
Evaluating mantle and crustal processes using
isotope geochemistry

By

Alberto Edgardo Saal

B.S. Geology, Universidad Nacional de Cordoba, Argentina, 1985

Ph.D. Geology, Universidad Nacional de Cordoba, Argentina, 1993

M.S. Geochemistry, Massachusetts Institute of Technology, 1994

Submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

and the

WOODS HOLE OCEANOGRAPHIC INSTITUTION

September 1999

© 1999 Alberto E. Saal
All rights reserved.

The author hereby grants to MIT and WHOI permission to reproduce paper and
electronic copies of this thesis in whole or in part and to distribute them publicly.

Signature ofAuthor - ~-------

Joint Program in Oceanography,
Massachusetts Institute of Technology

and Woods Hole Oceanographic Institution
September 199~

Certified by '-- _
Stanley R. Hat4 Thesis Supervisor

Accepted by _
Timothy L. Grove

Chair, Joint Committee for Marine Geology and Geophysics
Massachusetts Institute of Technology/
Woods Hole Oceanographic Institution

1



2



3

To Eliana



Acknowledgment

There are no right words to thank my friend and mentor Stan Hart. Stan provided

the freedom, the equilibrium, the wiIl, the confidence, the brightness and the friendship

necessary to make my dream possible, a dream long overdue: to work in science at the best

level and to have fun doing my work. Life is so short and so important! that ] feel

fortunate to have shared the same space and time with Stan Hart.

] would like to thank Fred Frey and Nobu Shimizu; both have been fundamental in

my education as a Geochemist. Fred teaching me the secrets of trace element geochemistry

and Nobu opening the doors to the new world of micro-analysis. ] surely will miss their

friendship and our frequent and enjoyable scientific discussions.

] owe a large part of my education to Mark Kurz, Greg Ravizza and Bernhard

Peucker-Ehrenbrink. They introduced me to the importance of studying rare gases and low

temperature geochemistry in magmatic processes. They have been exceIIent teachers and

friends.

All my work would have not been possible without the teaching, the help and the

patience of Jurek BIusztajn, Graham Layne, Ken Sims, Greg Ravizza, Bernhard Peucker

Ehrenbrink and Larry Ball.

] thank all my friends that in one way or another have contributed with their help

and friendship to my development as a scientist. Eiichi Takazawa, Ken Koga, Huai-Jen

Yang, Jurek BIusztajn, Debbie Hassler, Glenn Gaetani, Erik Hauri, Tom Wagner, Jim Van

Orman, Steve Parman, Kirsten Nicolaysen, Mark Martin and Rhea Workman.

] benefited tremendously from the fruitfuII discussion and work with Roberta

Rudnick, Erik Hauri, Peter Kelemen, Tim Grove, Greg Hirth and Sam Bowring. ]

speciaIly thank Peter Kelemen, who was fundamental in my decission to get in the

MITIWHOI joint program.

] am thankful for Geochemistry Seminar at WHO] and the Reading Seminar with

Fred Frey at MIT. These two seminars have been the best leaming experience during my

PhD.

4



Thanks to the administrative, security and maintenance people at WHO! and MIT

who help me during all this years.

Alberto E. Saal

September, 1999

5



Table of Contents

ABSTRACT 8

INTRODUCTION 11

REFERENCES 14

CHAPTER 1: RE-OS ISOTOPE EVIDENCE FOR THE COMPOSITION, FORMATION
AND AGE OF THE LOWER CONTINENTAL CRUST 16

ABS1RACT : 16

INTRODUCTION 16

GEOLOGIC BACKGROUND 18

ANALYTICAL TECHNIQUES 19

RESULTS 20

DISCUSSION 21

The Re-Os composition a/the lower continental crust 21
Chudleigh xenoliths 22

The Assimilation and Fractional Crystallization (AFe) model 22
The age 23

Continental basalts, mantle heterogeneity or lower crustal contamination? 25
CONCLUSIONS 25

REFERENCES 26

TABLE CAPTION 29

FIGURE CAPTIONS 29

CHAPTER 2: RE·OS ISOTOPIC COMPOSITION OF THE HOROMAN PERIDOTITE:
IMPLICATIONS FOR THE GENESIS OF THE PLAGIOCLASE
LHERZOLITE AND THE LAYERED STRUCTURE 41

ABS1RACT 41

INTRODUCTION 41

Geological Background 43
Sampling the Bozu section 46

ANALYTICAL TECHNIQUES 47

RESULTS 48

DISCUSSION 51

What controls the Re/Os systematics a/the Haroman peridotite? 51
What is the process (or processes) responsible for the variation in the basaltic component in the
Horoman ophiolite? 52
Can the mixing hypothesis explain the major and trace element contents ofthe fertile plagioclase
lherzolite? 56
The age of the melting and mixing events 57
Is Horoman an unusual place or does the refertilization process playa role in other ophiolitic massifs? 58

CONCLUSIONS 60

REFERENCES 62

TABLE CAPTION 67

FIGURE CAPTION 67

CHAPTER 3: PB ISOTOPIC VARIABILITY IN MELT INCLUSIONS FROM
OCEANIC ISLAND BASALTS 89

6



ABSTRACT 89

INTRODUCTION 89

ANALYTICAL TECHNIQUES 90

RESULTS 92

Major and trace element compositions _ , _ _ 92
Pb isotopes 95

DISCUSSION 96

Petrography, major and trace element composition a/the melt inclusions 96
Pb isotopes 100

CONCLUSIONS 103

REFERENCES 105

TABLE CAPTION 109

FIGURE CAPTION .110

CHAPTER 4: U SERIES ISOTOPIC VARIABILITY IN GALAPAGOS LAVAS,
EVIDENCE OF A WARM-SPOT 155

ABSTRACT 155

INTRODUCTION 155

GEODYNAMIC BACKGROUND 157

SAMPUNG AND ANALYTICAL TECHNIQUES .160

RESULTS 164

Major elements, trace elements and Sr, Nd, Pb and He isotopes 164
U decay series .167

DiSCUSSION 169

Extent ofmelting and pressure ofmelt segregation : 169
Seeing through melting and the mixing, to source characteristics 172
Mantle porosity and upwelling velocities 174

CONCLUSIONS .179

REFERENCES .181

TABLE CAPTION 186

FIGURE CAPTION 186

CONCLUSIONS 212

7



Evaluating mantle and crustal processes using
isotope geochemistry

by
Alberto E. Saal

Submitted to the Department of Earth, Atmospheric, and Planetary Sciences
Massachusetts Institute of Technology

and
Department of Geology and Geophysics
Woods Hole Oceanographic Institution

in partial fulfillment of the requirements for the degree of Doctor of
Phylosophy

Abstract
Geochemical studies are fundamental for understanding how the dynamic Earth

works and evolves. These studies place constraints on the composition, formation, age,

distribution, evolution and scales of geochemically distinct reservoirs such as the Earth's

crust, mantle and core. In this dissertation the strategy has been to work on a broad range

of topics to evaluate crustal and mantle processes. This study presents Re-Os systematics to

constrain the composition, formation and age of the lower continental crust and the mantle

lithosphere, examines melt inclusion from oceanic island basalts to evaluate the scale of the

mantle heterogeneities, and uses U-series isotope to constrain geodynamic parameters,

such as the upwelling velocities and porosities of mantle plumes.

The lower continental crust plays a pivotal role in understanding the composition

and evolution of the continental crust and the petrogenesis of continental basalts. This

chapter presents Re/Os isotope measurements which allow us to further our understanding

of these problems. Two well-characterized suites of lower crustal xenoliths from Northern

Queensland, Australia, which have average major and trace element compositions similar to

bulk lower crust, were analyzed for Re/Os isotope systematics. From this data, we infer

that the lower crust has 1 to 2 times as much as, about half of the Re and is less radiogenic

in 1870S/880S than the upper continental crust. Our data show that assimilation and

fractional crystallization (AFC) are important processes in the formation of the lower crust

and lead to dramatic changes in the Os isotopic composition of basalts that pond and
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fractionate there. Because of this, the Re-Os system cannot be relied upon to yield accurate

mantle extraction ages for continental rocks.

Chapter 2 examines the Re-Os isotopic composition of the Horoman massif, Japan.

These data indicate that the Os isotope composition is controlled by the Re content, through

radiogenic ingrowth, while the Re content is governed by the extent of depletion in

"basaltic component" of the ultramafic rocks. Re-Os systematics suggest that depletion

model ages of '" 1.8 Ga represent the age of the melting event. The colinearity between

mafic and ultramafic rocks in the Re-Os isochron diagram defines an apparent age of '"

lGa.. The similar "ages" determined by Re-Os and Sm-Nd isotopes and the high Re/Os

ratios in the most fertile peridotites plotting to the right of the geochron, indicate that the

mafic layers and the ultramafic rocks are genetically related by a refertilization process

which took place'" 1 Ga ago. The Re-Os systematics for' other ophiolitic massifs indicate

that refertilization of the lithospheric mantle seems to be a more Widespread process than

previously thought.

Previous studies have suggested that melting processes are responsible for the trace

element variability observed in olivine-hosted basaltic melt inclusions. Melt inclusions from

four individual lava samples representing three mantle end-members HIMU, EMl and EMIl

(two from Mangaia, Cook Islands, one from Pitcairn, Gambier chain, and one from Tahaa,

Society chain), have heterogeneous Pb isotopic compositions, even though the erupted

lavas are isotopically homogeneous. The range of Pb isotopic compositions from individual

melt inclusions in a single lava flow spans 50% of the world-wide range observed for

ocean island basalts (OlB). The melt inclusion data can be explained by two-component

mixing for each island. Our data imply that magmas with different isotopic compositions

existed in the volcanic plumbing system prior to or during melt aggregation.

Evaluation of U-series disequilibrium, trace element composition and He, Sr, Nd

and Pb isotopes of Galapagos lavas indicates that magma mixing between plume and

asthenospheric melts has been the main process responsible for the geochemical variation

observed in the archipelago. Correlations between He isotopes and TilTi*, KlRb and

NblLa ratios suggest that the mantle plume has positive anomalies of Nb and Ti and

negative anomalies of K. 230Th excesses measured in the lavas indicate that the basalts from

Galapagos originated completely or partially in the garnet stability field. Mantle upwelling

velocity for the Galapagos plume (Fernandina) ranges from'" 1 to 3 cm/y with a maximum
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porosity of 0.3%, indicating that Galapagos is a mildly buoyant plume. Very slow mantle

upwelling rates and very low porosity for Pinta (0.5 to 1 crnIy and 0.1 %) and Floreana

(0.1 em/year and <0.1 %) islands, support the hypothesis that the movement of the plume

across the 91°50' transform fault into a younger and thinner lithosphere produced slow

upwelling and small extents of melting.

Thesis Supervisor: Stanley R. Hart
Senior Scientist
Woods Hole Oceanographic Institution
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Introduction
The long term goal of studying basalts, crustal rocks and mantle peridotites is to

date and deconvolve the superimposed effects of processes responsible for the geochemical

variations found in the Earth's crust and mantle. This dissertation attempts to use

geochemical tracers such as major elements, trace elements and radiogenic isotopes to add

constraints to the geologic processes responsible for the composition, formation and age of

various geochemical reservoirs, such as the lower continental crust and the continental

mantle lithosphere. Moreover, this study makes use of geochemical tracers in oceanic

island basalts to assess the scale of mantle heterogeneities and to define geodynamic

parameters during upwelling and melting of mantle plumes.

Chapter 1 applies Re-Os systematics to determine the composition, formation and

age of the lower continental crust. The study of the lower continental crust is a key

component in estimating the composition and age of the continental crust as a whole

(Rudnick and Fountain, 1995). Whereas the upper continental crust is accessible to

sampling, the deeper portions of the crust are relatively inaccessible. Lower crustal

xenoliths are intact samples from the present-day lower continental crust (Taylor and

McLennan, 1995, Rudnick, 1992). Therefore, the study of such xenoliths is very

important for determining the bulk composition and origin of the lower continental crust.

This study reports Re-Os isotopic data for two geochemically well-characterized suites of

lower crustal xenoliths from Northern Queensland, Australia (Rudnick and Goldstein,

1990 and references therein). These data show that assimilation and fractional

crystallization processes (AFC) are responsible for the formation and composition of the

lower continental crust, and that whole rock Re-Os isochrons for magmas processed in the

lower crust may not give reliable age or source composition information.

Chapter 2 examines the Re-Os systematics of a geochemically well-characterized

140 m section across the layered Horoman peridotite, Japan. The Horoman massif has

been the subject of numerous structural, petrologic and geochemical studies (Takazawa et

aI., 1999a, 1999b and references therein). However, the process (or processes)

responsible for the formation of the layering, as well as the origin of the fertile plagioclase

lherzolite, still remains controversial. The origin of the layered structure has been explained

either by melting processes (Takazawa et aI., 1999b; Yoshikawa and Nakamura, 1999;

Takahashi, 1992) or by a combination of melting and melt accumulation (Obata and
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Nagahara, 1987). The Re-Os systematics seem to support the second hypothesis, where

the layered structure in the Horoman massif is produced by a combination of melting and

melt accumulation, with the plagioclase lherzolite representing the region of melt

accumulation.

Chapter 3 applies an old geochemical tool, Pb isotopes, to a new dimension in

isotope geochemistry by analyzing Pb isotopes in single melt inclusions from oceanic

island basalts. Studies of oceanic basalts have shown that the mantle is isotopically

heterogeneous (Zindler and Hart, 1986; Hart et aI, 1992 and references therein). However,

the nature, distribution, and scale of these heterogeneities remain uncertain. The

aggregation of melts on their way to the surface, and mixing in magma chambers prior to

eruption, can obscure the chemical and isotopic signatures of pre-aggregated melts.

Studies of olivine-hosted melt inclusions have been successful in defining the chemical

composition of pre-aggregated melts (Sobolevand Shimizu, 1993). However, the lack of

isotopic information on melt inclusions has made it difficult to distinguish whether these

melt compositions represent different extents of melting from a single source or whether

they originate from different source compositions. The range in Pb isotopic composition

observed in melt inclusions from single lava flows suggests that the geochemical variation

in melt inclusions has a large component of source control, and is mainly produced either

by some mixing of melts or assimilation and fractional crystallization processes deep in the

magma chambers.

Chapter 4 presents the first U decay series isotopes study of lavas from the

Galapagos archipelago. 238U_230Th_232Th isotopes place unique constraints on magmatic

processes and mantle source compositions. 238U_23()Th disequilibrium provides quantitative

evaluation of the present-day depletion of the mantle source, the extent of melting

represented by erupted lavas, and helps to constrain estimates of the mantle porosity and

upwelling velocities during melting (Elliot, 1997 and references therein). Although the

Galapagos islands have been interpreted as the surface manifestation of mantle plumes,

geological, geophysical and geochemical studies have found it challenging to fit Galapagos

magmatism to a "standard" hotspot model (Kurz and Geist, 1999). The diffuse nature of

the Galapagos plume, and the dynamic melting and equilibrium porous flow models using

U decay series isotopes constrain mantle upwelling velocities for the Galapagos plume

(Fernandina) to ,,; 3 cmly and maximum porosities of 0.3%. These results indicate that
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Galapagos is a mildly buoyant plume, significantly less intense thennally than the Hawaiian
hotspot.
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1. Chapter One

Re-Os isotope evidence for the composition, formation and age
of the lower continental crust

1.1 Abstract

The lower continental crust plays a pivotal role in understanding the composition

and evolution of the continental crust and the petrogenesis of continental basalts. We

present Re/Os isotope measurements which allow us to further our understanding of these

problems. Two well characterized suites of lower crustal xenoliths from Northern

Queensland, Australia, which have average major and trace element compositions similar to

bulk lower crust, were analyzed for Re/Os isotope systematics. From this data, we infer

that the lower crust has 1 to 2 times as much Os, about half of the Re and is less radiogenic

in 1870S/1880S than the upper continental crust. Our data show that assimilation and

fractional crystallization (AFC) are important processes in the formation of the lower crust

and lead to dramatic changes in the Os isotopic composition of basalts that pond and

fractionate there. Because of this, the Re-Os system cannot be relied upon to yield accurate

mantle extraction ages for continental rocks.

1.2 Introduction

Determining the composition and age of the continental crust is fundamental to an

understanding of the evolution of the Earth (Taylor and McLennan, 1995, Rudnick, 1995).

The study of the lower continental crust is a key component in estimating the composition

and age of the continental crust as a whole (Rudnick and Fountain, 1995). Whereas the

upper continental crust is accessible to sampling, and sediments provide a good means to

obtain its average composition, the deeper portions of the crust are relatively inaccessible.

The sampling of lower crust is limited to granulite facies terrains exposed during major

tectonic events, and xenoliths carried from lower crustal depths deep to the surface by alkali

basalts. Not all granulitic terraines represent the deep crust, and only those terrains that

have undergone isobaric cooling for long periods of time (> 100 Ma.) can be representative

of the lower crust (Rudnick and Taylor, 1987). In contrast, lower crustal xenoliths are

intact samples from the present-day lower continental crust (Taylor and McLennan, 1995,
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Rudnick, 1992). Therefore, the study of such xenoliths is very important for determining

the bulk composition and origin of the lower continental crust.

Re-Os differs from other isotopic systems (Pb,Sr, Hf and Nd) because Re and Os

are siderophile and chalcophile (rather than lithophile) elements, and because Os is a

compatible element (Os is retained in the crystals) during partial melting or fractional

crystallization (Hart and Ravizza, 1996). This compatible behaviour leads to high Re/Os

ratios and radiogenic Os isotopic compositions in the continental crust (Allegre and Luck,

1980) and makes 1870S/880S ratios in fractionating mantle-derived magmas susceptible to

change by crustal contamination (Reisberg et aI, 1993; Marcantonio et aI., 1995; Roy

Barman and Allegre, 1995; Widom and Shirey, 1991; Martin et aI., 1991; Walker et a!.,

1997). The slow evolution of 1870S/1880S in the mantle contrasts with the much more rapid

growth of radiogenic Os in most crustal rocks (Allegre and Luck, 1980). Thus, Os isotopes

should be a clear discriminator between crustal and mantle material (Walker et al., 1991;

Walker et aI., 1994; Horan et aI., 1995). The Re-Os isotope systematics of the lower

continental crust are important for evaluating

1) the processes responsible for the formation, composition, and age of the

lower crust (Taylor and McLennan, 1995; Rudnick, 1992; Zandt and Ammon, 1995;

Halliday et aI., 1993; Rudnick and Fountain, 1995; Rudnick, 1995; Rudnick and Presper,

1990;

2) the average Re-Os isotopic composition and concentration of the bulk

continental crust (Rudnick, 1992);

3) the sensitivity of Re-Os as an indicator of crustal contamination, and the

extent to which basalts erupted through the continental crust have chemically exchanged

with the deepest crust (Martin, 1989; Lambert et al., 1989; Walker et aI., 1991;

Marcantonio et aI., 1993; Walker et aI., 1994; Horan et aI., 1995)

We report Re-Os isotopic data for two geochemically well-characterized suites of

lower crustal xenoliths from Northern Queensland, Australia (Rudnick et aI., 1986;

Rudnick and Taylor, 1987; Rudnick and Williams, 1987; Rudnick and Goldstein, 1990;

Rudnick 1990; Rudnick and Taylor, 1991; Kempton and Harmon, 1992). In this paper,

we use the Re-Os isotopic systematics of these lower crustal xenoliths to show that

assimilation and fractional crystallization processes (AFC) are responsible for the formation
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and composition of the lower continental crust. We assess the sensitivity of the Re-Os

isotopic system as an indicator of crustal contamination, and test whether there is

decoupling between Os and other isotopic systems during assimilation processes. Finally,

we show that whole rock Re-Os isochrons for magmas processed in the lower crust may

not give reliable age information.

1.3 Geologic Background

Two suites of granulite-facies xenoliths, Chudleigh and McBride, from North

Queensland have been the subject of extensive petrological and geochemical studies

(Rudnick et a!., 1986; Rudnick and Taylor, 1987; Rudnick and Williams, 1987; Rudnick

and Goldstein, 1990; Rudnick 1990; Rudnick and Taylor, 1991; Kempton and Harmon,

1992). The Chudleigh xenoliths were carried in <2 Ma basalts erupted through Paleozoic

rocks of the Tasman fold belt. Three types of xenoliths are present: plagioclase-rich,

pyroxene-rich and transitional between these two groups. Mineralogical studies indicate

that the xenoliths underwent isobaric cooling at moderate to high pressure ('" 0.7 to 1.5

GPa.). These xenoliths are mafic in composition (Si02<S1.2 wt%), and show good

correlations between isotopic compositions, trace element contents and Mg# (molar

Mg/(Mg+Fe) ratios). These correlations were used to argue that the samples are genetically

related cumulates from basaltic liquids, something which is very unusual to find in lower

crustal xenolith suites (Rudnick et a!., 1986; Rudnick and Goldstein, 1990; Rudnick and

Taylor, 1991; Kempton and Harmon, 1992). Rudnick et a!. (1986), conclude that the age

of the Chudleigh xenoliths is relatively young (<100 Ma), probably related to the Cenozoic

igneous activity which occurs throughout eastern Australia (Rudnick et a!., 1986).

The McBride xenoliths were carried by <3 Ma basalts erupted through the

Proterozoic Georgetown inlier. These xenoliths range in composition from mafic to felsic,

although mafic compositions dominate. Therefore, their chemical compositions reflect

equally diverse protoliths, ranging from mafic cumulates, to mafic and felsic melts, and

restites of the anatexis of metapelitic sediments (Rudnick and Taylor, 1987; Rudnick and

Goldstein, 1990; Rudnick 1990; Rudnick and Taylor, 1991; Kempton and Harmon, 1992).

As in Chudleigh, the xenoliths underwent isobaric cooling at moderate to high pressure (>

0.7 GPa.). The age of these rocks has been determined by V-Pb zircon techniques

(Rudnick and Williams, 1987). Most of the ages show xenoliths formation times'" 300 Ma

ago, during calc-alkaline igneous activity. In contrast, some of the xenoliths apparently
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formed during the Proterozoic '" 1570 Ma. Therefore the protoliths for the McBride

xenoliths formed during large-scale mixing between Proterozoic crust and basalts during

late-Paleozoic (- 300 Ma) convergent margin magmatism (Rudnick and Taylor, 1987;

Rudnick and Goldstein, 1990; Rudnick 1990; Rudnick and Taylor, 1991; Kempton and

Harmon, 1992).

1.4 Analytical Techniques

The samples were washed in ultrasonic bath with Millipore water, and dried on a

hotplate at 50°C. Approximately 50 g of material was selected from each sample; the

samples were wrapped in plastic and hammered to small chips, and the chips were

powdered in an agate shatterbox.

The analytical techniqnes for Re-Os isotopes are described in Ravizza and Turekian

(1989), Hauri and Hart (1993) and Peucker-Ehrenbrink et a!., (1995). Re and Os were

determined on separate powder splits. For the analysis of Os, 15 g of sample powder was

digested by a NiS fire-assay technique. The powder is spiked with a solution of enriched

1900S, and mixed with high purity boric acid, Ni and S powders. The 1.5: 1 mixture of flux

to sample was melted at 1050 to I 150°C. This step produced a NiS bead that scavenges Os

from the fused rock. The bead is dissolved in 6N HCl and the solution is filtered to recover

the PGE particulates. The ruter is dissolved in an oxidizing CrO, + H2S04 acid solution,

from which the OS04 is distilled and trapped in HBr acid. The HBr solution is dried down

to a 1-2 pI drop and diluted in Hp until a solution of IN HBr is obtained. A single bead of

Chelex 50 resin is added to the solution, and Os is partitioned into the resin bead at low

normality HBr. The bead is deposited in concentrated HBr to liberate the Os, which is then

loaded on a Pt filament with BaNO, as an activator. The Os concentrations and isotopic

compositions were measured by negative thermal ionization mass spectrometry on NlMA

B (WHO]), with oxygen enhanced emission and analog multiplier detection using a single

collector and a dynamic collection routine.

For Re analysis, 0.5 g of sample powder is spiked with a solution of enriched

185Re, and digested in a mixture of HF-HN03 • Re is extracted by simple ion exchange

techniques, using AGIX8 resin. The Re is absorbed into the resin from O.5N HN03 , and

then eluted in 4N HNO,. An identical second step is used to further purify the Re. The Re

19



measurements were done on a Finnigan MAT Element high-resolution ICP-MS (at WHOI),

by rapid peak-hopping using electrostatic scanning.

In-run precision for all but two of the measurements is 20 <0.35% for 1870S/1880S,

20 <1 % for Os and 20 <2% for Re contents. The exceptions are samples 83-107 and 83

140, with lower precision for Os concentration (20 <10%) and isotopic composition (20

<7%), due to a large blank correction. The analytical blanks ranged from 0.4 to 0.5 pg/g

of flux for Os and 5 to 24 pg total blank for Re; the isotopic composition of the blank

ranged from 0.4 to 0.47 for 1870S/1880S. We used a ratio 1.5: 1 of flux to sample. All

samples were corrected for blank contribution. Re and Os replicates on separate powder

splits ranged from 2 to II % and from 1 to 18% respectively, excluding sample 85-106,

which showed a 32% difference for the Re replicate. The 1870S/1880S replicates for the

Chudleigh xenoliths are <0.6%, but for the McBride suite, the replicates range from 2 to

5%. The style of the poorer reproducibility in replicates from the McBride suite is

suggestive of a "nugget" effect; that is, domains or minerals having higher Re/Os are

heterogeneously distributed within the rock and have been out of diffusive equilibrium with

the rest of the rock for reasonably long time spans (in this case ~300 Ma, the age of the

suite; Rudnick and Williams, 1987). We consider high Re/Os nuggets as a possible

explanation for the poor reproducibility in the McBride suite because the variation ill

1870S/1880S ratios and Re contents is large, at similar Os concentrations (Table 1).

