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Abstract. This paper considers the control of a linear drive system with friction and disturbance
compensation. A stable adaptive controller integrated with fuzzy model-based friction estimation
and switching-based disturbance compensation is proposed via Lyapunov stability theory. A TSK
fuzzy model with local linear friction models is suggested for real-time estimation of its consequent
local parameters. The parameters update law is derived based on linear parameterization. In order to
compensate for the effects resulting from estimation error and disturbance, a robust switching law
is incorporated in the overall stable adaptive control system. Extensive computer simulation results
show that the proposed stable adaptive fuzzy control system has very good performances, and is
potential for precision positioning and trajectory tracking control of linear drive systems.

Key words: adaptive fuzzy control, TSK fuzzy friction model, Lyapunov stability, linear drive
system, disturbance compensation.

1. Introduction

Consideration of the effects of nonlinear friction often plays an important role in
the design of a precision motion control system [1, 6, 15, 19, 20]. Friction is a rather
complex natural phenomenon and it is not yet completely understood. Usually, the
classical friction models are described by static mappings between velocity and
friction force. And classical friction model-based control can lead to large tracking
errors, serious limit cycles, and undesired stick-slip motion [1, 4, 6].

Many studies (e.g., [1, 6, 8]) have shown that a dynamic friction model is nec-
essary to describe the friction phenomena more accurately. Dahl [8] proposed a
dynamic model for describing the spring-like behavior during stiction. Armstrong-
Hélouvry [1] suggested a seven parameter model integrating the stiction and sliding
friction models. Rice and Ruina [16] suggested another dynamic model not defined
at zero velocity, and Dupont [9] used it for control design. Canudas de Wit et al. [6]
proposed a dynamic friction model, called the LuGre model, that can capture most
of the friction behavior including the Stribeck effect, hysteresis, spring-like char-
acteristics for stiction, and varying break-away force. Recently, Swevers et al. [24]
presented a new dynamic friction model that incorporates a hysteresis function with
nonlocal memory and arbitrary transition curves for modeling presliding friction.
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There have found great interests about adaptive friction compensation in motion
control systems, e.g. [5, 12, 13, 17, 22, 25, 27, 28]. Walrath [25] suggested an
adaptive compensation for bearing friction based on the Dahl model. Canudas de
Wit et al. [5] proposed a composite control system composed of a linear controller
and an adaptive nonlinear friction compensation for DC-motor drives. Yang and
Tomizuka [27] presented an adaptive pulse width control for precise positioning
with negligible backlash and flexibility. Nikiforuk and Tamura [13] considered the
Coulomb friction as a disturbance and proposed a model reference adaptive con-
trol system for accommodating load variation and disturbance. Yang and Chu [28]
proposed an adaptive PID velocity control with feedforward friction compensation
for DC-motor drives. Ro and Hubbel [17] presented two stable model reference
adaptive control laws: one for the presliding microdynamics of the elastic surface
deflection and the other for the sliding macrodynamics. Smith et al. [22] suggested
two adaptive control strategies for precision machine tool axis. Lin and Lin [12]
proposed a stable adaptive control law for drive systems with transmission flexibil-
ity and friction, and then a fuzzy-enhancing strategy is used to improve system’s
transient performance and robustness.

In this paper, we first propose a TSK fuzzy model-based friction estimation
structure that can be used for real-time nonlinear friction identification. Then a sta-
ble adaptive control strategy with TSK fuzzy friction and robust disturbance com-
pensation for linear drive systems, is derived via the Lyapunov stability theory. The
suggested control design method is tested using extensive computer simulations.

2. TSK Fuzzy Approximator for Nonlinear Friction

2.1. PHYSICAL FRICTION MODEL

Friction is usually considered as a function of velocity with four dynamic regimes:
zero velocity, boundary lubrication, partial fluid lubrication, and full fluid lubrica-
tion [1]. Recently, Canudas de Wit et al. [6] proposed the LuGre dynamic friction
model that can capture most of the real friction behavior, such as the Stribeck
effect, hysteresis, spring-like characteristics for stiction, and varying break-away
force. Based on the equivalent elastic bristles model for the contact surfaces of
two rigid bodies, as shown in Figure 1, the average deflection z of the bristles is
modeled by

dz

dt
= v − |v|

g(v)
z, (1)

where v is the relative velocity between the two bodies, and g(v) is a suitable
positive function. For typical bearing friction, g(v) will decrease monotonically
from g(0) when v increases, this is the so-called Stribeck effect. Thus, a parame-
terization of g(v) for describing the Stribeck effect is

σ0g(v) = Fc + (Fs − Fc) e−(v/vs)
2
, (2)
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Figure 1. Bristles model for friction.

