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Abstract A robust method is proposed to generate tool paths for
NURBS-based machining of arbitrarily shaped freeform pockets
with islands. Although the input and output are all of higher-
degree NURBS curves, only one simple category of geomet-
ric entities, i.e., line segments, is required for initial offsetting
and for detecting and removing self-intersecting loops. Further-
more, using those linear non-self-intersecting offsets as the legs
of NURBS control polygons, NURBS-format tool paths can be
smoothly reconstructed with G1-continuity, no overcutting, no
cusps, and global error control. Since all operations involved in
computing tool path curves are linear geometric calculations, the
method is robust and simple. Examples with integrated rough
and finish cutting tool paths of pockets demonstrate the useful-
ness and effectiveness of this method.

Keywords Freeform pocket · NC machining ·
NURBS-format tool paths · Offsetting · Self-intersecting loops

1 Introduction

Pocket machining is a useful milling operation for carving 2.5D
die-cavities. A pocket is bounded by several closed loops com-
posed of a peripheral profile and an arbitrary number of island
profiles. In a general form, the entities outlining the boundaries
of pockets can be types of freeform curves, arcs or straight lines.
However, in this study, only the pockets with freeform con-
tours, freeform pockets as shown in Fig. 1, are considered in
NURBS-based machining. Pockets can be machined using dif-
ferent patterns of tool paths, such as the contour-parallel offset
type and the direction-parallel type. Although using the contour-
parallel offset type to construct tool paths is more difficult, which
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requires successive offsetting and complicated intersection cal-
culations, it is still the most popular method for machining 2.5D
pocket because only one consistent milling effect, either up or
down milling, occurs through the entire cutting process [1].
Therefore, the contour-parallel tool paths for pocket machining
will be focused on in this article.

The tool paths of freeform pocketing must be approximated
and represented by straight lines or arcs before NC machin-
ing to start running because conventional CNC machines are
only capable of linear and circular arc interpolations [2–4]. With
the advent of commercial CNC controllers that support NURBS
output formats, a more popular cutting strategy is naturally
turned to directly use interpolator’s NURBS function to carry out
a NURBS-based machining. As smoother, more accurate, and
higher-speed cutting is concerned, undoubtedly, NURBS-based
machining would be a better choice. Although the use of NURBS
commands for cutting freeform objects has attracted a lot of at-
tention in the modern manufacturing industry, it is surprising we
have found no reported investigation about a total solution to
freeform pocketing tool path generation.

Fig. 1. Freeform pocket
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To generate tool paths for conventional pocketing, computing
2D offset curves and eliminating self-intersecting loops are gen-
erally regarded as two key issues needed to be solved [1, 5]. With
NURBS-format tool paths involved, the handling of these prob-
lems becomes even more difficult. The exact offset of freeform
curves in general can not be obtained analytically, using approx-
imation methods to find the offset curves with NURBS form is
inevitable [6]. Also more complicated computation of higher de-
gree curve/curve intersections are required to detect and remove
self-intersecting loops.

Some approaches have been proposed for offsetting freeform
curves in the literature [7–13]. These methods to some extent
can achieve the objective of offsetting, however, some problems
arise when they are applied to tool path generation for freeform
pocketing. The major shortcomings are described as follows.
(1) Most of the reported methods cannot provide approximat-
ing offset curves with global controlled error, because they use
finite sample points to estimate approximation error [7–11].
(2) Only few approaches can assure the containing maximal
global error, but they encounter computation difficulty for the
need of extreme point searching of higher degree rational curves
or resulting poor tool paths of offset curves with very high de-
grees [12, 13]. (3) The numerical iteration methods, which are
inefficient and prone to numerical errors, must be used to detect
and remove self-intersecting loops in general [8, 13]. (4) G0-
continuous cusps, which reduce the smoothness of output tool
paths, form at positions of self-intersection points when invalid
loops have been removed (Fig. 2) [8].

