
tions are

2160 J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y VOLUME 37



�b� �

�tr
� Z

�

�tg
�uB � �bZ uBuBx � �BuBs � uTuTx � �TuTs � ���BuBY � �TuTY	� � f�B � �

�pB

�x
, �9	

�b� �

�tr
� Z

�

�tg
�uT � �bZ uBuTx � �BuTs � uTuBx � �TuBs � ���BuTY � �TuBY	� � f�T � �

�pT

�x
, �10	

�3b� �

�tr
� Z

�

�tg
��B � �3bZuB�Bx � �B�Bs � uT�Tx � �T�Ts � ���B�BY � �T�TY	� � fuB � �

�pB

�s
� �

�pB

�Y
, �11	

�3b� �

�tr
� Z

�

�tg
��T � �3bZuB�Tx � �B�Ts � uT�Bx � �T�Bs � ���B�TY � �T�BY	� � fuT � �

�pT

�s
� �

�pT

�Y
, �12	

�uBx � �Bs � ��BY	 � �bZ �uT�	x � ��T�	s � ���T�	Y� � 0, and �13	

�b� �

� tr
� Z

�

�tg
�� � �uTx � �Ts � ��TY	 � �bZ �uB�	x � ��B�	s � ���B�	Y� � 0. �14	

There are three nondimensional parameters in these
equations: �, b, and Z. For motion on the planetary
scale, � � Ld /L is much less than 1 while b � �L/f0

is of order 1. Only the parameter Z could be large or
small corresponding to different dynamical regimes.
Since the regime where the basic wave may successfully
cross the basin despite triad interactions is the focus
of our study, we assume that Z � � K 1. This allows
us to examine the effects of � dispersion on the growth
(Schopf et al. 1981). The opposing limit Z k 1 has
been investigated by Isachsen et al. (2007). In the limit
Z K 1 the energy-releasing process is the triad insta-
bility of the basic wave, which can be analyzed by ex-
panding variables in a series of � or Z using the order-
ing relation Z � O(�).

3. Triad instability

We expand the pressure as

pB � pB
�0	 � �pB

�1	 � �2pB
�2	 � · · · and

pT � pT
�0	 � �pT

�1	 � �2pT
�2	 � · · · �15	

and then substitute into the Eqs. (9)–(14) to find solu-
tions at each order.

To the lowest order, motion is steady and geo-
strophic without the variation on slow length scales en-
tering explicitly, that is,

f�B
�0	 �

�pB
�0	

�x
f�T

�0	 �
�pT

�0	

�x

fuB
�0	 � �

�pB
�0	

�y
fuT

�0	 � �
�pT

�0	

�y

�uB
�0	

�x
�

��B
�0	

�s
� 0

�uT
�0	

�x
�

��T
�0	

�s
� 0

. �16	

To order O(�), time dependence on the fast time scale
is determined by two linear equations:

�

�tr
��2pB

�0	

�s2 ��
�pB

�0	

�x
� 0 and

�

�tr
��2pT

�0	

�s2 � 2f 2pT
�0	��

�pT
�0	

�x
� 0. �17	

Both free barotropic and baroclinic Rossby waves and
their superpositions can satisfy the above equations. To
study triad interactions, we add two other wave solu-
tions besides the basic one: a secondary baroclinic
Rossby wave and a barotropic Rossby wave. The total
solutions are, thus

pB
�0	 � ABei
B � * and

pT
�0	 � ATei
T � AToei
To � *, �18	

where the asterisks represent the complex conjugates of
the preceding functions and the wave amplitudes have
no dependence on tr, x, or y. The dispersion relations
for the three waves are

�T � �
kT

lT
2 � 2f�Y	2 , �To � �

kTo

lTo
2 � 2f�Y	2 ,

and

�B � �
kB

lB
2 .
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Zonal wavenumbers are absent from denominators be-
cause they are much less than the meridional ones. As
expected, the dispersion relations of the baroclinic
waves are functions of Y, so their meridional wavenum-
bers, while constant locally, vary with latitude. The
phases of baroclinic waves are therefore functions of Y
too:


T � ��Ttr � kTx � �T�Y	�� and


To � ��Totr � kTox � �To�Y	��, �19	

whose derivatives with respect to s yield meridional
wavenumbers,

lT �
�
T

�s
�

��T

�Y
and

lTo �
�
To

�s
�

��To

�Y
. �20	

The barotropic wave has constant frequency and wave-
number because its dispersion relation is independent
of Y, so its phase linearly depends on the fast time and
spatial variables, �B � ��Btr � kBx � lBs.

