
 1

Title:  

Towards an integrated observation and modeling system in the New York 

Bight using variational methods, Part I: 4DVAR Data Assimilation 

 

Authors: Weifeng G. Zhanga,1, John L. Wilkina and Hernan G. Arangoa 

a Institute of Marine and Coastal Sciences, Rutgers, The State University of New Jersey 

  71 Dudley Road, New Brunswick, New Jersey, 08901, USA 

Emails: wzhang@whoi.edu, wilkin@marine.rutgers.edu, arango@marine.rutgres.edu 

 

Corresponding Author:      

Weifeng G. Zhang 

Tel.: +1 (508) 289 2521 

Fax: +1 (508) 457 2194 

Email: wzhang@whoi.edu 

 

                                                 
1 Present address: Woods Hole Oceanographic Institution, Bigelow 410, MS#09, Woods 
Hole, Massachusetts, 02543, USA 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Woods Hole Open Access Server

https://core.ac.uk/display/4168583?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 2

Abstract 

Four-dimensional Variational data assimilation (4DVAR) in the Regional Ocean 

Modeling System (ROMS) is used to produce a best-estimate analysis of ocean 

circulation in the New York Bight during spring 2006 by assimilating observations 

collected by a variety of instruments during an intensive field program.  An incremental 

approach is applied in an overlapped cycling system with 3-day data assimilation window 

to adjust model initial conditions. The model-observation mismatch for all observed 

variables is reduced substantially. Comparisons between model forecast and independent 

observations show improved forecast skill for about 15 days for temperature and salinity, 

and 2 to 3 days for velocity.  Tests assimilating only certain subsets of the data indicate 

that assimilating satellite sea surface temperature improves the forecast of surface and 

subsurface temperature but worsens the salinity forecast.  Assimilating in situ 

temperature and salinity from gliders improves the salinity forecast but has little effect on 

temperature.  Assimilating HF-radar surface current data improves the velocity forecast 

by 1-2 days yet worsens the forecast of subsurface temperature. During some time 

periods the convergence for velocity is poor as a result of the data assimilation system 

being unable to reduce errors in the applied winds because surface forcing is not among 

the control variables. This study demonstrates the capability of 4DVAR data assimilation 

system to reduce model-observation mismatch and improve forecasts in the coastal ocean, 

and highlights the value of accurate meteorological forcing.   

Keywords:  Data assimilation; 4DVAR; ROMS; Ocean prediction; New York Bight; 

River plume 
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1. Introduction 

The New York Bight (NYB) lies in the center of the Mid-Atlantic Bight (MAB) 

adjacent to the coasts of Long Island and New Jersey.  The mean depth-averaged flow in 

the MAB, driven primarily by a large scale along shore pressure gradient, is southward, 

alongshelf, and increases gradually with increasing water depth (Beardsley and Boicourt, 

1981; Lentz, 2008). The circulation in the NYB is influenced by this remotely forced 

mean flow and also local forces, including river discharge, wind and variable bathymetry 

(Castelao et al., 2008; Chant et al., 2008; Choi and Wilkin, 2007; Johnson et al., 2003; 

Münchow and Chant, 2000; Tilburg and Garvine, 2003; Wong, 1999; Yankovsky et al., 

2000).  The alongshelf mean flow has its strongest influence on the mid- and outer-shelf 

(Zhang et al., 2009a), while it is mainly the interaction between buoyancy and wind that 

drives the circulation on the inner-shelf (Münchow and Chant, 2000; Tilburg and Garvine, 

2003; Wong, 1999; Yankovsky, 2003; Yankovsky and Garvine, 1998; Yankovsky et al., 

2000).  Using a model, Zhang et al. (2009a) showed that unsteady wind is the main driver 

dispersing Hudson River source water onto the mid- and outer-shelf, and the presence of 

the Hudson Shelf Valley intensifies the freshwater outflow bulge recirculation in the apex 

of the NYB.  

The Hudson River is a major source of nutrients, contaminants and other 

biogeochemically active tracers in the NYB (Adams et al., 1998; Howarth et al., 2006) 

and has been observed to impact local biogeochemistry (Moline et al., 2008; Schofield et 

al., 2008). Numerical ecosystem modeling has proven useful for examining aspects of 

biogeochemical cycling in this region (Cahill et al., 2008; Fennel et al., 2008; Fennel et 
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al., 2006), but to achieve skillful simulation of biogeochemical events within the NYB on 

short time and space scales requires quite accurate estimates of the ocean physical state – 

developing physical ocean state estimates for such a purpose is an objective of this study.  

Being one of the best observed coastal areas in the world, the NYB has been the 

target of pioneering deployments of new observing instruments including autonomous 

underwater vehicles (gliders) (Schofield et al., 2007), surface current measuring High-

Frequency (HF) radar (Kohut et al., 2006a), and a cabled observatory (Glenn et al., 2000). 

In spring 2005 and 2006, interdisciplinary process studies of the Hudson River plume 

(the Lagrangian Transport and Transformation Experiment, LaTTE) were conducted 

(Chant et al., 2008) using observations from satellites, HF radar, a fleet of gliders, 

moorings, surface drifters, and instruments aboard the R/V Cape Hatteras and R/V 

Oceanus to monitor the NYB.  Simulation of the NYB using ROMS (Regional Ocean 

Model System, http://myroms.org) complemented observations in real-time. The large 

multi-instrument data sets available from LaTTE, and the on-going operation of much of 

the instrumentation on a quasi-continuous basis, make the NYB an attractive location to 

explore the integration of advanced observation and modeling capabilities for the 

purposes of implementing coastal ocean data assimilation and optimal observation 

systems. 

Data assimilation (DA) is to use observations in conjunction with models to better 

describe the ocean (Bennett, 2002; Evensen, 2007; Wunsch, 2006) and it is currently an 

active research area in applied oceanography.  The time-dependent variational method 

(4DVAR) is one DA approach and it takes the linearized dynamical model into 

consideration while adjusting model control variables to fit observations. The 4DVAR 
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method proceeds by iteratively minimizing a cost function defined as the weighted 

mismatch between the observations and the model state at the observation location and 

time, plus additional constraints such as the size of the permitted adjustment to the model 

control variables. In principle, the control variables to be adjusted can be anything 

imposed external to the model, such as initial conditions, boundary conditions, and 

forcing, or aspects internal to the model such as vertical mixing parameters and missing 

physics.   

Assuming the model physics is “perfect” (i.e. applying the so-called “strong 

constraint” of (Talagrand and Courtier, 1987)) there are two approaches to the 

minimization problem: (i) Incremental Strong-constraint 4DVAR (IS4DVAR) (Courtier 

et al., 1994), and (ii) representer-based 4DVAR (Bennett, 2002) (also called 4D-PSAS 

(Courtier, 1997)).  These approaches minimize the cost function in different spaces: 

IS4DVAR in model space, and representer-based 4DVAR in observation space.  In 

IS4DVAR an iterative scheme is used to minimize the cost function based on information 

provided by the Tangent Linear and Adjoint models.  In representer-based 4DVAR the 

minimum search is achieved through looking for the coefficients of the observational 

representers that give the model-observation mismatch. Courtier (1997) proved that the 

equations of representer coefficients are equivalent to the equations of control variable 

adjustment in IS4DVAR, and to solve the equations of representer coefficients is 

essentially to minimize a objective function whose Hessian has the same condition 

number as the cost function in IS4DVAR. More detailed discussion of the merits of these 

approaches can be found in the literature (Broquet et al., 2009; Di Lorenzo et al., 2007; 