1.5 Results

The Os isotopic composition and Re and Os concentrations of sixteen samples from

two well-characterized lower crustal xenolith suites from North Queensland are reported in

Table 1. The two suites of xenoliths from Queensland show differences in Re and Os

concentration and Re!Os ratios, but have a similar and large range in 1870S/1880S ratios

(from 0.1721 to 1.759 for McBride versus 0.1889 to 1.814 for Chudleigh) (Figure 1 a and

b). The McBride xenoliths have a larger range of Re (two orders of magnitude), and a

smaller range of Os contents and Re/Os ratios than the Chudleigh xenoliths (a factor of less

than two, excluding one outlier). Moreover, the Os isotopic ratios of the McBride

xenoliths do not correlate with Re/Os ratios (Figure 1). These characteristics are consistent

with the extreme lithologic and genetic diversity of the McBride xenoliths; as noted above,

these range from paragneisses to mafic and felsic orthogneisses, fonned during large-scale

mixing between Proterozoic crust and basalts during late-Paleozoic (~ 300 Ma) convergent
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margin magmatism (Rudnick and Taylor, 1987; Rudnick and Goldstein, 1990; Rudnick

1990; Rudnick and Taylor, 1991; Kempton and Harmon, 1992).

In contrast, the Re-Os results for the Chudleigh xenoliths show a strikingly good

linear correlation on aRe-Os isochron diagram, defining an apparent age of approximately

260 Ma (Figure 2). However, relatively good positive correlations for present-day

'870S/'880S and 6180, Pb, and Sr isotopic compositions, and negative correlations between

1870S/1880S and Nd isotopic ratios contradict the hypothesis that the Re-Os isochron array

represents a real age (Figure 3). In particular, the positive correlation between 1870S/1880S

and 1'17/4 Pb (Hart, 1984) implies the existence of an old crustal component in the

formation of the lower crust (Figure 3). These correlations between the different isotopes

and 1870S;"'Os ratios suggest that the variation in Os isotopes is not the result of ingrowth

from Re/Os, but is produced by mixing or AFC processes, as proposed by earlier studies.

These studies showed that the Chudleigh xenoliths are mafic in composition (SiOz < 51.2

wt%), and showing good correlations between Sr, Nd, Pb and 6180 isotopic composition,

trace element contents and Mg#. These correlations reflect a genetically-related suite of

cumulates from mafic magma(s) that underwent simultaneous assimilation and fractionation

in the deep crust (Rudnick et aI., 1986; Rudnick and Goldstein, 1990; Rudnick and

Taylor, 1991; Kempton and Harmon, 1992). It is very unusual to find such simple

chemical and isotopic systematics in lower crustal xenolith suites. The Chudleigh suite

thus provides an unique natura1 laboratory with which to investigate the chemical changes

occurring in mafic magmas that pond and fractionate within the deep continental crust.

1.6 Discussion

1.6.1 The Re-Os composition of the lower continental crust

The Chudleigh and McBride xenoliths have average major and trace element

compositions similar to estimates of the bulk lower continental crust (Rudnick, 1992;

Rudnick and Fountain, 1995) (Figure 4), and can therefore be used to place broad

constraints on the Re-Os concentration and Os isotopic composition of the lower crust.

The xenoliths have Os and Re concentrations which average 102 and 276 ppt (Re/Os =

2.71), with median values of 49 and 184 ppt (Re/Os =3.75) respectively (Table 1, Figure

I). The average and the median are quite different because of one outlier (sample 85-100)

with high Os ('" 1000 ppt) and Re ('" 800 ppt) concentrations. The median values are
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probably more useful in representing the bulk lower crust, but more data are clearly

desirable. The concentration-weighted mean 1870S/1880S ratio for the lower crust in north

Queensland is 0.4 or 0.8, including and excluding the outlier, respectively. Recent

analyses of eclogite and granulite facies xenoliths from central Arizona by Esperans;a et al.,

(1997 ), give similar results (Table 1, Figure 1), although these xenoliths have somewhat

lower Os contents, which translates into a slightly higher mean Re/Os ratio. We infer from

these data that, relative to the upper crust (Esser and Turekian, 1993), the lower crust has

one to two times as much Os, about half of the Re, and is probably less radiogenic (having

one half to one third the 1870S/1880S of the upper crust). However, the Os isotopic

composition of the lower continental crust will vary with the age of the crust. If we assume

a mean age of 2.3 Ga for the continental crust (Allegre et aI., 1983) and the Re-Os

composition of the mantle given by Meisel et al. (1996), and our average Re/Os estimates

of.I87Rd880s '" 20 and 16, respectively (including and excluding the data by Esperans;a et

al. (1997 ), for the Arizona xenoliths), we calculate the mean 1870S/1880S of the bulk lower

crust to be between 0.7 to 0.9 (Figure Ib), a range that encompasses the median Os

isotopic composition derived from the Queensland xenoliths (Table I). Importantly, our

data establish the presence of material with relatively high Os contents and radiogenic Os

isotopic compositions in the lower crust. The variation in Os isotopic composition and Re

Os concentrations in all three xenolith suites illustrates the heterogeneity of the present

lower crust, and shows that isotopic homogenization through fluid flow or melting has not

been important.

1.6.2 Chudleigh xenoliths

1.6.2.1 The Assimilation and Fractional Crystallization (AFC) model

We model the Chudleigh xenoliths as cumulates resulting from simultaneous

assimilation and fractional crystallization (DePaolo, 1981) of a basaltic melt in the deep

continental crust (Figure 3d, e and f; modeling parameters are given in the figure caption).

The sigmoidal shape of the curves in the l870S/1880S versus Sr and Nd isotopes shows

that during the first stages of APC the Os isotopic composition is buffered by the Os

content in the basaltic magma, whereas during the later stages it is buffered by the Os

content and isotopic composition of the assimilant (old continental crust). The fractionation

of olivine andlor sulfide decreases the concentration of Os in the magma (Hart and Ravizza,

1996), making it susceptible to contamination with crustal material having low Os

concentration (2 ppt, in our model; Figure 3d). Notice that in the initial and final stages
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there is a decoupling between 1870S/I880S and the other isotopic systems. The compatible

behavior of Os relative to Nd, Sr and Pb, and the differences in Os concentration and

isotopic composition between mantle melts and evolved crustal materials, accounts for the

buffering of Os in the melt; such effects are generally not observed in the other isotopic

systems. Moreover, the compatible character of Os explains the large difference between

the trends produced by AFC and bulk mixing (Figures 3), and makes APC a far more

effective process than bulk mixing for changing the isotopic composition of the basalt,

especially when the contaminant has a low Os concentration.

1.6.2.2 Theage

Although the Chudleigh xenoliths cannot be dated directly, the chemical systematics

described above provide some constraints on their magmatic crystallization age. Because

the xenoliths are cumulates, and not crystallized magmas, they exhibit a large range in

SmlNd ratio, depending upon whether plagioclase or clinopyroxene is the main cumulate

phase. Thus the excellent correlations seen today between Nd isotopic composition (ENd

from +9.6 to -6.1), Mg# (63 to 79), Pb ('o6Pbfo4Pb = 17.8 to 18.7), Sr (87Sr/86Sr =

0.70239 to 0.71467) and bI80(b180 = +6.2 to +7.0) degrade as the isotopic compositions

are calculated at earlier times (Rudnick et a!., 1986; Rudnick and Goldstein, 1990;

Kempton and Harmon, 1992) (Figure 2, inset). These features led to the conclusion that

the cumulates crystallized relatively recently «100 Ma), and that they are probably related

to Cenozoic igueous activity that occurs throughout eastern Australia (Rudnick et al.,

1986).

The Re-Os results for the Chudleigh xenoliths show a strikingly good linear

correlation on aRe-Os isochron diagram, defIning an apparent age of approximately 260

Ma (Figure 2). There are two possible interpretations for this correlation:

I) it accurately reflects the igueous crystallization age of the xenoliths.

2) it reflects a recent APC process involving a mantle-like end member and a

radiogenic crustal end member.

We prefer the second interpretation for the reasons outlined below.

Parental magmas in the xenolith suite underwent both crystallization (as evidenced

by the cumulate textures and compositions) and crustal assimilation (as seen in the Nd, Sr,

Pb, bIRO isotopic systems, trace element and Mg# systematics) (Rudnick et a!., 1986;
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Rudnick and Goldstein, 1990; Kempton and Harmon, 1992). If interpretation 1 is correct,

at ",260 Ma ago the samples should all have the same initial 1870sl880S, while the Re/Os

and the other isotopic systems varied due to progressive contamination. Therefore, this

hypothesis assumes that the Os isotopes were either completely immune to crustal

assimilation, giving the isotopic composition of the initial melt, or they were homogenized

to the isotopic composition of the contaminant. That means that 260 Ma ago, the Os

isotopes reflected in the initial or final stage of the sigmoidal curve produced during the

AFC process (Figure 3). Neither case is true. The (1870S/1880S)260 M, ratios of these

xenoliths exhibit a large range, between 0.12 to 0.26 , and therefore are not uniform at 260

Ma as expected by interpretation 1 (Figure 5). Even in the case that we assume the initial

(1870s/1880s)260Ma for the xenoliths to be uniform, it would be required to be approximately

'" 0 .19. This Os isotopic composition is either too high compared to modern mantle-derived

basalts (cf. 0.1276 to 0.1565) or too low to represent old continental crust (cf. '" 1.9).

Another possibility is that the AFC event was not recent but occurred 260 Ma ago and

(' 870S/1880S)260 M, ratios were modified by contamination. If this would be the case, we

would expect that the (1870S/1880S)260 M, ratios would correlate with other indicators of

contamination such as 1\180 isotopes. Figure 5 shows that the initial Os isotope ratios do

not correlate with any of the other isotopic systems at '" 260 Ma. Thus, it is unlikely that

the apparent "age" of 260 Ma is real, or that the mixing occured 260 Ma ago. In contrast,

relatively good positive correlations are seen for present-day 1870S/1880S and 1\180 , Pb, and

Sr isotopic compositions and negative correlations between 1870S/1880S and Nd isotopic

ratios (Figure 3). The inset to Figure 2 shows that the correlations between different

isotope systems, as measured by their correlation coefficient, are best within 50 to 100 Ma

of the present-day. The general lack of correlations between Mg# and Nd, Pb isotopes at

260 Ma (Figure 2, inset), coupled with the relatively good present-day correlations (Figure

3), strongly suggests that these cumulates did not crystallize at 260 Ma (Rudnick et aI.,

1986; Rudnick and Goldstein, 1990). We conclude that the positive trend in the Re-Os

isochron diagram was produced by APC processes at a later date.

Our AFC model not only explains the correlation between 1870S/1880S and the other

isotopic ratios observed in the Chudleigh xenoliths (Figure 3d, e and f), it also reproduces

the near-linear trend in the Re-Os isochron diagram (Figure 2), even when the contaminant

does not lay on that trend. Our data and modelling show that APC processes may produce
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whole-rock Re-Os isochrons with no age significance, by depletion of Os through olivine

sulfide fractionation, coupled with assimilation of radiogenic crust.

1.6.3 Continental basalts, mantle heterogeneity or lower crustal
contamination?

The Chudleigh xenoliths clearly document that the Os isotopic composition of

basaltic magmas can be easily affected by crustal assimilation. Small amounts of AFC

during basalt-lower continental crust interaction can produce Os isotopic variations that may

be erroneously interpreted as evidence for mantle heterogeneity. For example, consider an

AFC process involving basalts with a MORE signature C870S/1880S '" 0.1276, Os

concentration ranging from 10 to 300 ppt; Roy-Barman and Allegre, 1995), interacting

with the lower crust C870S/1880S '" 0.804, Os '" 50 ppt). Figure 6 shows that it would

require only 1 to 10% AFC, depending on the Os concentration of the basalts to change the

isotopic composition of the melt from 0.1276 to 0.1565, a value typical for a more enriched

mantle source [using the most primitive om samples analyzed for Os isotopes (Hauri and

Hart, 1993), and assuming a bulk Dos'" 10 (Hart and Ravizza, 1996), and a ratio of mass

assimilated to mass fractionated of one half]. Thus, small extents of AFC processes

during basalt-lower crust interaction can produce isotopic variations in the melt that may be

erroneously interpreted as evidence for mantle heterogeneity.

1.7 Conclusions

In summary, the lower crust has, on average, higher Os ('" 2 times) and lower Re

concentrations than current estimates of the average upper crust and may thus be

comparatively less radiogenic. Materials with relatively high Os concentrations and

radiogenic Os isotopic compositions exist in the lower crust and may act as contaminants to

basaltic magmas that differentiate there. The Re-Os system is extremely sensitive to AFC

processes at relatively small degrees of differentiation (i.e., « 20% AFe) and AFC

processes are more effective than bulk mixing in changing Os isotopic compositions of

melts, due to Os depletion during fractional crystallization. Like other isotopic systems, the

Re-Os system is not a good indicator of the crystallization age of rocks that formed through

AFC processes.
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1.9 Table Caption

Table 1: Re, Os concentration and Os isotopic composItIon for the Chudleigh and

McBride xenolith suites. * indicates samples and replicate that were run on the same day.

To,puMare Os model ages calculated with respect to "bulk earth" C87Re/I880s = 0.428 and

1870S/1870S = 0.1290; Meisel et al. (1996) and a decay constant of 1.64 x 10,11 y.1. PI =

plagioclase and Px = pyroxene. Average and median values for the Arizona suite

(Esperan~a et aI, 1997) and average values for the upper continental crust (Esser and

Turekian, 1993) are also reported. In some samples, we report duplicates for Re, but we

measured the Os concentration and 1870S/1880S ratios only once. In those cases, we

calculate the 187Rd880s and the Os model ages twice, using both Re values and the

measured Os concentration and isotopic composition.

1:10 Figure Captions

Figure 1: a) Os versus Re concentrations, and b) Re/Os versus 1870S/1880S ratios for

lower crustal xenoliths from Queensland, Australia. The two mean lower crustal isotopic

compositions shown in panel b are weighted according to Os concentrations. The lower

square includes an anomalously high Os sample, the upper square excludes this sample.

Fields for upper continental crust (without organic and carbonate-shelf sediments) and

oceanic basalts (MORB-OIB) were compiled by Bernhard Peucker-Ehrenbrink. The mean

and median Re and Os concentration, Re/Os ratios and isotopic composition weighted by

Os concentration for Arizona xenoliths (Esperan~a et al, 1997) are plotted for comparison.

The McBride xenoliths show chemical characteristics indicative of a lithologically and

genetically diverse suite, and plot in the field defined by upper crustal material. The

Chudleigh suite shows characteristics of genetically-related cumulates from basaltic magma

undergoing crustal contamination (see text).

Figure 2: Re-Os isochron diagram for the Chudleigh suite showing bulk mixing and APC

trends. The data (solid circles) define a linear trend, with an apparent age of '" 260 Ma.

Open circles are duplicate analyses, not included in the isochron regression. The inset

shows correlation coefficients (for linear correlations) between Mg#, Nd C43Nd/144Nd) and

Pb e06PbP04Pb). In contrast to the Re-Os age, the best correlations exist at <100 Ma,

suggesting that the crystallization age of these xenoliths was <100 Ma. The AFC model

(using the parameters listed in Figure 3 caption) generates a linear trend in the Re-Os
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diagram (shown by gray circles), which has no age significance. X's show the bulk

mixing trend between the initial melt and the assimilant used in the AFC model. Each gray

circle and X corresponds to 5% AFC or bulk mixing, respectively. The York regression for

the AFC model was calculated using the same number of points and same distribution in

the isochron as the Chudleigh suite, to make the results comparable (the points used are

labeled, i.e., 3%). Note that the Chudliegh xenoliths are cumulates, producing low Re/Os

ratios during the AFC process. Figures 2, 3 and 6 indicate that careful evaluation of AFC

is necessary before age significance is attributed to Re-Os isochrons for lower crustal

xenoliths or for basalts (or their cumulates) that may have differentiated in the lower

continental crust.

Figure 3: Isotopic correlations and AFC model results for the Chudleigh xenoliths (black

circles). 1870S/1880S versus a) 206Pb/204Pb, b) /17/4 Pb, c) 0180 , d) Os concentration, e)

143Nd/144Nd and f) 87Sr/86Sr. Relatively good correlations exist between 1870S/1880S, OS

concentration and Pb, Sr, Nd, Pb, 0180 isotopic systems, with the exception of one

sample. The aberrant sample (83-114, open circle) is probably showing a "nugget" effect;

this explanation is consistent with this sample having the lowest Os isotopic ratios and the

highest Os concentration, and plotting outside the correlation defined by the other samples.

The AFC curves (gray circles) are marked in 5% increments (except the labeled points),

where the ratio of mass assimilated to mass fractionated is ::: 0.67. The contaminant has

intermediate Sr and Nd isotopic compositions (87Sr/86Sr::: 0.75 and 143Nd/144Nd ::: 0.5114)

and elemental concentrations (Sr ::: 200 ppm, Nd ::: 27 ppm), based on published data for

crust from the Tasman fold belt (Rudnick et ai, 1986). This crustal contaminant is assumed

to have very low Os (0:: 2 ppt), to test the sensitivity of Os to crustal contamination, and Re

concentrations (::: 24 ppt), and 1870S/1880S::: 2.6477 (To,cH::: 2 Ga.), similar to Proterozoic

upper continental crust. All of the isotope systems (e.g., Sr, Nd, Pb, 0180 and Os)

require a contaminant that is higher in 0180, /17/4Pb, Sr, Pb and Os and lower in Nd

isotopic composition than any sample seen in either the Chudleigh or McBride xenolith

suites; this suggests the presence in the lower crust of (unsampled) old material with high

0180 and high time-integrated Rb/Sr, UlPb and Re/Os and low Sm/Nd. For the parental

basaltic melt, we used the most primitive isotopic composition seen in the xenoliths

(87Sr/86Sr 0:: 0.702, 143Nd/144Nd ::: 0.5131) and inferred 1870S/1880S ::: 0.1276. We

assumed this melt has Sr::: 350 ppm, Nd 0:: 14 ppm, Re::: 250 ppt, and 7.5 times the Os

concentration of the contaminant (::: 15 ppt). Bulk partition coefficients for Sr and Nd were
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estimated assuming cumulates of plagioclase + clinopyroxene + olivine (Ds, '" 0.5, DNd '"

0.1). The bulk partition coefficient for Os (Do,'" 7), was estimated from the data of Hart

and Ravizza, (1996); Re was assumed to be moderately incompatible (DRe ", 0.6). The APC

model presented here is not unique, but serves to illustrate that the trends observed in the

data can be explained by an APC process. In contrast, the same is not true for bulk mixing,

which is not successful in reproducing the observed arrays.

Figure 4: Comparison between the mean major and trace elements composition of global

lower crustal xenoliths with those from the Queensland xenoliths. The global dataset

(available on http://www-ep.es.llnl.gov/gennl) includes 450 analyses of major elements

and 150 analyses of trace elements, excluding the Queensland data. Both means for a

variety of elements agree within the standard errors (20) of the compilations, suggests that

the global average is a reasonable estimate of lower crust composition. The exception are

Cs, Th, U, Pb, Cu and Zn, difference that we attribute to their mobility during secondary

processes and to the difficulty in their accurate measurement. The fact that many lower

crustal xenoliths are demonstrably older than the magmatic episode that carried them to the

surface indicates that the xenoliths are not genetically relatated to that magmatic event

(Rudnick, 1992).

Figure 5: (1870S/1880S) versus (zo6Pb/zo4Pb) (143Nd/144Nd) and260Ma 260Ma' 260Ma'

(
87SrI"6Sr)Z60 M" 187Re/1880s and (i 180. Note that the present-day correlation between the

isotopes is lost when they are corrected back to 260 Ma, indicating that the APC processes

did not occur 260 Ma ago. Moreover, the xenoliths exhibit a large range in

(1870S/1880S)260M, from 0.12 to 0.26; this variability would not be expected if the linear

trend produced by the Chudleigh xenoliths in the Re-Os isochron diagram define a real age

of 260 Ma (see text for discussion).

Figure 6: 1870S/1880S versus extent of differentiation during an AFC process. This is a

hypothetical case where we evaluate how much differentiation it would take for a MOR

basalt interacting with the lower crust to give Os isotopic ratios similar to those measured in

OIEs. We assumed for MORE 1870S/1880S '" 0.1276, and an Os concentration ranging

from 10 to 300 ppt. We used our average Os values for the lower crust (1870S/1880S '"

0.804, Os '" 50 ppt). We also assumed that the ratio between mass assimilated and mass

fractionated is equal to 0.5 and the bulk partition coefficient for Os is Dos'" 10. Symbols

are given at every 1% of APC. Thus, it would require only I to 10% AFC, depending on
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the initial basalt Os concentration, to change the MORB Os isotopic composition of 0.1276

to that of OIRs '" 0.1565.
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Table 1: Re and Os concentrations and Os isotopic compositions of
granulite-facies lower crustal xenolith suites from Northern Queeusland,
Australia.

Sample Lithology Re (ppt) Os (ppt) 187Re/l880S 1870S/18808 To,PUM(Ma)

Chudleigh suite

83-107 PI-rich cumulate 153.2 3.20 265 1.249 258
146.0 252 271

83-114' PI-rich cumulate 109.6 49.7 10.66 0.1875 349
89.8 53.8 8.08 0.1889 478

83-127 PI-rich cumulate 132.2 16.55 39.5 0.3056 275
146.6 43.9 248

83-131 PI-rich cumulate 104.7 9.39 55.9 0.4251 324
83-140 PI-rich cumulate 259 3.85 391 1.814 263
83-110 Px-rich cumulate 70.8 31.3 11.27 0.3104 1,013
83-115 Px-rich cumulate 292 15.29 97.9 0.613 302

BC Transitional cum. 297 51.01 28.7 0.2703 305

McBride suite

83-160 Felsic grauulite 219 61.9 19.33 1.180 3,299
83-162 Felsic grauulite 80.1 56.2 7.23 0.5013 3,250
85-100' Mafic grauulite 734 1,043 3.41 0.1729 897

808 931 4.21 0.1652 586
85-108' Mafic grauulite 1,141 106.5 55.0 0.6230 550

1,210 104.5 59.3 0.6079 494
85-106 Mafic cumulate 50.8 47.4 5.26 0.1993 884

34.5 3.58 1,349
83-159 Mafic residue 422 55.9 41.9 1.2959 1,692
85-114' Mafic residue 234 84.0 16.28 1.7597 5,970

230 86.2 15.46 1.6590 5,910
83-157 Metasediment 64.1 44.5 8.00 1.2832 8,649

Crustal Averages

North Queeuslaud Meau 276 102 13.54 0.418 1,330
North Queensland Median 184 49 19,70 0.804 2,100

Central Arizona Meau 286 45 32.33 0.548 796
Central Arizona Median 161 31 26.42 0.6710 1,259

Average Upper Crust 400 50 47.62 1.9256 2,278
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2. Chapter Two

Re-Os isotopic composition of the Horoman peridotite:
Implications for the genesis of the Plagioclase Lherzolite and the

layered structure

2.1 Abstract

We report the Re-Os isotopic composItIon of the Horoman peridotite. Twenty

santples were analyzed from a geochemically well-characterized 140-m section across the

layered sequence ranging from plagioclase llIerzolite to lherzolite to harzburgite (the Bozu

section). The range in 1870S/1880S ratios observed in the 140-m Bozu section is sinIi1ar to

that reported for other peridotitic massifs, suggesting that the process(es) responsible for

the Re-Os isotope variation at the meter or the whole massif scales are the sante. The Re-Os

isotope systematics in the Horoman peridotite indicate that the Os isotope composition is

controlled by the Re content, through radiogenic ingrowth, while the Re content is

governed by the extent of depletion in "basaltic component" of the ultramafic rocks. Re

depletion model ages of '" 1.8 Ga suggest that the age of melting is much older than '" I

Ga, previously estimated based on Nd isotopes. However, the colinearity of data for mafic

layers and the ultrantafic santples in aRe-Os isochron diagrant defines an apparent age of '"

I Ga, similar to the ages defined by Nd isotopes. The colinearity between mafic and

ultrantafic rocks, the similar "ages" determined by Re-Os and Sm-Nd isotopes and the high

Re/Os ratios in the most fertile peridotites plotting to the right of the geochron, indicate that

the mafic layers and the ultrantafic rocks are genetically related by a refertilization process

which took place'" I Ga ago. The Re-Os systematics for other peridotite massifs indicate

that refertilization of the lithospheric mantle seems to be a more widespread process than

previously thought. Confrrmation of the refertilization hypothesis could have important

implications for our understanding of how the continental lithosphere forms and grows.

2.2 Introduction

The Horoman peridotite is a fault-bounded mantle slice, 8 X 10 X 3 km, emplaced

in the southern end of the high-temperature low-pressure Hidaka Metamorphic Belt in
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Hokkaido, Japan (Niida, 1974; 1984). The Horoman massif has been the subject of

numerous structural, petrologic and geochemical studies (Nagasaki, 1966; Komatsu and

Nochi, 1966; Niida, 1974; 1984; Arai and Takahashi, 1989; Obata and Nagahara, 1987;

Takahashi et a!', 1989; Takahashi, 1991; 1992; Ozawa and Takahashi, 1995; Frey et aI,

1991, Takahashi and Arai, 1989; Takazawa et a!., 1992; 1994; 1996, 1999a, 1999b;

Takazawa 1996; Yoshikawa et a!., 1993; Yoshikawa and Nakamura, 1998; Morishita and

Kodera, 1998). However, the process (or processes) responsible for the formation of the

layering, as well as the origin of the fertile plagioclase lherzolite, still remains controversial.