In the limit of small Z, the variation on the growth
time tg is of order O(Z) compared with that in the
traverse time tr, implying that effects of instability are
not apparent until we go to the next order.

The equations at order O(�2) become nonlinear,

�

�tr
��2pB

�1	

�x ��
�pB

�1	

�x
� �2

�

�tr
��2pB

�0	

�Y�s�� 2
b

f

�

�tr
��pB

�0	

�s �� � �

�tg
��2pB

�0	

�s2 ��
1
f

J�pB
�0	,

�2pB
�0	

�s2 ��
1
f

J�pT
�0	,

�2pT
�0	

�s2 ��
and

�

�tr
��2pT

�1	

�s2 � 2 f2pT
�1	��

�pT
�1	

�x
� �2

�

�tr
��2pT

�0	

�Y�s�� 2
b

f

�

�tr
��pT

�0	

�s �� � �

�tg
��2pT

�0	

�s2 � 2f2pT
�0	��

1
f

J�pT
�0	,

�2pB
�0	

�s2 �
�

1
f

J�pB
�0	,

�2pT
�0	

�s2 � 2f2pT
�0	��. �21	

The motion at order O(�) is not free but forced by
variations of the zero-order fields on slow spatial and
time scales as well as the nonlinear interactions among
them. Any two of the three waves interact with each
other at zero order, producing forcing with frequencies
equal to the sum and the difference of the two. If the
following conditions are satisfied by the three waves,

kT � kTo � kB � 0,

lT � lTo � lB � 0, and

�T � �To � �B � 0, �22	

a triad forms and resonant interaction occurs. The
motions at first order will grow linearly with time,

rendering the expansion shown in Eq. (15) invalid
after a time tr � O(1/�). The present problem is
peculiar compared with triad problem that is usually
encountered because the meridional wavenumbers
of the two baroclinic waves vary when propagating
along rays. Consequently, the three waves that form a
triad at some time and position along a group velocity
ray may fail to satisfy Eq. (22) further along the ray
path.

To ensure the expansion remains valid in the pres-
ence of the triad interaction and for at least a period of
time as long as tr � O(1/�), we eliminate the possible
resonant terms of the “forcing” on the right-hand sides
of the equations:

�

�tg
�AB

f � � cgBy

�

�Y �AB

f � �
�kTlTo � kTolT	�lT

2 � lTo
2 	

lB
2

A*ToA*T
f2 e�i � 0,

�

�tg
�AT

f � � cgTy

�

�Y �AT

f � �
�kBlTo � kTolB	�lB

2 � lTo
2 � 2 f2	

lB
2

A*BA*To

f2 e�i � 0, and

�

�tg
�ATo

f � � cgToy

�

�Y �ATo

f � �
�kBlT � kTlB	�lB

2 � lT
2 � 2 f2	

lB
2

A*BA*T
f2 e�i � 0, �23	
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where cg represents the group velocity and � � [lBY �
�T(Y) � �To(Y)]/� is the part of the sum of phases of
the three waves that depends on Y. The first three
terms in each equation have a clear physical meaning:
they describe the evolution of the pressure amplitude
divided by the Coriolis parameter (the geostrophic
streamfunction amplitude) following the waves along
the group velocity ray. If the nonlinear interaction were
absent, those three terms would sum to zero and
streamfunction amplitudes would be conserved, imply-
ing decrease of wave amplitude as wave energy propa-
gates southward. This invariance is related to the con-
servation of energy. The last term in each equation is
what can cause growth or decay of the streamfunction
amplitude, and is what normally appears in the triad
interaction problem except for the additional term e�i�,
a fast-oscillating term in Y due to � in the denominator
of �. From the theory of stationary phase, we know that
the main contribution to the integration of this term in
Y comes from a narrow range with width of order
O(��) and centered at the point where �� /�Y � lB �
lT � lTo � 0, that is, where the resonance conditions are
exactly satisfied. Integration over the remaining meridi-
onal intervals would be close to zero because of can-
cellation from fast oscillations of this final factor. This
behavior is the mathematic manifestation of the impor-
tant physical feature described before: because baro-
clinic waves change meridional wavenumbers as they
propagate, the effects of resonant interaction on ampli-
tudes are localized within a narrow latitudinal band
where resonance conditions are well satisfied.

