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Abstract Computing offset curves is an important geometric op-
eration in areas of CAD/CAM, robotics, cam design and many
industrial applications. In this paper, an algorithm for computing
offsets of NURBS curves using C2-continuous B-spline curves
is presented. The progenitor curve in database is initially ap-
proximated by a line-fitting curve, and then the exact offset of
this line-fitting curve is introduced as an initial offset. Based
on the initial offset and a set of selected knots, an intended
C2-continuous B-spline curve is subsequently constructed. The
method uses a new error-measuring scheme, which is based on
the convex hull property of Bézier curves and the idea of cu-
mulative errors, to calculate the global error bound of offset
approximation. The method obtains offset curves with C2 con-
tinuity and guarantees that the actual error bound is precisely
within the prescribed tolerance. In addition, it also allows one to
selectively parametrize the offset curve.

Keywords CAD/CAM · NURBS curves · Offsetting ·
C2 continuity · Piecewise Bézier curves

1 Introduction

Offset curves are widely used in many engineering areas such as
CAD/CAM, tolerance zone definition, tool path generation for
machining, and robot-path planning [3, 10, 11]. Given a paramet-
ric curve C(t), the offset curve C0(t) with an offset distance d is
defined by

Co(t) = C(t)+dN(t) (1)
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where N(t) is the unit normal vector to the base curve computed
at t [9]. For planar curves, N(t) is expressed as

N(t) = (−y′(t), x′(t))
√

x′(t)2 + y′(t)2
(2)

Due to the square root term in the denominator of N(t), the exact
offset curves in general are neither polynomial nor rational [7, 8].
It is difficult to obtain simple forms of such offsettings and ap-
proximation methods are needed.

Although using approximation technique to compute off-
set of freeform curves is inevitable, a simple but robust error
measurement mechanism is still not completely established
in both academic study and industrial applications. Most of
the methods available in the literature always attempt to cal-
culate the global error by using finite sampling points along
the progenitor curve [4, 12, 13, 15, 19]. Those approaches are
generally regarded as unreliable since the number of dis-
crete samples required for computing the true global error
bound is not clear. However, in many practical engineer-
ing applications of curve offsetting, e.g. automatic NC tool
path generation, it is firmly believed that finding an offset
curve with controlled precision is more important than sav-
ing the size of output data. Additionally, approximating off-
set curves with at least C2 continuity are preferred for visual
pleasure of design work or certain engineering requirements,
such as movement smoothness in robot trajectory or automatic
machines.

Surprisingly, to the best of our knowledge, there are only
few published methods that can handle the approximation error
with global preciseness [5, 14]. Those approaches do not give
much concern on the problem of continuity for offset curve seg-
ments. Elber and Cohen propose a symbolic method to compute
the global error of offset approximation using a difference func-
tion with square distances [5]. However, this approach are not
suitable for practical applications since extreme point searching
for high degree curve is needed, and the computing becomes
difficult and unstable when the progenitor curves are rational.
Lee et al. suggested another method to measure the approxi-
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mation error with improved precision based on circle approx-
imation [14]. The main disadvantage of their method is that
the degrees of generated offset curves are very high and only
G1-continuity can be obtained for the resulting offset curve
segments.

Piegl and Tiller, and followed by Ravi Kumar et al., lately
presented some algorithms for approximating offsets of NURBS
curves and surfaces [17, 18]. The main idea of the method relies
on point sampling based on derivatives, interpolation and knot
removal. The method is characterized as having fewest control
points generated by then, however, the problem of error control
with global assurance is still not solved since their approach is
also discrete in essence and the obvious problem of error stack-
ing seems to be overlooked.

This paper proposes a cumulative error based method, which
is a novel attempt to estimate the maximal deviation of offset
by using the convex hull property of Bézier (or rational Bézier)
curves and considering the inherent difference existing between
the constructed composite Bézier polygons and the correspond-
ing B-spline polygon. In this method the progenitor NURBS
curve in database is initially approximated by a line-fitting curve,
and then an exactly offset line-fitting curve is introduced with the
prescribed normal direction and an offset distance. Finally, based
on the offset approximating line segments and a set of selected
knots, a C2-continuous B-spline curve is constructed as a desired
offset.