In this research, an approach is proposed to solve the prob-
lems currently existing in NURBS-based tool path generation for
freeform pockets. Based on the convex hull property of integral

Fig. 2a,b. Offsetting freeform curve. a Before removing invalid loops.
b After removing invalid loops

(or rational) Bézier curves and the idea of cumulative errors, the
method can generate NURBS-format offset curves guaranteed to
be within a given tolerance, that is, the offset approximation error
can be globally controlled. Also, to avoid the complicated calcu-
lations of self-intersections for higher-degree curves, the method
handles the invalid loop problems as early as when the initially
linear approximation offsets are obtained. Using the non-self-
intersecting polygonal offsets as the legs of NURBS control
polygons, non-overcutting and at least G1-continuous NURBS-
format cutter center paths, which are essentially cusp-free, can be
reconstructed easily. Although the input and output curves are all
in higher-degree NURBS form, all the underlying entities used
for geometric computations are only line segments, the proposed
method is robust and efficient for NURBS-based automatic tool
path generation.

With some modifications on the proposed method of G1-
continuous NURBS-format tool path generation, the continuity
of tool path curves can also be extended to C2 [14]. However,
concerning the problems of computational efficiency and out-
put data size, G1 continuity would be more suitable than C2

continuity for freeform pocketing. Particularly, when the pocket
has islands and the curvature of boundary curves varies severely,
such phenomenon would become more obvious. Hence, only
the procedure for constructing G1-continuous tool paths is intro-
duced here.

In this paper, an additional strategy to improve the machin-
ing efficiency and to reduce the output data size for pocketing
is to assign different tolerances for rough cutting and finish cut-
ting tool paths. That is, a normal (tighter) allowance is used in
the finish cutting to get the geometric detailed features of the
pocket profiles, and a looser allowance is used in rough cutting to
provide smoother tool paths with smaller data size output. Such
that the overall efficiency for pocketing can be improved. More
explanations about this issue can be reached in Sect. 5.

2 Reviewing NURBS curves

A general non-uniform rational B-spline (NURBS) curve of de-
gree d with knot vector [t0, . . . , tm ] is the curve defined on the
interval [a, b] = [td, tm−d] given by

C(t) =

n∑

i=0
wiPi Ni,d (t)

n∑

i=0
wi Ni,d (t)

, (1)

where Pi are the control points, wi are the weights, and Ni,d (t)
are the B-spline basis functions defined on the specified knot
vector [15, 16]. Using homogeneous coordinates, an equivalent
representation of NURBS curve is

Cw(t) =
n∑

i=0

Ni,d (t)Pw
i , (2)

where Pw
i = (wi xi , wi yi, wi zi , wi) are the weighted control points

and Cw(t) is a polynomial B-spline curve in homogeneous space.
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Appropriate choices of knot vector and control points give
rise to the concepts of open or (closed) periodic NURBS. The de-
tails of mathematical description for different types of NURBS
curves can be found in the literature [16]. Here, as an example,
an open knot vector which yields a NURBS curve with endpoint
interpolating is given as follows:

T =

⎧
⎪⎨

⎪⎩
t0 = · · · = td︸ ︷︷ ︸

d+1

, td+1, · · · , tn, tm−d = · · · = tm︸ ︷︷ ︸
d+1

⎫
⎪⎬

⎪⎭
. (3)

In fact, if there is no interior knot in the open knot vector,
a NURBS curve can be regarded as a rational Bézier curve. That
is, a NURBS representation with a knot vector of the form

T =
⎧
⎨

⎩
0, · · · , 0
︸ ︷︷ ︸

d+1

, 1, · · · , 1
︸ ︷︷ ︸

d+1

⎫
⎬

⎭
(4)

is a generalization of a rational Bézier representation.
Since NURBS is a subject of extensive research, a few of the

fundamental geometric algorithms for operating NURBS curves
have been reported in the literature [15]. One of these basic
tools used in this research is the knot insertion algorithm [17].
Based on this algorithm, a NURBS curve can be decomposed
into piecewise rational Bézier segments. It is worthwhile to do
this, because operation on Bézier pieces tends to be simpler than
on NURBS itself.

Another important tool, which can be used to evaluate the
point on a Bézier curve and to subdivide a Bézier curve into two
curve segments, is the de Casteljau algorithm [18]. For given
control points P0, P1, . . . , Pn , and for a specified paramter value
t ∈ [0, 1], the de Casteljau algorithm is expressed by the recur-
sive formula
{

P0,i = Pi,

Pj,i = (1− t)Pj−1,i + tPj−1,i+1,
(5)

for j = 1, . . . , n and i = 0, . . ., n − j . Figure 3 shows the appli-
cation of this algorithm on subdividing a cubic Bézier curve at

Fig. 3. Subdivision of Bézier curve at t = 1/2

the middle of the parameter domain. The result of such subdivid-
ing will generate two curve segments with smaller convex hulls
than the original one. In other words, the new control polygons
will approximate the Bézier curve more closely than the old con-
trol polygon.