For the moment, consider waves whose streamfunc-
tion amplitudes do not vary with Y. If we linearize the
equations around the basic wave’s initial amplitude,

AT � A0 � a,

ATo � aTo, and

AB � aB, �24	

where a, aTo, and aT are small when compared with A0,
we can find exponential growth for the two small waves
with growth rate �:

�2 �
�kBlT � kTlB	2�lT

2 � lTo
2 	�lB

2 � lT
2 � 2f2	

lB
2 �lTo

2 � 2f2	

|A0 |2

f2 .

�25	

This gives us a general idea of how fast the initially
small amplitude can grow, though it is not the actual
growth rate of the original problem that also has lati-
tudinal dependence. Still, we can regard it as an upper
limit of actual growth rate and find the wavenumbers of
the two parasitic waves that can maximize � as they

interact with a known basic wave. The underlying as-
sumption is that the available parasitic perturbations
have all possible wavenumbers so that the basic wave
can select any two waves to form the most unstable
triad. For Eq. (23), we believe the most important new
feature is the meridional variation of the deformation
radius, and this is the soul of the problem. Therefore, as
the first step, we assume that the streamfunction am-
plitude, A/f, is independent of time along the ray, which
is possible when all transient motions are ignored.
Among waves with energy propagating in all possible
directions, which are determined by group velocities
associated with the wave vectors, we only consider, by
choosing sign relations between zonal and meridional
wavenumbers of each wave, the basic and the second-
ary baroclinic waves with energy propagating south-
ward from the northern end of a region in Y, while the
barotropic wave propagates northward. In both Figs. 1
and 2, the three waves start with zonally oriented wave
vectors as they leave the northern and southern limits
of the domain. After that, the two baroclinic waves
change their meridional wavenumbers with Y to keep
frequencies constant. Because of that variation, we can
only have triad conditions strictly satisfied at one point,
which is set to be in the middle of the range in these two
figures. The wavenumbers of the two parasitic waves
are selected in such a way that the triad interaction is
the most unstable one according to Eq. (25) among all
possible triads associated with the basic wave at that
latitude. Near this latitude, the streamfunction ampli-
tude of the basic wave decreases as its energy is
drained, while those of the other two waves increase.
Through the wave interaction, A/f of each of the two
small waves increases to several times their initial val-
ues; the decrease of AT /f is of order of the square of
ATo /f or AB /f and so is very small. When the value of �
is one-tenth of that in Fig. 1, variations of A/f in Fig. 2
are smaller and more localized. Outside the interaction
zone, this quantity for all waves is nearly constant in Y
indicating conservation mentioned before. In the inter-
action zone ATo and AB vary in a similar way with
similar magnitudes to ATo /f and AB /f, but AT decreases
all the way southward with a variation a thousand times
bigger than that of variation in AT /f because again, the
variation of the latter is of order square of ATo /f or
AB/f, which is only 0.01 in our calculations.

Triad interaction among three specific waves can
only occur at a specific latitude. The basic wave, how-
ever, is subject to triad instability everywhere along its
path by forming different triads with different parasitic
waves, given that the ocean is always populated by per-
turbations with a wide range of spatial and time scales.
An interesting question is then whether there are any
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latitudinal bands where a single basic wave is more vul-
nerable to the triad interaction or, in other words,
where the instability is especially strong. To compare
the effects of different triads on the same basic wave,
we need to track many triads including many parasitic
waves besides the basic one using Eq. (23), as we did for
a single triad in Figs. 1 and 2. Meanwhile, outside the
Tropics, � is smaller than O(0.01) so the interaction for
a specific triad is limited to a very narrow region with a
scale roughly of the deformation radius. Within such a
small region, the variation of the Coriolis parameter is
small compared with the Coriolis parameter itself. We
can use quasi geostrophy locally to study the interaction
and at the same time regard this local interaction as one
of many events that happen to the basic wave, which,
besides suffering from triad instability, varies its me-

ridional wavenumber and its amplitude as it propa-
gates. From Figs. 1 and 2, we know that, when the
barotropic and baroclinic Rossby waves have very small
amplitudes when compared with that of the basic one,
the decrease of the basic wave’s amplitude due to one
single triad interaction is negligible compared with that
due to variation of the Coriolis parameter. We assume
that, although the basic wave interacts with parasitic
waves everywhere along its path, the variation of its
amplitude is still dominated by that of the Coriolis pa-
rameter, so its streamfunction amplitude remains con-
stant along the path. Therefore, as long as the wave-
numbers and amplitude of the basic wave are known at
one location on the path, we will know their values on
other locations.