Compared with previous methods, the proposed approach
provides a simpler mechanism sure and safe on the approxima-
tion error estimation, and easily elevates the continuity of the
offset curve to a practically useful level of C2. The parametriza-
tion of the offset curve is also selective. Only linear geomet-
ric calculations are involved in this method, this offsetting al-
gorithm is very stable and efficient. Some experimental tests
and a practical example of NC tool-path generation for pro-
filing are given in Sect. 5 to demonstrate its effectiveness and
usefulness.

2 Initial line approximation and offsetting

In this research, it is assumed that all curves are represented in
NURBS form. The details of mathematical description for such
curves can be found in literature [16]. Here, for explanatory con-
venience, the NURBS curve is introduced briefly. A pth-degree

Fig. 1. Testing for near linearity of Bézier curves (upper
bound error = Max (d1, d2))

NURBS curve is defined by

C(t) =

n∑

i=0
Ni,p(t)Piwi

n∑

i=0
Ni,p(t)wi

(3)

where Pi are the control points, wi are the weights, and Ni,p(t)
are the normalized B-splines defined on the knot vector for non-
periodical conditions

T =

⎧
⎪⎨

⎪⎩
t0 = · · · = t0︸ ︷︷ ︸

p+1

, tp+1, · · · , tn, tn+1 = · · · = tn+p+1︸ ︷︷ ︸
p+1

⎫
⎪⎬

⎪⎭
(4)

Using homogeneous coordinates, an equivalent representation is

Cw(t) =
n∑

i=0

Ni,p(t)Pw
i (5)

where Pw
i = (wi xi , wi yi, wi zi , wi) are the weighted control

points and Cw(t) is a polynomial B-spline curve in homogeneous
space.

Before offsetting a NURBS curve, an approximation with
straight line fitting is introduced. The knot insertion method is
used to decompose a NURBS curve into piecewise Bézier seg-
ments [2]. Based on the convex hull property of Bézier curves,
it is easy to check if a given curve is near linearity within toler-
ance [3]. As shown in Fig. 1, for any one of the two represen-
tative Bézier curves, it is tested whether all the interior control
points, P1 and P2, lie within the tolerance range deviating from
the straight line joining the first and final end control points, P0

and P3. If the required tolerance is not met, the curve is subdi-
vided at the middle of the parameter domain repeatedly using the
classical de Casteljau algorithm [6]. For example, a Bézier curve
defined by P0, P1, P2, P3 is shown in Fig. 2, one time subdi-
vision generates two sets of control points P0, P1,0, P2,0, P3,0,
and P3,0, P2,1, P1,2, P3. Therefore, smaller convex hulls P0, P1,0,
P3,0, P2,0, P0 and P3,0, P2,1, P1,2, P3, P3,0 then can approximate
the original Bézier curve closer than the original convex hull P0,
P1, P3, P2, P0. Since the subdivision process converges relatively
rapidly, these computations are quite efficient.

When a Bézier curve is near linearity within tolerance, it is
declared flat and is approximated simply by a straight line seg-
ment joining end control points of the curve, which is called
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Fig. 2. Subdivision of Bézier curves at t = 1/2

a base line, or by line segments composing the control polygon.
Assuming the decomposed Bézier curves and/or the subdivided
Bézier segments all have been flattened within required toler-
ance, the approximation of a NURBS curve with straight line
segments is obtained as follows:

• If the Bézier curve locates at the first or the last position of
the list, approximate it with its control polygon;

• Otherwise approximate each Bézier curve with its base line;
and

• Collect the approximating straight line segments.

The reason why the NURBS curve are approximated by col-
lecting line segments with different criteria is explained below:
(1) using the control polygon to approximate a Bézier curve so
that the tangent direction at an endpoint of the curve can be par-
allel with the first or the final leg of control polygon, i.e., the
tangent of the endpoint of the progenitor curve; and (2) if no con-
straint is imposed, it tends to reduce the output data size using the
base line to approximate a Bézier curve for constructing an offset
curve.

Once the line fitting approximation of NURBS curves is es-
tablished, a chain of straight line segments is ready for comput-
ing offsets. Hence, depending on the normal direction and offset
distance, an exact offset polygon is generated quickly, as shown
in Fig. 3. Nevertheless, only C0 continuity is attained at this stage
for the offset curve with straight line fitting, further improvement
on the degree of continuity is needed. A method for generating
C2 continuous offset curves with B-spline form is proposed in
the following section.