Figure 2. Friction versus velocity curve.

where Fc is the Coulomb friction, Fs is the stiction friction, and vs is the Stribeck
velocity [1, 6].

A dynamic friction model consisted of the friction force due to the contact
bristles and the viscous force proportional to the relative velocity v can thus be
described by

Ff = σ0z + σ1
dz

dt
+ σ2v, (3)

where σ0 and σ1 are the equivalent stiffness and damping coefficient of the bristles,
respectively; and σ2 is the apparent viscous damping coefficient. The above friction
model given by Equations (1)–(3) can accommodate different types of phenom-
ena: presliding displacement, friction lag (hysteretic behavior), varying break-away
force, and stick-slip motion [1, 6]. The relationship between the friction Ff and the
relative velocity v is shown in Figure 2 using the following friction parameters [4]:
σ0 = 105 N/m, σ1 = √

105 N s/m, σ2 = 0.4 N s/m, Fc = 1 N, Fs = 1.5 N,
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vs = 0.001 m/s. This friction model will be used for the computer simulations to
illustrate the performance of the linear drive control system.

2.2. FRICTION APPROXIMATOR USING TSK FUZZY MODEL

Usually, there are two types of fuzzy rule-based models for function approxima-
tion: (1) the Mamdani model, and (2) the Takagi–Sugeno–Kang (TSK) model. The
Mamdani model uses rules whose consequent part is a fuzzy set in the output’s
universe of discourse, however, the TSK model uses rules whose consequent part is
a linear model. One of the main advantages of the TSK model is that it can approx-
imate a complex nonlinear mapping using much fewer rules than the traditional
Mamdani model [3, 23, 29].

Based on the friction versus velocity characteristics, we suggest a fuzzy friction
estimator as shown in Figure 3, with a fuzzy rule-base consisting of the following
TSK type of rules:

Ri: If v(t) is Ai Then ff,i(t) = civ(t) + di, i = 1, 2, . . . ,M, (4)

where v(t) is the relative velocity, Ai is a fuzzy set defined in the normalized uni-
verse of discourse of v, ff,i(t) is the suggested friction by the ith rule, ci and di are
the parameters of the linear model in the consequent part, and M is the total number
of fuzzy rules. The local linear models are used for piecewise approximation to the
real nonlinear friction curve.

Fuzzy sets with parameterized membership function can be defined in the nor-
malized universe of velocity v∗ as shown in Figure 4, where nine triangular fuzzy

Figure 3. A fuzzy friction estimator.

Figure 4. Fuzzy sets definition.
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Figure 5. A triangular membership function.

Figure 6. A typical definition for the fuzzy sets.

sets are defined. A triangular membership function in Figure 5 can be parameter-
ized for easy computation as follows:

µ(v∗; r, s, t) =




0, v∗ < r,
(v∗ − r)

(s − r)
, r � v∗ � s,

(t − v∗)
(t − s)

, s � v∗ � t ,

0, v∗ > t .

(5)

In this study, nine triangular fuzzy sets are defined as shown in Figure 6. In accor-
dance with the real friction characteristics (refer to Figure 2) with Stribeck effect
and thus highly nonlinear in the low speed region, more fuzzy sets are defined near
the zero velocity. When Ai = PB, ci is the viscous damping coefficient, and di is
the Coulomb friction. As for Ai = PS, ci can be negative to describe the Stribeck
effect, and di means the intercept of the local tangent of the friction curve at this
small velocity with the vertical axis.

The inference mechanism for the TSK fuzzy estimator is an interpolation of
all the relevant linear models using the singleton fuzzifier and the center average
defuzzifier [3, 23, 26, 29]. Thus, the estimate F̂f(t) for the friction can be computed
as follows:

F̂f(t) =
∑

M

i=1 µiff,i(t)∑
M

i=1 µi

, (6)

where µi = µ
Ai
(v∗(t)) is the matching degree of the antecedent part of ith rule

with the current normalized velocity v∗(t) = kvv(t), kv is the scaling factor for
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the velocity, and µ
Ai
(·) is the membership function of the fuzzy set Ai . If the

parameters for the antecedent parts of the TSK fuzzy friction estimator are fixed
and only the consequent parameters ci and di are to be learned, then Equation (6)
can be represented as the well-known regression model:

F̂f(t) = φT(t)θ(t), (7)

where the regression vector is defined as

φT(t) ≡ [
µ1ψ

T(t) µ2ψ
T(t) . . . µMψT(t)