The linear growth rate of the triad interaction in
quasigeostrophic theory is

�2 �
�KTo

2 � KT
2 	�KT

2 � F � KB
2 	�kTlTo � kTolT	2

KB
2 �KTo

2 � F	
�AT �f2	,

�26	

FIG. 1. The one-dimensional steady problem: (a) variations of
amplitude divided by the Coriolis parameter in Y; (b) the ampli-
tudes themselves. The upper panel in (a) and (b) is for the basic
wave, the solid line in the lower panel is for the secondary baro-
clinic wave, and the dotted line is for the barotropic wave. In both
(a) and (b), � � 0.01, f � 1 � 0.5(Y�Ys), kT � 1, lT (YN) � 0,
AT /f (YN) � 1, and ATo /f (YN) � AB/f (Ys) � 0.01.

FIG. 2. As in Fig. 1 except that � � 0.001.
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where K2 � k2 � l2,

F �
2 f2

g	H
�

1

Ld
2 ,

AT denotes the magnitude of pressure associated with
the basic wave, and AT /f represents the geostrophic
streamfunction amplitude. It is important to remember
that this formula is only applicable locally. Using this
growth rate as a measure of the strength of the triad
instability, we can find out the maximum growth rate

among all the triads that the basic wave can have at a
specific latitude. Applying it to different latitudes with
different lT, AT, and f, we can then examine the latitu-
dinal distribution of the triad growth associated with
this specific planetary wave. What is shown in Fig. 3 is
the result of triad interactions occurring along the path
of a basic wave starting from 80°N with lT � 0 and kT �
2�/1000 km, propagating with southward group veloc-
ity. The basic wave’s frequency is assumed big enough
to allow the ray to bend all the way down to 20°N.
Along the path, the meridional wavenumber of the ba-

FIG. 3. (a) Latitudinal variation of the maximum growth rate (thick solid line) for the basic wave starting from
the eastern boundary with kT � 2�/1000 km and lT � 0; the corresponding period is about 4 yr. First-mode
baroclinic deformation radius is set to be 30 km at 45°N. (b) Wave vectors of the basic wave along the ray. (c), (d)
Wavenumbers of the basic wave and the other two parasitic waves that maximize the growth rate. (e) The ratio of
the meridional wavenumber of the barotropic wave to L�1

d .
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sic wave varies with latitude; so does the wave vector as
displayed by Fig. 3b. Because the quantity AT /f is con-
stant along the path, we believe its specific value does
not affect the latitudinal distribution of growth rate
and set the value of AT in a way that the geostrophic
shear at 45°N is about a few centimeters per second.
At each latitude along the path, the most unstable
triad among all triads containing the basic wave is
found, and the growth rate is calculated using Eq. (26),
which is of order O(10�6) s�1, as shown in Fig. 3a.
Regarding the triad instability as a classic baroclinic
instability (LaCasce and Pedlosky 2004), we would be
tempted to expect decreasing growth rate with latitude
because the basic wave’s vector is turning more and
more meridionally as the magnitude of the basic wave’s
meridional wavenumber increases. To extract potential
energy from the basic wave by crossing the shear, per-
turbation motions need to be increasingly in the me-
ridional direction, experiencing more and more the sta-
bilizing effect of �. However, the result is opposite to
our expectations: the locally maximum growth rate in-
creases southward along the ray rather than decreases.
From Fig. 3b, the plot of the basic wave’s wavenumber
vector, we find that the orientation of the basic wave’s
wave vector does not change much with latitude except
at the far northern end of the interval where the me-
ridional wavenumber is small compared with the zonal
one, so the wave vector orients more zonally. The in-
crease of the magnitude of the total wavenumber with
latitude, however, is clear along the ray. Rewriting the
growth rate formula leads to