Kurapov et al., 2007; Powell et al., 2008; Weaver et al., 2003).  
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Both 4DVAR algorithms have been applied to studies of ocean variability at different 

scales.  On large scales 4DVAR has been applied for the purposes of methodology 

development (Vialard et al., 2003; Vossepoel et al., 2004; Weaver et al., 2003; Weaver et 

al., 2005) and improving estimate of ocean states and air-sea fluxes (Stammer et al., 2004; 

Stammer et al., 2002; 2003; Wunsch and Heimbach, 2007).  On regional and coastal 

scales 4DVAR algorithms have been developed and applied mostly in either simple 

models or idealized configurations (Di Lorenzo et al., 2007; Kurapov et al., 2007; 

Ngodock et al., 2007; Scott et al., 2000) with a few exceptions (Broquet et al., 2009; 

Hoteit and Köhl, 2006; Powell et al., 2008; Smith and Ngodock, 2008).   Other coastal 

ocean DA studies have been conducted with other methods, such as nudging or melding 

(Lewis et al., 1998; Wilkin et al., 2005), optimal interpolation (Oke et al., 2002), 3DVAR 

(Li et al., 2008a; Li et al., 2008b), and the ensemble Kalman filter (Hoffman et al., 2008). 

In this study we used the IS4DVAR system in ROMS, described comprehensively by 

Powell et al. (2008) and Broquet et al. (2009), to assimilate all available observations 

collected in the NYB in conjunction with the spring 2006 LaTTE field program. We 

describe a “pseudo-real-time” DA system, by which we mean a system that could have 

operated in real-time had we known then what we have learned here about practical 

issues of timeliness and quality control that must be addressed when assimilating 

observational data from the various platforms we used, and configuration of the 

IS4DVAR algorithm itself in a shallow inner-shelf region. This retrospective analysis 

with a comprehensive observational data set also allows us to evaluate, to a certain extent, 

the influences of differing observation sources on the performance of the forecast system.  
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Further evaluation and optimization of observational strategies using representer-based 

methods is explored in the Part II paper that accompanies this article.  

This paper is organized as follows: Section 2 describes the data collected in spring 

2006 and its quality control prior to assimilation; Section 3 describes the model 

configuration and Section 4 describes the DA system; Section 5 presents the results; and 

Section 6 summarizes the work. 

2. Observational data 

The 2006 LaTTE field campaign in the NYB targeted the spring freshet of the 

Hudson River, and was similar to that in spring 2005 described by Chant et al. (2008). In 

both LaTTE seasons, sustained observations were acquired from HF radar, gliders, and 

satellites by the Rutgers University Coastal Ocean Observation Laboratory (RUCOOL) 

(Glenn and Schofield, 2003).   

Data were acquired from the Advanced Very High Resolution Radiometer (AVHRR) 

aboard the NOAA satellites by the RUCOOL L-Band ground station and processed to 1-

km resolution Sea Surface Temperature (SST) data using the Multi-channel Sea Surface 

Temperature algorithm in SeaSpace Terascan software.  We manually removed clouds 

from the individual satellite passes and spatially averaged the data to a 4 km resolution 

grid for assimilation.  An example is shown in Figure 6a.   

Gliders with a SeaBird CTD aboard observed profiles of temperature and salinity at a 

vertical resolution of 0.25 m. The conductivity cell on a glider is not pumped which 

introduces a thermal-lag in the response that can cause salinity data to have large errors 
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when a glider crosses a pronounced halocline/thermocline (Lueck, 1990) such as at the 

Hudson River plume boundary. We corrected the thermal-lag using the algorithm of 

Morison et al. (1994) and then vertically averaged the data to 1-m vertical resolution.  

The glider tracks are plotted in Figure 1, and an example of glider-measured temperature 

and salinity is given in Figure 7. 

The HF radar data used here were derived from 5 antenna sites (Figure 1) to give 3-

hour averaged sea surface current once per hour.  The azimuth resolution of the raw data 

at all the sites is 5 degrees, and radial data from the sites was combined into total vectors 

using the algorithm described by Kohut et al. (2001) and Kohut et al. (2006b) and 

mapped to a 6-km resolution grid. An example of the HF-radar-measured surface current 

is given in Figure 6a.  We choose 2.5 m to be the nominal depth of the HF radar 

measured currents according to the effective depth of the HF radar measurement (Stewart 

and Joy, 1974). 

The average power spectrum of the HF radar data in Figure 2 shows that tides 

dominate the observed surface current.  Due to error in either the boundary conditions, 

propagation of tides within the model, or in the HF radar measurements themselves, the 

spatial patterns of modeled and observed tidal current harmonics differ (e.g. the 

comparison of M2 harmonic in Figure 3).  The ROMS DA system implemented at the 

time of this study does not include the tidal harmonic boundary forcing as control 

variables, and therefore cannot adjust (or “tune”) these directly to improve the model 

tidal harmonics solution. If we were to assimilate the 1-hourly interval HF radar data 

directly, systematic errors in the surface velocity due to this tidal harmonic mismatch 

could be interpreted by the DA system as requiring adjustments to the model initial 
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conditions, which is obviously not what we intend.  To avert this potential problem, we 

filtered the tidal signal in the HF radar data with an harmonic analysis toolbox 

(Pawlowicz et al., 2002) and replaced it with the harmonic tidal signal derived from a 

control ROMS model simulation.  This merger achieves consistency between the 

“modified observed” tidal currents and the model so that any mismatch in the tides will 

not dominate the cost function. By comparing to results when assimilating the original 

HF radar data we verified that assimilating the merged surface currents gives better 

velocity fit and forecast skill (not shown). 

Further observations were gathered by moorings, drifters and ship surveys.  Seven 

moorings (Figure 1), each with an Acoustic Doppler Current Profiler (ADCP) and two or 

three Conductivity/Temperature (CT) sensors at different depths, recorded data from the 

beginning of April to the end of June.  Two surface drifters deployed between 4 and 8 

May measured surface temperature (we did not attempt to use drifters for surface velocity 

data given the difficulty discussed above of adequately of accounting for the tides). 

Between 2 and 8 May surveys by the vessels R/V Cape Hatteras and R/V Oceanus 

measured temperature, salinity and velocity from towed undulating CTD and ship 

mounted ADCP instruments.  All data from the towed undulating vehicle, ADCP, CTD, 

CT and drifters were averaged to resolutions of  2 m in the vertical, 5 km horizontally, 

and 12 minutes in time prior to assimilation. This reduced the scales resolved by the data 

to be comparable to those represented in the model; there is little point to keeping data at 

more fine resolution because the DA process would smooth them anyway.  

Figure 4a indicates the availability of observations from different platforms on each 

day during the study period, and Figure 4b gives the total number of observations of each 
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ocean state variable on each day.  We have in total 20,000 to 45,000 observations each 

day, with velocity being the most abundant and salinity the least. More than 60% of the 

velocity data is surface current measured by HF radar and the rest is measured by ADCP. 

More than 50% of the temperature data is satellite SST, about 13% is measured by gliders, 

and the rest is measured by moored and ship-borne CTD.  About half of the salinity data 

is from gliders and half is from moorings and ships.   