3 Generating linear approximation tool paths

Before constructing the intended NURBS tool paths, linear ap-
proximation and self-intersection-free tool paths must be ob-
tained first. The reasons why NURBS curves are initially approx-
imated by line segments for tool paths generation are explained
as follows.

1. Using line segments to approximate NURBS curves within
prescribed tolerance is a fundamental geometric operation in
CAD/CAM, which is essentially based on NURBS decom-
position and subdivision of Bézier curves [16, 19, 20]. The
error generated for this linear approximating can be cal-
culated easily and reliably by considering the convex hull
property of Bézier curves [19]. The details are described in
Sect. 4.2.

2. Pockets with boundary curves composed of lines and/or arcs
have been widely studied in the literature [1, 5, 8, 21, 22],
therefore, carefully chosen current algorithms can be directly
applied to constructing the linear approximation tool paths
for freeform pocketing.

3. The non-self-intersecting linear approximation tool paths
will provide a frame structure for building smooth, error-
controlled, and non-overcutting NURBS tool paths.

Concerning conventional 2.5D pocket machining, generally,
four different approaches for obtaining the offset boundaries
of pockets can be found in the literature: (1) pair-wise offset,
(2) Voronoi diagram, (3) pixel-based method, and (4) Boolean
set operations [5, 23, 24]. As stated previously, a notable feature
common to those approaches is that they only can handle pockets
with line and/or arc boundary curves. Hence, if freeform curves
are used to define pocket boundaries, they must be approxi-
mated by line/arc curves to proceed with follow-up operations.
On the other hand, as NURBS-format tool paths are demanded
for NURBS-based pocketing, the initial transformation between
freeform curves and lines/arcs seems to become unnecessary.
However, in this research, the process of linear fitting is not re-
dundant since the linear approximation tool paths are able to
serve as the “carriers” for constructing final NURBS-format tool
paths. And a salient benefit to do so is that the problems of
self-intersections for offsetting NURBS curves can be handled
directly and easily in those initial linear offsets.

In this research, a modified version of pair-wise offsetting al-
gorithm, which is originally proposed by Hansen and Arbab, is
employed for offsetting the linearized boundary curves [5]. How-
ever, unlike their method, the entities now used to represent the
profiles are only line segments, and the gaps, may exist in their
initial offsets, are closed by linear extensions. The main benefit
of using Hansen and Arbab’s algorithm is that the time com-
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Fig. 4a–c. Generating linear approxi-
mation tool paths. a Pocket profiles.
b Linear approximating pocket profiles.
c Linear approximating tool paths

plexity for finding all intersections is only Kp O(n log n) and the
invalid loops can be removed effectively by applying the interfer-
ence indexing method.

Figure 4 shows the process of generating linear approxima-
tion tool paths for a freeform pocket with one island. As shown
in Fig. 4a, the pocket periphery is arbitrarily defined counter-
clockwise by control points P0, . . ., P6 and the island is defined
clockwise by control points Q0, . . ., Q4. To get the linear ap-
proximation tool paths, the boundary curves are approximated
by straight line segments within a user prescribed tolerance
(Fig. 4b). Then, based on the redefined boundary line segments,
the tool paths without invalid loops can be obtained by using the
modified pair-wise offsetting algorithm with interference index-
ing method (Fig. 4c). With this illustration, contour-parallel tool
paths are given for demonstrating this procedure graphically. The
approximation error is 6, the cutter radius is 10, and the cutter
overlap is 70%.

4 Reconstructing NURBS-format tool paths

This section describes how to efficiently reconstruct G1-con-
tinuous NURBS-format tool paths based on the obtained linear
approximation tool paths. In addition, issues of error control
and self-intersecting loop removal for generating valid tool paths
with practically few control points are also dealt with in this sec-
tion. The details are further described as follows.