�2 �
�KTo

2 � KT
2 	�KT

2 � F � KB
2 	

KB
2 �KTo

2 � F	
�uT · KB	2, �27	

where resonance conditions and geostrophic relations
uT � �f�1lTAT and �T � f�1kTAT have been used. The
dot product describes the projection of the basic shear
onto the wave vector of the barotropic wave (or the sec-
ondary baroclinic wave). From the continuity equation,
we know that the wave motion is perpendicular to its
wave vector, so the dot product indeed represents the
part of the basic shear that is perpendicular to the baro-
tropic perturbation, or the basic shear felt by perturba-
tions. For planetary Rossby waves that are examined,
the zonal wavenumber is at least one order smaller than
the meridional one, the basic shear is therefore prima-
rily in zonal direction. Since the streamfunction ampli-
tude is constant along a ray, the southward increase of
magnitude of the meridional wavenumber causes an
increase of the basic shear and contributes to a south-
ward increase of the locally maximum growth rate. At
any latitude, the wavenumbers of the basic wave are

determined by their initial conditions at the starting
latitude, but the wavenumbers of the locally excited
barotropic wave and the secondary baroclinic wave
could have any values as long as they can produce the
maximum growth rate. Surprisingly, when we look at
the wavenumbers of the parasitic waves, the meridional
wavenumber of the barotropic wave is almost constant
with latitude, which means the barotropic perturbations
growing out of triad instabilities at different latitudes
have almost the same meridional length scale. The ratio
of this wavenumber to L�1

d is about 0.64 at the starting
latitude when the basic wave has zero meridional wave-
number, consistent with the result of LaCasce and Ped-
losky (2004), and the ratio increases southward after-
ward. If we decrease the zonal wavenumber of the basic
wave, which still remains constant along a ray path
while we let the meridional wavenumber of the basic
wave experience the same variation process, starting as
zero from 80°N and increasing southward subsequently
according to the relation l2

T � F � F(80°N) to 20°N, the
overall magnitude of growth rate is smaller, but the
shape of the growth rate curve hardly changes at all, as
shown by Fig. 4a. In this figure, three basic waves
propagating along the rays that bend from 80° to 20°N
are considered. All three waves have the same meridi-
onal wavenumber, lt � 0, at starting points, but differ-
ent zonal wavenumbers along the three rays, which are
kt � 2�/1000 km, kt � 2�/3000 km, and kt � 2�/6000
km, respectively. By calculating the ratio of growth rate
between two different curves, that is, the ratio of
growth rate on the curve of the basic wave with kt �
2�/3000 km to that on the curve of the basic wave with
kt � 2�/1000 km, as shown by the solid line in Fig. 4a,
we find that changing the value of the basic wave’s
zonal wavenumber does change the magnitude of the
growth rate, but does little to the shape of the growth
rate curve. Another result, not shown by the figure, is
that, when the zonal wavenumber of the basic wave is
different, zonal wavenumbers of the two parasitic
waves at each latitude along the ray are of course dif-
ferent, but the magnitudes of meridional wavenumbers
are little different from those displayed in Fig. 3. If we
change the initial orientation of the basic wave’s wave
vector by changing its meridional wavenumber at the
starting latitude, the meridional wavenumber will
evolve differently from that in Fig. 3. There are three
basic waves studied in Fig. 4b; each of them has the
same zonal wavenumber kt � 2�/1000 km along their
rays but different meridional wavenumbers at the start-
ing latitude. When the magnitude of initial meridional
wavenumber is greater than zero, the overall magni-
tude of growth rate is larger and, apparently, the shape
of the growth rate curve is different, although the
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growth rate is still increasing southward along each ray.
One thing that should be mentioned is that the locally
maximum growth rate calculated according to Eq. (26)
does show a somewhat surprising increase toward the
south. However, this does not take into account the
effects of nonlinear interactions on the basic wave’s
streamfunction amplitude. With energy continuously

transferred to parasitic waves in triad interactions, the
streamfunction amplitude of the basic wave would de-
crease as it propagates southward along the ray, so the
increase of the growth rate seen in Figs. 3 and 4 is
certainly an overestimate. It is reasonable to expect a
slower increase, or even an opposite trend, of the
growth rate southward along the ray, especially when
amplitudes of those perturbing waves are not so small
and the basic wave is drained of energy as it propagates
southward.