3. Model configuration 

3.1 The Regional Ocean Modeling System 

ROMS is a free-surface, hydrostatic, primitive equation ocean model using terrain-

following vertical coordinates. Haidvogel et al. (2008) present an overview of the model 

design, embedded ecosystem, sediment transport and sea-ice modules, and examples of 

applications to estuarine, coastal and basin-scale studies. Shchepetkin and McWilliams 

(1998; 2003; 2005) describe in detail the ROMS computational kernel. The Adjoint and 

Tangent Linear models that are part of the ROMS code were developed by the ROMS 

Adjoint Group (Moore et al., 2004), and drivers have been developed that utilize the 

Adjoint and Tangent Linear models for Adjoint Sensitivity and Optimal Perturbation 

analysis, Optimal Observation design, and Incremental Strong Constraint 4-Dimensional 

Variational (IS4DVAR) and Weak constraint 4DVAR (W4DVAR) data assimilation 

(Broquet et al., 2009; Di Lorenzo et al., 2007; Moore et al., 2008; Moore et al., 2004; 

Powell et al., 2008; Zhang et al., 2009b). 

3.2 New York Bight and New Jersey Inner Shelf Configuration  



 11

Our ROMS configuration for the NYB is similar to that of Zhang et al. (2009a). The 

model domain (Figure 1) covers the NYB from south of Delaware Bay to eastern Long 

Island and includes the two major rivers in this area, the Hudson and Delaware. Because 

of the substantial computational demand of the IS4DVAR system (about 100-fold more 

than the computation of a single forward model simulation), the horizontal resolution in 

this study has been decreased from 1 km in Zhang et al. (2009a) to 2 km, but the vertical 

resolution of (30 layers) is unchanged.   

Model initial conditions prior to commencing DA on 5 April 2006 (when the LaTTE 

observational program began in earnest) were obtained from the “full physics” simulation 

in Zhang et al. (2009a).  In all forward model simulations, Chapman (1985) and Flather 

(1976) open boundary conditions are used for sea surface height and the barotropic 

component of velocity on the model perimeter, respectively. These conditions impose 

both a remotely-forced along-shelf mean flow computed from the water-depth/velocity 

relationship deduced by Lentz (2008), and tidal harmonic variability from a regional tidal 

simulation (Mukai et al., 2002).  Gradient open boundary conditions are used for 3D 

velocity and tracers. The Generic Length Scale method k-kl closure (Umlauf and 

Burchard, 2003; Warner et al., 2005) is used for the vertical mixing; bottom drag is 

quadratic (CD = 0.003). In the forward simulations, air-sea fluxes of momentum and heat 

are computed using bulk formulae (Fairall et al., 2003) with meteorological conditions 

from the North American Mesoscale (NAM) model distributed by the National 

Operational Model Archive and Distribution System (NOMADS)  (Rutledge et al., 2006). 

The river discharge data were obtained from USGS Water Data 

(http://waterdata.usgs.gov/nwis) and modified to include ungauged portions of the 
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watershed.  Figure 5 shows the river discharges and wind at the Hudson River mouth 

over the DA experiment period. 

In almost all respects, the model configuration here is identical to Zhang et al.’s 

(2009a) model of the NYB; the differences are the reduced horizontal resolution – to 

make the computational effort tractable – and the use of high resolution NAM operational 

meteorological forecasts in place of lower resolution regional reanalysis products. 

4. Data Assimilation System 

4.1.  IS4DVAR theory 

We summarize briefly here the principles of IS4DVAR data assimilation for the 

purpose of highlighting the choices to be made when implementing the method in a 

practical coastal application. For a detailed description see (Courtier, 1997; Courtier et al., 

1994; Powell et al., 2008; Weaver et al., 2003).  

The ROMS forward model can be represented as, 
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where M is the model nonlinear operator; Φ(t) is a state vector [u v T S ζ]T comprised of 

the velocity, temperature, salinity and sea surface height at all model grid points at time t; 

F(t) is the external forcing; Φi the initial conditions; and ΦΩ(t) are boundary conditions 

along boundary Ω. We assume the model is “perfect,” that is, no explicit account is made 
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for inadequacies in the forward model in the model-data misfit – this is the so-called 

strong constraint method, in which the model physics alone determine how the modeled 

ocean state evolves over time during the analysis time period for a given set of initial 

conditions, boundary conditions and forcing. In DA, the objective is to adjust the control 

variables (typically initial conditions, but also potentially boundary conditions and 

forcing) to minimize the mismatch between model and observations, denoted Jo, over 

some analysis interval: 
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where H is an operator that samples the nonlinear model state at the observation locations 

and times, O is the observational error covariance matrix, y is a vector of the 

observations, and Nobs is the number of observations in the analysis interval.   

In the incremental formulation of 4DVAR (Courtier et al., 1994), we let Φ0 denote a 

solution to the nonlinear problem (1) and assume Φ0 is sufficiently close to the true ocean 

state that the adjustments to the control variables, φi = δΦi for initial conditions, φΩ(t) = 

δΦΩ(t) for boundary conditions, and f(t) = δF(t)) for forcing, will be small and can be 

described by a linearized model, the Tangent Linear model, 
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where φ(t) = Φ(t) – Φ0(t)  is the perturbation state at time t. The mismatch between the 

model and observation, d = y - HΦ0(t), is then small.  The system can be linearized and 

the cost function is now defined as  

J = Jo + Jb,                                                      (4) 

with 
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obs

T 1

1

1
( ) ( )
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o n n n n n n
n

J t t
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1 1 11 1 1

2 2 2b i i i fJ   
    φ B φ φ B φ fB f ,                                        (6) 

where H is linearized H, and Bi, BΩ and Bf are the assumed covariances of errors in initial 

conditions, boundary conditions and forcing, respectively.  Equation (5) is the model-

observation mismatch rewritten in the incremental formulation, and the background cost 

function Jb in Equation (4) penalizes adjustment of the control variables to ensure they 

are not too large.  

In ROMS IS4DVAR the minimization of J is achieved iteratively in a so-called inner-

loop using a Conjugate Gradient algorithm. The incremental formulation renders the 

system linear so that J is quadratic and the convergence of iterations is guaranteed.  On 

each iteration the gradient of J with respect to the control variables, obtained from the 

Adjoint model forced by the model-observation mismatch, is used to compute the 

direction and step size of the minimum search.  There is also an outer-loop to the iterative 

procedure in which the nonlinear forward model is rerun to update Φ0(t) using the 
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adjusted control variables after the inner-loop has converged.  The outer loop brings the 

nonlinearity into the system. In the end, corrected initial conditions, boundary conditions 

and forcing are obtained. Our choice for the number of inner and outer loops is discussed 

below.  

4.2.  Data Assimilation System setup 

Our IS4DVAR analysis of NYB circulation is for the period 10 April to 5 June 2006 

coinciding with the availability of in situ observations during LaTTE. The duration of 

each DA analysis window (the interval over which Jo is evaluated and the iteration on φi 

performed) was chosen to be 3 days based on tests in Zhang et al. (2009b) of the linearity 

assumption that underpins the incremental method. Following standard practice in real-

time numerical weather prediction, we choose to overlap consecutive DA cycles: the 

beginning of the DA window advances one day from one cycle to the next, therefore 

creating a two-day overlap between consecutive cycles. The workflow is as follows:  The 

first DA cycle starts at 0000 UTC 10 April 2006 with the first guess of the initial 

conditions taken from the control forward model simulation (a two-month continuous 

simulation prior to commencing DA). Assimilation of all the observational data within 

the 3-day period (0000 UTC 10 April – 0000 UTC 13 April) gives adjusted initial 

conditions for 0000 UTC 10 April from which an 18-day forward nonlinear model 

simulation is then launched. The model solution within the first 3 days is therefore an 

“analysis” result, being a fit to observations made at the same time, while the outcome for 

the subsequent 15 days is a forecast.  The second DA cycle starts at 0000 UTC 11 April 

with the first guess of the initial conditions now taken from the analysis of the first DA 

cycle. Assimilation of observations in the window 0000 UTC 11 April to 0000 UTC 14 
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April then produces new adjusted initial conditions for 0000 UTC 11 April.  Note that 

observations made on 11 and 12 April are assimilated in both the first and the second DA 

cycles.  Another 18-day forward nonlinear model simulation is launched starting from the 

Cycle 2 adjusted initial conditions for 0000 UTC 11 April. We repeat this process, 

advancing 1 day each cycle, until the last DA cycle starts at 0000 UTC 3 June 2006.  In 

total there are 55 overlapped cycles.  