]
,

ψT(t) ≡ [
v∗(t) 1

]
(8)

and the unknown parameters vector is

θ(t) ≡ [
θT

1 (t) θ
T
2 (t) . . . θT

M(t)
]T
,

θi(t) ≡ [
ci(t) di(t)

]T
, i = 1, 2, . . . ,M. (9)

3. Stable Adaptive Fuzzy Control Design for Linear Drive Systems

In this study, we consider the linear drive systems shown in Figure 7(a), where
the electromagnetic thrust force Fm generated from a permanent magnet linear
synchronous motor (PMLSM) is directly applied to the platen (mover). The voltage
equations of a PMLSM in terms of the equivalent synchronous rotating d–q frame
(refer to Figure 7(b)) is as follows [10, 11, 14]:

vq = Rsiq + λ̇q + ωeλd, (10)

vd = Rsid + λ̇d − ωeλq (11)

where

λq = Lqiq, (12)

λd = Ldid + λPM, (13)

ωe = npωr (14)

and vd , vq and id , iq are respectively the d–q axis voltages and currents of the
mover windings; Rs is the mover winding resistance; Ld and Lq are the d–q axis

Figure 7. Schematic of a linear mover system.
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inductances; ωr is the mechanical angular velocity of the mover; ωe is the electrical
angular velocity; λPM is the permanent magnet flux linkage; np is the number of
primary pole pairs. And

ωr = πν

τ
, (15)

νe = npν = 2τfe (16)

where ν is the mechanical linear velocity of the mover, m/s; τ is the pole pitch, m;
νe is the electric linear velocity, m/s; fe (= ωe/2π) is the electric frequency, Hz.
The developed electromagnetic power is

Pm = Fmν = 3np

[
λdiq + (Ld − Lq)idiq

]ωr

2
(17)

and the electromagnetic thrust force is thus

Fm = 3π

2τ
np

[
λdiq + (Ld − Lq)idiq

]
. (18)

Based on the field orientation principle [14] and using id = 0, then λd = λPM =
constant, and the thrust force is proportional to the mover’s q-axis current:

Fm = 3π

2τ
npλPMiq = Kfiq (19)

where Kf is the thrust coefficient of the linear motor.
Referring to Figure 7 and using the Newton’s second law, the equation of motion

for the mover of a linear drive system can be obtained as follows:

mÿ(t) + Ff(t) + Fdist(t) = Fm(t), (20)

where y(t) is the displacement of the mover; Fdist(t) is the external disturbance
force, and Ff(t) is the friction force revisited as follows:

Ff = σ0z(t) + σ1ż(t) + σ2ẏ(t),

ż(t) = ẏ(t) − |ẏ(t)|
g(ẏ)

z(t), (21)

σ0g(ẏ(t)) = Fc + (Fs − Fc) e−(ẏ/vs)
2
.

Based on Equation (20), the structure of a computed force controller for arbi-
trary trajectory tracking can be selected as [7]

Fm(t) = mf ′
m(t) + F̂f(t) + Fcomp(t),

f ′
m(t) = ÿd (t) + kd ė(t) + kpe(t)

(22)

where F̂f(t) = φT(t)θ(t) is the real-time estimate for the friction to be designed
later; e(t) = yd(t) − y(t), yd(t) is the desired trajectory; kp and kd are the pro-
portional and derivative control gains, respectively; and Fcomp(t) is to compensate
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for the disturbance. Substituting (22) into (20), the error dynamics equation of the
closed-loop system can be obtained as

ë(t) + kd ė(t) + kpe(t) = 1

m

[
Ff(t) − F̂f(t)

] + 1

m

[
Fdist(t) − Fcomp(t)

]
. (23)

Define the tracking error vector and the parameters estimation error vector for the
friction, respectively, as: E(t) = [e(t)ė(t)]T and θe(t) = θ∗ − θ(t), where θ∗ is the
optimal parameters vector for the TSK fuzzy friction estimator, then, by (23), we
have

Ė(t) =
[
ė(t)

ë(t)

]
= AeE + Bf + Bd − BcFcomp (24)

where

Ae =
[

0 1
−kp −kd

]
, Bf =


 0

Ff − F̂f

m


 ,

Bd =

 0

Fdist

m


 , and Bc =


 0

1

m


 .