In the above calculations, the locally maximum
growth rate is compared along a single group velocity
path of a basic wave, but at any time in the real ocean,
we could have many different large-scale Rossby waves
propagating along their respective rays. The growth of
parasitic waves arising out of triad interaction at a spe-
cific latitude is related to an ensemble of basic waves
propagating, not along one single path, but along an
ensemble of paths. Another consideration is that, al-
though rays bend southward, the meridional range of
bending will generally not be as large as what we have
assumed in previous cases when we consider basic
waves with very long periods. Along a ray, the meridi-
onal and zonal coordinates satisfy the differential rela-
tion,

dY

dx
�

cgTy

cgTx
�

2�TlT ��

�1 � 2�TkT ��	
. �28	

In Eq. (28), lT � �� l2
TN � 2( f 2

N � f 2)/c2 and df /dY �
�, where the subscript N represents the value at the
northern starting point of the ray. The above equation
yields the variation of the Coriolis parameter with x
along the ray:

df

dx
�

�2�2�T

c�1 � 2�TkT ��	
�c2lTN

2

2
� � fN

2 � f2	, �29	

which is readily integrated to obtain

f � A cos��N �
2�2�T

c�1 � 2�TkT ��
�x � xe	�,

where

cos�N �
fN

�c2lTN
2 �2 � f N

2
,

A � �l2TNc2/2 � f 2
N, and xe is the zonal coordinate of

the starting point on the eastern boundary. Since low-
frequency waves tend to bend very little, there is not
much latitudinal variation of the deformation radius
along a ray and the growth rate would not increase as
much as in previous cases when a large bending is as-
sumed a priori. Taking that into account, we examine

FIG. 4. The ratio of growth rate values of different basic waves.
There are three different basic waves and growth rate curves in-
volved in each figure. (a) The three basic waves have the same
meridional wavenumber lt(80°N) � 0 at starting points of their
rays, but different zonal wavenumbers: the first one has kt �
2�/1000 km; the second one has kt � 2� / 3000 km; the third one
has kt � 2�/6000 km. There are three growth rate curves corre-
sponding to these three basic waves. The solid line represents
the ratio of growth rate on the second curve to that on the first
curve at each latitude; the dash–dot line represents the ratio of
growth rate on the third curve to that on the first curve. (b) The
three waves have the same zonal wavenumber along their rays,
kt � 2�/1000 km but different meridional wavenumbers at their
starting latitude 80°N: the first one has lt(80°N) � 0; the second
one has lt(80°N) � �0.5/Ld(80°N); the third one has lt(80°N) �
�2/Ld(80°N). The solid line represents the ratio of growth rate on
the second curve to that on the first curve at each latitude; the
dash–dot line represents the ratio of growth rate on the third
curve to that on the first curve.
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the case of many rays starting from different latitudes
along the eastern boundary and study the two-
dimensional distribution of growth rate associated with
the basic waves propagating along those rays.

The first case that we examine is a basin with the
eastern boundary lying parallel to meridians, so the ini-
tial meridional wavenumbers on the eastern boundary
are zero for all rays in order to satisfy the boundary
condition of no zonal velocity. For all rays shown in Fig.
5a, the basic wave’s period is fixed as 5 yr, so its zonal
wavenumber decreases from ray to ray as the ray’s
starting point on the eastern boundary is more to the
south. For simplicity, the streamfunction amplitude is
constant for all rays. As the starting point of the ray
moves southward, the bending of the ray is less and less.
For a ray starting from high latitudes, the growth rate
curve, as illustrated by Fig. 5c, is relatively long since
the ray transverses a great latitudinal range and shows
a clear increase trend with decreasing latitude. Rays
from very low latitudes, on the contrary, traverse a
rather small latitudinal range, so the growth rate curves
are short and appear nearly as dots. A comparison of
growth rate among different rays is not easy in this case
because, among different rays, the growth rate de-

creases with decreasing zonal wavenumber, while along
each ray the growth rate increases as shown in the
single ray case. But generally, the important qualitative
result is that high growth rates appear in high-latitude
regions. When the period of the basic wave is longer,
that is, 10 yr as shown in Fig. 6, zonal wavenumbers
along rays are even smaller. The rays are more flat and
the magnitude of variation of growth rate along a ray is
smaller, but the weaker growth still appears in the
south.