(Note: The meteorological forcing data set we use is a concatenation of the first 24 

hours of each NCEP NAM forecast cycle, and therefore our ocean forecast is not strictly 

a true forecast because atmospheric observations in the “future” impact the prediction. 

Nevertheless, no ocean observations are utilized during the forecast, and our experiment 

is a faithful test of how IS4DVAR assimilation of ocean observations improves state 

estimation and prediction.) 

At the time this study was conducted the IS4DVAR capability of ROMS allowed 

only for adjustments to the model initial conditions. The last two terms in equation (6) are 

therefore absent here, though it is certain that errors exist in the external forcing and 

boundary conditions.  Given our relatively short 57-day analysis period and previous 

studies that show circulation in the NYB and New Jersey inner shelf is predominantly 

locally forced (Choi and Wilkin, 2007; Zhang et al., 2009a), we do not expect boundary 

conditions to play a significant role, but rather that initial conditions will dominate the 

evolution of oceanic tracers (temperature and salinity) and are therefore suitable control 

variables to adjust to reduce model-observation tracer mismatch. The adjoint sensitivity 

analysis of Zhang et al. (2009b) also emphasizes that SST in the immediate vicinity of the 

Hudson River plume has the greatest contribution to SST anomalies on the New Jersey 
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coast.  However, this argument is not necessarily true for velocity as we will see later in 

this paper. The capability to adjust external forcing and boundary conditions has recently 

been added to the ROMS 4DVAR system and will be applied in future studies.  

Within each DA cycle, 3 outer-loops and 11 inner-loops are used. Tests with different 

numbers of outer-loops and inner-loops prove this is a practical and effective 

combination in terms of system performance and affordability.  Due to the strong 

nonlinearities embedded in the vertical turbulence closure and the air-sea flux bulk 

formulae, these features of the nonlinear forward model are not precisely linearized in the 

Tangent Linear and Adjoint models.  Instead, space and time varying vertical viscosity 

and diffusivity coefficients, and surface heat and momentum fluxes computed in the first 

nonlinear model simulation of each cycle (corresponding to Φ0(t)) are stored and used by 

the Tangent Linear and Adjoint models in that cycle.  

4.3.  Error statistics 

In Equation (5) the model-observation mismatch is weighted by observational error 

covariance.  We assume the observations are independent of each other, and the 

observational error covariance matrix O is then a diagonal matrix.  The error value 

assigned to each observation represents the combination of actual instrument accuracy, 

misrepresentation associated with processes unresolved by the model grid or absent from 

the model physics yet observed by the instruments (e.g. high frequency internal waves), 

and model error caused by inaccuracies in external forces that are not included in the 

assimilation control variables (surface forcing and open boundary conditions in this 

study). While the accuracy of each instrument (CTD, AVHRR, CODAR etc.) is 
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reasonably well known, the specification of observational error remains somewhat 

subjective and empirical because the misrepresentation associated with model resolution 

and physics is difficult to quantify a priori. We need to choose errors that realistically 

represent the extent to which the modeling system can fit the data; if not the DA cannot 

converge. The observational error standard deviations used in this study as listed in Table 

1.  

The background error covariance Bi takes into account the interconnection between 

the initial condition adjustment in a given state variable at neighboring locations 

(univariate), and between correlated adjustments in different variables (multi-variate) 

(Derber and Bouttier, 1999). It effectively spatially smoothes the initial condition 

adjustment inferred from the inner loop iterations of the Adjoint and Tangent Linear 

models.  In 4DVAR it is impossible to explicitly form Bi given its size (O(106)×O(106) 

elements in this study), and instead is usually estimated based on an ensemble of model 

simulations (Li et al., 2008b; Parrish and Derber, 1992) or numerical simulation of  

diffusion equations (Weaver and Courtier, 2001). The latter approach is implemented in 

ROMS (Broquet et al., 2009; Powell et al., 2008).  It separates Bi into a multi-variate 

balance operator (Weaver and Courtier, 2001), background error standard deviations, and 

a univariate correlation matrix.  The correlation matrix is further separated into horizontal 

and vertical correlations, and each of them is inferred by solving a diffusion equation (2-

dimensional for horizontal correlations and 1-dimensional for vertical).   

The balance operator in ROMS is under development and was not used in this study, 

but this does not imply that correlations between state variables are neglected – we hasten 

to emphasize that dynamical connections between variables are embodied in the Tangent 
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Linear and Adjoint models.  The background error standard deviations that scale the 

correlation matrix were calculated from a detided 3-month simulation reflecting an 

assumption that the corrections to the initial conditions should not exceed the magnitude 

of typical subtidal variability.  The background error correlation scales we used in this 

NYB application were 20 km in the horizontal and 2 m in the vertical, chosen based on 

scales typical of observed spatial patterns in the region and with care not to over-estimate 

the scales lest we introduce spurious correlations and over-smoothing in the control 

variable increments.  (Note that in ROMS IS4DVAR the length scale is defined as the 

distance at which the correlation is 2e-1.)   

5. Results 

Figures 6 and 7 show two examples of the DA results.  In Figure 6, satellite-measured 

SST and HF-radar-measured surface current at 0700 UTC 20 April 2006 are compared to 

their equivalent in the control simulation, to the analysis given by the 10th cycle (3-day 

DA window commencing 0000 UTC 19 April) and to the forecast launched from the 6th 

cycle (DA window that ended 0000 UTC 18 April). SST in the control simulation is 

clearly too warm everywhere and most of the surface current vectors are pointing to the 

right of the observed. These model errors have largely been removed in the analysis by 

the DA (Figure 6c) as is to be expected: the SST bias is absent, the Hudson River plume 

sits at the right location, the warm patch along the New Jersey coast covers the correct 

area, and most the surface current vectors point to the same direction as observed.  The 3-

day forecast (Figure 6d) has SST and surface velocity closer to the observations than the 
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control simulation, but the forecast deviates more from the observations than the analysis, 

especially the surface current in the Hudson River plume area.  

Between April 27 and 29 a glider deployed in the Hudson Shelf Valley (its track is 

shown in Figure 1) measured temperature and salinity cross-sections that are compared in 

Figure 7 to the control simulation, the analysis for the 3-day DA window that 

commenced at 0000 UTC 27 April, and the forecast launched from the DA that ended 

0000 UTC 27 April. The control simulation shows about 1oC surface warm bias, 1oC 

subsurface cold bias, and 0.5 salinity bias at all depths.  In the analysis the observed 

temperature and salinity patterns have largely been corrected (again, as expected, since 

4DVAR is matching the solution to these data) except that the subsurface salty bias in the 

Hudson Shelf Valley becomes worse.  In the 3-day forecast, large-scale biases are absent, 

and while details of spatial patterns depart from the observations (especially surface 

salinity) the forecast is still clearly superior to the control simulation. 

These examples demonstrate that the IS4DVAR system implemented here is capable 

of bringing the model closer to the observations and giving somewhat improved forecasts 

compared to a control simulation without DA.  Next, we examine statistical measures of 

the model performance; namely, the reduction of model-observation mismatch in analysis 

and forecast modes, respectively. 