4.1 G1-continuous NURBS format tool path generation

The ultimate goal of this method is to generate NURBS-format
tool paths for NURBS based pocket machining. The linear ap-
proximation tool paths will be regarded as the intermediate ob-
jects for building valid NURBS-format tool paths. Considering
the linear tool paths as a collection of Bézier control polygons,
piecewise Bézier curves with G1 continuity can be constructed.
To achieve G1 continuity for the cutter paths, some points are
inserted along the line approximating curves as additional con-
trol points of Bézier curves. Choosing Bézier curves of degree
three to fit the offset curve, a proposed procedure for the inserting
operations is described as follows.

1. If the number of line segments is even, see Fig. 5a, the inser-
tion operation starts from the middle of the first line segment
and continues to insert control point once on every other line
segment down the line approximating curve. The procedure
is ended when the first insertion point is met again.

2. If the number of line segments is odd, see Fig. 5b, the same
manipulating procedure for the even case is applied on the line
approximating curve except the last line segment, in which
two control points are inserted with equally spaced distance.

As shown in Fig. 5, using the end points of the line segments,
i.e., vertices of the polygon, combined with the insertion points
marked as gray filled circles, piecewise Bézier curves can be con-
structed to be at least G1-continuous in integral form.

However, two additional problems emerge when piecewise
Bézier curves are used to fit the linear tool paths. (1) Can the

Fig. 5. a Inserting points for even case; b Inserting points for odd case
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approximation error be measured efficiently? (2) If the user pre-
scribed tolerance is not satisfied, what measures can be taken
for improvement? Answers to these questions are described as
follows.

1. Approximation error for Bézier-fitting tool paths is measured
also by using the convex hull property of Bézier curves. The
details are described in Sect. 4.2.

2. If the approximating error for any one of the Bézier pieces
is greater than the prescribed tolerance, then, the control
polygon, not the Bézier curve itself, is subdivided into two
smaller parts by inserting a control point to the middle of
every leg of the control polygon. As shown in Fig. 6, the
two newly generated Bézier curves will approach the original
line segments more closely than the old one and still keep
G1 continuity on the piecewise curve. The refining process is
performed repeatedly until the prescribed tolerance is satis-
fied for every Bézier curve.

Comparing to subdivision on Bézier curves, subdivision on
Bézier control polygons is simpler and faster. However, because
of different numbers of subdivisions of control polygons for dif-
ferent Bézier entities in achieving the same prescribed tolerance,
the path curves generated can only be piecewise Bézier curves
with G1-continuity in uniform parameterization. If more com-
pact output data are requested, the continuity at joints should be
further improved to C1, such that the piecewise Bézier segments
can be represented in integral B-spline form with fewer control
points [15]. This objective can be easily achieved with a post-
process that reassigns the piecewise Bézier curves with proper
parameter ranges to make the underlying parametrization of all
joints to be C1-continuous [15].

4.2 Error control

One of the most attractive features of the proposed method lies
in its capability of error measurements. As stated previously,
all the errors generated in computing NURBS format tool paths
can be estimated by using the convex hull property of Bézier
curves [16, 19]. As shown in Fig. 7, the base line of a Bézier
curve is defined as a straight line passing through the endpoints
of a Bézier curve. The approximation error is measured by the
distance of the farthest control points on the convex hull devi-
ating from the base line. Since the Bézier curve is completely

Fig. 6. Subdividing cubic Bézier control polygon

Fig. 7. Estimating line-fitting or Bézier-fitting error (upper bound error
= Max(d1, d2))

contained in the convex hull of its defining control polygon, the
real error of a Bézier curve to its control polygon or its base line
segment will be no more than the approximation error defined by
Fig. 7.

The total error of an approximated NURBS offset curve ε is
caused by the fitting error ε1 of line segments relative to the pro-
genitor curves plus the fitting error ε2 of piecewise Bézier curves
relative to the offset line segments. That is

ε = ε1 + ε2. (6)

For the line-fitting curves, the first part of the prescribed tolerance
ε1 should be satisfied by every constituent Bézier piece. If any
Bézier curve deviates from the allowance, it must be recursively
subdivided until the allowance is satisfied. As for the Bézier-
fitting curves, the second part of the prescribed tolerance ε2 should
be satisfied in each reconstructed Bézier curve. If any Bézier curve
deviates from the allowance, its defining control polygon must be
recursively subdivided until the allowance is satisfied.