Fig. 3. Offsetting of line fitting curves

3 Constructing C2 offset curve

The initial offset curve is only C0 continuous with straight line
segment approximation, it may not meet the requirements in
some advanced engineering applications. Therefore, the next ob-
jective is to reconstruct an offset curve with higher continu-
ity, e.g. C2 continuity, for more demanding practical purposes.
Using the offset line-fitting curve as a cubic B-spline polygon
and selecting an adequate knot vector, a C2 continuous B-spline
curve can be formed by piecing its constituent Bézier curve
segments together. The main reason for using Bézier pieces as
intermediate entities to construct the desired C2 B-spline offset
curve is to facilitate the error estimation of offset approxima-
tion. To further clarify the process of constructing C2 B-spline
offset curve, the B-spline representation of piecewise Bézier
curves and the C2-continuity condition are briefly reviewed in
Sect. 3.1.

3.1 C2-continuous piecewise Bézier curve and B-spline
representation

A number of Bézier curves can be joined end to end to form
a piecewise Bézier curve (or a composite Bézier curve) [9].
Based on the positions of control points for each Bézier
curve, any level of continuity, e.g. G1/C1 or G2/C2, can be
achieved. A piecewise cubic Bézier curve which contains two
curve segments C0(t) and C1(t) is shown in Fig. 4. C0(t)
and C1(t) are defined on the intervals [t0, t1] and [t1, t2]
respectively and the common point of the two curve seg-
ments is b0,3(= b1,0). The condition to form a C2 continu-
ous piecewise Bézier curve for this illustration is explained as
follows [6].

Assuming that the two given curve segments C0(t) and C1(t)
have C1 continuity at parameter t1, the three Bézier points (con-
trol points), b0,2, b0,3(= b1,0), and b1,1, must be collinear with

Fig. 4. A C2-continuous piecewise Bézier curve consisting of two segments



154

ratio ∆0 : ∆1, that is

b0,3(= b1,0) = ∆1

∆0 +∆1
b0,2 + ∆0

∆0 +∆1
b1.1 (6)

where ∆i = ti+1 − ti , and i = 0, 1. Extending to C2 continu-
ity, an unique additional auxiliary point P2 must exist such
that points in each of the two sets of points {b0,1, b0,2, P2}
and {P2, b1,1, b1,2} are also collinear, respectively, with ratio
∆0 : ∆1. These constraints can be expressed as:

b0,2 = ∆1

∆0 +∆1
b0,1 + ∆0

∆0 +∆1
P2 (7)

b1,1 = ∆1

∆0 +∆1
P2 + ∆0

∆0 +∆1
b1,2 (8)

It is noteworthy that if a simpler case of uniform parameter spac-
ing is used, i.e. ∆0 = ∆1, then the knot spans in the full parameter
domain are all identical. Consequently, the rational coefficients
existing at the right hand of Eqs· 6–8 are simplified to 1/2.

Now suppose a piecewise Bézier curve contains m curve seg-
ments Ci(t), i = 0, . . ., m − 1. Ci(t) is defined on the interval
[ti , ti+1], where t0 < t1 < . . . < tm−1 < tm . Then the piecewise
Bézier curve also can be represented by an integral B-spline
curve (or a NURBS curve with all of its weights set to 1) defined
on a knot vector in which all the interior knots have multiplicities
equal to the degree p as follows:

C(t) =
n∑

i=0

Ni,p(t)Pi (9)

where Pi are the control points, and Ni,p(t) are the p-th degree
B-spline basis functions defined over the knot vector

T =

⎧
⎪⎨

⎪⎩
t0, · · · , t0︸ ︷︷ ︸

p+1

, t1, · · · , t1︸ ︷︷ ︸
p

, · · · , tm−1, · · · , tm−1︸ ︷︷ ︸
p

, tm, · · · , tm︸ ︷︷ ︸
p+1

⎫
⎪⎬

⎪⎭

(10)

However, if the C2 condition is also satisfied by the piece-
wise Bézier curve, the multiplicity of each interior knot can
be further reduced to (degree−2), and a new set of con-
trol points of the B-spline curve are generated subsequently
with curve shape unchanged. As shown in Fig. 4, the piece-
wise cubic Bézier curve can be represented by an integral
B-spline curve with control points b0,0, b0,1, b0,2, b0,3 (or
b1,0), b1,1, b1,2, and b1,3, and is defined on the knot vector
T = {t0, t0, t0, t0, t1, t1, t1, t2, t2, t2, t2}. If C1 condition is met at
parameter t1, then the control point b0,3 (= b1,0) can be dropped
and the multiplicity of knot t1 is reduced by one; and if C2 con-
dition is met at parameter t1, a new set of control points P0,
P1, P2, P3, P4 is obtained with an associated new knot vector
T = {t0, t0, t0, t0, t1, t2, t2, t2, t2}.