5.1.  Model error reduction in analysis periods 

Figure 8 shows the cost function (J, equation (4)) and cost function gradient norm on 

each iteration, for all 55 cycles.  Each curve is normalized by the value at the beginning 

of the cycle.  The cost function decreases on each iteration of the inner loop, but surges at 
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the beginning of an outer loop because the new nonlinear model trajectory changes the 

background state about which the Tangent Linear approximation is expanded and the 

previous inner loop solution is no longer optimal. As the minimization proceeds, the 

surge with each new outer loop becomes smaller, indicating the incremental method is 

converging.  Most cycles show about 20% reduction in cost function after 33 iterations (3 

outer loops times 11 inner loops), which may seem low but it must be recalled that, on 

average, 2/3 of the observations in each cycle have been assimilated by previous cycles 

because of the overlapping DA windows; notice that the normalized cost function curve 

in Figure 8a for the first cycle (the dashed curves) – when a full 3 days of new 

observations were assimilated for first time – reduces by more than 50% in 33 iterations. 

The cost function gradient norm in all cycles shows about 80%-90% reduction in 33 

iterations which indicates that the conjugate gradient algorithm has found a minimum. 

For this application, the curves in Figure 8 and our overall experience suggest there is 

little added skill to be achieved by iterating to a set convergence tolerance instead of 

simply for a fixed number of outer and inner loops. Our choice of 33 iterations serves as a 

guideline for other applications, but may not be universally optimal.     

To examine further the reduction of the model-observation mismatch, we compare all 

observations to the control simulation and the analysis for temperature, salinity and 

velocity (u-component only, the v-component results are similar) in Figure 9. The 

temperature comparison shows the warm bias in the control simulation has been removed 

in the analysis and the scatter around the diagonal has been reduced. RMS temperature 

error shows a reduction by 60%.  The lowest salinities in the control run are much too 

fresh, and this is corrected in the analysis; RMS salinity error decreases by 30%. The 
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errors that remain in salinity occur mostly for ship-borne in situ salinity measurements 

made in the estuary.  The model resolution is too coarse to resolve estuarine processes 

well so these residual errors are unsurprising. RMS error of the velocity u-component is 

reduced by 25% through DA, but clearly the scatter remains large.  One reason for this is 

that the variability-to-span ratio of velocity is about 1, which is much larger than that of 

temperature and salinity.  If we assume model error is somewhat proportional to the 

natural variability, then the ratio of model error to span (which is effectively what the 

scatter in Figure 9 depicts) would be larger for velocity than for temperature and salinity.  

A further reason for relatively larger errors in modeled velocity is error in the wind, 

which will be discussed in next section. 

Figure 10 presents the time series of the total cost function and the cost functions of 

temperature, salinity and velocity computed from the control simulation, the nonlinear 

model at the beginning of each cycle, and the analysis.  Because the background cost 

function, Jb, is zero at the beginning of the minimization and about one order smaller than 

the observational cost function, Jo, at the end of each cycle, the time series of cost 

function in Figure 10 mainly reflects the change of Jo over the experiment period.  

Assuming the observational and background errors are Gaussian and their covariance O 

and Bi are described correctly, Chi-squared theory predicts that the minimum value of the 

cost function is Nobs/2 with variance 1/Nobs (Bennett, 2002; Powell et al., 2008; Weaver et 

al., 2003).  It should be noted that because the definition of cost function in Bennett (2002) 

is different from the one in this study and other two referred studies by a ½-factor, the 

minimum value of cost function in Bennett (2002) is Nobs.  The Chi-squared theory 
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predicted minimum cost functions are plotted with dashed lines in Figure 10a, but the 

small variances associated are neglected. 

The cost function comparison in Figure 10a shows a big drop of the total cost 

function from the control simulation to the beginning of each cycle, which is the 

accumulated effect of the DA cycles.  From the beginning to the end of the cycles, i.e. 

from Φ0 to analysis, there is another drop of the cost function but to a smaller extent.  As 

mentioned previously it is small because 2/3 of the observations in most of the cycles 

have been assimilated by previous cycles. In the end, the cost functions given by the 

analysis simulations are 2 to 3 times larger than the optimal minimum predicted by the 

Chi-squared theory.  Given the fact that the IS4DVAR system used here corrects only 

initial conditions, and errors in surface forcing, boundary conditions and model physics 

are neglected, this result is unsurprising.  As will be presented in next subsection, there 

are substantial errors in wind forcing.  It certainly contributes to the discrepancies 

between minimized cost functions and their optimal minimum. 

For all variables, DA decreases the mismatch, but as previously reported velocity 

mismatch decreases the least. This suggests that much of the velocity mismatch falls into 

the null-space of the DA system and cannot be corrected by adjusting model initial 

conditions.  As we will see in next subsection, it is, at least partially, due to the spatially 

coherent errors in the wind forcing. But because surface forcing is not part of the control 

variables the DA system treats that part of the model-observation discrepancy as error in 

the observations.   

5.2.  Effects of wind error 
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A notable feature in Figure 10 is the spike in total cost function around 21 May that 

persists after DA.  While DA eliminates the model-data mismatch in temperature it does 

not do so for velocity.  This suggests that a significant part of the velocity model-

observation mismatch falls into the null-space of the DA system, that is, there are either 

insufficient data to constrain the control variables or the control variable set is incomplete 

and cannot adjust the model trajectory in a manner required to match the data. The 

availability of a sizeable HF radar data set suggests it is unlikely to be the former problem. 

Suspecting potential errors in wind forcing, which would immediately impact surface 

currents but less directly affect surface temperature or salinity, we computed the 

difference between 20 m wind observed at the Ambrose Tower maintained by National 

Data Buoy Center (Figure 1) and the 10 m NCEP NAM wind used to force the model at 

the same location (Figure 11).  The inconsistency of the height of the wind products is 

neglected here because the measurements required to compute the 10 m wind from 20 m 

wind are missing. The comparison between observed and modeled wind quantifies the 

wind errors only in the vicinity of Ambrose Tower, but should be indicative of the likely 

magnitude of errors elsewhere, and the potential skill to be derived from adding surface 

wind forcing to the DA control variables.  The magnitude of the wind error averaged over 

each DA window is plotted in Figure 11 together with the velocity part of the Jo of the 

control simulation.  To eliminate the effect of different numbers of observations, the Jo in 

Figure 11 is normalized by the number of velocity observations assimilated in each cycle 

and is therefore equivalent to the mean squared model-observation error.   

The number of velocity observations each day varies relatively little (Figure 4b) and 

the normalized velocity cost functions in Figure 11a preserve the basic temporal variation 
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seen in Figure 10, including the spike around 21 May.  The daily averaged NAM wind 

error (Figure 11) shows a corresponding jump around 21 May. The overall correlation 

between averaged NAM wind error and normalized velocity Jo is about 0.62 (significant 

at 95% confidence level) suggesting that errors in the wind forcing are likely an 

important contributor to the model-observation mismatch, especially for velocity. 

 The power spectrum of surface current measured by HF Radar (Figure 2) shows a 

distinct peak within the inertial band, significant at the 95% level, which suggests that in 

this area the wind could be an efficient driver of inertial oscillations. Recall that tidal 

currents in HF radar data have been replaced with ROMS tidal currents, so we are 

essentially assimilating detided, but not low-passed, surface current data.  Model-

observation velocity mismatch in the inertial band could be a major part of the total 

velocity mismatch.  Given the wind forcing errors highlighted above, it is likely the 

model reaction to erroneous winds will create velocity mismatch between model and 

observation.   