Several hypotheses have been proposed to explain the formation of the layering:

1) polybaric melting of an upwelling fertile mantle (plagioclase lherzolite), followed

by subsolidus thinning and folding of large-scale simple compositional bands (Takazawa,

1996; Yoshikawa and Nakamura, 1999)

2) formation of cumulates through fractional crystallization (Niida, 1984).

3) melting and melt segregation of an homogeneous mantle, where the depleted

rocks represent residues of melting and the plagioclase lherzolite represents the region of

melt accumulation (Obata and Nagahara, 1987)

4) melt segregation processes governed by suction associated with local melting

along a fracture, during continuous ascent of a mantle peridotite (Takahashi, 1992).

In summary, the origin of the layered structure has been explained either by melt

depletion processes or by a combination of melting and melt accumulation. Thus,

depending on the model considered, the plagioclase lherzolite has been considered as an

unmelted section of a fertile peridotite or as a region of melt accumulation.

The Re-Os isotope system provides a unique view of mantle processes. Parent and

daughter elements for other isotopic systems, (Rb-Sr, Sm-Nd and U-Pb) behave

incompatibly during mantle melting, being mainly controlled by silicate phases. In contrast,

Re behaves as a moderately incompatible element, while as is highly compatible during

melting, and both Re and as have chalcophile and siderophile affinities (Walker et a!.,

1989; Reisberg et a!., 1991; Luck and Allegre, 1991; Martin, 1991; Carlson and Irving,

1994; Hart and Ravizza, 1997; Shirey and Walker, 1997, Handler et a!., 1997, Burton et

a!., 1998). Consequently, mantle peridotites have high as concentrations, and this is
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presumed to make the Os isotope system more resistant to young metasomatic disturbances

than the other isotopic systems. Thus, Re-Os isotope systematics can be a more reliable

indicator of processes such as melting in peridotitic massifs than Sr, Nd and Pb isotopes

(Reisberg et al., 1991; Luck and Allegre, 1991; Reisberg and Lorand, 1995; Roy Barman

et aI., 1996; Burnham et aI., 1998).

The long term goal of studying the continental mantle lithosphere is to date and

deconvolve the superimposed effects of processes responsible for the geochemical

variations found in the peridotite massif. To deconvolve the complex history of peridotitic

massif is one of the few avenues availabies to investigate the percolation and extraction of

melts from the mantle. In this paper we report Re-Os isotope data for the Horoman

peridotite. We selected a geochemically well-characterized 140 m section across the layered

peridotite with rock types ranging from plagioclase lherzolite to lherzolite to harzburgite

(tIie Bow section); two mafic layers were also included. Takazawa and co-workers have

studied this section and the mafic layers from the Horoman massif in detail, reporting

major, trace element and isotopic compositions of whole rocks and mineral separates

(Takazawa, 1996; Takazawa et aI., 1992a; 1992b; 1993; 1994; 1995; 1996, 1999a,

1999b). The main objective of this work is to determine the origin of the plagioclase

lherzolites (unmelted fertile peridotite or a region of melt impregnation and accumulation?)

and the role played by the mafic layers.

2.2.1 Geological Background

The Horoman peridotite is a massif tectonically emplaced in the south-western tip of

the high-temperature low-pressure Hidaka metamorphic belt, Hokkaido, Japan (Figure 1).

To the west, the Horoman ultramafic complex is in fault contact with an peridotite section

composed of greenschist to amphibolite-facies metamorphic rocks (Miyashita, 1983;

Komatsu et aI., 1994). To the east and south, the massif is in tectonic contact with a

metamorphic sequence, ranging from biotite-schists to granulites, and intruded by

granitoids, and representing a continental or island arc crustal section (Komatsu and Nochi,

1966; Niida, 1974; Osanai et aI., 1991; Shimura et a!., 1992; Komatsu et ai, 1994, and

references therein). A Rb-Sr age of 23±1.2 Ma obtained for a phlogopite-bearing spinel

lherzolite is essentially identical to the oldest ages reported for the Hidaka metamorphic

belt. This age may indicate the time of uplift for both the Horoman mantle sliver and the

Hidaka metamorphic belt (Yoshikawa et a!., 1993).
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The Horoman complex consists of a cyclically layered sequence of plagioclase

lherzolite, lherzolite and harzburgite with subordinate amounts of dunite, gabbro and

pyroxenite (Figure 2). The massif has been divided into two main zones (Niida, 1974;

1984):

I) The Lower Zone, approximately 2 kIn thick, consists of cyclic layers of

plagioclase lherzolite to lherzolite to harzburgite, with some dunites; the cycle repeats every

100 to 500 m. The abundance of mafic layers is sparse, with the exception of thin bands in

the plagioclase lherzolite.

2) The Upper Zone, approximately 1 kIn thick, is characterized by a fine

scale layering (centimeter scale) of plagioclase lherzolite and harzburgite as the dominant

rock types, with subordinate dunite.

In the Upper Zone, plagioclase lherzolite and mafic layers are more abundant than

in the Lower Zone (Takazawa, 1996; Takazawa et a!., 1999a). Moreover, the equilibration

temperature, calculated using the composition of orthopyroxene porphyroclast cores,

increases from the Lower Zone to the Upper Zone by approximately 100GC (Ozawa and

Takahashi, 1995; Takazawa et a!., 1996). The association of high equilibration

temperature, and the high proportion of mafic layers and plagioclase lherzolite in the Upper

Zone, suggests a genetic link between these rock types (Ozawa and Takahashi, 1995).

The compositional layering and the presence of fine grain size mineral aggregates

(seams) defme the foliation planes in the Horoman peridotite. The megascopic structures

are characterized by a monoclinallayered structure in the northern part, a synclinal structure

in the central part and a domal structure in the southern part of the massif (Niida, 1984).

The border between the Upper and Lower Zones is continuous, without evidence for a

thrust or shear zone (Niida, 1974; Frey et al., 1991; Takazawa, 1996; Takazawa et a!.,

1999a). In the same way, the boundary between the compositional layers is sharp on

mesoscopic scale, but transitional over a few centimeters on a microscopic scale.

Petrographic studies show that the plagioclase in the plagioclase-lherzolite usually

occurs in seams associated with spinel, pyroxenes, olivine and Ti-pargasite. The seams

share a similar mineralogical association with the mafic layers (Niida, 1984; Takahashi and

Arai, 1989; Takazawa et a!., 1999a; 1999b). Moreover, in the plagioclase lherzolite, the

seams and orthopyroxene porphyroclasts contain two-pyroxene, Cr-spinel symplectites.
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Takahashi and Arai (1989) and Ozawa and Takahashi (1995) interpreted the symplectites as

the breakdown product of garnet fonned by subsolidus reaction during decompression.

This is also consistent with the garnet pyroxenite composition of the Type I mafic layers

(Takazawa et al., 1999a). Thus, the mafic layers and the searns from the plagioclase

lherzolite seem to have a common mineralogy suggesting a genetic link between them.

Based on petrography and mineralogy, Takahashi (1991) divided the Horoman

complex into three genetically different peridotitic suites:

1) The Main Harzburgite-Lherzolite suite, consisting of a harzburgite, spinel

lherzolite and plagioclase lherzolite layered complex, with transitional boundaries,

representing residues after various degree of magma extraction.

2) The Banded Dunite-Harzburgite suite, consisting of dunites and

harzburgites with olivine orthopyroxenites, with sharp layer boundaries, representing

cumulates from a Mg-rich magma.

3) The Spinel-rich Dunite-Wehrlite suite, consisting of dunites with large

oblate chromian spinels representing cumulates from magma segregated from the

surrounding Main Harzburgite-Lherzolite suite.

The earlier division ofthe complex given by Niida (1974; 1984) considers only the

Main Harzburgite-Lherzolite suite of Takahashi (1991), and this is is the main focus of our

work.

In the Horoman peridotite, there are five different petrographic types of mafic layers

(Niida, 1984; Shiotani and Niida, 1997; Takazawa et a!., 1999a), of which two are

dominant (Takazawa et aI, 1999a):

Type I : plagioclase + Ti augite + olivine + orthopyroxene + Ti pargasite (or

kaersutite) + green spinel + titaniferous magnetite + ilmenite + sulfide

Type II : plagioclase + Cr diopside + olivine + orthopyroxene + pargasite +
spinel + magnetite + sulfide

The mafic layers vary from a few centimeters to several meters in thickness, are

usually oriented parallel to the foliation plane of the peridotite and typically are in sharp

contact with the ultramafic host (Niida, 1984, Takazawa et a!', 1999a). Sometimes in the

plagioclase-lherzolite, it is possible to observe that the large seams of mafic compositions
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grade into Type I mafic layers (Niida, 1984), suggesting a genetic relationship between the

seams and the Type I layers.

The primary mineral assemblages in the mafic layers indicate multiple episodes of

melt injection over a wide range of pressure, from the garnet stability field (Type I) to the

plagioclase stability field (Type II) (Takazawa et aI., 1999a). The sequence of the mafic

injection is controversial. Takazawa, (1996) initially considered a simple sequence for

intrusion of the mafic layers, starting first in the garnet and ending in the plagioclase

stability field. Field observations support this sequence, with Type I layers being highly

discontinuous, indicating that they have experienced more deformation than the Type II

layers, which are traceable for more than a kilometer. Lately, Takazawa et aI. (1999a),

proposed a second possible sequence of intrusion based on Nd model ages. They suggest

that Type II layers intrude at low pressure, early in the evolution of the Horoman complex

and Type I layers intrude later at high pressure, during the subduction of the Horoman

complex.

2.2.2 Sampling the Bozu section

We chose the Bozu section for our study, as it is a representative 140 m section

from the Lower Zone. This section is a continuously exposed lithologic sequence ranging

from harzburgite to lherzolite to plagioclase lherzolite, and it has been geochemically well

characterized, with integrated geochemical observations made on a scale of ]lms to tens of

meters (Takazawa et aI., 1992; 1996; Takazawa, 1996; Takazawa et aI., 1999b) (Figure

3a). Based on this study of the Bozu section, Takazawa and co-workers concluded that the

layered structure was produced by melting of an upwelling fertile mantle (plagioclase

lherzolite) approximately 1 Ga ago. In the lithosphere, the Horoman massif suffered

metasomatism by a light-REE-rich melt/fluid, producing enrichment of incompatible

elements in harzburgite, lherzolite and in a special type of plagioclase-lherzolite that

Takazawa et al, 1999b defined as E-type (Figure 3b). The E-Type plagioclase lherzolite is

enriched in MgO, Mg# and in the very incompatible trace elements (LREE), but is depleted

in TiOz, Alp" CaO, Nap and HREE contents similar to that of the Iherzolites. During

uplift of the massif, the peridotite was transformed from the garnet to spinel to plagioclase

facies mineralogy by subsolidus reaction.

We selected two harzburgite, two lherzolites, four E-type plagioclase lherzolites and

ten plagioclase lherzolites for Re-Os isotopic systematics. In addition, we analyzed two
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Type I mafic layers for Re-Os isotopes; one from the Lower Zone and one from the Upper

Zone. With the exception of the plagioclase-Iherzolites, where we analyzed all the samples

availahle, the peridotite samples are all from the center of their respective layers, to avoid

transitional areas.

2.3 Analytical Techniques

The 200 to 500 gram samples were sliced into several slahs using a diamond saw,

and they were later polished using silicon carbide sand paper to remove contamination from

the saw. The samples were washed with Millipore water in an ultrasonic hath and dried on

a hotplate at 50°C. Finally, the samples were wrapped in plastic and hammered to small

chips, and the chips were powdered in an agate shatterbox (Takazawa et al., 1999b).

The analytical techniques for Re-Os isotopes were described in Ravizza and

Turekian (1989) and Hauri and Hart (1993). Re and Os were determined on separate

powder splits. For the analysis of Os, I g of sample powder was fused by the NiS fire

assay technique. The sample powder was spiked with 1900S and mixed with high purity

boric acid, Ni and S powders. A 4: 1 or 2: 1 mixture of flux to sample, for peridotite and

mafic layer respectively, were fused at 1050°C to 1150°C. This step produced a NiS bead

that scavenges Os from the melted rock. The bead is dissolved in 6N HCI and the solution

is filtered. The filter is dissolved in an oxidizing CrG, + H2S04 acid solution, from which

the OS04 is distilled and trapped in HBr. The HBr solution is dried down to a 1-2 pI drop

and diluted with Hp until a of IN HBr slution is obtained. A single bead of Chelex 50

resin is added to the HBr solution to extract the Os. The Chelex bead is deposited in

concentrated HBr, liberating the Os, and this is then loaded onto a Pt filament with BaNO,

as an activator. The Os concentrations and isotopic compositions were measured by

negative thermal ionization mass spectrometry on NIMA-B (WHOI), with oxygen

enhanced emission and single collector analog detection using an electron mUltiplier and a

dynamic collection routine.

For Re analysis, I g of sample powder is spiked with 185Re and digested in a

mixture of HF-HNO y Re is extracted by a simple ion exchange technique using AGIX8

anion resin. The Re is absorbed onto the resin from O.5N HNO, and eluted in 4N HN03 •

An identical second step is used to further purify the Re. The Re measurements were done
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on a Finnigan MAT Element ICP-MS (at WHO!) by rapid peak hopping using electrostatic

scanning.

In-run precision is 20 < 0.35% for 1870S/1880S, 20 < 1% for Os concentration and

20 < 2% for Re concentration. Analytical blanks ranged from 0.2 to 0.26 for 1870S/1880S,

1.2 to 1.4 pg g-1 of flux for Os concentration, and 2 to 3 pg total procedural blank for Re

concentration. All samples have been corrected for blank contribution; The correction is

insignificant for Re and Os contents or Os isotopic composition, with the exception of

samples BZ-116 and BZ-125 which have an estimated 20 error of '" 25% for Re

concentration due to the blank correction. Re and Os replicates on separated powder split

differ by <10% for Re, < 2% for Os concentration, and <0.5% for 1870S/1880S.

2.4 Results

Results for 20 ultramafic and mafic samples analyzed from the Horoman peridotite

are listed in Table 1; whole rock major and trace elements compositions are reported by

Takazawa et al. (1999a, 1999b). In the Bozu section, the 1870S/1880S ratios of the

ultramafic rocks ranges from 0.1158 to 0.1283, while the Re and Os concentrations vary

from 7 to 350 ppt and from 2.9 to 5.2 ppb respectively. Thus, while the Re content varies

by a factor of 50, the Os concentration varies by about a factor 2.

There are two important observations that we can make directly from this data set:

1) The 1870S/1880S ratios obtained over a 140 m section of peridotite is as

large as the range in Os isotopic composition reported for a number of peridotite massifs

such as Beni Boussera, Baldisero, Lanzo, Lherz and Ronda (Roy-Barman et a!., 1996;

Reisberg et al., 1991; Reisberg and Lorand 1995), (Figure 4a).

2) The lowest and highest Os isotopic ratios found for the Horoman suite

correspond to two samples separated by a distance of only 5 m. The samples are an E-type

and a N-type (normal) plagioclase lherzolite respectively (Figure 4b).

The 1870S/1880S ratios correlate negatively with the extent of melt depletion

calculated for each rock type (Figure 5, also compare 3a and 4b). There is a gradual

decrease in the Os isotopic composition from plagioclase Iherzolites to lherzolites to

harzburgites, suggesting a progressive time-integrated depletion in Re/Os.
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1870S/1880S ratios and Re contents defme a negative correlation with MgO

concentrations; however, the Os content does not correlate with either 1870S/1880S ratios, or

Re or MgO concentrations (Figure 6). The negative correlation between Re and MgO

contents suggests that Re behaves as a moderately incompatible element during melting.

This is supported by the positive correlation between Re and Alz0 3, Sc and Yb contents,

and between Re and the modal proportion of clinopyroxene (Figure 7). Moreover, the

well-defined correlation (one to one) with the zero intercept between Re and Yb suggest

that both elements have similar bulk partition coefficients (in agreement with the conclusion

of Hauri and Hart, 1997). On the other hand, the small variation in Os concentration

(factor of ~ 2) indicates that Os behaves as a highly compatible element during mantle

melting (Morgan, 1986; Hart and Ravizza, 1996).

The 1870S/1880S ratios for Horoman peridotites define a positive correlation with Re

content (Figure 7) and 187Re/1880s ratios (Figure 8). The 1870S/1880S ratios for the

ultramafic samples are lower than the Os isotopic composition. estimated for the Primitive

Upper Mantle (PUM = 0.1290±O.0009; Meisel et al., 1996). Moreover, most of the

samples have 187Re/1880s ratios below PUM (PUM= 0.4 - 0.428;. McDonough and Sun,

1995; Meisel et al., 1996; Morgan, 1986, Luck and Allegre, 1983). However, five N

Type plagioclase lherzolite plot to the right of the geochron and four of the five samples

have higher 187Re/1880s ratios than the estimates for PUM.

Two mafic layers were also analyzed for Re-Os isotopes (Table 1). In both cases

they correspond to the Type I mafic layers (garnet pyroxenites) defmed by Takazawa et al.,

(1999a). The Os isotopic ratios of these samples, ranging from 0.788 to 2.001, are much

higher than the nearly chondritic ratios of the ultramafic rocks. The 187Re/1880s ratios range

from 34.8 to 86.36, a variation that is closely related to the Os isotopic range. In the mafic

layers, the Re contents (3.5 - 0.23 ppb) are higher than the Os concentrations (0.245 

0.035), and the range in Re content is a factor of 2 higher than that for Os.

Table 1 show model ages for the Horoman samples calculated in two different

ways. One method (TMA) , as defined by Luck and Allegre (1984), extrapolates the

187Re/1880s back in time until the Os isotopic composition of the sample equals that for a

model of the isotopic evolution of the mantle. This model is sensitive to problems of Re

modification by metasomatism or melt addition. These processes may change the Re but

are unlikely to change the Os of the peridotites. The high concentration of Os in peridotite
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compared to basalts or fluids preclude any modification of Os contents, or even the isotopic

composition, if the metasomatic process is relatively young. Thus, to avoid potential

problems with open system Re behaviour, Walker et al. (1989), calculated "Re depletion

model ages" (TRD). The calculations for this model are done in the same way as above, but

assumes that the Re/Os ratios of the sample is equal to zero (Table 1 and Figure 9). Thus,

this method gives minimum model ages for the Re depletion event. Two main observations

can be made from the model ages of the Horoman samples:

1) Assuming a mantle source equal to PUM, TMA gave implausible ages for

some of the ultramafic rocks indicating that the Re-Os systems has not remained closed

since melting. This is especially the case for the N-Type plagioclase lherzolites, which have

187Re/I880s higher than PUM. In these cases, the model ages are in the future, indicating

mainly the addition of Re to the peridotite. In contrast, the two mafic layers give

reasonable model ages of 1.3 to 1.16 Ga, similar to the ages of '" 1 Ga reported for the

depletion event in the Horoman peridotites by Takazawa (1996) and Yoshikawa and

Nakamura (1999) using Nd isotopes. However, Takazawa et aI. (1999a), based on Nd

isotopes, considered the age for the Type I mafic layers to be young (80 Ma), while the

Type II layers are considered to be old ('" 0 .8) Ga. These results are contrary to the field

observations which show that the Type I layers are very discontinuous and have

experienced more deformation than the Type II layers, some of which are traceable for

more than a kilometer (Takazawa et aI., 1999a). The field relationship and the Re-Os model

ages are more consistent with the hypothesis that the Type I mafic layers are ancient, as

previously proposed by Takazawa (1996). Moreover, if the Type I mafic layers are 80 Ma

old cumulates from a MORE source as proposed by Takazawa et aI.( 1999a), it would

require an unrealistically high 187Re/I880s ratio of '" 1400 to produce the measured

1870S/1880S '" 2. This would also require subsequent major modification of the Re/Os

ratios, lowering it to the observed value of 86.

2) The Re depletion model ages (TRD) for the sample with the lowest

1870S/1880S = 0.1158 yields a minimum age for the melt depletion event of 1.86 Ga (Table

1 and Figure 9). This age constrains the age of melting to be much older than that

previously estimated by Takazawa (1996) and Yoshikawa and Nakamura (1999).

The positive correlation defined by the Horoman peridotites in the isochron diagram

(1870S/1880Sversus 187Re!,880s) yields an apparent "age" of 1.04±0.4 Ga (Figure 8). Ifthe
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two mafic layers are included in the regression, the apparent "age" is 1.16±0.28 Ga (Figure

10). These apparent "ages" again are very similar to ages reported for the ultramafic rocks

based on Nd isotopes, by Takazawa (1996) and Yoshikawa and Nakamura (1999).

Moreover, it suggests that Type I mafic layers are '" I Ga, much older than 80 Ma.

2.5 Discussion

2.5.1 What controls the Re/Os systematics of the Horoman peridotite?

The correlation between 1870s/1880S ratios and Re content (Figure 7) and the lack of

correlation of Os isotopes with Os concentrations (Figure 6) suggest that the isotopic

composition of the samples is mainly controlled by the variation in Re content. The large

variationofRe (a factor of 50) compared to that of Os (factor of less than 2) indicates that

the Re/Os ratios in Horoman are mainly controlled by the variations in Re. Thus, the Os

isotopic composition is mainly related to the variation of Re/Os ratios (Re content!)

through ingrowth.

Given that the variation in Re content controls the Os isotopic composition, the next

step is to determine what governs the variation in Re content. The negative correlation

between Re and MgO and the positive correlation between Re and Alz0 3 , Sc and Yb

contents, and the modal proportion of clinopyroxene, indicates that Re is mainly controlled

by silicate phases. The variation in A120 3 , Sc and Yb contents, and the modal proportion

of clinopyroxene in the ultramafic rocks indicates a change in the proportion of a basaltic

component in the Horoman peridotites. Thus, the observed Re variation in Horoman was

not produced by an exotic sulfide component as proposed by Burnham et al. (1998) in the

Pyrenees, but by the variation in the proportion of a basaltic component between the

different rock types. In contrast to the suggestion of Burnham et al. (1998) that Re is

controlled by sulfides, in the Horoman peridotite the correlation of Re with Yb contents

defines a linear trend that tends toward the origin. This simple observation indicates that

both elements had similar bulk partition coefficient (D) during melting (Figure 7). Similar

D's (bulk partition coefficient) for Yb and Re, assuming that the Re content is controlled by

sulfides, will require an extraordinary set of coincidences. For example, the variation in

the proportions of sulfides and silicate phases in the mantle residue have to be compensated

hy the change of Dminlmelt (partition coefficient between a mineral phase and the melt) for Re

and Yb between melt-crystal and melt-sulfide to keep the similarity in D's during melting.
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Moreover, Burton et a!. (1998), by analyzing mineral separates from spinel and gamet

peridotites, confIrmed that the Re budget is almost exclusively controlled by silicate phases,

especially gamet when present. The work of Burton et a!. (1998) and the correlation found

between Yb and Re for the Horoman peridotites, is confIrmed by the experimental data of

Righter and Hauri (1998) which proves that Re is compatible in gamet during melting.

Although gamet is not present in Horoman peridotite, in the plagioclase lherzolite, the

seams and orthopyroxene porphyroclasts contain two-pyroxene, Cr-spinel symplectites.

Takahashi and Arai (1989) and Ozawa and Takahashi (1995) interpreted the symplectites as

the breakdown product of gamet formed by subsolidus reaction during decompression.

In summary, the Os isotope ratios in the Horoman massif are controlled mainly by

the variation in Re content, and the Re concentration is governed by the variation of a

silicate phase (mainly g;amet), which from now on we will call the "basaltic component".

2.5.2 What is the process (or processes) responsible for the variation in
the basaltic component in the Horoman peridotite?

There are two simple processes that can produce the observed variation in "basaltic

component": melt removal (melting) or melt addition (refertilization) to the peridotites. We

can make use of the Re-Os systematics to differenciate between these two process, and to

evaluate the origin of the layered structure and the plagioclase lherzolite. There are two

main hypotheses:

a) the layered structure is produced by melting of a fertile mantle represented

by the N-Type plagioclase lherzolite (Takazawa et a!., 1999b; Yoshikawa and Nakamura,

1999; Takahashi, 1992)

b) the layered structure results from a combination of melting and melt

accumulation, where the N-Type plagioclase lherzolite is the zone of melt accumulation

(Obata and Nagahara, 1987).

Clearly melting has played a fundamental role in defIning the geochemical variation

of the Horoman peridotites (Takazawa et al, 1999b; Yoshikawa and Nakamura, 1999 and

references therein). Thus, the decrease in Re and Os isotopic composition on going from

the N-Type plagioclase lherzolite to the harzburgite can, in principle, be explained by

progressive extraction of a basaltic component. This hypothesis can explain the correlation

between Re, Os isotopic composition, MgO, modal clinopyroxene and A120 3 , Sc and Yb
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contents. However, the melt removal hypothesis has difficulty explaining the following

observations:

1) The high Re/Os ratios observed in five N-Type plagioclase lherzolites

plotting to the right of the geochron (Figure 8). Re/Os ratios higher than PUM and

Chondrites Re/Os are difficult to explain by melt depletion processes. Although the value

for the PUM Re/Os can be questioned, all the work done up to now has concluded that the

Re/Os ratios and Os isotopic composition for PUM is chondritic (McDonough and Sun,

1995, Meisel et al., 1996 and references therein). Moreover, new platinum group element

(POE) data for the Horoman peridotite, especially the supra-chondritic Pd/Ir ratios, do not

support the melting hypothesis (Rehkamper et al, 1997).