Applying the idea of C2-continuity to construct offset curves
is just a reverse process as mentioned above. In such case, a B-
spline polygon and the knot sequence is given in advance, and
the C2-continuous offset curve is constructed accordingly. The
detail of this process is described in Sect. 3.2.

3.2 Producing C2 B-spline offset curve

After the G0 offset line-fitting curve is obtained, a desired C2

B-spline fitting curve is computed as follows. Using the straight-
line segments of offset line-fitting curve as the B-spline poly-
gon, i.e. the end points of line segments are treated as B-spline
control points, and choosing an appropriate knot vector, a C2-
continuous integral B-spline curve can be constructed by invok-
ing its constituent Bézier segments. For example, if the intended
B-spline polygon has (L +3) deBoor points (i.e., control points
Pi , i = −1, 0, . . ., L +1) and a set of knot sequence {t0, . . ., tL}
has been assigned, then the C2 cubic B-spline offset curve is con-
structed by using L Bézier curve segments with Bézier points as:

b3i−1 = ∆i

∆i +∆i−1 +∆i−2
Pi−1 + ∆i−1 +∆i−2

∆i +∆i−1 +∆i−2
Pi,

i = 2, . . ., L −1 (11)

b3i+1 = ∆i +∆i+1

∆i+1 +∆i +∆i−1
Pi + ∆i−1

∆i+1 +∆i +∆i−1
Pi+1,

i = 1, . . ., L −2 (12)

b3i = ∆i

∆i +∆i−1
b3i−1 + ∆i−1

∆i +∆i−1
b3i+1,

i = 1, . . ., L −1 (13)

where ∆i indicates (ti+1 − ti). Different settings are specified ac-
cording to different end conditions. For the case of control-end
conditions, the control points at ends are set as follows [1]:

⎧
⎨

⎩

b0 = P−1

b1 = P0

b2 = ∆1
∆0+∆1

P0 + ∆0
∆0+∆1

P1

(14)

⎧
⎨

⎩

b3L = PL+1

b3L−1 = PL

b3L−2 = ∆L−1
∆L−1+∆L−2

PL−1 + ∆L−2
∆L−1+∆L−2

PL

(15)

For clarification of using this method, an illustration of a C2

cubic uniform B-spline curve with 7 deBoor points (i.e. L = 4)
is shown in Fig. 5. The B-spline polygon formed by P−1, . . ., P5
is just the exactly offset of line-fitting curve and the Bézier
points b0, . . . , b12 are computed by Eqs. 11–15 with uniform

Fig. 5. A C2 cubic B-spline curve with 7 deBoor points
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parametrization. Consequently, the desired C2 B-spline offset
curve is constructed as a piecewise Bézier curve with 4 curve
segments.

As shown in the above constructing procedure, the shape
of a C2 offset curve is set down by the following two fac-
tors: (1) a set of given B-spline control points; and (2) the
parametrization of the B-spline curve. The deBoor points used
for constructing the offset curve in this method are inherited from
the end points of straight line segments of offset line-fitting curve
and deeply affected by the error control mechanism described in
next section. Because the parametrizations are selective in con-
structing the offset curve, the effects for existing parametrization
techniques are worth further investigating. Obviously, for offset
approximation, a parametrization that results in a smaller ap-
proximation error for B-spline curve fitting, i.e. the deviation
of B-spline curve from its control polygon, would be preferred.
The reason is that the smaller error of B-spline curve fitting, the
more loosely the tolerance of original line-fitting curve can be as-
signed. Then, the number of subdivisions and hence the output
data size can also be reduced. Unfortunately, extensive testing
has shown that there is no obvious way of parametrization which
can generate optimum B-spline curve fitting error.