We present further evidence for this explanation with a forward model simulation 

forced with winds corrected, somewhat, through a simple procedure.  We assume error in 

NAM model wind has a horizontal scale larger than our model domain (this is certainly 

true of the wind fields themselves) and add the difference between NAM-modeled and 

Ambrose-measured winds to the NAM winds everywhere in our model domain to obtain 

an “improved” forcing wind field.  We conducted a forward model simulation that was 

identical to the control case except for these modified winds, and compare the normalized 

observational cost functions for velocity for these two cases in Figure 11.  The simple 
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wind correction substantially decreases the large model-observation misfit in the cycles 

around 15 April and 21 May.   

This wind correction approach is simplistic and impractical for real-time forecasting. 

Nevertheless, the exercise clearly demonstrates the potential value of acquiring better 

forecast winds, or developing better methods of correcting the wind. A natural approach 

to this in IS4DVAR is to include surface forcing in the control variables of the DA 

system, and this is the subject of work to be reported in a future publication.  

We make one further comment on the effect of errors in the NAM wind in the present 

DA system: Though the spikes in the velocity mismatch on 21 May remain (Figure 10d), 

the magnitude has been substantially reduced.  This means that the IS4DVAR system has 

been able, by adjustment of the model initial conditions (the only control variables here), 

to reduce some of the mismatch that is presumably due to the wind error.  Since the DA 

system cannot differentiate between the sources of the velocity mismatch. Potentially, 

this degrades the performance of the system, especially with respect to velocity forecast 

skill, and we will return to this issue in the next section.  

5.3. Forecast skill 

A primary objective of our study is development of a system suited to practical real-

time ocean forecasting, so we present in Figure 12 a statistical measure of the skill of the 

DA system for each variable.  The skill is defined as  

afterDA

beforeDA

RMS
1

RMS
S   ,                                                        (7) 
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where RMS is the root-mean-square of model-observation mismatch weighted by 

observational error, which is equivalent to the square root of Jo.  Note that observational 

data within forecast windows are not assimilated by DA, and they are therefore 

independent data.  With this definition, any skill value greater than zero represents an 

improvement of the model performance, and the maximum possible skill is one.  Skill 

was computed for each day of each analysis and forecast window for all 55 cycles, and 

the ensembles of 1-day, 2-day etc. forecasts were averaged. The ensemble average and 

95% confidence interval for each analysis and forecast day are plotted in Figure 12.  The 

skill of the DA system that assimilates all available observations is denoted by the black 

curves. In order to diagnose the effect of different data sets, we formed three other DA 

systems in which we individually withdrew from the assimilation the HF-radar-measured 

velocity data, glider-measured temperature and salinity data, and satellite-measured SST 

data.  To clearly distinguish these four DA systems we denote them All-data, No-HFradar, 

No-glider, and No-SST, respectively. The skill values in Figure 12 were computed from 

the comparison of each modeling system to all observational data irrespective of which 

data were withdrawn from the DA.    

Figure 12a shows that model-observation mismatch in temperature during the 

analysis period is dramatically reduced (about 70% for the All-data, No-HFradar and No-

glider systems, and 40% for the No-SST system) and temperature forecast is substantially 

improved in all DA systems.  The All-data, No-HFradar and No-glider systems have 

comparable skill for temperature – starting from 0.6 at 1 day and gradually decreasing to 

0 at about 14 days into the forecast window.  The No-SST system has substantially less 

skill – starting at 0.4 and dropping to 0 at 5 days into the forecast window.  
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To further diagnose the impact of different data, we separately consider temperature 

skill evaluated in terms of glider-only observations (throughout the full water column) 

and satellite SST (surface only) as shown in Figure 13.  Skill of subsurface temperature 

for the All-data system and No-HFradar systems is 0.5 at 1 day and drops to 0 at 7 days.  

Evidently, skill is better beyond 8 days if surface velocity from HF radar is not 

assimilated.  When glider observations are withdrawn, the subsurface temperature skill in 

the analysis window is poor, but the model subsequently gains some skill in the first 

week forecast.  This gain is presumably caused by assimilating SST data, the information 

in which propagates downward through the water column due to physics.  That SST data 

add subsurface skill is demonstrated by noting that when SST data are withdrawn (green 

line in Figure 13a) the subsurface temperature skill drops for the entire forecast period 

compared to the All-data case.     

In Figure 13b, the All-data, No-HFradar, and No-glider systems show the same 

performance at forecasting SST, with skill exceeding 0.4 for the entire forecast period.  

When satellite-measured SST data are not assimilated, the DA system has no skill at 

forecasting SST at all.  SST observations are therefore vital to subsequently forecasting 

SST, while other data sources are not. This suggests that ocean surface temperature is 

mainly controlled by SST initial conditions and, presumably, surface heat exchange, with 

initial subsurface temperature and other variables exerting relatively little influence. 

Figure 13b also gives the persistence skill of the satellite SST observations, which is 

the only persistence skill we can practically calculate given the available data set.  The 

persistence skill, a commonly used standard of reference for measuring the accuracy of 

the forecasts (Di Lorenzo et al., 2007; Murphy, 1992), is computed by adopting a SST 
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map as the forecast of subsequent fields of SST.  The persistence skill starts around 0.6 

for 1 day and quickly approaches zero after 3 days into the forecast window.  The 

comparison between the persistence skill and the skill of the All-data system in Figure 

13b shows the IS4DVAR system is able to use the observations to correct the model 

dynamics and give a smooth model trajectory through the model integration, rather than 

just fitting the observations.  

The relative performance of the DA systems with respect to salinity is largely similar 

to temperature, but with some differences. Figure 12b shows that the All-data DA system 

achieves a salinity model-observation skill of 0.4 during analysis, which is substantially 

less than the skill for temperature; salinity skill is about 0.3 at 1 day and about 0.1 at 3 

days into forecast.  Thereafter, skill stays around 0.1.  Comparing skills of the different 

DA systems we see that assimilating glider-measured subsurface data improves salinity 

skill for the entire period, assimilating SST data actually degrades the salinity skill, and 

assimilating surface velocity data has minimal impact on salinity. The adverse impact 

that assimilating SST data has on the salinity forecast reflects the loss of freedom when 

the DA system adjusts initial conditions to fit more observations. When SST data are 

withdrawn, the DA system need not reconcile glider and satellite temperatures and has 

rather more freedom to adjust initial salinity to improve the salinity analysis – recall that 

all the variables are dynamically linked through the adjoint and tangent linear models.  

However, the associated loss of temperature skill is significant, and emphasizes that, on 

balance, diversity in the data sources is to be preferred.  

We also note that the adjoint sensitivity analysis of Zhang et al. (2009b) showed 

temperature and salinity interact in subtle ways in this coastal circulation regime because 
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they affect density stratification and therefore baroclinic pressure gradients and vertical 

mixing. Through the adjoint, IS4DVAR modifies not only the tracer conditions upstream 

but also the transport dynamics. Having a variety of data types for assimilation helps 

constrain both influences, decreasing the null-space of the DA system which might 

otherwise impose increments to control variables that subsequently have a negative 

impact on the forecast. 

Figures 12c,d show that the All-data system achieves a velocity skill of about 0.45 in 

the analysis window but has velocity skill above 0 only for 2-3 days into the forecast.  A 

more rapid decline in skill for velocity compared to temperature and salinity is expected, 

given that autocorrelation timescales for velocity are always less than for tracers 

indicating they are inherently less predictable. Decreased velocity skill will also result 

from the errors in wind forcing noted in the previous subsection. The similarity in 

velocity skill in the All-data, No-glider, and No-SST systems suggests that assimilating 

temperature and salinity data contributes little to the improvement of the model’s velocity 

prediction. The difference between All-data and No-HFradar systems, however, shows 

that assimilating HF-radar-measured surface currents does improve velocity predictability 

by 1-2 days. 