In the following, we will select a Lyapunov function candidate V (E, θe) for the
derivation of a stable adaptive control for the linear drive system via the Lyapunov
stability theory [2, 23]:

V (E, θe) = 1

2
ETPE + 1

2γ
θT
e θe (25)

where γ > 0, and

P =
[

p1

p2

]
=

[
p11 p12

p21 p22

]
is the symmetrical positive definite matrix satisfying the following Lyapunov equa-
tion:

AT
e P + PAe = −Q (26)

where Q is a selected symmetric positive definite matrix, e.g., Q = diag[q11, q22],
q11, q22 > 0. Taking the time derivative of V (E, θe), we can obtain:

V̇ (E, θe) = 1

2
(ĖTPE + ETP Ė) + 1

γ
θT
e θ̇e

= −1

2
ETQE + BT

f PE + BT
d PE + 1

γ
θT
e θ̇e − BT

c PEFcomp

= −1

2
ETQE + 1

m
(Ff − F̂f)p2E + 1

m
Fdistp2E

+ 1

γ
θT
e θ̇e − 1

m
Fcompp2E. (27)
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Since F̂f(t) can be parameterized as

F̂f(t) = F̂f,opt(t) − [
F̂f,opt(t) − F̂f(t)

] = φT(t)θ∗ − φT(t)θe(t). (28)

Equation (27) can then be expressed as

V̇ (E, θe) = −1

2
ETQE + 1

m
φT(t)θe(t)p2E + 1

γ
θT
e θ̇e + 1

m
Fdistp2E

+ 1

m
(Ff − F̂f,opt(t))p2E − 1

m
Fcompp2E. (29)

Based on Equation (29), we can choose the parameters adaptation law for the TSK
fuzzy friction estimator θ̇(t) as

θ̇(t)(= −θ̇e(t)) = γ

m
φ(t)p2E, γ > 0, (30)

and the disturbance and uncertainty compensation Fcomp as

Fcomp = m(Du + ε)sgn(p2E) (31)

where mDu and mε are respectively the upper bounds of the disturbance and the
minimal friction estimation error,

1

m
|Fdist| � Du, (32)

1

m
|Ff − F̂f,opt(t)| � ε. (33)

And the resulting time derivative of V is

V̇ (E, θe) = −1

2
ETQE + 1

m

∣∣Ff − F̂f,opt(t)
∣∣p2E + Fdist

m
p2E

− p2E(Du + ε)sgn(p2E) � 0 (34)

where

1

m

∣∣Ff − F̂f,opt(t)
∣∣p2E + Fdist

m
p2E − p2E(Du + ε)sgn(p2E)

=




[
1

m
(Ff − F̂f,opt) + Fdist

m

]
p2E − (Du + ε)p2E < 0, if p2E > 0,

0, if p2E = 0,[
1

m
(Ff − F̂f,opt) + Fdist

m

]
p2E + (Du + ε)p2E < 0, if p2E < 0.

(35)

By the LaSalle’s theorem [2, 18, 21, 23], E(t) → 0 as t → 0. Thus the arbi-
trary trajectory tracking control objective can be fulfilled by the derived adaptive
fuzzy control consisting of Equations (22), (7), (8), (30) and (31). Since V (E, θe)
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is positive and lower bounded, θe(t) would be bounded, i.e., the estimation error
would be only bounded and not necessarily approach to zero. In other words the
tracking control performance can be rather satisfactory, however, the friction esti-
mation error still exists. This is the usual situation of a stable adaptive control since
the reference input is not with sufficient persistent excitation (PE). The friction
estimation error can be further compensated for with the robust compensation law.
It can be seen in the following simulation study.

Since the switching law in (31) will cause undesirable chattering in the control
signal and involve high control activity, a thin boundary layer neighboring the
switching surface p2E = 0 can be introduced to eliminate the chattering. That
is, the switching function sgn(p2E) can be replaced by a saturation function:

sat(p2E/φb) =



−1 if p2E/φb � −1,
p2E/φb if −1 < p2E/φb � 1,
1 if p2E/φb > 1

(36)

where φb is the thickness of the boundary layer, and the compensating control law
becomes

Fcomp(t) = m(Du + ε)sat(p2E/φb). (37)

4. Simulation Examples

In this section performance of the proposed adaptive control with TSK fuzzy fric-
tion estimation for linear drive systems will be tested using computer simulation.
The LuGre dynamic friction model [6] is used in the plant dynamics model for il-
lustrating the effectiveness of the suggested control strategy. In the simulations, the
friction parameters and the definition of the fuzzy sets listed before, and following
other parameters for the plant and controller are used: m = 5 kg, γ = 2,250,000,
Du = 0.2, ε = 0.01, q11 = 4,000, q22 = 2,000, kp = 2,500, kd = 100,
p21 = q11/(2kp), p22 = (q22 + q11/kp)/(2kd), φb = 0.001. And the desired
trajectory yd(t) is selected as shown in Figure 8(a).