In the last two figures, stronger instability appears in
high-latitude regions. It is interesting to know what will
happen if the eastern boundary is not meridional but
extends from southwest to northeast, as for the Atlantic
Ocean, or from southeast to northwest for the Pacific
Ocean. For basic waves with energy propagating south-
ward, the product of zonal wavenumber and meridional
wavenumber is negative, so the no-normal flow condi-
tion can only be satisfied on an eastern boundary that
lies southwest–northeast. In Fig. 7, wavenumbers of the
basic waves satisfy the relation kT /lT � �tan60° on the
eastern boundary and so satisfy the no-normal-flow
condition for the boundary that lies from southwest to
northeast with an angle of 60° to the east. With kT �

FIG. 5. (a) Rays of basic waves starting from the eastern boundary with zero meridional wavenumbers and the
same period T � 5 yr. (b) Variation of zonal wavelength (unit: 1000 km) with starting latitudes of rays (x axes). (c)
Each curve represents variation of growth rate along a ray that starts from the latitude corresponding to the
northern end of the curve.
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2�/500 km on all rays, lT also has the same value for all
rays on the eastern boundary. Again, the streamfunc-
tion amplitude is set to be the same for all rays. Owing
to the orientation of the boundary, rays in this case
occupy much larger latitudinal ranges (as large as 40° of
latitude) than in previous ones, and the growth rate
along all the rays shows a much larger variation with
latitude. More importantly, the growth rate curve for
any ray is capped by that for a ray starting north of it.
As the starting latitude of a ray moves southward, the
growth rate everywhere along it becomes smaller. Al-
though all basic waves starting from north are unstable,
the one that emanates from the northernmost latitude
will suffer the strongest instability. For specific longi-
tude, that is, at x � 20 in Fig. 7, when we are at 25°N,
the basic wave that can be seen at this position is the
one that propagates along a ray starting from about
40°N; when we are at 60°N, however, the starting lati-
tude of the ray is as high as 80°N. From the growth rate
distribution in Fig. 7c, we easily recognize that the
growth rate along the ray starting from 80°N is totally
above the ray starting from 40°N, so along this longi-
tude the triad growth is getting much stronger as we
move northward. This is a picture reminiscent of global

satellite observations. If we assign different zonal wave-
numbers to each ray, that is, smaller zonal wavenum-
bers to rays starting from south and bigger ones to rays
starting from north, initial meridional wavenumbers
will also decrease from ray to ray as the starting latitude
decreases to satisfy the boundary condition. On the ba-
sis of our analysis of growth rate along a single ray, we
would expect both of these two changes to cause an
increase of the overall growth rate along rays starting
from higher latitudes; therefore, there will be even
greater increase in growth rate as we move northward
along a longitude.

4. Summary

The triad interaction among a basic, first-mode baro-
clinic Rossby wave and two other parasitic baroclinic
and barotropic waves has been studied on the planetary
scale where, to the first order, the Coriolis parameter is
not constant. The zonal wavelengths of waves exam-
ined are on the planetary scale, while their meridional
wavelengths are comparable to the deformation radius.
Baroclinic waves conserve their frequencies and zonal
wavenumbers as they propagate along rays, but adjust

FIG. 6. (a) Rays of basic waves starting from the eastern boundary with zero meridional wavenumbers and the
same period T � 10 yr. (b) Variation of zonal wavelength (unit: 1000 km) with starting latitudes of rays (x axes).
(c) Each curve represents variation of growth rate along a ray that starts from the latitude corresponding to the
northern end of the curve.
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their meridional wavenumbers in order to keep the
quantity l2 � 1/L2

d constant; barotropic waves, on the
other hand, have their dispersion relation independent
of latitude, so their wavenumbers are constant along
rays. For all waves involved, their amplitudes would
vary like the Coriolis parameter if there were no non-
linear interactions.

Because of the variation of meridional wavenumbers
of baroclinic waves, resonance conditions can only be
strictly satisfied at a specific latitude for a specific triad.
As a result, the nonlinear interaction occurs within a
narrow latitudinal band with a width comparable to the
deformation radius. This striking feature allows the use
of quasi-geostrophy theory in studying the process by
which the basic wave continuously loses energy to para-
sitic waves as it propagates along its ray. We consider
the process as a series of separate interactions of the
basic wave with different triads at each latitude. At one
location along the ray, the interaction among the basic
wave and the other two small waves has been examined
under quasi geostrophy and the most unstable triad has
been found. At a different location, the basic wave’s
meridional wavenumber and amplitude change from

their previous values, and the two small waves that can
maximize the growth rate change accordingly. Apply-
ing this strategy everywhere along a ray, we found the
latitudinal structure of the growth rate associated with
a specific basic wave. With the assumption that the ef-
fect of nonlinear interactions on the basic wave’s
streamfunction amplitude is negligible, the growth rate
increases southward. Smaller zonal wavenumber de-
creases the overall magnitude of growth rate but does
not change the shape of the curve at all. Different initial
meridional wavenumbers at the starting latitude cannot
only change the magnitude of the growth rate but also
change the shape of the growth rate curve. An impor-
tant result is that the meridional scale of the barotropic
perturbations growing out of instability associated with
a basic wave is nearly constant with latitude. The initial
meridional wavenumber and the starting latitude of the
basic wave determine that constant.