To examine changes in skill over time, we plot the ratios after DA (the All-data 

system) to before DA of RMS error and cross-correlation error (1CC) for different 

variables (Figure 14). Both RMS and CC are obtained from the comparison of all 

available observational data on a given day to the relevant model realization. The results 

are plotted as a function of start date for each forecast cycle (abscissa), and days into the 

forecast window (ordinate). Each 45-degree tilted line therefore depicts a single DA cycle, 
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all values with ordinate less than 0 are within analysis periods, and all values at the same 

abscissa value represent different forecasts of the same date.  For both quantities plotted, 

a ratio less than 1 means DA improves the model. In these plots, values consistently 

greater than 1 on the same date mean that date was never forecast well regardless of when 

the forecast was launched, whereas values greater than 1 following a 45-degree line mean 

that forecast cycle always gave poor results. 

The ratios of RMS error and CC error for temperature are much smaller than 1 in the 

analysis window for almost all cycles. In the forecasts, the RMS error ratio remains less 

than 1 for most of the cycles except several days around 9 May and 3 June. The CC error 

shows similar performance but is a more critical skill metric and shows ratio greater than 

1 more frequently. DA decreases RMS error for salinity for most of the time, though the 

period around 25 April is notably poor.  No forecast launched prior to 25 April was able 

to produce a salinity prediction for 24-26 April that was better than the no-assimilation 

case, the salinity analysis itself for 24-26 April is poor, and the forecast launched from 

that analysis is not skillful. April 25 is a time of peak in Hudson River discharge (Figure 

5) but this does not itself explain the lackluster model performance, because from 

previous studies (Zhang et al., 2009a) we expect the model to have some skill at 

simulating the river plume trajectory.  

The occurrence of high ratios for RMS and CC error in salinity during some periods 

is a concern because it indicates the DA system might degrade the forecast compared to a 

conventional no-assimilation forward model, but interpretation may be affected by the 

sampling distribution for salinity which is not extensive, and is quite heterogeneous. 

Consider that in situ observations include ship-towed undulating CTD data during 2 to 8 



 32

May (Figure 4) – the time period when salinity appears to be consistently poorly forecast 

as judged by the CC error (Figure 14d). The vessel cruise track (Figure 1) samples 

regions where salinity is not observed by any other instruments during the experiment, 

and it is plausible that the introduction of these data to the forecast verification data set 

beginning 2 May reveals forecast errors that were previously unknown because of a lack 

of data to identify them. Inspection of Figure 14d suggests that after the towed CTD data 

have been incorporated by the DA analysis during 2–8 May, the forecasts launched 

thereafter do rather better. Thus the irregular space-time sampling pattern for salinity may 

be producing a misleading forecast skill assessment here if much of the data falls into the 

null-space of the DA system, i.e. where the unavailability of observations means the 

analysis step has had no opportunity to improve the model state and subsequent forecasts. 

We cannot rigorously test this conjecture until a more extensive in situ observation 

network is available.  

For the velocity components, the RMS and CC error ratios are less than 1 in all 

analysis cycles, but rather quickly rise in the forecast period, consistent with the results 

above for overall forecast skill. The error ratios do not reach the extremes noted during 

some cycles for salinity, but this may simply indicate that when the model loses velocity 

forecast skill the error variances with and without assimilation are comparable and the 

ratio remains of order unity. The sampling distribution for HF-radar is more extensive 

and consistent that for SST and gliders.  

6. Summary and conclusions 
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As part of a long-term project building an integrated observation and modeling 

system for the New York Bight for the purposes of coastal ocean prediction and 

observing system design, this study has evaluated 4-Dimensional Variational data 

assimilation using ROMS in a realistic and pseudo real-time setup. In an accompanying 

article (Part II) we describe further results of the project on observing system evaluation 

and design.  

In this study we assimilated all available observations of temperature, salinity and 

velocity collected by variety of platforms in spring 2006 during a campaign of field 

observation targeting the Hudson River plume as it flows into the New York Bight and is 

dispersed across the New Jersey inner shelf.  All observations were preprocessed for 

quality control and, where appropriate, binned or averaged to be comparable to model 

spatial scales.  Errors in the observations were assumed to be independent, and an error 

standard deviation was assigned to each observation according to instrument accuracy, 

model representation of observed physical processes, and the convergence of the DA 

system.  ROMS IS4DVAR was applied with a 3-day DA analysis window in an 

overlapped cycling system to adjust initial conditions for a new forecast every day. This 

mode of implementation is standard practice in Numerical Weather Prediction and 

represents a practical approach to formulating a real-time ocean forecast system. The 

background error covariance that is an important component of the IS4DVAR was 

assumed univariate with 20 km horizontal and 2 m vertical decorrelation scales.    

System performance was evaluated by examining model-observation mismatch in the 

analysis and forecast periods. Time series of cost function and its gradient norms indicate 

that ROMS IS4DVAR successfully reduces the model-observation mismatch in analysis 
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periods and converges towards the cost function minimum.  The overall mismatch 

reduction is about 60% for temperature, 30% for salinity and 25% for velocity.  Time 

series of the cost functions show that DA was able to reduce the total cost function and 

cost functions of all variables for all 55 cycles, but the obtained minimum of total cost 

functions are 2-3 times larger than the optimal minima given by the Chi-squared theory.  

Because the IS4DVAR system used in this study corrects only initial conditions, with 

errors in other external input and model physics all neglected, this result is unsurprising.   

A correlation was found between errors in wind forcing and model-observation 

mismatch in velocity, suggesting that a significant proportion of the velocity error might 

results from error in the winds used to force the model.  Because surface forcing is not 

part of the control variables and is then assumed to be true, the DA system treats the 

associated surface velocity mismatch as “observational error”.  This “observational error” 

would then have a large spatial correlation scale if inertial oscillations are the physical 

process causing the velocity error from the wind error as suggested by the power 

spectrum of the surface currents.  This may also contribute to the large cost function 

minimum relative to the optimal minimum given by the Chi-square theory because it 

breaks the assumption of independent error in the surface velocity observations and then 

causes the underestimation of the observational error covariance. An improved forward 

model simulation forced with winds partially corrected by a simple procedure supports 

the conjecture, and highlights the importance of having accurate wind forcing in coastal 

ocean DA, especially if predicting surface velocity is a key objective.  This also exhibits 

the necessity of correcting surface forcing by adding it into the control variables of the 

DA system in order to have a good analysis product, especially of surface velocity. 
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Skill of the DA system in improving model forecasts was assessed by comparing 15-

day forecasts of each cycle with unassimilated independent observations. Overall, the DA 

system has positive skill for about 15 days forecast for temperature and salinity and 2 to 3 

days forecast for velocity. Three DA sub-systems that withdrew the observations from 

different instruments were used to reveal the effects different data sets have on the skill. 

Assimilating satellite-measured SST was shown to improve not only the surface 

temperature forecast but also the forecast of subsurface temperature. However, satellite 

SST assimilation evidently somewhat impairs the improvement of salinity forecast.  

Assimilating glider measurements significantly improves the salinity forecast but has 

little effect on the temperature forecast.  Assimilating HF radar surface current data 

extends by 1 to 2 days the time period for which the velocity forecast is improved, even 

with the errors in the wind forcing.  Assimilating HF radar currents somewhat impairs the 

forecast of subsurface temperature.   

The meteorological forcing we use in this study is a concatenation of the first 24 

hours of each NAM forecast cycle and is presumably superior to the true 72-hour forecast 

in a real-time system. Therefore, the results presented here provide an upper bound for 

the performance of a real-time ocean prediction system if the same machinery and set-up 

were used operationally. 