2) the small scale layering of the peridotitic massif. The samples with the

highest and the lowest Os isotopic composition are only 5 m apart (Figure 4b). This range

in Os isotopic composition observed in the Horoman peridotites overlaps with the reported

range in Os isotopes for a compilation of peridotite massifs (Figure 4a). Although it can be

argued that until now there is not a good understanding of the scale of melt extraction, to

explain a variation in depletion of basaltic component from 8% to 19% over a 5 m distance

seems excessive (Figure 3a and 4b).

These two obstacles for the simple melt removal can be easily explained by the

refertilization (melt addition) model. The addition of a basaltic component to a peridotite can

explain the high Re/Os ratios in the five plagioclase lherzolites, plotting to the right of the

geochron, and can also explain the variation in Os isotopic composition over very short

distances. Moreover, such refertilization processes would account for the correlation

between Re, Os isotopic composition, MgO, modal clinopyroxene and Alp" Sc and Yb

contents.

In the Horoman peridotite the linear variation of Na,O as a function ofMgO and the

high content ofHREE in the N-Type plagioclase lherzolites (compared to melting models)

suggest that melting did not take place in the spinel stability field (Takazawa et a!., 1999b;

Yoshikawa and Nakamura, 1999). To model the Na,O and HREE contents, Takazawa et

aI., (1999b) considered melting in the garnet stability field. Because the variation of HREE

in the Horoman rocks requires a bulk D < 1, consideration of melting in the garnet field

required a very small amount of garnet in the initial fertile peridotite (Takazawa et al.,

1999b)'. However, no model has been presented to explain the variation of all the major
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elements. In the Horoman massif, the linear variation in major elements as a function of

MgO and the high HREE content in the most fertile plagioclase Iherzolites can also be

explained by refertilization process, as we show below in point 2.5.3.

The main reason that previous studies have rejected the hypothesis of refertilization

in peridotitic massifs is that peridotites are not enriched in incompatible trace elements

relative to estimates for primitive mantle. There is no physical reason why the addition of

the "basaltic component" should stop at a level just necessary to compensate for the initial

depletion (Burnham et aI., 1998, Takazawa et aI., 1999b). This is an important point, and

the answer can give important clues regarding melting processes, and on the type of

"basaltic component" that produces the refertilization. To answer this question, we make

two simple observations: First, previous works such as Johnson et aI. (1990), have shown

that melting of ocean ridge mantle approaches a fractional melting process, where the melt

readily separates from the source, and accumulates prior to eruption. If this is the case,

after 20 to 25% of melting (common estimates for harzburgites-lherzolites) the level of

depletion would have stripped most of the incompatible trace elements from the residual

mantle, especially the most incompatible elements. Second, there is no reason why the

refertilization has to be ideutified with a basaltic melt phase. The "basaltic component"

could be in the form of cumulates derived from basalt that passes through the lithosphere,

cools and undergoes fractional crystallization. Thus, our "basaltic component" can be a

mafic cumulate. The association between perdotites and mafic cumulates is common in

peridotite massifs. Peridotitic massifs such as Horoman contain mafic layers that have been

classified as mafic cumulates (Takazawa et aI., 1999a). Clearly, to enrich a '" 20% depleted

peridotite in incompatible trace elements beyond the levels in primitive mantle will require

such a large addition of a mafic cumulate (» 20%) that the mixture will no longer be a

peridotite. In reality, certain elements that are moderately incompatible during melting of

the peridotite and highly compatible in the crystallizing minerals forming the cumulates

from the percolating basalts, can be enriched beyond the primitive mantle values during the

refertilization. For elements that are highly incompatible during melting, their concentration

in the depleted peridotite will be so low that it will be impossible to refertilize to values

above primitive mantle. In contrast, elements that are moderately incompatible during

melting can reach concentrations above the values for primitive mantle by the addition of

reasonable amount of mafic cumulates. However, only some elements are moderately

incompatible during melting and compatible in the crystallizing phases forming the
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cumulates. For example, let us assume that the peridotite melts in the spinel stability field,

and that the percolating basalt forms cumulate of plagioclase or garnet; therefore Sr, HREE

and Re will be moderately incompatible during melting and strongly compatible (Sr in

plagioclase and HREE and Re in garnet) in the cumulate respectively. Thus, these elements

can provide some clues regarding the refertilization process.

Several observations indicate that mixing between depleted peridotites, such as the

E-Type plagioclase lherzolite, and mafic layers (Type I) provides a mechanism for the

formation of the N-Type plagioclase lherzolites in the BoZll section.

I) The mineralogy of the seams in the plagioclase lherzolites are similar to

that of the Type I mafic layers. The present mineralogy of the seams and mafic layers do

not represent primary igneous phases, but is a mineral association produced by subsolidus

reaction at lower pressure (Takazawa et aI., 1999a). The primary mineralogy of the mafic

layers can be calculated based on their major and trace element compositions. Thus,

Takazawa et a!., (l999a) determined that Type I mafic layers were garnet-pyroxenites. The

presence of garnet in the mafic layers is consistent with the presence of othopyroxene

clinopyroxene-spinel symplectites in the seams, produced by decompression of garnet

during subsolidus reaction (Takahashi and Arai, 1989). Moreover, garnet is the main phase

that controls the Re content of the rock (Righter and Hauri, 1998; Burton et aI, 1998),

suggesting that the addition of garnet-pyroxenite to a depleted peridotite is responsible for

the high Re/Os ratios in the plagioclase lherzolite.

2) The high Re/Os ratios of the Type 1 mafic layers support this hypothesis,

explaining the N-Type plagioclase lherzolite plotting to the right of the geochron by

addition of garnet pyroxenite to a depleted peridotite.

3) The colinearity of the Type I mafic layers and the ultramafic rocks in a

Re-Os isochron diagram suggest that these rocks are genetically related. The Re-Os

isotopes of these rocks define an age of'" 1.16±O.28 Ga., similar to the reported age based

on Nd isotopes (Takazawa 1996; Yoshikawa and Nakamura, 1999); this also snpports the

hypothesis that the mafic layers and the peridotites are genetically linked (Figure 10)

4) The field observation that Type I mafic layers are dismembered in the

peridotite, passing transitionally from mafic layers to form seams in the plagioclase

lherzolite (Niida, 1984), supports the hypothesis of refertilization.
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All of these observations endorse the Type I mafic layers as a suitable mafic end member

for the mixing hypothesis. The field relationships between the mafic layers and the

plagioclase lherzolite are especially supportive of this hypothesis.

2.5.3 Can the mixing hypothesis explain the major and trace element
contents of the fertile plagioclase lherzolite?

The question now is can the hypothesis of mixing between Type I mafic layers and

E-Type plagioclase lherzolite explain the major and trace element contents of the N-type

plagioclase lherzolite? To answer this question, we will model the N-Type plagioclase

lherzolite as a mixture between E-Type plagioclase lherzolite and Type I mafic layers. It is

a very difficult task to define the composition of the mixing components. Our simple

approach is to use the mean composition of both the E-Type plagioclase lherzolite and the

Type I mafic layers analyzed by Takazawa et ai, (1999a and b). Moreover, by averaging

the measured compositions we avoid the problem of dealing with any internal chemical

differentiation which has affected the Type I layers (Takazawa et a!., 1999a). Because the

most depleted samples have undergone strong metasomatism (Takazawa et a!., 1992), it is

difficult to define a pristine depleted peridotite end-member (Figure 11). Therefore, we will

avoid incompatible elements affected by metasomatism and model only the major elements,

and the trace elements from Gd to Lu, including Cr and Sc. Note that the major elements

K and P have been affected by metasomatism.

First, the dataare normalized following the scheme of Allegre et ai, (1995) so that

each element is given a comparable weight. Each parameter used is normalized to its

standard deviation, multiplied by the concentration range and divided by the mean

concentration and the analytical error. Allegre et a!. (1995), argued that the elements that

have larger ranges in concentration will carry more weight in the regression. Clearly, the

elements that have a larger concentration range will be better indicators of the processes

responsible for the geochemical variation. To model the mixing process, we consider the

simple model presented by Cantagrel et al. (1984); they express the mixing equation

Ca*(I-Xb)+ Cb*Xb=Cm, as

(Cb-Ca)*Xb= (Cm-Ca)

where Ca, Cb and Cm are the concentrations of an element in the depleted peridotite, the

mafic layer, and the mixture (fertile peridotite) respectively; and Xb is the proportion of
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mafic layer in the mixture. We have defined the composition of the depleted lherzolite, the

mafic layers and the mixture (fertile peridotite), so we can plot (Cm-Ca) as a function of

(Cb-Ca), where each point represents one element. If the fertile peridotite is produced by

mixing between a depleted peridotite and a mafic layer, the points in the figure will define a

line passing through the origin with a slope (Xb). The slope represents the proportion of

the mafic component in the mixture (Figure 12). Thus, we apply a simple linear regression

and obtained the proportion of the mafic component in the mixture, for each N-Type

plagioclase lherzolite. For the uncertainty in the slope (proportion of mafic layers), we

propagated the analytical errors reported by Takazawa et ai, (1999a and b) and the error in

the linear regression.

Figure 13 show the calculated values for all the elements normalized to their

measured values for each of the 10 N-Type plagioclase lherzolites. Surprisingly, the

mixing model reproduces the measured major and trace element composition for the fertile

plagioclase lherzolite qnite well simply by using the same two end member component and

only changing the proportion of the mafic component in the mixture. As we previously

mentioned, K and P are the two elements that are not well reproduced by this model. We

believe that the main reason for this is the K and P contents chosen for the depleted

peridotite end member are too high, as result of metasomatism (Figure 11).

2.5.4 The age of the melting and mixing events

The ages of the melting and mixing events are not well defined. Up to now the age

of the depletion event was considered to be '" 1 Ga, based on Nd isotopes (Takazawa 1996;

Yoshikawa and Nakamura, 1999). In contrast, Re-Os depletion model ages indicates that

the minimum age for the depletion event has to be older than 1.8 Ga (Figure 9, Table 1).

The ultramafic and mafic rocks from the Horoman massif define an apparent age of

1.16±O.28 Ga in the Re-Os isochron diagram (Figure 10), similar to the age of'" 1 Ga

based on Nd isotopes reported by Takazawa (1996) and Yoshikawa and Nakamura,

(1999). Moreover, the Rb-Sr isotope systematics on whole rocks reported by Yoshikawa

and Nakamura, (1999) also define an apparent age of", 1 Ga. Thus, the consistency of the

'" 1 Ga age defined by the three isotopic systems suggests that this age has a geologic

meaning. The colinearity between the mafic layers and the peridotites in the Re-Os

isochron diagram and the'" 1.1-1.3 Ga Re-Os model ages for the mafic layers suggest that

the mafic layers are genetically related to the peridotite through a refertilization process '" 1
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Ga ago. Another interpretation is that the melt depletion and refertilization are two parts of

the same process as envisioned by Obata and Nagahara (1987). These authors considered

melting and melt segregation of an homogeneous mantle, where the depleted rocks

represent residues of melting and the plagioclase lherzolite represents the region of melt

accumulation. If this is the case, lGa is the time of depletion and refertilization, and the Re

depletion model age older than 1.8 Ga indicates that the Horoman peridotite was a depleted

peridotite previous to the depletion and refertilization event at 1Ga.

In synthesis, the Re-Os isotope systematics indicate that the age of melting event in

Horoman peridotites is ;" 1.8 Ga (Re depletion model age), much older than the ages '" 1

Ga previously estimated based on Nd isotopes (Takazawa et aI., 1999b; Yoshikawa and

Nakamura, 1999). Re-Os isotope systematics, major and trace elements contents, and field

and petrographic information are consistent with the hypothesis that the N-Type plagioclase

lherzolite are produced by refertilization of the depleted peridotite by the addition of mafic

cumulates (Type I) at '" 1 Ga. Refertilization of a depleted peridotite seems a more suitable

process than melting to explain the variation in major elements and Os isotopes at the scale

of a few meters. We propose that the refertilization process has played an important role in

the formation of the layering, especially in the Horoman massif where the plagioclase

lherzolite forms 60% of the total outcrop (Takazawa et aI., 1999a).

2.5.5 Is Horoman an unusual place or does the refertilization process play
a role in other peridotite massifs?

Several peridotite massifs have been studied with Re-Os sytematics: Ronda, the

Pyrenees (Lherz), Beni Bousera, Lanzo (Reisberg et aI, 1991; Reisberg and Lorenz, 1995,

Roy-Barman et al, 1996 Burnham et al. 1998, among others). However, with the

exception of Ronda, Re-Os isotopic data combining both peridotite and the associated mafic

rocks are sparse. Although the data are meager, the Re-Os systematics seem to indicate that

a refertilization processes could have played an important role in these orogenic lherzolite

massifs. Figure 14 shows whole rock Re-Os isochron diagrams for several peridotite

massifs. In all of these cases, the most fertile samples have high Re/Os ratios, plotting to

the right of the geochron. Moreover, the mafic layers are co-linear with the ultramafic

rocks defining ages that are similar to the ages determined by Nd isotopes. The fact that

both the Re-Os and Sm-Nd isotope systematics give similar ages suggests that the linear

array on the isochron diagram is not only an indication of mixing but may also represent the

age of refertilizaltion. In Ronda, Reisberg et aI, (1991), analyzed both garnet-rich and

58



spinel-rich mineral bands; when plotted on the isochron diagram, only the garnet-rich

bands are colinear with the ultramafic rocks. These garnet-rich seams in Ronda have been

interpreted to be the product of tectonic disaggregation of mafic layers in an isotopically

depleted peridotite (Reisberg et aI, 1989). These observations from Ronda mimic the

observations made in Horoman. Two different processes have been invoked to explain the

colinearity of the mafic layers and the ultramafic rocks in the Re-Os isochron diagram for

the Ronda massif (Reisberg et ai, 1991, Roy-Barman et aI., 1996):

1) The marble cake model of Allegre and Turcotte (1986), where the mafic

layers are remnants of subducted oceanic crust and the colinearity has no age significance.

2) The mafic layers represent both, cumulates formed during an ancient

melting event and residues of earlier mafic layers that reequilibrate during that ancient

melting event (Reisberg et aI., 1991).

We discard the first model because a systematic study of the mafic layers in Ronda

indicates that they are cumulates (Garrido and Bodinier, 1999). Moreover, the agreement

between the Re-Os and Sm-Nd ages supports the hypothesis that the ages are significant.

The second model is similar to our model for refertilization with the difference that

Reisberg et al (1991) considered the isochron to record a melt depletion event, even though

they proposed that the most fertile garnet peridotite was produced by refertilization through

tectonic disaggregation of mafic layers. These authors also discarded mixing as an

explanation because some of the mafic layers where not co-linear with the ultramafic rocks.

Not all mafic layers are formed at the same time and therefore not all of them need be

responsible for the refertilization process. In Ronda, the best examples of refertilization are

the garnet-rich seams produced by disaggregation of garnet-rich mafic layers, which are

colinear with the ultramafic rocks (Figure 14). Although Beni Boussera and Lanzo are less

convincing examples, due to the few samples analyzed, they show the same tendency as

that observed in Ronda, with the mafic layers being colinear with the ultramafic rocks. In

the Pyrenees, only ultramafic rocks have been analyzed for both Re-Os isotopic

systematics. There are Os isotopic data for mafic layers, there are no reported Re contents.

We predict that the Pyrenees will show the same tendencies as Horoman, Ronda and the

other peridotite massifs.

If the hypothesis of refertilization is confirmed, it will have important implications

for understanding how the continental crust forms and grows. Any hypothesis of how the
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crust grows will be different whether we consider that the ages represent melting events of

asthenospheric material, or refertilization events of an old depleted lithosphere. Both

processes will have consistency between the ages observed in the crustal material and those

obtained from the peridotitic massifs. Thus, the ages could indicate either stabilization of

both young crust and lithospheric mantle or the refertilization of a depleted lithospheric

mantle already stable. For example, Griffin et al. (1998), concluded that subcontinental

mantle lithosphere (SCML) becomes progressively less depleted from Archean through

Proterozoic to Phanerozoic times. The broad correlation between the SCML composition

and the crustal age implies quasi-contemporaneous fonnation of the crust and its

lithospheric mantle. Moreover, this broad correlation would suggest that the extent of

melting progressively decreased from the Archean to the Phanerozoic. In contrast to Griffin

et al., (1998) hypothesis, we speculate that the correlation between depletion of the SCML

and the mantle ages does not indicate fonnation and stabilization of the continental crust and

its lithosphere, but indicates a process of refertilization of the SCML and a resetting of an

already stable continental area. Thus, the correlation between mantle lithosphere and crustal

ages and extent of depletion of the lithosphere may not have any implicit indication of a

correlation between the extent of melting and time.

2.6 Conclusions

Re-Os isotope systematics in Horoman peridotites indicate that the Os isotopes are

mainly controlled by variations in Re content, while Re contents are controlled by the

variation of a "basaltic component" in the ultramafic rocks.

Re-Os isotopes, major and trace elements contents, and field and petrographic

infonnation are consistent with the hypothesis that the Horoman N-Type plagioclase

Iherzolites are produced by refertilization of a depleted peridotite, by the addition of a

garnet-rich mafic cumulate.

Refertilization of depleted peridotite seems a more suitable process than melting to

explain large variations in major elements and Os isotopes over very short distances. For

example, the total range in Os isotopic composition occurs between two samples only 5 m

apart. Therefore, we propose that refertilization processes have played an important role in

the fonnation of the layering, especially in the Horoman massif, where the fertile

plagioclase lherzolite fonns 60% ofthe total outcrop.
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Re depletion model ages of'" 1.8 Ga suggests that the age of melting is much older

than '" I Ga previously estimated based on Nd isotopes (Takazawa et aI., 1999b;

Yoshikawa and Nakamura, 1999). On aRe-Os isochrone diagram the Type I mafic layers

and the peridotitic samples are colinear and define an apparent age of", I Ga, similar to the

Nd ages; this suggests that the linear trend in the isochron diagram is not only an indication

of mixing but has an age significance, and may represent the age of refertilization.

If the refertilization hypothesis is confirmed, it will have important implications for

the understanding of how the continental lithosphere forms and grows.
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2.8 Table caption

Table 1: Re and Os concentration and Os isotopic composition of 20 samples from the

Horoman Peridotite. TMA are model ages calculated with respect to "primitive upper mantle"

187Re/I880s =0.428 and 1870S/1&80S =0.1290 (Meisel et aI., 1996; McDonough and Sun,

1995) and a decay constant of 1.64 X 10-11 y-I. TRD are Re depletion model ages assuming

187Re/I880s = 0

2.9 Figure Caption

Figure 1: Simplified geologic map of the Hidaka metamorphic belt. After Komatsu et aI.,

1986; Takazawa et aI., 1999a.

Figure 2: Geologic map of the Horoman peridotite. Note the position of the Bozu section

in the Lower Zone. The Boundary between the Lower and the Upper Zone is marked by a

dashed line. Inset shows the location of the studied area. After Takazawa et aI., 1999a.

Figure 3: a) Degree of melting along the Bozu section, Horoman peridotite. Dashed

vertical lines indicate the contacts between lithologies. The shaded regions in the middle of

both lherzolite and plagioclase lherzolite layers stand for phlogopite-bearing lherzolite and

E-Type plagioclase lherzolite respectively. The extent of melting is calculated by mass

balancing the FeO and MgO contents between initial source and residual peridotite for each

analyzed sample. Figure after Takazawa et aI. (1999b); Takazawa (1996). b) Chondrite

normalized REE contents for representative harzburgite (BZ-12SL), lherzolite (BZ-143)

and E and N-type plagioclase lherzolite (BZ-260 and BZ-2S3 respectively) from the Bozu

section. Symbols as in Figure 3a. Cl chondrite values from Anders and Grevesse (1989).

Data from Takazawa et aI., (1999b). Open circle, N-type plagioclase lherzolite; close

circle, E-type plagioclase lherzolite; open square, lherzolite; crossed square, harzburgite.

Figure 4: a) 1870S/1880S in Horoman peridotites and in peridotites from different orogenic

lherzolite massifs, compiled by Roy-Barman et aI. (1996). Note that the range in Os

isotopic composition obtained in a 140 section from the Horoman massif is similar to that

observed in the compilation of other peridotite massifs (compilation does not include mafic

layers). b) 1870S/1880S versus distance along the Bozu section. Note that the extreme

variation in Os isotopic composition occurs between an E- and N-Type plagioclase

lherzolites separatedby only Sm. Symbols as in Figure 3.
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Figure 5: 1870S/1880S versus degree of melting for samples from the Bozu section. The

inverse correlation between Os isotopes and the extent of melt depletion indicate that both

parameters are related by a single process: melting or refertilization of a depleted peridotite.

The extent of depletion is calculated by mass balancing the FeO and MgO contents between

initial source and residual peridotite (Takazawa et a!., 1999b).

Figure 6: 1870sl880S ratios, Re and Os contents versus MgO content for samples from

the Bozu section, Horoman peridotite. The samples define a negative correlation between

Re, Os isotopes and MgO, but show no correlation between MgO and Os contents. This

figure suggests that Re behaves as an incompatible element, while Os is highly compatible.

Moreover, the negative correlation between 1870S/1880S and MgO indicates that the Os

isotopes are controlled by Re content through ingrowth.

Figure 7: 1870S/1880S ratios, A120 3 , Yb, Sc contents and modal clinopyroxene versus Re

content. The observed correlations indicate that the variation in 1870S/1880S ratios is

controlled by Re content through ingrowth, and the Re content is controlled by the variation

in the proportion of "basaltic component" of the peridotite. Modal proportions of

clinopyroxene (in %) have been calculated by mass balancing the mineral compositions

with that of the whole rock (Takazawa et a!., 1999b). Dashed line represents Re and Os

content for PUM. Doted square represent the composition of the PUM. Data from

McDonough and Sun (1995).

Figure 8: 1870S/1880S versus 187Re/1880s. The samples define a rough positive correlation

with an apparent "age" of 1.04±0.4) Ga. (2a, York regression). Five N-Type plagioclase

lherzolites have high 187Rd880s ratios plotting to the right of the geochron. Values for

PUM and Geochron from Meisel et a!. (1996). Values for Chondrite and Geochron from

Smoliar et al. (1996). Dashed line as drawn infers a second stage deviation from a depleted

mantle; the isochron cross the geochron at a lower values than that for present PUM,

indicating that if the age of 1Ga represents a melting event, the mantle source is a depleted

mantle.

Figure 9: Frequency diagram for Re depletion model ages for Horoman peridotite. The

model ages were calculated using PUM values 187Re/1880s = 0.428 and 1870S/1880S =
0.1290 (Meisel et a!., 1996). The Re depletion model ages reach values of up to '" 1.8 Ga.,

much older than the ages previously reported based on Nd isotopes. The Re depletion

model ages should be considered as minimum ages.
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Figure 10: 1870S/1880S - 188Rd880s isochron diagram for Horoman samples including

the two Type I mafic layers. All of the samples define an apparent "age" of 1.16±0.28 Ga

(York regression), similar to the '" 1 Ga ages detemined using Nd isotopes (Yoshikawa and

Nakamura, 1999; Takazawa 1996). The colinearity between the mafic layers and the

ultramafic rocks, especially for those plagioclase lherzolite plotting to the right of the

geochron (see inset) suggest that the mafic and ultramafic rocks are genetically linked.

Figure 11: Primitive mantle normalized trace and major element contents for

representative samples of the N-Type plagioclase lherzolite, E-Type plagioclase lherzolite

and Type I mafic layers. We have also plotted the average for both the depleted E-Type

plagioclase lherzolite and the mafic layers used as end-member in the mixing models (thick

lines in gray). Note that in the depleted end-member (E-Type plagioclase lherzolite), the

elements more incompatible that Eu have been modified (enriched) by metasomatic

processes. Data from Takazawa et aI., (1999a; 1999b). Plagioclase lherzolite E-Type (BZ

260); N-Type (BZ-250, BZ-254, BZ-256 and 62210); mafic layer (G2). Primitive Mantle

values from McDonough and Sun, (1995).

Figure 12: Cm-Ca versus Cb-Ca. diagram to determine the proportion of the end member

component in a mixture (Cantagrel et aI., 1984). Each point represents one element used in

the mixing model. Cm, Ca, Cb are the concentrations of each element in the mixture (N

Type plagioclase lherzolite), the depleted peridotite (E-Type plagioclase lherzolite) and in

the mafic layer (Type I) respectively. "Xb" represents the slope of the line, which is the

proportion of the mafic layer in the mixture.In this case we used one variable regression.

Figure 13: Calculated trace and major element contents from the mixing model,

normalized by their measured value for each of the N-Type Plagioclase Lherzolites. Note

that with the exception of P and K, the model reproduces the values for major and trace

elements more compatible than Eu. We used the same end-members for all the samples,

changing only the proportion of mafic layers in the mixture.