Analyzing the growth rate along a single ray that is
assumed to bend over a large latitudinal range is helpful
in discovering the latitudinal dependence of triad inter-
action of a specific basic wave, but not so helpful in
getting a general idea of how the growth rate may be

FIG. 7. (a) Rays of basic waves starting from the eastern boundary that lies from southwest to northeast with
60° to the zonal direction. Basic waves along different rays have the same zonal wavenumber kt � 2�/500 km and
kT/lT � �tan60° on the eastern boundary. (b) Variation of basic wave periods (unit: yr) with starting latitudes of
rays (x axes). (c) Each curve represents variation of growth rate along a ray that starts from the latitude corre-
sponding to the northern end of the curve.
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distributed in the real ocean. Therefore, an analysis of
an ensemble of rays starting from different latitudes on
the eastern boundary is indispensable in offering us a
two-dimensional picture that is closer to reality than
what can be done with quasigeostrophic theory, yet is
greatly complicated by factors like the orientation of
the eastern boundary and the zonal wavenumber or
period for each ray. With a meridional eastern bound-
ary, the basic waves start with zonally oriented wave
vectors and the bending of rays is small, especially for
waves with long periods. The resulting two-dimensional
distribution of growth rate clearly indicates stronger
growth in high-latitude regions. When the eastern
boundary extends from southwest to northeast and the
zonal wavenumber as well as the initial meridional
wavenumber is the same for all rays, rays occupy a
bigger latitudinal range. The overall magnitude of
growth rate along a ray decreases as the starting lati-
tude of the ray decreases. The energy source for the
strongest growth seen at a specific latitude is the basic
wave propagating from the northernmost latitude, and
at the same longitude, the higher the latitude is, the
stronger the growth is.

The dynamics of the triad interaction and conven-
tional baroclinic instability are quite similar in the sense
that both are processes by which the basic wave loses
potential energy to growing perturbations; therefore,
the growth rate largely depends on the magnitude of
the available potential energy determined by the basic
wave’s amplitude and wavenumbers. Compared with
conventional baroclinic instability, that is, the process
that is pertinent with larger shear in the basic wave and
hence greater growth rate, the triad interaction is slow
and relatively weak in releasing basic wave energy.
However, the small Z limit yields important insights
into the evolution of the instability along the propaga-
tion paths of the basic baroclinic waves and emphasizes
the strong latitudinal dependence of the instability. The
southward increase trend of the growth rate along a
single ray path is unexpected from the conventional
baroclinic instability theory and so demonstrates one
important difference in dynamics of the two processes
despite the similarity that deformation-scale perturba-
tions naturally develop in both mechanisms.

Relative to the work of LaCasce and Pedlosky
(2004), the present work extends the study of the large-

scale Rossby wave triad instability problem to the plan-
etary scale. In their work, the basic wave’s instability
under quasi geostrophy does have a preference for
stronger growth at higher values of Z, but not in higher-
latitude regions. Because in quasigeostrophic theory,
the deformation radius is constant, Z does not vary with
latitude. However, if the latitudinal variation of the de-
formation radius is parametrically allowed, the value of
Z can increase northward. Based on this argument,
LaCasce and Pedlosky concluded that stronger insta-
bility may appear in high-latitude regions. This is a con-
clusion that is made under quasi geostrophy while it is
applied on the planetary scale. Some important phe-
nomena caused by latitudinal variation of the deforma-
tion radius on the planetary scale cannot be found un-
der quasi geostrophy, but have been exposed in our
study, such as the latitudinal variation of a baroclinic
wave meridional wavenumber, baroclinic and barotro-
pic wave amplitudes, and, more importantly, the latitu-
dinal dependence of the triad growth rate. The triad
interaction of the basic wave on the planetary scale,
though only one of two regimes of the instability prob-
lem, has turned out to yield illuminating insight into the
connection between propagation and instability of
baroclinic Rossby waves.
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