4 Achieving the required tolerance

The critical issue of the proposed method lies on the error meas-
urement and control. Given a user defined offset tolerance ε,
a C2 continuous offset curve with B-spline form is sought and
that such approximation offset does not deviate from the exactly
offset curve more than ε everywhere, that is, the error between
approximation and exact offset curves should satisfy the follow-
ing condition in the entire parameter domain:

εt,max ≤ ε (16)

where εt,max represents the upper bound for the total error
generated.

In this research, the offset approximation error is generated
and cumulated through three stages, which are described in de-
tail as follows. Firstly, in computing the line-fitting curve from
the progenitor NURBS curve, an appropriate line-fitting error ε1,
which is a part of ε as figured in Sect. 5, is assigned as a threshold
for subdividing. Then, using piecewise Bézier curve segments
to construct the offset curve, a second part of error ε2 is in-
troduced, which is the approximation error of the offset curve
to the corresponding Bézier polygons. Finally, a third part of
error ε3 is produced between the offset line-fitting curve (i.e. the
B-spline polygon of offset curve) and the piecewise Bézier poly-
gon. Based on the idea of cumulative position error, the total
error, εt , is defined as the sum of the three parts of approximation
errors described above. That is,

εt = ε1 + ε2 + ε3 (17)

And an upper bound for the total error, εt,max, is identified as the
maximum value of Eq. 17.

In order to estimate the offset approximation error with
global preciseness, the following measuring mechanism is
established:

• assign the first part error ε1 and find the second part error ε2
as the largest distance of any interior control point from the
base line based on the convex hull property of rational and
non-rational Bézier curves, as shown in Fig. 1; and

• calculate the third part error ε3 by measuring the height of
triangles, which are formed by the B-spline polygon and
its constituent Bézier polygons. As shown in Fig. 6, the tri-
angle vertices are deBoor points and a triangle formed by
line segments b11P4, P4b13, and b13b11 has a height as the
perpendicular distance between point P4 and line segment
b11b13.

Some notes of error measurement using this method are
described as follows. Firstly, the third part error for B-spline
polygon deviates from the decomposed Bézier polygons is cal-
culated only at finite regions where the legs of Bézier polygons
are not consistent with the B-spline polygon. For example, as
shown in Fig. 6, there are Bézier polygon legs b2b3, b3b4, . . . ,
b14b15, b15b16 which are not consistent with the B-spline poly-
gon formed by P−1, . . . , P7. Secondly, the chosen error ε1 is
used as a criterion for subdividing, hence the line-fitting curve
globally approximate the progenitor NURBS curve without de-
viating the given error ε1. Thirdly, the errors ε2 and ε3 are not
known in advance because they are not generated until the C2

B-spline offset curve has been constructed. Consequently, an up-
per bound for the total error in implementation, εt,max, will be the
summation of the assigned line-fitting error ε1 with subsequently
produced upper error bounds of ε2 and ε3.

Now, considering the proposed error measure and control
mechanism, the major steps of the algorithm for approximating
freeform offsets by C2 B-spline curve are summarized as follows:

1. Input a progenitor NURBS curve and the user prescribed off-
set approximation error ε.

2. Decompose the NURBS entity into Bézier pieces.

Fig. 6. Error between B-spline polygon and the decomposed Bézier poly-
gons
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3. Check whether all of the decomposed Bézier curves are
within an initial suggested linear approximation tolerance ε1,
ε1 < ε, or not:
3.1. If it is yes, go to step 4;
3.2. Else, recursively subdivide each of the Bézier curves,
which has convex hull size greater than the allowance ε1, un-
til the required error ε1 is achieved.

4. Construct the NURBS line-fitting curve using all of the flat-
tened Bézier curves.

5. Compute the exact offset of the line-fitting curve.
6. Replace the offset line-fitting curve with a C2 continuous B-

spline curve. That is, to use the offset line-fitting curve as
a B-spline polygon and to choose a set of adequate knot se-
quence, the approximated offset curve of B-spline form is
obtained by constructing its constituent Bézier curve seg-
ments with C2 continuity.

7. Estimate the B-spline curve fitting error, which is the sum of
the maximum error existing between the constructed piece-
wise Bézier curve and the corresponding Bézier polygons
((ε2)max) plus the maximum error caused by the deviation of
the decomposed Bézier polygons from the B-spline polygon
((ε3)max).