Figure 14: Re-Os isochron diagrams for a) Ronda, b) Beni Bouseras and Lanzo, and c)

Pyrenees peridotites and mafic layers. In all of these cases, the most fertile peridotites in

each massif have high 188Rd880s, plotting to the right of the geochrone. Moreover, the

mafic layers are colinear with the peridotites in each massif, suggesting that the mafic and

ultramafic rocks are genetically related probably through refertilization processes. The case

of Ronda is interesting, where gamet-rich bands, believed to be disaggregated garnet-
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bearing mafic layers, plot as the most fertile end member of the linear trend defined by the

peridotites. Therefore, if the age has any significance, it may indicate the age of

refertilization as in the case of the Homman massif.
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Table 1

Sample # Distance (m) Re (ppb) Os (ppb) ReJOs 1870S/18805 187Re/1880s TRD (Ga) TMA (Ga)

Plagioclse Lherzolite
N-Type Bz-263 132 0.205 4.57 0,045 0.1240 0.217 0.71 1.44

N-Type Bz-262 127 0.288 2.89 0.100 0.1253 0.480 0.53 -4.54

N-Type Bz-261 120 0.318 3.22 O.Ogg 0.1259 0.476 0.44 -4.12

E-Type Bz-260 117 0.099 5.18 0.0191 0.1200 0.0918 1,27 1.61

E-Type Bz-259 115 0.147 3.11 0.047 0,1210 0.228 1,14 2.41
E-Type Bz-258 109 0.154 2,92 0.053 0,1201 0.254 1,25 3.04
E-Type Bz-257 103 0.151 4,65 0.0324 0.1158 0.156 1.86 2.90
N-Type Bz-256 101 0.353 2.91 0.121 0.1267 0.585 0.32 -0.89
N-Type Bz-255 97.7 0.270 3.48 0.077 0.1283 0.373 0.10 0.79
N-Type Bz-254 94.7 0.253 3.12 0.081 0,1226 0.391 0.90 9.66
N-Type Bz-253 89.3 0,310 4.02 0.077 0.1256 0.371 0.48 3,51

N-Type Bz-252 87.9 0,318 4.50 0.071 0.1260 0.341 0.43 2.07

N-Type Bz-251 86.2 0.237 3.44 0.069 0.1235 0.332 0.78 3.40
N-Type Bz-250 84.3 0.223 2.44 0.092 0.1246 0.441 0.63 -24.93

Lherzolite
143 72.3 0,128 3.98 0.0322 0.1226 0.155 0.90 1.41

134 39.9 0.143 4.24 0.0339 0.1190 0.163 1.40 2.25

134R 0.161 4.31 0.0373 0.1196 0.180 1.32 2.27

Harzburgite
116 9.1 0.0087 3,86 0.0022 0,1193 0.0108 1.37 1.41

125 4.1 0.0066 4.61 0.0014 0.1207 0.0069 1.17 1.19

Type 1 Mafic Layers

G9 0.233 0.035 6.65 0.788 34,8 1.16

G2 3.53 0,245 14.4 2.010 86.4 1.32
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3. Chapter Three

Pb Isotopic Variability in Melt Inclusions from Oceanic Island
Basalts

3.1 Abstract

Previous studies have suggested that melting processes are responsible for the trace

element variability observed in olivine-hosted basaltic melt inclusions. Melt inclusions from

four individual lava samples, two from Mangaia, Cook Islands, one from Tahaa, Society

chain, and one from Pitcairn, Gambier chain, have heterogeneous Pb isotopic composition,

even though the erupted lavas are isotopically homogeneous. The range of Pb isotopic

compositions from individual melt inclusions in a single lava flow spans 50% of the world

wide range observed for ocean island basalts (OIB). The melt inclusion data can be

explained by two-component mixing for each island. Our data imply that magmas with

different isotopic compositions existed in the volcanic plumbing system prior to or during

melt aggregation.

3.2 1ntroduction

Studies of oceanic basalts have shown that the mantle is isotopically heterogeneous

(Zindler and Hart, 1986; Hart et aI, 1992; Hannan and Graham, 1996, Hofmann, 1997 and

references therein). However, the nature, distribution, and scale of these heterogeneities

remain uncertain. The aggregation of melts on their way to the surface, and mixing in

magma chambers prior to eruption, can obscure the chemical and isotopic signatures of pre

aggregated melts.

Trace and major element studies of olivine-hosted melt inclusions have been

successful in defining the chemical composition of pre-aggregated melts (Sobolev and

Shimizu, 1993; Gurenko and Chaussidon, 1995, Sobolev et aI., 1994a, 1994b; Nielsen,

1995, Kamenetsky, 1996; Sobolev and Danyushevsky, 1994; Schiano and Clocchiatti,

1994). However, the lack of isotopic information on melt inclusions has made it difficult to

distinguish whether these melt compositions represent different extents of melting from a

single source or whether they originate from different source compositions.
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We selected four geochemically well-characterized basalt samples, two from

Mangaia, Cook Islands, one from Tahaa, Society islands, one from Pitcairn, Gambier

chain, and two peridotitic xenoliths from Tubuaii, Austral chain, (Hauri et aI., 1993; Hauri

and Hart, 1993; 1997; Eiler, et aI., 1995; Eiler, et aI., 1997). The whole rock Sr, Nd and

Pb isotopic compositions from Mangaia, Tahaa and Pitcairn islands are very similar to the

three end-member mantle compositions known as the HIMU (high U/Pb ratios) EMIl and

EM! (enriched mantle) end-members respectively (Zindler and Hart, 1986; Hart et aI.,

1992). Previous studies reporting isotope, major and trace element compositions of these

lavas have explained the observed geochemical variation by melting of single

(homogeneous) mantle sources, originating through the recycling of the oceanic crust

(Woodhead, 1996; Hemond et aI., 1994, Eiler et aI., 1997, Hauri et aI., 1993; Hauri and

Hart, 1993). Thus, these lavas are excelent examples on which to test the hypothesis that

the geochemical variations in melt inclusions do in fact represent melt processes as opposed

to source effects.

In this work, we present the first study of Pb isotopes on melt inclusions from the

three mantle end-members: HIMU, EMI and EMIl. The range in Pb isotopic composition

observed in melt inclusions from single lava flows suggests that the geochemical variation

in melt inclusions has a large component of source control, and is mainly produced by

either mixing of melts or assimilation and fractional crystallization processes deep in the

magma chambers.

3.3 Analytical Techniques

Approximately 100 grams of fresh interior of the basalt samples were crushed with

a steel jaw crusher. The samples were sieved to separate the olivine and clinopyroxene

phenocrysts (retaining grains larger than 1 mm). The grains were washed with ultrapure

water in an ultrasonic bath and dried at low temperature «80°e) in an oven. The olivines

and clinopyroxenes with melt inclusions were selected under a binocular microscope, and

mounted in an aluminum ring with epoxy and cured overnight. The grains where polished

with silicon carbide, diamond and alumina powder until the melt inclusions were exposed.

The mounts were cleaned with ethanol in ultrasonic bath for 5 minutes, dried at room

temperature and placed in a vacuum chamber for at least 12 hours prior to the analysis.
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Major element compositions of host crystals and daughter minerals were measured

on a JEOL 733 electron microprobe at the Massachusetts Institute of Technology (Table 1

and Appendix). We applied the correction methods of Bence and Albee (1968) and Albee

and Ray (1970). The typical operating conditions used were an accelerating voltage of 15

keY and currents of 10 nAmps. Counting times ranges from 20 to 40 seconds. The in-run

precision is mainly governed by counting statistics, varying with the abundance of the

elements. For example, for a single analysis, the one sigma uncertainties are approximately

,,; I% for element contents;;, 1 wt. %, 1 to 5% for 1-0.5 wt %, 5 to 15% for 0.5-0.1 wt

% and> 15% for contents of less than 0.1 %. The melt inclusion and daughter and host

mineral compositions reported are averages of two to four analyses. The spot size ranges

from 5p for the daughter minerals, to lOp for the host minerals, and ranged from lOp to

30p for estimating the glass composition and the average melt inclusion composition

respectively.

Trace element compositions for the melt inclusions were obtained by secondary ion

mass spectrometry (SIMS) with aCameca IMS 6f ion microprobe at the Department of

Terrestrial Magnetism, Camegie Institution of Washington and with .the Cameca IMS 3f ion

microprobe at the Woods Hole Oceanographic Institution, following the techniques of

Shimizu and Hart, (1982) and Hauri et a!., (1996) (Table 1 and Appendix). We used a

primary 160- beam of 4.5 to 10 keY and current ranging from 5 to 20 nAmps. The beam

was focused to a spot of 10 to 20p. Energy filtering techniques, with secondary voltage

offsets of -60 to -90, were used to eliminate molecular ion interference and to reduce the

magnitude of matrix effects. Counting times ranged from 5 to 30 seconds depending on the

element abundance. The intensities of the secondary ions were normalized to that of 30Si.

The acquisition of the intensities consist of an average of five cycles of alternating

measurements from light to heavy mass elements, and the 30Si intensity was measured at

the beginning and at the end of each run. The trace element concentrations were determined

using empirical working curves of intensities versus concentrations for well known

standards. The analytical uncertainty for each analysis varies inversely with the intensity of

the element considered, and ranged from <5% to 30%.

Lead isotopes were determined by secondary ion mass spectrometry (SIMS) with a

Cameca IMS 1270 ion microprobe at the Woods Hole Oceanographic Institution (Table 2).

We used a primary ion C60-) beam of 22.5 keY (nominal primary accelerating voltage of

12.5 keY, and secondary accelerating voltage of 10 keY) and currents ranging from 30 to
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50 nAmps focused into a spot 20 to 30 }lm in diameter. To resolve isobaric interferences,

secondary ions were analyzed at a mass resolution of 3500 with no energy filtering (Figure

1). Each analysis comprised 200 to 400 cycles of alternating measurements of 206Pb (4 s

counting), 207Pb (4 s counting), 208Pb (2 s counting) and background (1 s counting). The

in-run precision inversely correlates with the Pb content of the sample; typical in-run

precision for the Pb isotopic measurements e07PbP06Pb; 208PbP06Pb) ranged from'" 0.2%

(20; 208Pb count rates 10,000 cps) to 1.2% (20; 208Pb count rates 200 cps). When 208Pb

counts rates were higher than 2,000 cps, we also measured 2°'Pb (8 s counting), with an

in-run precision for 206PbPo'Pb ranging from'" 0.5 % (20; 10,000 cps for 208Pb) to 1.6%

(20; 2,000 cps for 208Pb). We used Loihi glass 158-4* previously analyzed by TlMS

(Garcia et al., 1995) as a standard during the period of measurement of the melt inclusions.

The Pb content of the Loihi glass is '" 3 ppm, similar to the Pb content of the melt

inGiusions. Typical 208Pb count rates were approximately 400 cps per ppm of total Pb. The

average of ion probe analyses reproduced the TIMS value of the glass standard to within

<0.1 % standard errors (20). The external precision (20) defined by the 34 runs on the

Loihi standard is ±0.66% e08PbP06Pb), and ±0.50% ('07PbP06Pb); these are essentially the

same as the average internal precision of the 34 runs (Figure 2a, b and c). We carefully

evaluated whether hydride or correlated errors in 206Pb played any role in the isotopic ratios

measured; we found that the isotopic ratios are mainly controlled by counting statistics,

with no effect of hydride or systematic error in 206Pb. The mass fractionation for SIMS

analysis was <0.15% per amu, and was smaller than the in-run precision. Comparison of

TlMS and SIMS Pb isotope data for basaltic glass, feldspar, chalcopyrite, and zircon

indicate that instrumental mass fractionation is generally smaller than the precision of the

analyses and that there are no resolvable matrix effects (Layne and Shimizu ,1997).

3.4 Results

3.4.1 Major and trace element compositions

We recovered olivine (Fo 84-89) and clinopyroxene-hosted melt inclusions from

two primitive basalts from Mangaia. We selected olivines and clinopyroxenes from an

ankaramite, (MGA-B-25), and olivines from a picrite, (MGA-B-47). All melt inclusions

are in general ellipsoidal in shape and range from 30 to 300 }lm in the longest direction.

Sometimes the inclusions have straight boundaries or rectangular habits resembling

pseudomorphs after a single phase. All of the inclusions now contain "daughter minerals"
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such as Ti-augite, Cr-spinel, ilmenite, Ti-magnetite, kaersutite, sphene, apatite and

phlogopite that crystallized after entrapment of the melt (Table 1 and Appendix). Some of

the daughter minerals, such as Cr-spinel and augite, are zoned becoming enriched in Ti

toward the margin. The host olivine and clinopyroxene are also zoned close to the contact

with the melt inclusions. The olivine becomes enriched in Fe and Ca and the clinopyroxene

is enriched in Ti (Appendix). Sometimes crystallized daughter clinopyroxene or kaersutite

forms a surface that separates the melt inclusion from the host olivine or clinopyroxene

respectively (Figure 3a and b).

Some melt inclusions ('" 7%) from both Mangaia samples are texturally very

complex, containing co-existing silicate glasses, sulfide, and carbonate globules (Figure

3a). In many cases, the inclusions contain droplets of silicate glass within carbonate

spherules, bounded by sharp, curved menisci. This texture is suggestive of processes

related to carbonate-silicate liquid immiscibility (Kogarko et a!., 1995) (Figure 3a). The

carbonate spherules consist largely of calcium-iron-magnesium carbonates with minor

alkalis. The carbonates are associated with Ca or Mg-rich volatile-bearing silicate glasses

(up to 15 % volatiles) and phonolitic glasses. In addition, sulfide globules form part of the

mineral association in these melt inclusions. The sulfides range in composition from

chalcopyrite, pentlandite to pyrrothite (Table 1 and Appendix). The observed mineral

associations, textures, and the major element compositions of the minerals, carbonates and

silicate glasses in the Mangaia melt inclusions are similar to those described for carbonate

silicate melt pockets in carbonated peridotitic xenoliths such as those reported for

Spitsbergen and the Canary Islands (Ionov et al., 1996; Kogarko et a!., 1995).

The silicate glasses and carbonate globules from the Mangaia melt inclusions have a

large range of trace element compositions (Figure 4, Table 1 and Appendix). The silicate

glasses range to very high Sr and Ba contents (up to 1.4 and 0.8 wt % respectively). Also,

they have variable REE concentrations, with La and Yb ranging from 10 to 300 and 0.3 to

20 times primitive mantle respectively. Fractionation of the REEs is also large with

(LaIYb)PM ratios reaching values up to 90, as compared to most whole rocks which

typically have ratios of'" 10 (Hauri and Hart, 1997). Moreover, we found that several melt

inclusions have a large fractionation between Zr and Hf, with Zr/Hf ratios ranging up to

100, similar to the ZrlHf ratios reported for Mangaia and Tubuaii lavas (Dupuy et aI.,

1992).
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Only two carbonate globules were analyzed for trace element contents (Table I).

From 140 melt inclusions, we found only two carbonate globule large enough to allow us

to get a representative composition of the carbonate without any influence from the

surrounding silicate glass. The high trace element contents of the carbonates globules,

specially the high rare earth elements, compared to those of carbonates produced during

secondary (hydrothermal) processes, suggests that the carbonates have had a magmatic

origin. However the trace element content (i.e., La< 60 ppm) and the (LalYb)PM ratios in

the carbonate globules (5 to 35) are generally lower than those reported for carbonatitic

melts (Nelson et aI., 1988). This is also true for their alkali contents, where the Nap and

Kp in the carbonate globules are low compared to those of carbonatitic melts

experimentally produced by an immiscibility process (Lee and Wyllie, 1998). Thus,

although the texture suggests that the carbonate is formed by immiscibility process, the

compositions of the carbonates are not consistent with this hypothesis. The same apparent

contradiction between textures and carbonate compositions was also described for

carbonate-silicate melt pockets in carbonated peridotitic xenoliths from Spitsbergen (lonov

et aI., 1993; 1996).

We also recovered olivine (Fo 86)-hosted melt inclusions from a primitive basalt

from Tahaa (TAA-B-26). These melt inclusions are ellipsoidal in shape and range from 10

to 100 pm in diameter. In contrast to the Mangaia melt inclusions, the Tahaa melt

inclusions are much simpler. Silica-alumina-alkali-rich glass (phonolitic) records only in

situ fractional crystallization of clinopyroxene, Cr-spinel, i1menite- and plagioclase, and

segregation of sulfide globules (Table I and Appendix). Compared to the Mangaia

inclusions the Tahaa melt inclusions have a smaller range in REE concentrations (La and

Yb ranging from 50 to 250 and 3 to 10 times primitive mantle, respectively) and smaller

REE fractionation (LalYb pM ranges from 9 to 33; Table I and Appendix).

The olivines (Fo 80) and two spinel-hosted melt inclusions recovered from Pitcairn

sample (PIT 1; Eiler et aI., 1995) have not yet been analyzed for major or trace element

composition.

The petrography, major and trace element compositions of two mantle xenoliths

from Tubuaii (TEA 1-9 and TEA 4-11), have been described in previous work (Hauri et

aI., 1993). TEA 1-9 is a wherlite consisting of prirnary olivine (Fo 90) and minor

orthopyroxene. 40% by volume of the xenolith consists of melt pockets made of
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clinopyroxene + silica-alumina-aIkali-rich glass (phonolitic) + spinel ± euhedral apatite.

These melt pockets have rectangular habits, resembling pseudomorphs after a single phase.

Hauri et a!., (1993) reconstructed the compositions of the melt pockets; they suggested that

the composition resembles that of subcalcic pyroxene (± apatite). TEA 4-11 is a wherlitic

dunite consistent of olivine (Fo 84-90), chromite and apatite. This xenolith also has silica

rich glass forming up to 10% of the total volume of the sample.

3.4.2 Pb isotopes

SIMS analyses of Pb isotope ratios ('o7Pb/206Pb and 2°'PbP06Pb) of the melt

inclusion populations from Mangaia, Tahaa and Pitcairn islands, and of clinopyroxene and

melt pockets from Tubuaii xenoliths, are reported in Table 2. The Pb isotopic ratios of melt

inclusions from the two Mangaia basalts show large and systematic variations that overlap

with the Pb isotope compositions of whole rocks from the entire Cook-Austral Islands

chain between Mangaia island and Macdonald seamount (Mangaia, Tubuaii, Rimatara,

Rurutu, Raivavae, Rapa, Morotiri and Macdonald) (Figure 5 and 6). In the Mangaia melt

inclusions, 2°7Pbpo6Pb varies from 0.706 to 0.815, and 2°'PbP06Pb ratios range from

1.840 to 2.02. These isotopic variations in the Mangaia melt inclusions are much larger

than those observed for Mangaia whole rock lavas (0.726 to 0.735 and 1.869 to 1.883

respectively), and cover 50% of the entire range defined by the world-wide population of

oceanic island basalts (OIB, Figure 5). In a similar way, the range in Pb isotopes of the

Tahaa melt inclusions is larger than that observed for Tahaa whole rock lavas, and overlaps

with the Pb isotopic composition of whole rock lavas from the entire Society Island chain

(Cyana, Mehetia, Moua Piha, Rocard, Tahaa, Tahiti, and Teahitia) (Figure 7). For Tahaa

melt inclusions, 207Pb/206Pb varies from 0.809 to 0.824, and 2°'PbP06Pb ranges from

2.009 to 2.048, while the Pb isotopes for Tahaa whole rock lavas vary from 0.811 to

0.816 and from 2.027 to 2.032 respectively. The Pb isotopic composition of Pitcairn melt

inclusions have a similar range in 207PbP06Pb ratios, but a larger range in 2°'Pb/206Pb ratios

than those reported for Pitcairn whole rock lavas (Figure 7). Thus, for Pitcairn melt

inclusions, 207PbP06Pb and 2°'PbP06Pb vary from 0.841 to 0.875 and from 2.054 to 2.196,

meanwhile the whole rock lavas range from 0.838 to 0.878 and from 2.107 to 2.210

respectively. Finally, the Pb isotopic composition of the melt pockets and clinopyroxene

from the Tubuaii xenoliths reproduced exactly the Pb isotopic measurements reported by

Hauri et a!., (1993) (Figure 7). Thus, the range in 207Pb/206Pb (0.739-0.751) and
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208Pb/,06Pb (1.905-1.921) obtained by TIMS compare very well with the variation in Pb

isotopes (0.746-0.750 and 1.918-1.925) obtained in this work by SIMS.

For samples with high Pb concentrations (measured 208Pb counts rates higher than

2,000 cps; '" 5 ppm Pb content), we measured 206Pb/204Pb ratios on subsets of melt

inclusions from Mangaia, Tahaa and melt pockets from Tubuaii xenoliths (Table 2). The

range in 206Pb/204Pb ratios for Mangaia and Tahaa melt inclusions is larger than that for

whole rock lavas, while the 206Pb/,04Pb ratios measured on Tubuaii melt pockets by SIMS

reproduce those measured by TIMS. Thus, the 206PbP04Pb ratios measured by SIMS

substantiate the variation observed in 207PbP06Pb and 208Pb/,06Pb ratios. SIMS 206Pb/,04Pb

ratios measured in melt inclusions and melt pockets range from 22.01 to 19.63 in Mangaia,

from 18.94 to 19.73 in Tahaa, and from 21.07 to 21.16 in Tubuaii. These variation in

206PbP04Pb ratios in melt inclusions are very different from the ranges measured by TIMS

on Mangaia and Tahaa whole rock lavas (from 21.480 to 21.932, and from 19.16 to 19.29

respectively), and similar to those measured in melt pockets of the Tubuaii xenolith (from

20.97 to 21.31), reproducing the variations observed in 207PbPo6Pb and 208PbP06Pb ratios

(Hart et aI., 1992; Hauri and Hart, 1993; Hauri et aI., 1993; Woodhead, 1996).

3.5 Discussion

3.5.1 Petrography, major and trace element composition of the melt
inclusions

The compositional zoning observed in daughter and host minerals near the inclusion

is explained simply by post-entrapment fractional crystallization of the melt inclusion.

Sometimes, euhedral phases inside the melt inclusions are too large to be daughter phases

crystallized from the trapped melt. These are crystals trapped along with the melt at the

same time, by the olivine or clinopyroxene host. Common trapped phases are Cr-spinel or

clinopyroxene. They are strongly zoned, with the core composition similar to that of

groundmas Cr-Spinel and the clinopyroxene phenocrysts respectively; meanwhile, the

margins become more enriched in Ti produced during post-entrapment crystallization of the

melt inclusion (see Appendix). As a cautionary note, trapped crystals are an important

reason why melt inclusions must be studied first before they are homogenized.

Previous works suggested the presence of a carbonated mantle source for the

magmas from the Cook-Austral islands, largely based on indirect evidence:
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1) the compositional and mineralogical characteristics of peridotitic xenoliths

from Tubuai island (Hauri et aI., 1993);

2) the observed supra-chondritic ZrlHf ratios in basaltic lavas from Tubuai

and Mangaia islands (Dupuy et aI., 1992); and

3) the similar geochemical and isotopic characteristics between carbonatitic

magmas and some oceanic island basalts (Nelson et aI., 1988). However, direct evidence

for primary carbonate melts in peridotite xenoliths or in basaltic rocks has never been

reported for the Cook-Austral chain.

The association of the carbonate globules with Ca or Mg volatile-rich silicate

glasses (up to 15% volatiles), and with silica-alumina-alkali rich glasses in Mangaia melt

inclusions, are essentially the same as those described for carbonate-silicate melt pockets in

carbonated peridotitic xenoliths such as Spitsbergen, Canary Island, Tubuaii, Kerguelen

and Northern Tanzania (Ionov et aI., 1993; 1996; ; Kogarko et aI., 1995; Hauri et aI.,

1993; Schiano et aI., 1994; Rudnick et aI., 1993; among others). The observed mineral

associations, mineral and glass compositions, and the ocelli textures between carbonate

globules and silicate glasses in the melt inclusions from both Mangaia lavas provide the

first direct evidence for a carbonated mantle source for HIMU basalts (Table 1 and

Appendix).

As mentioned previously, the ocelli texture between carbonate globules and silicate

glass, and the presence of droplets of silicate glass in carbonate spherules, bounded by

sharp, curved menisci (Figure 3a) has been considered as clear evidence of liquid

immiscibility (Ionov et aI., 1993; 1996; ; Kogarko et aI., 1995). However, the REE

content and the (LaIYb)PM ratios in carbonate globules from the melt inclusions or melt

pockets in peridotites, are generally lower than those reported for carbonatitic rocks that

have been formed by immiscibility processes (Nelson, et aI., 1988). To evaluate whether

liquid immiscibility is the process responsible for the formation of the carbonate globules in

the Mangaia melt inclusions, we used the phase diagram for the pseudo-quaternary system

CaO-(MgO+FeO*)-(Nap+Kp)-(Si02+AIP3+Ti02) with CO2 at 1.0 and 2.5 GPa

pressure (Lee and Wyllie, 1998). This diagram provides a petrogenetic framework for

magmatic processes occurring within the mantle and deep crust (Figure 8 a and b). In

Figure 8, the composition of the proposed immiscible carbonate globules and associated

silicate glasses are compared with the 1.0 GPa and 2.5 GPa phase diagram. Moreover in
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both Figures, 8a and b, we have also plotted the composition of carbonate globules and

silicate glasses from Spitsbergen xenoliths (Ionov et al. 1993). Carbonate globules and

silicate glasses from both, Mangaia melt inclusions and melt pockets from Spitsbergen

xenoliths, have similar compositions, plotting well outside the miscibility gap. Therefore,

the phase relations shown in Figure 8 indicates that none of the Mangaia silicate glass and

carbonate globule compositions from the melt inclusions represent equilibrium immiscible

liquids.