Simulation results for the case of no disturbance tracking are shown in Fig-
ure 8. From Figures 8(a)–(c), we know that the suggested adaptive control law
has very good tracking performance. The tracking error is approximately within
±0.0011 mm. From Figures 8(d) and (e), we also know that the friction estimate
using the real-time TSK fuzzy friction estimator can follow the real friction in this
nominal control case. The control force shown in Figure 8(f) contains no chattering.

The following two disturbance forces, shown in Figures 9(a) and (b):

Fdist(t) = 1

10
(2 sin(10t) − cos(5t) − sin(5t) + cos(2.5t) + 2 sin(t)

+ 2 cos(2t) + 2 sin(20t) − cos(3.5t) − sin(1.5t) + cos(0.5t)

+ 2 sin(0.01t) + 2 cos(22t)), (38a)
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(a) (d)

(b) (e)

(c) (f)

Figure 8. Simulation results for the case with no disturbance: (a) desired trajectory; (b) actual
trajectory; (c) tracking error; (d) real friction; (e) friction estimate; (f) control force.

Fdist(t) = 2 sin(10t) − cos(5t) − sin(5t) + cos(2.5t) + 2 sin(t) + 2 cos(2t)

+ 2 sin(20t) − cos(3.5t) − sin(1.5t) + cos(0.5t) + 2 sin(0.01t)

+ 2 cos(22t) (38b)

are considered in the following two simulation studies. Simulation results for the
case with smaller disturbance force (38a) are shown in Figure 10. Figures 10(a)–(c)
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Figure 9. Two disturbance forces used in the simulations.
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(a) (d)

(b) (e)

(c) (f)

Figure 10. Simulation results for the case with smaller disturbance: (a) desired trajectory;
(b) actual trajectory; (c) tracking error; (d) real friction; (e) friction estimate; (f) control force.

show that the suggested adaptive fuzzy control strategy has very good tracking per-
formance. The tracking error is approximately within ±0.0012 mm. Figures 10(d)
and (e) show that the friction estimate using the real-time TSK fuzzy friction esti-
mator can only approximately follow the real friction, however, the control objec-
tive can be attained. The control force with no chattering is shown in Figure 10(f).
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(a) (d)

(b) (e)

(c) (f)

Figure 11. Simulation results for the case with larger disturbance: (a) desired trajectory;
(b) actual trajectory; (c) tracking error; (d) real friction; (e) friction estimate; (f) control force.

Simulation results for the case with larger disturbance force (38b) are shown in
Figure 11. Figures 11(a)–(c) show that the suggested adaptive fuzzy control strat-
egy still has very good tracking performance. The tracking error is approximately
within ±0.0075 mm, however, the error becomes larger as time approaches 6 sec-
onds due to near zero speed motion. Figures 11(d) and (e) show that the friction
estimate using the real-time TSK fuzzy friction estimator cannot follow the real
friction, however, the control system still has good performance. The control force
with no ringing is shown in Figure 11(f).

To understand the constant speed control characteristics, Figure 12 shows the
simulation results using the reference command yd(t) = 0.05t , 0 � t � 2. The
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(a) (c)

(b) (d)

Figure 12. Simulation results for the constant speed control case with larger disturbance:
(a) actual velocity; (b) real friction; (c) friction estimate; (d) control force.

thickness of the boundary layer is set to be φb = 0.1, and the larger disturbance
force (38b) is used in this simulation study. The real friction and real-time fuzzy
friction estimate are shown in Figures 12(b) and (c), respectively. Due to the used
larger disturbance force, the friction estimate could not converge to the real friction.
However, from Figure 12(a), we know that the constant speed control objective
could be well fulfilled. The control force with no ringing is shown in Figure 12(d).

5. Conclusions

Control strategies for precision motion systems need a suitable friction model to
predict and compensate for the friction. This paper considers the adaptive control
of a linear drive system with friction and disturbance compensation. A TSK fuzzy
friction model with local linear models is first suggested and expressed in linear
parameterization form for easy derivation of its parameters update law. Then a
stable adaptive controller with fuzzy friction and robust disturbance compensa-
tion is proposed, based on the Lyapunov stability theory. In order to compen-
sate for the effects resulting from real-time estimation error and disturbance, a
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saturation function-based robust switching law is incorporated in the overall sta-
ble adaptive control system. Extensive computer simulations are used to validate
the effectiveness of the proposed control strategy. For simplicity, the proposed
TSK fuzzy friction model identification structure considers only one input vari-
able, i.e., the platen velocity, thus the complex presliding microdynamics and its
hysteretic behavior [24] deserve further study for constructing a more accurate
presliding friction estimator. And it will have great potential for micropositioning
applications.
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