8. Compute the generated total error bound, εt,max, as a sum-
mation of the chosen line-fitting error ε1 and the obtained B-
spline curve fitting error, i.e., εt,max = ε1 + (ε2)max + (ε3)max.

9. Check if the cumulative error bound, εt,max, is within the re-
quired tolerance ε or not:
9.1. If εt,max <= ε, the procedure is terminated;
9.2. Else, subdivide the input curve based on a tighter error,
ε1 = ε1 −∆ε (e.g., put ∆ε = 5%ε), and then go back to step 4.

In the method, only linear geometric calculations and the
measure of cumulative position tolerance are used for error es-
timation, the offset approximation error can be computed easily
with global accuracy. Unlike the methods using discrete and fi-
nite points sampling, which offer no certainty on error bound,
this method always guarantee that the error is within the desig-
nated tolerance. The above procedure of error control indicates
that a good assignment of the initial line-fitting error provides
a better computational efficiency. As a result of extensive testing,
a value of 30 percent of the prescribed tolerance ε is recom-
mended for the initial ε1. Some examples are given in Sect. 5.

5 Implementation and examples

The method described above has been implemented to off-
set cubic NURBS curves for demonstrating its effectiveness

ε1/ε 5% 10% 15% 20% 25% 30% 35%

ε = 10−1 0.021685 0.035934 0.058260 0.084392 0.094239 0.099239 ×
ε = 10−2 0.001814 0.004151 0.005837 0.007229 0.009471 ×
ε = 10−3 0.000208 0.000371 0.000584 0.000828 ×
ε = 10−4 0.000022 0.000040 0.000063 0.000088 0.000093 ×
ε = 10−5 0.000002 0.000004 0.000006 0.000008 ×

Table 1. Cumulative approximation error
bound εt. max(ε = 10−1 ∼ 10−5)

and usefulness. In the following experimental and practical ex-
amples, handling on error measure and control are based on
the proposed mechanism as described in Sect. 4, and the gen-
erated cubic offset curves are C2 continuous with uniform
parametrization.

The progenitor curve in Fig. 7 is a uniform cubic B-spline
curve with 6 control points: (345, 380), (472, 339), (342, 261),
(504, 210), (383, 98), and (289, 187). An offset distance 20 is
used for the example. In order to understand the effects of gen-
erated total approximation error bound (εt,max) influenced by
the selected initial line-fitting error (ε1), an empirical study is
performed. The result is shown in Table 1 with the prescribed tol-
erance (ε) in the range of engineering design, i.e. 10−1 ∼ 10−5.
Mark “×” appearing in Table 1 denotes that the selected ε1 in-
duces a cumulative error greater than the tolerance. The maximal
value of ε1/ε, which can be reached without exceeding the pre-
scribed tolerance, is the best value for this offsetting with the
least control points while satisfying prescribed tolerance.

Another example for offsetting a typical cubic NURBS curve
is illustrated in Fig. 8. In this example, the progenitor curve is
given with 10 control points: (443,263), (541, 342), (429, 415),
(348, 366), (366, 296), (480, 217), (502,143), (394, 107), (337,
184), and (422, 245). The weight of each control point and the
knot vector are as follows:

w = {1, 1, 1.5, 1, 1.2, 1.8, 1, 1, 1, 1},
T = {0, 0, 0, 0, 0.142857, 0.285714, 0.428571, 0.6, 0.714286,

0.857143, 1, 1, 1, 1}.

Fig. 7. Offset of a cubic B-spline curve (tolerance ε = 10−1)
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Fig. 8. Offset of a cubic
NURBS curve (tolerance
ε = 10−1)

The offset distance used in this case is 10. The changes of εt,max
with respect to the ratio ε1/ε are shown in Table 2.

As the above results indicate, an initial ε1 must be assigned
appropriately in order to compute the offsetting more efficiently.
Empirical studies have shown that ε1/ε = 30% is a good rec-
ommended value in the range of engineering tolerances, i.e.
ε ≤ 10−1. Although a smaller assigned ε1 will provide a better
approximation of line-fitting curve and a better constructed offset
curve, the generated total approximation error bound may be-
come excessively smaller than the prescribed tolerance and an
extra expense of over subdividing is induced. On the other hand,
if an initial bigger ε1 is used for computing offsets, the total
approximation error bound with a larger value will not satisfy
the prescribed tolerance, the computational efficiency will be re-
duced because iterations are requested to achieve the required
tolerance. Therefore, a proper initial value for ε1 may save com-
putations and reduce the output data size.