Carbonate globules and silicate glasses are too far removed from the miscibility

gap, well inside the forbidden volumes of the primary silicate and carbonate liquidus

respectively (Lee and Wyllie, 1998). Thus, although the ocelli texture is suggestive of

immiscibility, the major and trace element composition of the carbonate globules and

silicate glasses do not support this hypothesis. Lee et al. (1994) and Lee and Wyllie (1996

and 1997) were able to reconcile the textural with the chemical evidences. They

demonstrated that, through a wide range in compositions, rounded calcites coexisting with

silicate or carbonate liquids were in fact rounded single crystal phases. Therefore, some of

the round calcites can be explained as crystal phases crystallizing from a silicate or silicate

carbonate melt.

Ionov et a!., (1996) suggested that dolomite and magnesian calcite represent

primary melts and that amorphous magnesite-ankerite phases are formed as a result of

melting and breakdown of primary carbonate minerals in carbonate-bearing mantle

xenoliths from Spitsbergen. Moreover, they consider that the Mg-rich silicate glass

reported for Spitsbergen xenoliths (Amudsen, 1987 and Ionov et a!., 1993) may have been

formed by decompression-induced dissolution of olivine into a preexisting cabonate-rich

melt. Due to the similarity in composition between the melt pockets in the Spitsbergen

xenoliths and the Mangaia melt inclusions, we will follow the Ionov et al. (1996), and Lee

and Wyllie (1998) interpretation. Thus, our results would suggest that Mangaia silicate

glasses and carbonate globules record a complex history of crystal fractionation, and

probably in some cases (Mg-rich volatile bearing glasses), decompression-induced

dissolution or reaction of the olivine host in contact with the volatile-rich melt inclusions.

Moreover, the round carbonate globules observed in the Mangaia melt inclusions are

probably a phase crystallized from a primitive CO2-rich magma at pressures lower than 2.5

GPa.
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Tahaa melt inclusions have glasses with simple compositions, recording fractional

crystallization of Ti-augite, ilmenite, Cr-spinel and plagioclase and segregation of sulfide

globules (Table I and Appendix).

The origin of the silica-alumina-alkali rich (phonolitic) glasses in mantle xenoliths

and in Tahaa and Mangaia melt inclusions is controversial and several hypotheses have

been proposed:

1) silicate-carbonate melt immiscibility (Ionov et a!., 1993; 1996; Kogarko

et a!., 1995).

2) break-down of a crystal phase such as clinpyroxene during

decompression-induced melting (Hauri et al., 1993)

3) low extent of partial melting of an amphibole peridotite (Schiano and

Colocciatti,1994)

4) partial melting of an eclogite created through subduction of oceanic crust,

(Schiano et a!., 1995)

5) extreme fractional crystallization of a small volume of melt percolating

through the lithosphere (Schiano and Colocciatti, 1994)

The silica-rich glasses in the melt inclusions from Tahaa and Mangaia suggest that

they are not necessarily related to silicate-carbonate immiscibility because:

a) the Tahaa melt inclusions do not have carbonate globules; and

b) the major element composition of the carbonate globules and silicate

melts are not consistent with immiscibility.

Most of the melt inclusions are rounded and do not have sharp rectangular borders

resembling pseudomorphs of a crystal phase (clinopyroxene) undergoing decompression

melting. Therefore, we discard the hypothesis of a break-down of crystal phases by

decompression-induced melting as the process responsible for the formation of the silica

rich glass. The silica-rich glasses are usually associated with many different daughter

crystals (Table I and Appendix). Thus, when the composition of the melt inclusion or melt

pocket is averaged over the whole inclusion, the composition is no longer phonolitic, but

basaltic [see Appendix and compare the phonolitic compositions obtained by analyses done
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with small beams (5 to 10 p) with the basaltic ones obtained with large beams (20 to 30p)

for the same melt inclusions]. Thus, the melt inclusions cannot be low extent melts from

eclogites or amphibole peridotites because they do not have an averaged composition

similar to that of the silica-alumina-alkali rich glasses. Therefore, the high silica glasses

seem to be simple residual melts after post-entrapment fractional crystallization of the melt

inclusions or after extensive fractional crystallization during melt percolation in the

lithosphere prior to entrapment.

In the Mangaia and Tahaa melt inclusions, some of the trace element variability is

likely a result of partial melting processes, but much of the trace element signal is

complicated by extensive in-situ fractional crystallization. In the Mangaia melt inclusions,

additional complexity is added by silicate-carbonate fractionation and probably by

decompression-induced dissolution or reaction of crystal phases in the volatile-rich melt

inclusions. Thus, while the presence of carbonate melts shows that the sub-Mangaia

mantle is at least locally carbon-rich, the trace element data indicate little else about the

Mangaia and Tahaa mantle source compositions, and it is difficult to deduce information

regarding mantle source variability from the trace element compositions observed in these

melt inclusions. Thus, the distinct mantle components beneath Mangaia and Tahaa are best

resolved by measuring radiogenic isotopes on individual melt inclusions.

3.5.2 Pb isotopes

Figure 5, 6 and 7 show the large and systematic variations in Pb isotopic

composition e07PbPo6Pb and 208PbPo6Pb) of melt inclusions from Mangaia, Tahaa and

Pitcairn basalts. These variations are larger than the range in Pb isotopes reported for

whole rock lavas for each island and overlap with the entire isotopic variation reported for

each one of the islands chains: Cook-Austral chain, Society islands and Pitcairn island and

seamounts.

The Pb isotope data for Mangaia, Tahaa and Pitcairn forms quasi-linear arrays that

can be described by simple mixing of two end-members. For Mangaia, one component

(end-member) is rich in radiogenic Pb and is identical to the HIMU component observed in

erupted Mangaia lavas (Hauri and Hart, 1993; Woodhead, 1996). The Pb isotopic

compositions of sulfide- and carbonate-bearing melt inclusions invariably reflect this end

member HIMU (Table 2, Figure 6). Whether the carbonation is responsible for the HIMU

signature or merely accompanies it is still an unresolved issue. The second component is
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defined by a less-radiogenic Pb composItion (hereafter called the "less radiogenic

component"). The exact identity of this component is difficnlt to establish, partly because

of the analytical errors involved, as can be seen from Figure 6 and 7. It could be either the

enriched mantle component observed in erupted lavas from other islands in the Cook

Austral chain, such as Macdonald seamount (Nakamura and Tatsumoto 1988; Chauvel et

aI., 1992; Chauvel et aI., 1997; Hemond et aI., 1994) or a depleted upper mantle

component, such as the Pacific MORE (Zindler and Hart, 1986 and references therein).

For the Tahaa melt inclusions, the Pb isotopic composition can also be explained by mixing

between a component represented by the EMIl mantle end-member, and a second

component that is identical to the less radiogenic component observed in the Mangaia melt

inclusions. The Pb isotopic compositions of sulfide from Tahaa melt inclusions are end

member EMIl (Figure 7). The Pb data for the Pitcairn sample can be explained by a sinJilar

mixing trend between the EM I mantle end-member, and probably the same less-radiogenic

component as in Mangaia and Tahaa (Figure 7). The less radiogenic component present in

melt inclusions from the three end-member oceanic island basalts is similar to ubiquitous

mantle components such as "FOZO" (Hart et aI., 1992) or C (Hannan and Graham, 1996),

although the geologic significance of this similarity is not clear at this point.

The Pb isotopic compositions in melt inclusions from sample MAG-B-47

(Mangaia) correlate negatively with the Cr content of daughter clinopyroxenes (Figure 9).

The melt inclusions from Tahaa plot at one extreme of this correlation, corresponding to

the less radiogenic component, and the lowest Cr content of daughter clinopyroxenes

(Figure 9). The Cr variation in the daughter clinopyroxenes could be considered to reflect a

different extent of in-situ fractionation resulting from olivine and Cr-spinel crystallization in

the melt inclusion. However, the correlation between the Pb isotopes and the Cr content in

the clinopyroxene carmot be explained by a simple crystal fractionation model and instead

requires a process that couples the change of Cr in clinopyroxene with the Pb isotope

composition of the melt inclusions. This negative correlation suggests that the melt

corresponding to the less radiogenic component may have suffered differentiation before its

entrapment, or represents a source material present in the mantle which is already

differentiated (eclogite?). We can explain this correlation in several ways:

I) A HIMU melt underwent coupled assimilation and fractional

crystallization processes (AFC); as the primitive HIMU melt differentiates, it assimilates

lithospheric material (lower oceanic crust?) with a less radiogenic Pb isotope composition.
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2) Mixing of two melts: one, a primitive HIMU melt and one melt having a

less radiogenic signature that has undergone crystal fractionation (low Cr) within the

oceanic lithosphere prior to the mixing.

3) The less radiogenic component could also be a melt originating from a

previously differentiated source. For example, partial melts of eclogites produced during

recycling of the oceanic crust.

4) It is entirely possible that, during basalt-lithospheric interaction, many of

the olivines observed in the Mangaia samples could be xenocrysts coming from the

lithosphere, carrying inclusions with compositions not consistent with the host lava. MAG

B-47 olivines have a range in Fo content from 86 to 89. Therefore, if some of the olivines

come from the lithosphere (Fo 91-92), the lower range in Fo content of the olivine

phenocrysts in Mangaia lavas may indicate a tendency for the xenocrysts to equilibrate with

the host lava.

To test whether there is any indication that the less radiogenic Pb component is

situated in the lithosphere of the Cook-Austral islands, we analyzed the melt pockets and

clinopyroxene from two peridotitic xenoliths from Tubuaii (Hauri et a!., 1993). From

seven analyses (six on melt pockets and one on clinopyroxene), none gave an isotopic

composition similar to the unradiogenic component, and all of the isotopic compositions

measured are similar to those of Tubuaii whole rock lavas.

The SIMS Pb data, and the range of alSo (from 4.98 to 5.03 for Mangaia, 5.71 for

Tahaa and 5.22 for Pitcairn) previously measured in olivine phenocrysts from the same

samples (Eiler et a!., 1995; 1997), suggests that the less radiogenic component could be

derived from either the mantle or oceanic lithosphere.

There exists no evidence from data on erupted Mangaia lavas for the second, less

radiogenic, component that we observe in the melt inclusions. This lack of evidence in the

erupted lavas for the less radiogenic Pb isotopic compositions suggests that the proportion

of this component in the erupted lavas must be small. In the case of Pitcairn, we see a trend

toward a less radiogenic component in the isotopic composition of the whole rock lavas

(Figure 5) although it is not as extreme as the range shown by the melt inclusions. In

contrast to Mangaia and Pitcairn, the Pb isotopic composition of whole rock lavas from

Tahaa is within errors the same as the less radiogenic component observed in the melt
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inclusions, suggesting a high proportion of this end-member and a dilution of the EMIl end

member in the Society chain. It is apparent from the Pb isotope data that shallow-level

storage and mixing of distinct magma batches resulted in homogenization and dilution of

the less radiogenic component within Mangaia and Pitcairn magmas, and dilution of the

EMIl component in the Tahaa lavas, prior to eruption. The melt inclusions are thus valuable

samples for revealing magmatic diversity within the volcanic plumbing system beneath

Mangaia, Pitcairn and Tahaa, and for providing information that is invisible in the erupted

lavas. Moreover, we did not find melt inclusions with more extreme end-member isotopic

compositions than those defmed by the whole rocks. Therefore, the end-member Pb

isotopic compositions remain as previously defined (Zindler and Hart, 1986; Hart et a!.,

1992).

In synthesis, the broad linear trend in 207PbPo6Pb - 2°'PbPo6Pb space produced by

the melt inclusions from Mangaia, Tahaa and the Pitcairn samples reproduces the entire

trend defined by the Austral and Society chains and the Pitcairn island and seamount

groups. The inclusions preserve a record of melt composition of far greater isotopic

diversity than that sampled in whole rock basalts. The results suggest that the entire Cook

Austral chain, the Pitcairn island group and the Society island array can be explained by

mixing of the HIMU, EM! and EMIl end-members with a common component (less

radiogenic component), respectively. The HIMU Pb isotopic composition measured for the

carbonated globules, in conjunction with their textures and compositions, provide direct

evidence for a carbonated mantle source beneath the Austral Islands.

3.6 Conclusions

The major and trace element composition of carbonate globules and silicate glasses

from melt inclusions from phenocrysts from Mangaia basalts are not consistent with an

inuniscibility processes, but suggest simple crystallization of carbonates from a CO2-rich

silicate melt. Moreover, the silica-alumina-alkali-rich glasses in melt inclusions from

Mangaia and Tahaa lavas, and in melt pockets in mantle xenoliths, seem to be the result of

post-entrapment crystallization of the melt inclusions or extensive fractional crystallization

during melt percolation in the lithosphere.

The observed HIMU Pb isotopic composition of carbonate globules, their ocelli

texture, and mineral associations, and the mineral and glass compositions in melt inclusions
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from two Mangaia basalts provide the first direct evidence for a carbonated mantle source

for HIMU basalts.

The melt inclusion Pb isotope data for Mangaia, Tahaa and Pitcairn forms quasi

linear arrays that can be described by simple binary mixing between the HIMU, EM! and

EMIl end-member compositions and an unradiogenic component common to all three

isotopic arrays. Therefore, the geochemical variation in trace and major elements from melt

inclusions does not always represent variable melting processes of a single mantle source,

but clearly reflect geochemical source heterogeneities as well.

The negative correlation between the Cr content in daughter clinopyroxene and the

Pb isotope composition of the melt inclusions from Mangaia suggests that the melt

corresponding to the less radiogenic component may have suffered differentiation before its

entrapment, or represents a source material in the mantle that has already been differentiated

(eclogite?).
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3.8 Table Caption

Table 1: Major and trace element compositions for representative glasses, carbonates,

sulfides and minerals from melt inclusions and their mineral hosts. Major elements (in

wt%) were determined on the Jeol-733 electron microprobe at MIT, and trace elements (in

ppm) were measured with a Cameca 6f ion probe at the Department of Terrestrial

Magnetism. Glass I is common to both olivine and clinopyroxene hosts; glass 2 is

commonly found in clinopyroxene host, and glass 3 is found in olivine host. The particular

mineral phases listed in the table are all hosted in olivine, and the reported carbonates are all

hosted in clinopyroxene, but similar mineral and carbonate compositions were found in

clinopyroxene and olivine phenocrysts respectively. The composition of Glass 4 and

plagioclase are from Tahaa melt inclusions, the other compositions are from Mangaia melt

inclusions. Plag = plagioclase; PhI = phlogopite; Kaer = kaersutite; Sp = spinel; TIm =
ihnenite; Sph = sphene; Ti-Au = Ti-augite; H-Cpx = host clinopyroxene; H-Ol = host

olivine; Ap = apatite, Cpy = chalcopyrite, Pn = pentlandite, Po = pyrrothite, Carb =
carbonate. Table 1 lists only representative analyses. A full listing of all of the analyses is

reported in the Appendix.

Table 2: Pb isotopic composition for single melt inclusions from two basalts from

Mangaia and one basalt each from Tahaa and Pitcairn island. Analyses of melt pockets and

one clinopyroxene from two mantle xenoliths from Tubuaii are also reported. All samples

analyzed were silicates except where designated. Two spinel-hosted melt inclusions from

Pitcairn were analyzed also.

Appendix: We report major element compositions of representative glasses, daughter

mineral phases, carbonates and sulfides from melt inclusions from Mangaia and Tahaa

basalts. Each reported analysis is the average of two to four spot analyses. We also report

trace element compositions for melt inclusions from both islands. Trace elements (in ppm)

were measured with a Cameca 6f ion probe at the Department of Terrestrial Magnetism (for

Mangaia melt inclusions) and with a Cameca 3f ion probe (for Tahaa melt inclusions). In

each table, the number corresponds to a number assigned to each melt inclusion. The size

of the beam used during the analysis is denoted between parenthesis. Note the different

compositions obtained with a small beam (lO}t) as compared with those of a larger beam

(30}t) for the same inclusion. The table for olivine compositions reports analyses for

olivine hosts. No daughter olivine has been found. The number for each olivine analysis
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represents the melt inclusion number hosted by the olivine. The letters "NT" indicates a

second analysis for the same olivine host near the melt inclusion. In the Appendix we

report analyses for daughter and host-clinopyroxene. The analyses for the hosts are labeled

with an "H". The number is the melt inclusion number the clinopyroxene either hosts or

crystallized from. We report analyses for daughter crystals such as amphibole (AMPH),

ilmenite (ILM), Ti-magnetite (TI-MNT), plagioclase (PLAG), spinel, sphene, and biotite.

Several spinels analyzed are included in olivine phenocrysts ("in OL"). When

clinopyroxene or spinel are zoned, the analyses for core and margin are denoted with a "c"

or a "m" respectively. Carbonate and sulfide major element compositions are also included

in this appendix as are trace element compositions for melt inclusions, daughter

clinopyroxene ("cpx") and carbonates.

3.9 Figure Caption

Figure 1: Mass spectrum for 206Pb, 207Pb and 204Pb obtained with the IMS Cameca 1270

ion probe. To resolve isobaric interferences, secondary ions were analyzed at a mass

resolution of 3500 with no energy filtering. Note that we are able to separate isobaric

interferences such as major element and REE oxides. The spectrum was taken on Loihi

standard 158-4.

Figure 2: a and b) Reproducibility of 207PbPo6Pb and 206PbPo4Pb for 34 and II analyses

of the Loihi 158-4 standard glass used during the course of the melt inclusion analyses

respectively. The horizotallines define the TIMS value reported for the standard and the 2

sigma standard error limits (Garcia et a!., 1995). The grey circle defme the mean of the 34

and 11 analyses c) 208PbPo6Pb versus 207PbPo6Pb for Loihi 158-4. The error bars are the 2

sigma in-run (internal) precision. We also add the trends produced by mass fractionation,

correlated error in 206Pb, hydride and counting statistics. There is perhaps a small trend in

the data in the direction defined by mass fractionation and counting statistics.

Figure 3: BSE microphotograph of two representative melt inclusions. a) Inclusion #25

from sample MAGB25. The inclusion contains droplets of silicate glass in carbonate

spherules, bounded by sharp, curved menisci. Surprisingly, this one melt inclusion

contains three different types of silicate glasses (G1; G2; G3) and two different types of

carbonates (Cl; C2) as reported in Table 1 and Figure 4 and 8. The host is clinopyroxene;

note the crystallization of kaersutite along the contact between the host and the melt
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inclusion. b) Typical and petrographically simple melt inclusion hosted by olivine with

crystallization of daughter clinopyroxene; note how the clinopyroxene crystallizes along the

contact between the olivine host and the inclusion.

Figure 4: Primitive mantle normalized trace element data for representative melt inclusions

from Mangaia. (a) carbonates, (b) silicate glasses contained in the melt inclusions, and (c)

whole rock composition for the two Mangaia basalts (Hauri and Hart, 1997). The shaded

area defines the compositional range of 46 analyses of melt inclusions. Primitive mantle

values are from Sun and McDonough, (1989).

Figure 5: 208PbPo6Pb versus 207PbPo6Pb ratios for whole rock basalts from Pacific

MORB, Pitcairn, Marquesas, Society, St. Helena and the Cook-Austral islands. The

shaded fields represent Pb isotopic compositions for the islands and seamounts from the

Cook-Austral chain between Mangaia island and Macdonald seamount. The dashed fields

represent the Society islands, where the field for Tahaa is highlighted. The field for Pitcairn

island and adjacent seamounts is highlighted by verticallines. The data used are from

Zindler and Hart (1986); Hauri and Hart, (1993); Hart et aI., (1992); Woodhead (1996);

Nakamura and Tatsumoto, (1988); Chauvel et al. (1997); Hemond et al., (1994); Eiler et

al., (1995); Chauvel et al., (1992); Lassiter, et al. (1998). Large open circles are the four

end-members of the mantle tetrahedron (Hart et aI., 1992) projected onto the 208PbPo6Pb_

207PbPo6Pb plane.

Figure 6: 208Pb/206Pb versus 207PbPo6Pb ratios (Table 2) for individual olivine and

clinopyroxene-hosted melt inclusions from Mangaia basalts MAG-B-47 (open circle) and

MAG-B-25 (open square). Filled diamonds: sulfide globule and filled square: carbonate

globule (both from MAG-B-25); filled triangle: carbonate globule from MAG-B-47. The

error bars are in-run precision (2a, standard error)

Figure 7: 208Pb/206Pb versus 207PbPo6Pb ratios (Table 2) for individual olivine-hosted

melt inclusions from Tahaa TAA B 26 (open triangle), Pitcairn PIT 1 (gray filled square)

and melt pockets and clinopyroxene from Tubuaii xenoliths TBA 4-11 and TBA 9-11 (open

diamond). Inset shows a magnified view of the Pb isotopic composition for individual

olivine-bosted melt inclusions from Tahaa basalt TAA-B-26 (open triangle); filled circle:

sulfide globule composition (Table 2). The error bars are in-run precision (2a, standard

error)
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Figure 8: (Si02+AlP3+Ti02)-(MgO+FeO*)-(CaO)-(Nap+K,O) generalized

pseudoquaternary phase diagram (in weight percent) a) at 1.0 GPa and b) at 2.5 GPa

showing the major element compositions for silicate glasses and carbonate globules from

Mangaia melt inclusions (Table 1) and from Spitsbergen mantle xenoliths (lonov et aI.,

1996). The figures show the three major liquidus volumes (the miscibility gap, silicate

and carbonate liquidus fields), and the liquidus surfaces between them. Contours and

values for (MgO+FeO*) of the surfaces are also shown. Glass 1 - filled triangles; glass 2 

filled diamonds; glass 3 - dotted circle; carbonate globules - black circle, black square,

grey diamond and open triangles; silicate glasses and carbonate globules from Spitsbergen

xenoliths - open diamonds (lonov et a!., 1996); whole rock lavas from Mangaia (MAG-B

47 and MAG-B-25 respectively; Hauri and Hart, 1997)) - open circle and open square.

The small circles are the projection of each point from the (MgO+FeO*) vertex onto the

basal plane of the tetrahedron. The composition of the Mangaia silicate glasses and

carbonate globules are very similar to the composition of those found in Spitsbergen

xenoliths. The phase relationships at 1.0 GPa and at 2.5 GPa indicate that none of these

carbonate and glass compositions represent equilibrium immiscible liquids.