However, how to distribute the total error ε into the two
smaller parts, ε1 and ε2, is another issue worth further discussing.
Obviously, small sizes of ε1 and/or ε2 imply that a large number
of subdivisions are required. Unfortunately, subdivisions are also
the major cause of generating additional control points with this
method. Therefore, to seek an optimal error distribution, which
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Fig. 8. Offset of a cubic NURBS curve (ε = 1, ε1/ε2 = 3/7, offset distance
= 20)

could inhibit the fast growth of the number of control points, is
an important task. With extensive tests of practical examples, the
results have shown that a ratio of ε1/ε2 = 3/7 is the best value.
Table 1 demonstrates this fact by using the test curve shown in
Fig. 8 with three different tolerances ε = {1, 0.1, 0.01} and an
offset distance of 20.

Why the optimal ε1/ε2 ratio falls in the vicinity of 3/7 is rea-
soned as follows. On the side of an extremely low ε1/ε2 ratio, the
precision of a line-fitting curve is far higher than a Bézier-fitting
curve. Subdividing the Bézier curve one time only can increases
a control point to the output data because base line segments are
used to approximate the Bézier curves in constructing the line-
fitting curve. Hence, over-subdividing in constructing the initial
line-fitting curve should be the main factor for generating such
unnecessarily massive control points. On the other hand, if the
ε1/ε2 lies in the range of the higher ratio side, the required sub-
divisions will be mostly shifted to the Bézier-fitting curve. The
control points used for reconstructing NURBS tool paths will
be drastically increased because subdividing the control polygon
of Bézier curves for the Bézier-fitting curve will generate more
control points than subdividing the Bézier curves for the line-
fitting curve.

Additionally, Table 1 also shows that if a large cumulative
error ε is assigned, a relatively small number of control points
will be generated, meanwhile the continuity of offset curves
keeps unchanged. Since most of the generated offset curves are
used as rough cutting tool paths for freeform pocketing, see
Sect. 5, the output data size can be further reduced by using
a looser tolerance. Thus, the proposed method is able to gener-
ate compact and smooth tool paths for high-speed NURBS-based
machining.

ε1/ε2 1/9 2/8 3/7 4/6 5/5 6/4 7/3 8/2 9/1

ε = 1 82 67 58 64 85 100 118 157 223
ε = 0.1 277 184 178 190 229 289 406 490 676
ε = 0.01 811 586 544 595 799 1006 1240 1636 2140

Table 1. Numbers of control points
generated for the test curve shown
in Fig. 8

4.3 Eliminating self-intersecting loops

To solve the problem of self-intersecting loop removal for
NURBS offset curves is very difficult for the computing of
higher degree curve/curve intersections. Moreover, G0-continu-
ous cusps will form on the tool path curves after invalid loops
have been removed. Such adverse effect as a result of self-
intersecting loop removal is at the cost of loss of continuity in
NURBS based pocketing.

Fortunately, the problem of detecting and removing self-
intersecting loops can be reduced to a simpler case of polygon
offsetting. Also it will be solved before reconstructing the final
NURBS-format tool paths. The loss of continuity, which is usu-
ally produced by the self-intersecting loop removal in using other
methods, will not appear with this method.

Figure 9 demonstrates the phenomena of eliminating self-
intersections and cusps in reconstructing a closed NURBS offset
curve. The simple polygon, shown in Fig. 9a, represents an ini-
tial linear approximation tool-path. As stated previously, in order
to construct G1-continuous NURBS offset curve, some control
points must be inserted on the line segments (Fig. 9b). Figure 9c
clearly indicates that all of the Bézier convex hulls of the com-
posite curve do not intersect each other for the corresponding
positions of control points. Hence, the reconstructed NURBS
curve is of course valid with no self-intersections or cusps
(Fig. 9d). In addition, if subdividing control polygons are re-
quired for some constituent Bézier pieces shown in Fig. 9c, self-
intersections and cusps will not occur either. Figure 9e shows the
result with zooming in.