This study demonstrates that ROMS IS4DVAR Data Assimilation has the capability 

to use a large and diverse set of observations of the type increasingly available from 

practical coastal ocean observing systems, reduce model-observation mismatch in the 

analysis period, and subsequently provide improved forecasts for 2 to 15 days depending 

on the forecast variable.  It also reveals some of the practicalities of numerical ocean 
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prediction in real-time with data assimilation: (i) preprocessing of the observational data 

must be conducted in a timely manner and in a way consistent with model resolution and 

assumptions made about observational error, (ii) the meteorological conditions used to 

force ocean model ought to be as accurate as possible, especially for better prediction of 

current, and (iii) the choice of some of the parameters in the data assimilation system, 

such as observational error standard deviations, background error decorrelation scales 

and standard deviations should be based on a thorough understanding of the local physics 

and the model used in the data assimilation, while the choice of model resolution and 

number of inner and outer loops, will be dictated by the targeted oceanic processes and 

available computational resources.   

The analysis here provides some general guidelines on the design of oceanic 

observing systems, which we consider further and from a different prospective in the Part 

II paper.  The spatial scale of the errors in model and observations should be taken into 

account when considering the spacing of the observations. Although observations on 

scales smaller than those of modeled and observational errors provide detailed 

information about ocean physics, they are of little merit for data assimilation. Given 

limited resources, diversity in observed variables and large and stable coverage of 

observation in space ought to be emphasized because these both diminish the null-space 

and bolster the skill of the data assimilation system.  
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Figure Captions 

Figure 1. The study domain and observation locations.  The black frame indicates the 

model domain; Bathymetry of the New York Bight is in grayscale; Black dash lines are 

contours of model isobaths in meters; the yellow pentagram indicates the location of 

Ambrose Tower; the green squares indicate the locations of five HF Radar stations.   

Figure 2.  Averaged spectrum of HF-Radar-measured surface current.  Dash lines indicate 

local inertial frequency band and the confidence limit applies to data within the inertial 

frequency band. 

Figure 3. Comparison between HF Radar observed and modeled M2 tide.  

Figure 4  Types (a) and numbers (b) of observations over the data assimilation period (10 

April - 5 June, 2006). 

Figure 5.  River discharges (a) and zonal (b) and meridional (c) components of the wind 

at the Hudson River mouth over the experiment period. 

Figure 6.  Comparison of observed and modeled sea surface temperature and current at 

0700 UTC 20 April 2006. 

Figure 7.  Comparison of glider-measured and modeled temperature and salinity along a 

glider track between 27 and 29 April, 2006 (The red line across the Hudson Shelf Valley 

in Figure 1). 

Figure 8.  Normalized cost functions (a) and cost function gradient norm (b) at each 

iteration of all the 55 data assimilation cycles.  The normalization is achieved through 

dividing the cost functions and cost function gradient norms by their value at the 
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beginning of each DA cycle. The dashed curves indicate the change of the cost function 

in the first DA cycle and the vertical doted lines separate the outer loops.  

Figure 9.  2-D histogram of the comparison between observed and modeled temperature, 

salinity, and u component of the velocity for model before (control simulation) and after 

(analysis simulation) data assimilation.  The color indicates the log10 of the number of 

observations. 

Figure 10.  Cost function of the control run, at the beginning of each cycle and of the 

analysis and the Chi-squared-theory-predicted optimal minimum of cost function of each 

cycle. 

Figure 11.  Magnitude of NAM wind error and normalized velocity model-observation 

misfit of the control run before and after the wind correction. All misfits are normalized 

by the number of corresponding observations assimilated in each cycle. 

Figure 12.  Ensemble average of the skill of different DA systems over analysis and 

forecast periods for individual forecast variables. Vertical bars on symbols indicate 95% 

confidence intervals. Vertical dashed lines denote the boundary between analysis window 

and forecast window. 

Figure 13.  Ensemble average skill of different DA systems over analysis and forecast 

periods for (a) glider-measured temperature and (b) satellite-measured SST. Vertical bars 

indicate 95% confidence. Vertical dashed lines denote the boundary between analysis 

window and forecast window. 
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Figure 14.  Ratios after data assimilation to before data assimilation of RMS error  and 

cross-correlation error (1CC) at each day of all cycles for the DA system assimilating all 

observational data. Thick white lines are contours of value 1.  
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Table 1.  Observational Error Representation 

 
Observational 

platform 
Satellite 

HF 
Radar 

Glider Mooring Drifters Shipborne

Velocity 
(m s-1) 

---- 0.05 ---- 0.02 ---- 0.06 

Temperature 
 (oC) 

0.4 ---- 0.4 0.4 0.3 0.6 

Salinity ---- ---- 0.4 0.4 ---- 0.6 
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Figure 1. The study domain and observation locations.  The black frame indicates the 

model domain; Bathymetry of the New York Bight is in grayscale; Black dash lines are 

contours of model isobaths in meters; the yellow pentagram indicates the location of 

Ambrose Tower; the green squares indicate the locations of five HF Radar stations.   
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Figure 2.  Averaged spectrum of HF-Radar-measured surface current.  Dash lines indicate 

local inertial frequency band and the confidence limit applies to data within the inertial 

frequency band.
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Figure 3. Comparison between HF Radar observed and modeled M2 tide. 
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Figure 4  Types (a) and numbers (b) of observations over the data assimilation period (10 

April - 5 June, 2006). 
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Figure 5.  River discharges (a) and zonal (b) and meridional (c) components of the wind 

at the Hudson River mouth over the experiment period.  
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Figure 6.  Comparison of observed and modeled sea surface temperature and current at 

0700 UTC 20 April 2006. 
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Figure 7.  Comparison of glider-measured and modeled temperature and salinity along a 

glider track between 27 and 29 April, 2006 (The red line across the Hudson Shelf Valley 

in Figure 1). 
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Figure 8.  Normalized cost functions (a) and cost function gradient norm (b) at each 

iteration of all the 55 data assimilation cycles.  The normalization is achieved through 

dividing the cost functions and cost function gradient norms by their value at the 

beginning of each DA cycle. The dashed curves indicate the change of the cost function 

in the first DA cycle and the vertical doted lines separate the outer loops.  
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Figure 9.  2-D histogram of the comparison between observed and modeled temperature, 

salinity, and u component of the velocity for model before (control simulation) and after 

(analysis simulation) data assimilation.  The color indicates the log10 of the number of 

observations.  
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Figure 10.  Cost function of the control run, at the beginning of each cycle and of the 

analysis and the Chi-squared-theory-predicted optimal minimum of cost function of each 

cycle. 
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Figure 11. Magnitude of NAM wind error and normalized velocity model-observation 

misfit of the control run before and after the wind correction. All misfits are normalized 

by the number of corresponding observations assimilated in each cycle. 
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Figure 12.  Ensemble average of the skill of different DA systems over analysis and 

forecast periods for individual forecast variables. Vertical bars on symbols indicate 95% 

confidence intervals. Vertical dashed lines denote the boundary between analysis window 

and forecast window. 
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Figure 13.  Ensemble average skill of different DA systems over analysis and forecast 

periods for (a) glider-measured temperature and (b) satellite-measured SST. Vertical bars 

indicate 95% confidence. Vertical dashed lines denote the boundary between analysis 

window and forecast window.
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Figure 14.  Ratios after data assimilation to before data assimilation of RMS error and 

cross-correlation error (1CC) at each day of all cycles for the DA system assimilating all 

observational data. Thick white lines are contours of value 1.   