Figure 9: 207PbPo6Pb ratios for single melt inclusions versus the Cr content of daughter

clinopyroxenes from Mangaia (MAG-B-47) and Tahaa (TAA-B-26). The negative

correlation suggests that the "less radiogeuic component" has suffered differentiation prior

to entrapment by the olivine phenocrysts, or that it originated from partial melting of a

differentiated source (recycled oceauic crust, eclogite). The error bars for the 207PbPo6Pb

ratios are in-run precision (2s standard errors); for Cr content the error bars are standard

deviation (2s) from replicated analyses. Symbols as in Figure 6 and 7.
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Table 1: Representative mineral, sulfide, glass and carbonate analyses from
melt iuclusions from samples MAG-B-47, MAG-B-25 and TAA-B-26

Phi AD Soh Hrn Kaer So So Ti-Au Pla£ H- Cox H-OI H-OI
SiO, 43.86 2.67 30.50 0.48 38.99 0.14 0.11 40.99 54.73 51.39 39.19 39.38
TiO, 4.11 0.00 36.95 54.02 8.45 7.54 17.99 6.08 0.00 0.85 0.00 0.00
Al,03 13.11 0.51 1.89 0.27 14.35 17.97 5.97 12.66 28.27 3.00 0.03 0.03
Cr20 3 0.10 0.00 0.00 0.34 0.00 33.81 17.72 0.00 0.00 0.51 0.06 0.04
FeO 9.81 1.04 0.85 37.81 10.13 33.62 54.75 10.81 0.93 5.10 16.37 13.15
MuO 0.12 0.00 0.00 0.73 0.11 0.44 0.75 0.21 0.00 0.20 0.05 0.22
MgO 17.30 0.78 0.00 5.53 11.45 7.09 2.95 7.02 0.11 16.00 44.09 46.95
CaO 0.06 51.53 29.16 0.58 12.66 0.09 0.04 22.33 10.46 22.21 0.37 0.39
Na,O 0.80 0.00 0.02 0.00 2.91 0.00 0.00 0.67 2.29 0.45 0.00 0.00
K,O 8.46 0.00 0.00 0.00 0.41 0.00 0.00 0.00 3.23 0.00 0.00 0.00
P,O, 0.11 36.57 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
NiO 0.00 0.00 0.00 0.00 0.00 0.07 0.19 0.00 0.00 0.04 0.03 0.17
Total 97.84 93.09 99.37 99.76 99.45 100.77 100.46 100.78 100.02 99.75 100.18 100.33
Mg# 0.80 0.62 0.00 0.24 0.71 0.32 0.11 0.59 0.20 0.87 0.86 0.89

Fa 84- Fa 86-
86 89

COY Pu Pu-Po Po
Fe 39.98 33.57 58.28 60.01
Co 0.13 0.68 0.18 0.13
Ni 0.33 31.59 2.16 0.32
Co 22.07 0.27 0.22 0.16
Zn 0.15 0.21 0.12 0.18
Pb 0.18 0.00 0.00 0.00
S 35.58 33.03 37.95 39.39

Total 98.42 99.34 98.90 100.20
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Table 1: Representative glass and carbonate analyses from melt inclusions
from samples MAG-B-47, MAG-B-25 and TAA-B-26 (continuation)

1 Glass I Glass 1 I Glass 2 Glass 21 Glass 3 1 Glass 41 Carb Carb Carb
SiO, 57.39 58.61 55m 52.95 43.69 58.53 0.02 0.71 0.19
TiO, 0.30 0.31 0.00 0.14 0.03 0.45
Al,O, 21.54 21.74 20.78 18.84 0.99 22.04
Cr,O, 0.00 0.00 0.00 0.03 0.02 0.09
FeO 1.86 1.62 0.51 1.83 9.41 1.08 16.76 26.86 14.73
MuO 0.04 0.00 0.00 0.00 0.26 0.00 0.27 0.46 1.99
MgO 0.10 0.06 0.90 1.19 30.27 0.27 30.18 11.09 4.05
CaO 3.42 3.09 7.92 10.44 0.16 1.44 4.26 18.20 36.10
Nap 7.81 8.00 0.31 0.37 0.00 6.43 0.38 0.15 0.08
K,O 2.14 2.12 0.77 0.72 0.00 6.83
P,O, 1.08 0.60 0.12 2.23 0.00 0.88
CO, 47.05 44.31 43.40
NiO 0.00 0.00 0.00 0.00 0.00 0.00
Total 95.68 96.15 86.39 88.75 84.84 98.02. 98.94 101.77 100.54
Mg# 0.10 0.08 0.80 0.59 0.88 0.36
Rb 26.6 2.76 1.78 0.84 4.20
Ba 524 145 1.06 1077 33.3 100
Nb 74.9 7.94 8.22 42.6 29.5 90.7
La 131 6.31 4.59 51 29.9 60.2
Ce 232 10.9 8.82 76.4 54.7 137
Sr 972 14454 25.7 1022 313 10281
N:1 78.6 4.64 4.73 20.5 19.4 57.1
Sm 14.9 0.89 0.96 2.61 2.76 10.9
Zr 272 33.8 48.7 327 112 554
Hf 4.90 0.38 0.74 1.17 5.31
Eu 4.47 0.18 0.27 0.68 3.16
Ti 1528 96.5 3087 5113 805 16049
Gl 11.0 0.61 0.74 1.35 7.25
Dy 7.14 0.45 0.56 1.11 1.24 6.75
Y 33.9 2.70 3.42 10.5 7.67 50
Er 2.41 0.21 0.22 0.56 5.29
Yb 1.13 0.14 0.18 0.41 0.59 8.93
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Table 2: Pb isotopic composition of single melt inclusions from samples
MAG-B-47, MAG-B-25, TAA-B-26 and PIT 1, and from melt pockets and
clinopyroxene TBA 4 11 and TBA 9-11

MAGB47 207/206 in-run error 208/206 in-run error 2061204 in-run error
inclusion # (28) (28) (28)

1 0.754 0.006 1.905 0.017
2 0.743 0.005 1.887 0.013
5 0.765 0.006 1.924 0.017
6 0.731 0.009 1.890 0.022

8 carbonate 0.728 0.010 1.890 0.026
8 0.745 0.008 1.894 0.023
9 0.768 0.012 1.940 0.032
10 0.793 0.003 1.969 0.009
11 0.793 0.004 1.974 0.014

duplicate 0.804 0.009 1.979 0.024
13 0.729. 0.007 1.861 0.021
16 0.735 0.006 1.868 0.017
19 0.812 0.004 2.020 0.011
23 0.738 0.003 1.892 0.011
25 0.745 0.007 1.901 0.017

33A 0.727 0.008 1.864 0.022
36 0.813 0.005 2.022 0.014
39 0.792 0.004 1.967 0.011
42 0.744 0.004 1.883 0.010
43 0.727 0.003 1.844 0.009
44 0.735 0.004 1.860 0.013

45A 0.721 0.008 1.854 0.023
46 0.806 0.004 1.995 0.013
48 0.805 0.003 1.987 0.008
49 0.793 0.004 1.978 0.010
50 0.748 0.008 1.911 0.027
52 0.706 0.009 1.840 0.027
55 0.776 0.006 1.957 0.019
56 0.753 0.006 1.906 0.016
57 0.803 0.003 1.986 0.007 19.64 0.31

duplicate 0.800 0.005 2.000 0.013
58 0.783 0.011 1.964 0.026
60 0.747 0.007 1.897 0.016
61 0.813 0.009 2.003 0.006

duplicate 0.796 0.008 1.986 0.019
67 0.727 0.009 1.866 0.025

115



Table 2: Pb isotopic composition of single melt inclusions from samples
MAG-B-47, MAG-B-25, TAA-B-26 and PIT 1, and from melt pockets and
clinopyroxene TBA 4 11 and TBA 9-11 (continuation)

MAGB25 207/206 in-run error 208/206 in-run error 2061204 in-run error
inclusion # (2s) (2s) (2s1

1 0.731 0.007 1.866 0.019
2 0.750 0,008 1.916 0.022

12 0.748 0.009 1.899 0.025
24 0.760 0.004 1.923 0.012

25 carbonate 0.737 0.010 1.871 0.027
25 0.731 0.002 1.866 0.005 21.46 0.12
28 0.732 0.005 1.865 0.013

31E 0.740 0.003 1.891 0.009
32 sulfide 0.727 0.002 1.865 0.007 22.01 0.16

35 0.808 0.009 2.003 0.022
44 0.750 0.005 1.909 0.012 21.28 0.30
48 0.736 0.007 1.884 0.017
54 0.739 0.003 1.885 0.009 21.61 0.21

TAAB26 2071206 in-run error 208/206 in-run error 2061204 in-run error
inclusion # (2s) (2s) (2s)

1 0.814 0.003 2.027 0.007 19.73 0.20
El 0.819 0.005 2.045 0.014
E2 0.815 0.004 2.033 0.010

3 sulfide 0.821 0.005 2.043 0.016
4 sufide 0.822 0.005 2.039 0.012 19.25 0.29

4 0.814 0.002 2.028 0.004 19.17 0.10
6 0.819 0.004 2.032 0.011
7 0.823 0.004 2.036 0.011 19.21 0.26
14 0.823 0.006 2.044 0.015
20 0.816 0.003 2.022 0.008
21 0.810 0.003 2.024 0.007 19.33 0.17

duplicate 0.818 0.004 2.028 0.009
22 0.814 0.004 2.015 0.009
24 0.817 0.005 2.021 0.011
28 0.809 0.003 2.023 0.007
35 0.817 0.003 2.035 0.008
38 0.816 0.007 2.040 0.023 19.54 0.24

duplicate 0.814 0.004 2.034 0.011
40 0.816 0.006 2.033 0.013
50 0.824 0.005 2.041 0.013
51 0.809 0.008 2.048 0.020
52 0.816 0.003 2.028 0.006 18.94 0.12
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Table 2: Pb isotopic composition of single melt inclusions from samples
MAG-B-47, MAG-B-25, TAA-B-26 and PIT 1, and from melt pockets and
clinopyroxene TBA 4 11 and TBA 9-11 (continuation)

TAAB26 2071206 in-run error 208/206 in-run error 2061204 in-run error
inclusion # 12s) (2s) 12s)

54 0.811 0.007 2.027 0.022

59 0.816 0.003 2.026 0.008

60 0.817 0.003 2.033 0.008

61 0.810 0.003 2.013 0.009

62E 0.815 0.003 2.030 0.007 19.26 0.16

62 0.820 0.006 2.036 0.014

63 0.818 0.003 2.032 0.008

65 0.812 0.004 2.009 0.013 19.27 0.21

68 0.814 0.003 2.023 0.009

69 0.815 0.007 2.023 0.017

PIT I 2071206 in-run error 208/206 in-run error
inclusion # 12s) 12s)

5A 0.850 0.002 2.118 0.006

22 0.864 0.008 2.159 0.019

23A spinel 0.868 0.004 2.154 0.009

25B 0.865 0.003 2.165 0.008

27A 0.870 0.004 2.177 0.010

32A 0.874 0.002 2.196 0.006

46A 0.841 0.008 2.054 0.022

48A 0.875 0.004 2.190 0.009

52A 0.849 0.003 2.116 0.008

54 spinel 0.849 0.006 2.089 0.017

59 0.863 0.004 2.173 0.012

73A 0.874 0.003 2.195 0.008

81 0.865 0.007 2.170 0.019

8IB 0.865 0.003 2.177 0.008

83A 0.870 0.006 2.185 0.015
89A 0.858 0.003 2.154 0.007

9IB 0.874 0.011 2.160 0.026

TEA 207/206 in-run error 208/206 in-run error 2061204 in-run error
inclusion # 12s) 12s) 12s)
9-1 melt I 0.748 0.002 1.922 0.005 21.07 0.08

9-1 melt 2 0.750 0.001 1.925 0.003 21.12 0.13

9-1 melt 3 0.746 0.002 1.918 0.007

9-1 cpx 0.756 0.005 1.914 0.014 21.32 0.06

4-11 melt I 0.749 0.003 1.920 0.008 21.16 0.20

4-11 melt 2 0.749 0.003 1.916 0.008 21.16 0.17
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APPENDIX TABLE 1: Major element composition of melt inclusions

MAGB47 1(30") 2 (10") 2 (30") 3 (10") 3 (30") 5 (10") 5 (30") 6 (10") 6 (30 ") 7 (10") 7 (30") 8 (10") 8 (30") 9 (10")
Si02 53.54 58.43 51.60 62.28 52.79 51.47 49.98 61.60 52.79 59.65 55.00 40.78 41.62 61.02
Ti02 2.16 0.17 2.75 029 2.15 024 2.06 0.05 2.09 0.23 1.80 0.08 2.50 0.07

AI203 20.07 29.24 18.61 25.74 19.24 28.27 19.67 25.25 18.91 24.38 20.54 0.06 4.71 25.51
Ca03 0.03 0.02 0.12 0.04 0.10 0.04 0.02 0.Q1 0.02 0.Q1 0.01 0.01 0.04 0.02

FeO 3.63 0.93 3.90 1.04 3.97 l.00 5.60 0.97 3.67 1.11 3.18 10.07 10.01 0.53
MnO 0.09 0.01 0.12 0.Q3 0.07 0.Q3 0.05 0.01 0.02 0.Q1 0.02 0.20 0.18 0.00
MgO 3.74 0.05 4.71 0.26 2.89 0.26 258 0.01 4.09 0.36 3.43 33.02 22.01 0.01
CaO 8.61 0.46 11.95 1.40 923 9.70 11.32 0.77 10.02 1.35 7.79 0.30 9.37 1.02

Na20 6.57 8.50 5.13 732 6.97 5.17 5.89 8.92 6.71 9.16 5.46 0.00 035 10.17
K20 155 2.98 1.51 2.82 1.75 3.39 2.83 3.96 2.25 3.73 2.51 0.00 0.04 2.70
P205 0.25 0.07 0.29 0.15 0.60 0.22 0.39 0.29 0.21 0.14 0.32 0.03 0.35 0.00
NiO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Total 100.24 100.86 100.69 10137 99.76 99.79 100.38 101.84 100.77 100.14 100.06 84.55 91.17 101.04
M,. 0.70 0.11 0.73 0.31 0.62 0.36 0.50 0.Q3 0.71 0.40 0.70 0.88 0.83 0.Q3

MAGB25 I (IS") 1(5") 2 (5") 2 (10") 3 (10") 3 (IS") 4 (10") 5 (20") 7 (10") 8 (5") 9 (5") IIA (5") 12 (5") 13 (5")
Si02 59.42 60.73 61.83 48.93 57.39 43.03 51.36 51.94 58.11 54.25 56.40 60.61 61.44 61.05
Ti02 0.14 0.08 0.12 2.34 0.30 4.10 0.00 0.02 0.02 0.02 0.00 0.07 0.09 0.12

A1203 21.45 23.43 20.81 17.17 21.54 11.56 21.22 21.09 18.96 21.67 20.77 22.43 23.91 21.31
Cr203 0.00 0.03 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

FeO l.49 1.15 1.11 7.91 1.86 10.74 0.61 0.91 2.69 0.02 0.00 0.00 1.24 0.00
MnO 0.37 0.06 0.00 0.14 0.04 0.67 0.23 0.10 0.09 0.00 0.00 0.00 0.04 0.00
MgO 0.00 0.02 0.11 4.89 0.10 8.37 0.40 0.93 3.08 0.65 0.81 0.00 0.11 0.03
CaO 2.89 2.83 1..30 6.72 3.42 17.05 8.50 8.17 2.11 9.46 8.16 2.45 1.27 1.20

Na20 8.46 7.54 9.15 659 7.81 1.76 0.00 0.22 2.48 l.05 033 9.11 7.01 10.22
K20 1.97 2.11 2.96 1.74 2.14 0.42 0.Q3 0.18 2.08 223 0.51 2.34 3.08 2.68
P205 0.41 0.81 0.19 0.40 1.08 0.44 0.07 0.04 1.31 0.70 0.08 0.30 0.68 0.62
NiO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Total 96.59 98.78 97.59 96.83 95.68 98.15 82.42 83.59 90.92 90,04 87.06 97.31 98.87 97.23
Mg' 0.00 0.04 0.18 0.58 0.10 0.63 0.60 0.70 0.72 0.99 1.00 0.00 0.16 1.00

TAAB 26 I (20") 2 (20") 3 (20") 4 (20") 5 (20") 6 (20") 6 (5") 8 (20") 9(20") 10 (5") 10 (10") 12 (20") 14 (10") IS (10")
Si02 58.53 57.61 59.08 58.96 6125 58.04 62.11 56.53 56.72 60.62 50.37 58.09 59.56 58.42
Ti02 0.45 0.49 0.41 039 0.43 0.41 0.28 1.48 0.44 0.44 5.62 1.50 0.42 0.39

AI203 22.04 22.66 21.90 2228 22.37 21.40 21.96 18.38 23.95 21.44 17.34 18.83 21.68 22.71
Cr203 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.01 0.00 0.00 0.00

FeO 1.08 1.16 1.44 1.33 1.06 1.19 l.08 3.79 1.32 1.06 6.33 1.51 1.65 1.38
MnO 0.00 0.Q3 0.Q7 0.Q3 0.06 0.04 0.05 0.09 0.04 0.02 0.14 0.06 0.Q3 0.06
MgO 027 0.25 0.13 0.10 0.24 0.21 0.19 1.42 0.34 0.26 5.07 0.14 0.54 0.46
CaO 1.44 1.73 1.78 1.60 1.17 2.49 1.38 9.10 2.13 0.99 6.69 7.97 2.42 1.83

Na20 6.43 6.78 6.80 725 6.66 7.22 352 4.73 8.68 6.69 433 6.52 6.87 7.48
K20 6.83 6.45 7.17 6.08 6.80 6.51 4.94 3.85 4.54 6.95 4.35 3.45 5.82 4.64
P205 0.88 1.16 0.76 0.50 0.94 1.37 059 0.96 1.41 0.98 0.79 l.71 0.77 0.98
NiO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Total 98.02 98.30 99.53 98.52 100.97 98.88 96.09 100.34 99.55 99.46 101.05 99.77 99.76 98.34
Mg' 0.36 0.32 0.17 0.15 0.34 0.28 0.28 0.45 0.36 0.35 0.64 0.17 0.42 0.42
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APPENDIX TABLE 1: Major element composition of melt inclusions

MAGB47 9 (30u) 12 (20u) 13 (lOlL) 13 (30 u) 14 (IOu) 14 (30u) IS (IOu) 15 (30!l) 16 (30!l) 17 (IOu) 17 (30u) 18 (IOu) 18 (30!l) 21 (2Ou)

Si02 53.98 39.39 40.99 42.55 55.27 48.03 35.40 36.44 54.08 5251 49.36 61.79 50.65 44.75
Ti02 1.34 0.04 0.05 0.42 0.76 2.97 0.06 1.63 0.71 0.35 2.24 0.19 2.72 0.03

A1203 20.05 0.00 0.20 0.84 24.93 15.85 6.74 8.58 20.95 25.66 19.48 23.19 19.36 22.37
Cr203 0.03 0.04 0.05 0.05 0.09 0.12 0.28 0.38 0.03 0.02 0.03 0.02 0.03 0.02
F,O 3.37 26.70 11.79 9.43 1.17 4.31 24.32 11.36 2.23 1.04 3.79 1.03 4.16 2.87
MoO 0.02 0.35 0.19 0.21 0.00 0.09 0.26 0.06 0.05 0.00 0.04 0.00 0.06 0.27
MgO 2.07 32.24 32.31 32.33 154 7.78 19.14 18.40 1.00 0.70 5.25 0.27 4.lO 1.46
CaO 8.91 0.41 0.07 0.10 3.78 15.36 0.43 10.30 13.21 3.60 9.01 1.39 10.37 7.43

Na20 8.05 0.00 0.01 0.00 10.88 4.52 0.08 0.63 . 7.18 14.18 9.76 10.91 7.11 0.06
K20 1.83 0.00 0.01 0.01 2.83 0.90 0.05 0.12 0.92 1.57 1.30 2.82 1.81 2.10
P205 1.21 0.14 0.00 0.00 0.38 0.35 0.00 0.94 0.22 1.41 0.28 0.32 0.69 0.00
NiO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Total 100.85 99.32 85.67 85.94 101.64 100.27 86.75 88.83 100.58 101.02 100.54 101.92 101.06 81.36
Mg' 0.57 0.73 0.86 0.88 0.74 0.80 0.63 0.78 0.34 0.60 0.75 0.37 0.69 0.53

MAGB25 14 (I5u) IS (25u) IS (5u) 24 (5 u) 24 (5u) 25 (5u) 25 (5u) 25 (5u) 27 (lOu) 28 (5u) 29 (5 u) 30 (5u) 31 (5 u) 31A(5!l)
Si02 40.15 48.23 62.15 51.93 58.28 54.01 48.26 58.87 51.08 57.77 47.30 50.14 59.09 56.07
Ti02 6.38 1.88 0.19 0.12 0.23 0.07 0.21 0.20 0.09 0.21 0.04 0.05 0.10 0.27

AI203 13.26 16.06 20.89 20.52 22.56 20.03 9.02 21.48 19.75 21.40 18.92 0.85 20.74 23.77
Cr203 0.02 0.04 0.02 0.03 0.00 0.01 om 0.00 0.02 0.01 0.00 0.08 0.02 0.00
F,O 10.82 7.37 l.05 1.11 1.31 0.81 12.96 1.53 2.10 0.94 1.45 23.00 0.73 1.44
MoO 0.00 0.14 0.04 0.03 0.10 om 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MgO 4.64 5.12 0.06 0.60 0.06 0.95 11.45 0.12 0.85 0.04 0.68 11.23 0.04 0.23
CaO 17.64 9.90 2.19 7.62 3.95 8.39 1.97 3.19 9.55 3.36 8.32 1.50 4.03 7.65

Na20 1.52 5.43 8.37 0.50 6.45 0.29 0.22 7.90 0.61 8.64 0.11 0.16 8.14 7.39
K20 0.52 1.36 2.82 0.58 2.25 0.66 0.36 2.17 l.l0 2.33 0.20 0.41 2.20 0.41
P205 0.82 0.77 0.90 0.46 1.06 0.50 0.26 0.84 l.lI 1.05 0.13 0.20 1.65 1.21
NiO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Total 95.77 96.28 98.67 8350 96.24 85.73 84.80 96.30 86.25 95.75 77.14 87.62 96.73 98.44

Mg' 0.49 0.61 O.ll 057 0.09 0.75 0.66 0.14 0.54 0.07 0.64 0.52 0.10 0.22

TAAB26 16 (l0.) 17 (lOu) 18 (20u) 20 (20u) 21 (20u) 22 (3D.) 23 (30u) 24 (3D.) 26 (IO.) 28 (30u) 30 (30u) 30 (l0 u) 32 (30u) 33 (20u)
Si02 59.02 57.58 54.23 57.61 57.88 58.63 55.85 58.35 57.61 57.87 53.55 60.72 58.94 58.95
Ti02 0.37 0.23 1.81 0.32 0.23 0.31 1.01 0.51 0.96 0.81 1.84 0.63 0.38 0.47

Al203 23.82 23.20 20.45 22.99 20.20 22.21 1953 22.47 21.05 20.37 17.58 2059 22.50 22.99
Cr203 0.00 0.00 0.05 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.02 0.00 0.00 0.00
F,O 1.51 1.31 2.58 1.21 0.61 1.15 2.48 1.14 1.84 159 3.30 1.34 1.27 1.33
MoO 0.03 0.04 0.08 0.04 0.06 0.09 0.04 0.04 0.05 0.05 0.12 0.06 0.06 0.08
MgO 0.31 0.35 2.87 0.32 0.00 0.28 2.73 0.48 1.33 1.30 4.50 0.94 0.34 0.28
CaO 1.74 1.73 5.00 1.83 5.25 1.58 6.00 139 3.17 3.37 8.95 2.46 1.67 1.68

Na20 7.59 6.82 6.98 7.33 5.73 6.71 5.88 7.40 6.68 5.85 5.01 6.80 6.99 7.37
K20 5.16 5.23 4.35 6.37 6.44 6.78 4.29 7.02 5.13 6.58 3.44 5.16 6.02 5.66
P205 137 1.21 0.74 1.32 1.90 1.32 0.99 0.72 0.94 0.80 0.84 0.95 1.54 0.91
NiO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Total 100.93 97.72 99.13 9934 98.30 99.06 98.84 9951 98.74 98.59 99.15 99.66 99.70 99.72

Mg' 0.31 0.37 0.71 0.37 0.00 0.35 . 0.71 0.48 0.62 0.64 0.75 0.61 0.37 032
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APPENDIX TABLE 1: Major element composition of melt inclusions

MAGB47 22 (lOll) 24 (20") 24 (1011) 25 (3011) 25 (l01J,) 29 (10") 30 (lOll) 31 (2011) 131 (3011) 34 (1011) 36 (10") 37 (3011) 41 (2011) 42 (1011)
Si02 40.82 47.71 60.26 43.87 48.16 53.44 43.98 50.29 50.52 57.97 51.01 35.85 43.64 62.15
Ti02 0.06 0.38 0.36 0.00 0.02 1.17 0.00 2.09 2.85 0.11 0.23 0.72 152 0.09

A1203 2.79 28.65 19.61 0.76 1.10 21.14 0.78 18.79 19,48 24.35 29,40 6.18 13.10 23.27
Cr203 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.06 0.05 0.00 0.00 0.02 0.06 0.04

FeD 3.96 1.20 2,47 5.58 16.32 2.50 4.79 4.60 5.33 0.95 0.61 5.47 7.52 0.78
MnO 0.27 0.03 0.03 0.08 0.14 0.03 0.07 0.08 0.13 0.00 0.00 0.17 0.19 0.00
MgO 36.53 0.37 1.94 30.55 21.23 2.91 34.26 2.06 2.83 0.00 0.00 23.79 8.66 0.00
CaD 1.05 6.62 5.47 0.13 0,47 7.47 om 12.15 14.82 0.62 0.75 4.44 14.88 0.94

Na20 0.00 13.15 3.00 0.00 0.07 11.00 0.00 4.75 4.90 10.25 15.77 0.00 0,43 11.22
K20 0.00 1.70 7.45 0.00 0.12 0.95 0.00 0.78 0,45 4.68 2.34 0.00 1.42 2,48
P205 1.03 2.97 0.41 0.33 0.40 1.02 0.19 0.25 0.83 0.06 0.00 0.57 0.40 0.01
NiO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Total 86.51 102.76 100.99 81.31 88.05 101.64 84.14 95.89 102.18 98.99 100.tO 77.19 91.82 100.98
Mg' 0.95 0.41 0.63 0.92 0.74 0.66 0.94 0.50 0.54 0.00 0.00 0.91 0.72 0.00

MAGB25 32 (5") 33 (5") 34 (5") 34(15") 35 (5") 36 (5") 36(5") 37 (5") 38 (5") 39 (5") 40 (20") 40A (20") 41 (5") 42 (5")
Si02 46.93 4158 62.71 52.19 50.63 50.81 50.16 60.90 51.85 48.62 51.60 5055 59.35 60.06
Ti02 0.25 0.02 0.17 1.85 0.04 0.14 0.04 0.24 0.03 0.10 1.99 1.90 0.11 0.13

AI203 6.72 10.67 23.78 17.88 19.69 19.53 20.61 19.25 18.73 19.43 16.87 17.25 21.79 21.15
Cr203 0.03 0.00 0.00 0.00 0.01 0.03 0.01 0.00 0.02 0.00 0.06 0.02 0.01 0.00

FeD 18.28 15.09 0.77 4,41 1.62 2.89 0.34 1.83 1.84 0.36 5.08 6.71 0.84 0.70
MnO 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.16 0.00 0.00 0.00
MgO 10.97 15.02 0.09 2.50 1.08 1.93 0.65 1.10 1.31 0.83 3.01 3.48 0.04 0.03
CaD 3.39 0.99 1.80 9.16 8.22 3.69 10.07 3.12 7.58 10.89 8.99 6.83 3.66 3.69
N,zO 0.08 0.06 3.79 4.96 0.19 6.28 0.06 7.80 1.44 0.11 6.67 5.36 8.33 7.99
K20 0.65 0.15 2.30 1.71 0.43 2.52 0.11 2.59 2.26 0.65 1.72 2.96 2.13 2.22
P20S 1.70 0.09 0.02 0.82 0.36 0.38 1.07 0.55 0.32 2,40 0.85 0.79 1.35 U8
NiO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Total 89.00 83.66 95.48 95,48 82.26 88.20 83.13 97.38 85.37 83.39 96.99 95.84 97.60 97.15
Mg' 0.57 0.69 0.21 0.56 0.69 0.60 0.81 0.57 0.61 0.83 0.57 0.53 0.09 0.09

TAAB26 34 (20") 35 (30") 36 (30") 37 (2011) 38 (20") 40 (30") 41 (30") 43 (10") 48 (1011) 48 (10") 49 (30") 50 (30") 51 (3011) 52 (lOll)
Si02 58.19 57.37 52.61 58.64 53.94 55.23 50.03 58.10 54.56 53.80 57.66 53.88 57.47 58.26
Ti02 0.48 1.00 1.93 0.54 1.91 1.86 3.34 0.28 2.12 2,42 1.74 1.51 0,47 039