As shown in Fig. 10a, an open Bézier curve can have a self-
intersecting loop even though its control polygon has no self-
intersection. However, in this research, since all tool paths are
closed and the curves represent the cutter paths are at least
G1-continuous, the tool path curves are initially C1-continuous
(Fig. 5) and G1 continuity can be formed only after some con-
trol polygons have been subdivided (Fig. 6), a tool path cannot
be constructed by using just an isolated Bézier curve. As demon-
strated in Fig. 10b, if another Bézier curve is added to the Bézier
curve in Fig. 10a to form a closed piecewise Bézier curve with
C1 continuity, the two control polygons will certainly intersect
each other no matter if subdividing control polygons is per-
formed or not. Such a condition is in conflict with the result
of the linear approximation tool path, which is a simple poly-
gon without a self-intersecting loop, and should never be used
as a pocket boundary. As researched by Tiller and Hanson [8],
the same result has also been mentioned from a different direc-
tion of view, which says that if the control polygons approximate
the curves enough closely, the phenomenon as in Fig. 10a is very
unlikely to happen.
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Fig. 9. Constructing non-self-intersecting and cusp-free NURBS offset

Fig. 10. a A self-intersecting Bézier curve with non-self-intersecting control
polygon. b A closed and C1-continuous piecewise Bézier curve with self-
intersecting curve and control polygon

5 Examples

The method described earlier has been implemented to gen-
erate NURBS-format tool paths for arbitrary freeform pock-
ets with islands. In the following demonstrating examples, the
contour-parallel tool paths are obtained by repeatedly offsetting
the NURBS boundary curves of pockets. Essentially, two types
of tool paths for a pocket can be identified in practice. The curve
of the first offsetting is used as a finish cutting tool path, and the
other offset curves are regarded as rough cutting tool paths. As
shown in Fig. 11, generally, in order to reduce the output data
size and to increase the machining efficiency for pocketing, dif-
ferent offset distances (stepovers) are used for finish cutting and
rough cutting. And the prescribed tolerances for the two types
of tool paths are also assigned differently. The stepover size for
finish cutting is equal to the cutter radius, and the stepover size
for rough cutting can be in the range from cuter radius to cutter
diameter. The allowance for the finish cutting tool path is as-
signed mainly based on functional or aesthetic requirements of
machined parts. Hence it is tighter in order to carve the details of
pocket boundary curves. For rough cutting tool path, fast removal
of the unnecessary material is its main purpose, the allowance
should be assigned more loosely to reduce the output data size
and hence to increase machining efficiency. Practically, the range
of an enlarged tolerance zone for rough cutting tool path curves is
between zero and half of the distance of cutter overlapping.

Two practical examples are presented in Figs. 12 and 13 to
demonstrate the effectiveness and usefulness of the proposed
method. In Fig. 12, the NURBS tool paths are shown for a fish-like
pocket with one island. The following data are used for this case:
the cutter radius is 10 mm, the cutter overlap is 100%, and a con-
sistent tolerance 0.1 mm is used for both finish cutting and rough
cutting. Figure 13 shows the NURBS-format tool path generation
for an arbitrary freeform pocket with two islands. In this case, the

Fig. 11. Terminology of tool paths
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Fig. 12. NURBS tool path generation for a fish-like freeform pocket with
one island

Fig. 13. NURBS tool path generation for an arbitrary freeform pocket with
two islands

tool paths are generated with a 5 mm cutter radius and a 70% cut-
ter overlap. The tolerances assigned for calculating finish cutting
and rough cutting tool paths are 0.1 mm and 3 mm, respectively.

As illustrated by these examples, the tool paths for NURBS-
based pocketing can be constructed validly with globally con-
trollable error and no self-intersections by using the proposed
method. The method also guarantees that all of the generated
tool paths are at least G1-continuous and cusp-free. Hence, it is
most appropriate for freeform pocketing application with CNC
machines that are capable of NURBS interpolating.

6 Conclusions and future work

A method is proposed in this paper to generate NURBS-format
tool paths for freeform pockets with islands. The generated cut-
ter path curves are guaranteed to be G1-continuous with errors
within the required tolerances. The advantages of the proposed
method are: (1) the problem of detecting and removing self-
intersecting loops is degenerated into a simpler case with entities

only of line segments; (2) the obtained tool paths are kept cusp-
free after invalid loops have been removed; and (3) an integrated
strategy to increase the machining efficiency of freeform pocket-
ing is developed by using different stepover sizes and tolerances
for rough cutting and finish cutting, respectively.

Since all operations involved in this study are linear geo-
metric calculations, the proposed method for NURBS-based tool
path generation is very efficient and robust. In the next step, it
is worth investigating to further reduce the number of tool path
curve segments and hence the control points generated. More-
over, applying this method on 3D sculptured surface machining
is another future direction.
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