Based on the above two cases, an additional test is carried out
to see the number of control points generated according to dif-
ferent precisions of the prescribed tolerance. Table 3 shows the
results with near optimal ε1 assigned.

At last, NURBS format tool-path generation, which is one
of the most important applications for NURBS curve offset-
ting, is demonstrated with an example as shown in Fig. 9. The
tool paths for 2.5D freeform profile machining (profiling) are
obtained by repeatedly offsetting the given NURBS boundary
curve. As shown in the figure, there are two types of tool-paths
are identified. The curve of first offsetting is used as a finish cut-

ε1/ε 5% 10% 15% 20% 25% 30% 35%

ε = 10−1 0.014835 0.033022 0.052599 0.058581 0.084325 0.095473 ×
ε = 10−2 0.001660 0.003447 0.005019 0.006584 0.008415 ×
ε = 10−3 0.000178 0.000347 0.000509 0.000711 0.000867 ×
ε = 10−4 0.000015 0.000034 0.000052 0.000061 0.000087 ×
ε = 10−5 0.000002 0.000003 0.000005 0.000007 ×

Table 2. Cumulative approximation error
bound εt,max(ε = 10−1 ∼ 10−5)

Table 3. Number of generated control points

ε 10−1 10−2 10−3 10−4 10−5

Fig. 7 167 620 2197 5321 20459
Fig. 8 264 981 3114 8636 32688

Fig. 9. NURBS-format tool path generation for profiling (ε1/ε = 20%, cutter
radius = 10, cutter overlap = 70%)

ting tool path, and other offset curves show the rough cutting
tool paths. Generally, to reduce output data size and to increase
machining efficiency, prescribed tolerances for the two types of
tool paths may be assigned differently. In this demonstration, the
tolerances assigned for calculating finish cutting and rough cut-
ting tool paths are 0.1 and 0.2, respectively. The main benefits
and features of this machining strategy are further described as
follows.

Conventional CNC machines are only capable of linear and
circular arc interpolations, the freeform curves and hence the
tool paths for profiling must be approximated and represented by
straight lines or arcs before NC machining to start running [20].
With the advent of commercial CNC controllers that supports
NURBS output formats (e.g., Fanuc and Siemens), a more pop-
ular cutting strategy is naturally turned to directly use interpola-
tor’s NURBS function to carry out a NURBS-based machining.
As a smoother and higher-speed cutting is considered, undoubt-
edly, NURBS-based machining would be a better choice. Since
the contour-parallel method is favored for profiling or pocketing,
in which the cutter is guided to remove material using only one
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consistent milling type (up or down milling), the pattern of tool
paths selected in this example is regarded as appropriate [11]. It
is hoped that the proposed approach with C2 continuous NURBS
curve offsetting will play a key role to elevate the level of auto-
matic tool-path generation with NURBS-based NC machining.

Since all of the operations involved in computing offsets are
linear geometric calculations, i.e., line intersections, point dis-
tances, linear interpolations, and vector operations such as dot
and cross products, the proposed method is very efficient and ro-
bust. It is believed that, in engineering applications, a method
with an accurate, efficient and robust offset approximation would
be more important than saving a few control points in repre-
senting the offset curve. The proposed approach is proven to
successfully fulfill these demands.

6 Conclusions

A method is proposed to approximate the offsets of arbitrary
NURBS curves using C2 integral B-spline curves. Based on the
convex hull property of Bézier curves and the idea of cumulative
position errors, this method can provide an accurate, global and
fast measurement on computing the offset approximation error.
Since all operations involved in computing offsets are linear ge-
ometric calculations, the algorithm is very efficient and robust.
The proposed approach is most suitable for engineering applica-
tions where the offset curves require higher degree of continuity,
for examples, as the need of visual purpose and certain practical
requirements such as movement smoothness in robot trajectory
or automatic machines.

As a next step, it is worth investigating to further reduce the
number of generated control points by assigning the initial line-
fitting error ε1 more properly or by using a newer and better
parametrization technique for constructing the C2 offset curve.
Extending this method on surface offsetting is another future di-
rection. It is hoped that all aspects of problems now existing in
computing offsets of NURBS curves and surfaces can be solved
efficiently and robustly in the near future.
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