AI203 22.35 21.21 19.66 21.17 20.20 19.29 19.04 20.86 20.34 20.71 19.11 18.48 22,41 21.77
Cr203 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

FeD 1.09 2.21 3.05 1.39 3.16 3.13 4.18 1.68 2.78 3.31 1.98 3.17 1.05 1.29
MnO 0.06 0.07 0.06 0.03 0.12 O.tO 0.06 0.04 0.09 0.04 0.04 0.09 0.05 0.05
MgO 0,31 0.81 3.68 0.69 3.18 1.88 4.28 0.03 4.20 3.65 038 1.21 0.28 0.08
CaD 2,38 4.07 6.15 2.tO 5.31 6.58 7.12 1.95 4.98 5.05 6.99 8.82 2.08 2.37

Na20 7.15 6.85 5.16 6.14 5,46 6.02 4.54 7.13 2.49 4.13 5.07 6.07 {j,3S 6.85
K20 5.58 5.03 4.84 6.68 5.28 4.07 4.87 7.38 2.30 3.64 5.41 3.95 6.91 6.62
P205 1.12 0.38 0.52 0.94 0.77 1.10 1.14 l.22 0.83 0.86 1.15 0.87 1.24 0.85
NiO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Total 98.72 98.99 97.65 9832 99.33 99.26 98.58 98.67 94.70 97.62 99.51 98.05 98.32 9852
Mg' 0.38 0.45 0.73 0.52 0.69 0.57 0.69 0.03 0.77 0.71 0.30 0.46 0.37 0.12
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APPENDIX TABLE 1: Major element composition of melt inclusions

MAGB47 42 (301-1) 45A (101-1) 48 (10") 51 (10") 51A (101-1) 53 (101-1) 54 (10") 56 (10") 57 (10") 58 (101-1) 59 (5") 60 (10") 61 (10") 62 (15")
Si02 52.96 51.75 45.44 49.76 43.86 36.88 37.32 47.70 40.46 5058 46.58 43.04 5224 39.97
Ti02 1.40 om 0.10 0.10 4.11 0.11 0.06 0.37 2.45 1.79 0.08 1.76 022 326

AI203 20.36 29.79 1256 27.69 13.11 9.99 9.39 7.30 9.89 18.74 10.47 15.26 1.56 8.24
CrZ03 0.06 0.00 0.00 0.01 0.10 0.02 om 0.00 0.00 0.03 0.02 0.06 0.00 0.D3
F,O 2.96 0.69 9.73 1.74 9.81 19.03 1257 3.22 7.83 2.22 15.97 6.78 17.17 8.49
MnO 0.10 0.00 0.16 0.01 0.12 0.23 0.14 0.05 0.08 0.00 0.56 0.04 0.17 0.36
MgO 1A8 0.06 14.76 1.28 17.30 21.24 24.25 23.14 12.14 4.67 9.86 5.69 12.99 14.09
C,O 7.24 0.09 2.43 1.40 0.06 0.71 OAI 1.86 11.13 9.09 0.56 9.83 1.07 15.36

Na20 8.60 16.94 om 15.34 0.80 0.16 0.15 0.34 0.85 8.02 0.19 059 0.10 0.60
KlO 1.95 2.04 0.53 2.01 8A6 0.06 0.14 0.32 0.12 1A8 0.70 0.16 0.05 am
P205 1.17 0.05 0.00 0.98 0.11 0.06 0.00 O.ll 0.27 036 0.09 0.11 0.05 0.24
NiO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Total 98.28 101.48 85.78 100.32 97.84 88.48 84.44 84.40 85.33 96.97 85.07 83.31 85.63 90.66
Mg' 0.53 0.16 0.76 0.62 0.80 0.71 0.80 0.94 0.77 0.82 0.58 0.65 0.62 0.79

MAGB25 43 (20") 43 (1Oj.l) 44 (1Oj.l) 45 (5") 46 (20") 47 (151-1) 48 (201-1) 49 (20j.l) 50 (10") 52 (10") 53 (10") 53 (101-1) 54001-1) 55 (10 )
Si02 47.84 46.91 59.22 58.24 42.66 45.96 46.89 42.88 57.90 58.35 52.18 49.15 48.44 26.98
Ti02 2.82 0.D3 0.13 0.13 2.38 2.96 2.91 2m 0.06 056 0.07 om 0.10 0.00

Al203 14.23 10.45 21.01 21.83 18.12 16.72 14.97 11.45 5.11 21.16 8.19 252 0.91 2.94
cam 0.03 0.D3 0.00 0.00 0.D2 0.06 0.09 0.04 0.00 0.00 0.03 0.06 0.05 0.09
F,O 7.64 12.13 059 0.83 730 8.18 6.56 7.91 11.23 1.54 10.03 21.31 1620 11.34
MnO 0.00 0.D1 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.01
MgO 6.70 20.72 0.05 0.02 454 5.36 3.37 6.87 13.18 0.42 6.81 11.57 16.15 11.84
C,O 12.73 0.66 2.99 3.77 930 10m 12.80 11.84 1.44 4.07 5.73 1.30 2.20 6.45

NolO 4.25 4.46 7.96 8.02 4.68 4.91 5.05 4.27 0.18 7.42 1.04 am 0.12 0.D9
K20 1.11 1.40 2.18 2.13 1.05 1.23 1.14 0.84 0.64 2.19 0.85 0.31 0.24 0.13
P205 0.56 038 0.49 1.22 0.38 0.65 1.30 0.32 0.10 0.28 3.20 0.09 0.11 0.16
NiO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Total 97.91 97.17 94.63 96.19 90.43 96.08 95.07 8852 89.85 95.98 88.13 86.45 84.52 60.03
Mg' 0.66 0.79 0.15 0.06 0.58 0.59 0.53 0.66 0.72 0.26 0.60 0.55 0.68 0.70

TAAB26 52 (20") 53 (20") 54 (301-1) 55 (20") 59 (10") 59 (30") 60 (30") 61 (30") 62A (30") 63 (30") 66 (20") 67 (10") 68 (30")
Si02 52.65 59.14 52.34 57.79 60.88 58.21 57.44 58.14 58.66 57.51 56.61 56.87 57.55
Ti02 1.83 0.40 2.48 1.78 0.22 1.06 0.45 0.47 0.27 0.48 0.39 0.69 0.77

A1203 20.78 22.15 19.05 19.51 22.10 21.14 21.94 21.55 21.31 21.53 23.11 22.76 20.41
Cr203 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
F,O 3.74 1.14 3.75 1.34 1.16 2.00 1.27 0.93 1.91 1.01 1.24 1.28 1.72
MnO om 0.D3 0.10 0.03 0.03 0.08 om 0.08 0.08 0.05 0.04 0.05 0.04
MgO 1.84 0.38 4.09 0.32 0.20 1.02 035 0.45 0.30 0.10 0.43 0.55 0.45
C,O 8.84 1.45 6.58 4.22 1.67 2.55 1.68 1.87 lA8 2.97 2.35 2.87 5A7

Na20 4.47 6.58 4.93 8.00 7.31 6.80 7.40 631 6.36 7.12 6.69 7.39 631
K20 4.63 6.65 4.88 5.01 5.90 5.39 7.39 6.97 7.06 6.20 6.23 4.74 5.25
P205 0.83 0.70 0.85 0.75 0.69 0.55 0.67 1.22 1.06 1.79 1.55 1.50 0.86
NiO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Total 99.68 98.61 99.04 98.74 100.15 98.79 98.65 98.00 98.48 98.85 98.65 98.69 98.81
Mg. 0.52 0.43 0.71 0.35 0.27 0.53 0.38 052 0.25 031 0.44 0.49 0.36
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APPENDIX TABLE 1: Major element composition of melt inclusions

MAGB47 64 (5") 65 (lSI!) 66 (15") 67 (5") 67 (15") 68 (WI!) 71 (5") 72 (l01!) 73 (5")
Si02 41.95 55.46 52.22 42.17 35.17 51.61 37.58 41.82 43.62
Ti02 1046 1.82 2.52 0.04 2.82 2.27 0.08 0.04 0.02

A1203 3.04 22.46 20.64 0.80 7Al 18.17 7.64 0.79 0.00
Cr203 0.00 0.00 0.08 0.01 0.12 0.02 0.Q3 0.00 am

FeD 10.06 3.18 3.85 9.93 7.98 3.13 16.02 7.33 12045
MnO 0.09 0.32 0.06 0.26 0.19 0.00 0.21 0.19 0.16
MgO 28.06 256 3.78 28.49 17.97 6.22 20.91 33.85 27.44
C,O 0.11 4.72 7.38 1.42 12.88 5.53 0.42 0.22 0.19

Na20 0.16 427 4.50 0.00 0,38 4.70 0.06 0.00 am
K20 lAO 2.22 2.07 0.00 032 5.67 0.15 0.00 0.02
P205 0.07 0.26 0.65 0.88 0.09 0.31 0.00 0.00 0.00
NiO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Total 86040 97.26 97.75 84.00 85.33 97.62 83.08 84.25 83.96
Mg# 0.86 0.64 0.68 0.86 0.83 0.81 0.74 0.91 0.83

MAGB25 56 (l01!) 56 (l01!) 56 (10") 57 (10")
Si02 49.71 52.31 59.30 49.84
Ti02 0,43 0.Q7 0.12 0.26

A1203 8.86 20.57 21.03 7.11
Cr203 0.04 0.00 0.00 0.00

FeD 16,33 1.24 0.87 15.18
MnO 0.00 0.00 0.00 0.00
MgO 10.81 0.86 0.04 9.86
C,O 2.22 7.79 2.38 1.79

Na20 0.13 0.37 7.98 0.98
K20 0.63 026 2.47 0.63
P205 0.17 0.22 0.65 0.29
NiO 0.00 0.00 0.00 0.00
Total 89.32 83.68 94.83 85.93
Mg# 0.59 0.61 0.10 0.59
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APPENDIX TABLE 2: Major element compositions of host Olivines

MAGB47 OLIVINE 1 OUVINE2 OLIVINE 3 OUVlNE4 OLIVINE 5 OLIVINE 6-7 OLIVINE 8 QUVINE9 OLIVINE 10 OLIVINE 11 OLIVINE 12-13 OLIVI..t~ 12 NI OLIVINE 14
Si02 39.85 39.51 39.13 39.68 38.82 39.83 39.93 39.55 39.99 38.94 38.69 38.37 40.07
TiQ2 om om 0.00 0.00 om 0.00 0.00 0.00 0.03 0.00 0.00 0.01 0.00
A1203 0.02 0.03 0.03 0.00 0.02 0.00 0.00 0.00 0.05 0.03 0.00 0.08 0.02
Cr203 0.03 0.Q2 0.04 0.00 0.Q2 om 0.00 0.04 0.05 0.03 0.04 0.03 am
F,O 13.11 13.01 15.02 14.D3 17.32 15.44 1458 13.16 13.58 13.09 17.21 23.52 12.83
MnO 0.20 0.18 0.24 0.21 0.27 0.22 024 0.18 0.22 0.20 028 0.17 0.17
MgO 47.24 46.65 4530 46.49 44.45 45.45 45.98 47.22 46.03 47.09 43.55 10.81 4733
e,o 0.38 0.43 0.42 DAD OAO DAD 0.40 0.35 0.43 0.32 0.38 0.45 0.46
N,zO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
K20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
n05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
NiO 0.23 0.21 0.17 0.26 0.19 0.22 0.20 0.26 0.25 0.22 0.19 O.lO 0.24
Total lOl.07 100.04 100.35 101.05 101.49 101.57 101.32 100.76 100.62 99.90 100.33 73.53 101.18
Mg' 0.89 0.89 0.87 0.88 0.85 0.87 0.87 0.89 0.88 0.89 0.85 0.50 0.89

l\I1AG B 25 OLIVINE NI 2 OLIVINE 2 OLIVINE NI 3 OLIVINE 3 OLIVINENI6 OLIVINE6·7 OLIVINE NIl 3 OLIVINE 12-13 OLIVINENIl4 OLIVINE 14 OLIVINE NIlS OLIVINE 15 OLIVINE NI17
Si02 38.55 38.21 38.30 38.58 38.75 38.41 38.39 3856 38.73 38.92 38.04 38.61 39.02
Ti02 0.00 0.02 0.00 0.05 0.00 0.01 0.00 0.00 0.02 0.02 0.Q3 0.00 0.04

A1203 0.05 0.02 0.04 0.04 0.04 0.04 0.06 0.04 0.Q3 0.00 0.04 0.03 0.05
Cr203 0.00 0.00 0.00 0.04 0.01 0.04 0.02 0.09 0.05 0.04 0.06 0.03 0.05
F,O 17.88 18.19 17.76 18.42 17.92 18.15 17.18 17.43 1650 16.46 18.43 18.67 1651
MnO 0.25 0.26 0.30 0.26 0.27 0.09 0.08 0.09 0.04 0.07 0.14 0.09 0.06
MgO 43.20 43.10 43.08 43.01 42.84 42.88 43.07 43.04 43.63 43.96 42.80 42.22 44.72
e,o 0.38 0.44 0.39 0.41 0.40 0.40 0.42 0.38 0.43 0.44 0.43 036 0.48
N,zO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
K20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
P205 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
NiO 0.15 0.16 0.17 0.17 0.18 0.03 0.04 0.02 0.04 0.05 0.03 0.04 0.05
Total 100.45 100.39 100.03 100.98 100.41 100.07 99.27 99.65 99.45 99.97 100.00 100.03 100.99
Mg# 0.84 0.84 0.84 0.84 0.84 0.84 0.85 0.85 0.85 0.86 0.84 0.83 0.86

TAA B 26 OUVINEl OLIVINE 3 OLIVINE 4 OLIVINE 5-6 OUVINE7 OLIVINE 8 OLIVINE 9 OLIVINE 10 OLIVINE 12 OLIVINE 14 OLIVINE 17 OLIVINE 18 OLIVINE 20
Si02 3856 38.63 38.67 38.92 38.85 39.16 3855 38.88 39.10 38.49 38.87 38.75 38.81
Ti02 0.05 0.04 0.06 0.04 0.00 0.00 0.Q3 0.00 0.03 0.02 0.Q3 0.00 0.03

A1203 0.05 0.04 0.04 0.05 0.05 0.06 0.06 0.04 0.07 0.06 0.05 0.05 0.04
Cr203 0.00 0.00 0.00 0.03 0.05 0.05 0.05 0.02 0.02 0.01 0.04 0.00 om
F,O 19.75 19.97 19.23 19.85 19.57 19.47 1956 19.06 18.96 19.83 20.29 19.46 19.63
MnO 0.25 0.27 0.25 0.27 0.25 0.26 0.26 0.25 0.22 024 0.26 0.25 0.25
MgO 41.19 41.97 42.14 42.15 41.16 41.48 41.51 43.07 41.65 41.03 41.01 41.57 41.60
e,o 034 0.32 0.29 032 0.28 025 0.31 0.32 0.30 0.27 0.32 0.29 0.30

Na20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
K20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
n05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
NiO 0.18 0.13 0.19 0.17 0.22 022 0.20 0.25 0.25 0.20 0.18 0.21 0.23
Total 100.37 101.38 100.86 101.79 100.43 100.94 10053 101.87 100.58 100.16 101.05 100.58 100.90
Mg' 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.83 0.83 0.82 0.82 0.83 0.82



...
W...

APPENDIX TABLE 2: Major element compositions of host Olivines

MAGB47 OLIVINE 15 OLNINE 16 OLIVINE 17 OLIVINE 18 OLIVINE 19·20 OLIVINE 21 OLIVINE 22 OUVINE23 OLIVINE 24 OLIVINE 25 OLIVINE 26-27 OLIVINE 28 OLIVINE 29-3
Si02 39.25 39.95 39.36 39.45 39.43 38.69 39.24 38.92 38.55 39.46 39.48 40.10 39.95
Ti02 0.02 0.02 0.00 om 0.01 0.07 0.00 0.02 0.03 0.02 0.04 0.00 0.00
A1203 0.03 0.06 0.04 0.02 0.04 0.10 0.02 0.03 0.02 0.06 0.03 0.00 0.03
Cr203 0.04 0.07 0.02 0.00 0.06 0.06 0.03 0.05 0.04 0.04 0.04 0.02 0.05
F,O 15.36 13.13 13.15 17.93 \4.50 22.60 15.16 18.09 17.82 14.90 15.12 14.62 1332
MnO 0.23 0.17 0.21 0.27 0.22 0.38 0.25 0.25 0.30 0.23 0.27 0.22 0.21
MgO 45.86 47.01 48.58 42.90 45.63 3825 45.29 43.62 44.11 46.66 46.45 4557 47.15
e,o 0.47 0.35 0.38 0.39 0.41 0.48 0.37 039 0.38 0.31 0.38 0.43 0,42
Nao 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
K20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
n05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
NiO 0.23 0.21 0.27 0.20 0.21 0.18 0.24 0.23 021 0.19 0.24 0.22 024
Total 101.50 100.96 102.01 101.18 100.51 100.81 100.59 101.59 101.46 101.85 102.04 101.18 10136
Mg# 0.87 0.89 0.89 0.84 0.87 0.79 0.87 0.84 0.85 0.87 0.87 0.87 0.89

MAGB 25 OLIVINE 17 OLIVINE NI 34 OLIVINE 34 OUVINENl37 OLIVINE 37 OLIVINE Nl40 OLIVINE 40 OLIVINE NI43 OLIVINE 43 OLIVINE NI 47 OLIVINE 46-47 OLIVINE NI48 OLIVINE 48

Si02 39.19 39.17 38.74 39.44 38.91 38.90 38.63 38.94 38.00 37.96 38.35 38.82 38.95
Ti02 0.00 0.02 0.03 0.D3 0.02 0.05 0.02 0.05 0.00 0.03 0.03 0.00 0.00

A1203 0.03 0.04 0.02 0.03 0.02 0.03 0.00 0.03 1.01 0.03 0.05 0.04 0.03
Cr203 0.06 0.08 0.04 0.04 0.03 0.00 0.04 0.02 0.04 0.04 om 0.06 0.02
F,O 16.37 16.96 16.80 17.76 18.01 17.90 17.90 17.80 17.08 18.13 18.10 16.98 17.20
MnO 0.05 0.25 0.26 0.25 0.23 0.20 0.26 0.29 0.24 022 0.26 0.23 0.22

MgO 44.09 42.86 43.74 41.97 42.74 42.95 43.28 42.16 42.16 43.36 43.11 43.42 43.61
e,o 0.37 0.41 0.36 0.44 0,41 0.46 0.43 0.51 0.40 0.41 0.40 0.47 0.38

Nao 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

K20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

P205 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

NiO 0.03 020 0.19 0.15 0.15 0.15 0.18 0.17 0.15 0.15 0.14 0.17 0.19

Total 100.18 99.99 100.18 100.10 100.52 100.64 100.74 99.95 99.07 100.32 100,47 100.19 100.60

Mg' 0.86 0.85 0.85 0.84 0.84 0.84 0.84 0.84 0.85 0.84 0.84 0.85 0.85

TAAB 26 OLIVINE 21 OLIVINE 22 OLIVINE 23 OLIVINE 24 OLIVINE 25 OLIVINE 28 OLIVINE 30 OLIVINE 32 OLIVINE 35 OLIVINE 37 OLIVINE 40 OLIVINE NI 41 OLIVINE 41

Si02 38.46 38.64 38.83 38.59 38.56 38.43 38.44 38.60 38.44 38.83 38.61 38.26 38.70
Ti02 0.00 0.G3 0.02 0.05 0.00 0.G3 0.00 0.02 0.00 0.00 om 0.02 0.01

A1203 0.05 0.06 0.06 0.05 0.06 0.05 0.04 0.05 0.04 0.05 0.05 0.07 0.02
Cr203 0.07 0.00 0.02 0.02 0.00 0.04 0.04 0.03 0.02 0.01 0.00 0.04 0.00

FoO 19.45 19.46 19.65 19.43 19.83 19.71 19.66 19.46 18.94 19.60 19.60 19.83 19.48
MnO 0.28 0.25 0.25 0.26 0.26 0.26 0.29 0.25 0.22 0.23 0.25 0.25 0.30
MgO 41.49 41.94 41.49 41.74 41.18 4151 41.95 41.63 42.79 41.75 41.40 41.45 40.94
e,o 0.30 0.28 0.35 0.32 0.29 0.31 0.29 0.29 0.28 0.30 0.29 030 030
Na20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

K20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
P205 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

NiO 0.23 0.21 0.18 0.19 0.18 0.18 0.17 0.21 0.23 0.18 0.20 0.19 0.19
ToW 100.33 100.85 100.86 100.64 100.36 100.52 100.88 100.55 100.95 10094 100.41 100.41 99.93

Mg' 0.83 0.83 0.82 0.83 0.82 0.82 0.83 0.83 0.83 0.82 0.82 0.82 0.82
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APPENDIX TABLE 2: Major element compositions or host OIivines

MAGB47 OLIVINE 31 OLIVINE 32 OLIVINE 33 OLIVINE 33 OUVINE 34 OLNINE 35·36 OLIVINE 37 OLIVINE 38 OLIVINE 39 QLIVINE40 OLIVINE 41 OLIVINE 42-43 OLIVINE 44-4
Si02 39.19 3921 38.98 36.62 39.84 39.45 39.62 39.77 39.93 39.57 39.65 39.27 38.24
TiQ2 0.00 0.00 0.01 0.06 0.00 0.03 0.00 0.03 0.00 0.00 0.00 0.02 0.05

A1203 0.04 0.03 0.03 0.18 0.00 0.03 0.02 0.04 0.00 0.02 0.00 0.03 0.03
Cr203 0.04 0.06 0.03 0.06 0.06 0.05 0.03 0.05 0.03 0.04 0.00 0.00 0.00
P,O 15.40 14.88 16.09 15.24 12.94 14.97 15.05 13.39 13.13 14.90 1738 15.79 18.80
MnO 0.24 0.23 0.23 0.28 0.19 0.26 022 022 0.20 0.21 026 0.22 0.29
MgO 46.36 45.61 4335 41.33 47.04 4528 45.92 47.66 47.33 45.49 43.53 44.40 41.03
C,O 0.41 0.42 0.37 0.54 0.39 0.43 0.39 0.42 0.43 0.44 0.35 0.39 0.44

Na20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
K20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
nos 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
NiO 0.23 0.17 0.22 0.21 0.24 0.21 022 027 0.22 0.21 0.20 0.20 0.19
Total 101.91 100.62 99.30 9452 100.71 l00.71 101.47 101.84 101.25 100.87 10136 100.33 99.07
Mg' 0.87 0.87 0.86 0.86 0.89 0.87 0.87 0.89 0.89 0.87 0.85 0.86 0.83

MAGB25 OLIVINE NI49 OLIVINE 49 OLIVINE Nl52 OLIVINE 52 OUVINENI53 OUVINE53 OLIVINE N154
Si02 38.69 38.00 38.64 38.59 39.68 38.94 37.94
Ti02 0.03 0.00 0.00 0.00 0.00 0.00 0.00

A1203 O.ll 0.25 0.05 0.06 0.04 0.01 0.03
Cr203 0.03 0.02 0.06 0.04 0.05 0.03 0.04
p,o 16.68 16.74 17.93 17.78 18.10 18.02 18.16
MnO 0.21 0.26 0.24 0.25 0.25 0.33 0.31
MgO 43.37 43.80 43.19 42.67 40.76 42.69 44.01
C,O 0.49 0.40 0.45 0.38 0.40 0.41 0.45

N020 0.00 0.00 0.00 0.00 0.00 0.00 0.00
K20 0.00 0.00 0.00 0.00 0.00 0.00 0.00
nos 0.00 0.00 0.00 0.00 0.00 0.00 0.00
NiO 0.17 0.13 0.13 0.17 0.18 0.26 0.18
ToW 99.77 99.60 100.68 99.94 99.46 100.69 101.11
Mg' 0.85 0.85 0.84 0.84 0.83 0.84 0.84

TAAB26 OLJVINE43 OLIVINE 48 OLIVINE 49 OLIVINE 50 OUVINE51 OLIVINE 52 OLIVINE 53 OLIVINE 58 OLIVINE 59 OUVINE61 OLIVINE 62 OLIVINE 63 OLIVINE 66

Si02 3858 38.47 38.57 38.67 3822 38.61 38.56 38.79 38.53 38.64 3935 38.04 38.04
Ti02 0.02 0.02 0.02 0.00 0.03 0.00 0.02 0.01 0.02 om 0.00 0.01 0.02

A1203 0.06 0.04 0.04 0.06 0.05 0.07 0.02 0.08 0.06 0.04 0.06 0.05 0.06
Cr203 0.04 0.05 0.02 0.04 0.03 0.02 0.04 0.00 0.00 0.00 0.00 0.05 om
p,o 19.47 19.85 19.71 19.81 18.69 18.78 19.69 19.69 19.75 19.99 19.96 19.06 19.33
MnO 0.26 0.22 0.30 0.29 0.24 0.25 0.26 0.32 026 0.27 0.27 0.23 027
MgO 41.62 40.76 41.89 41.88 41.76 42.12 41.87 41.52 41.78 41.69 41.27 4220 41.96
C,O 0.33 0.26 0.31 0.31 0.31 0.29 0.28 0.31 028 027 0.28 0.26 026
Na20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
K20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
P205 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
NiO 0.20 020 0.16 0.19 021 020 0.19 0.19 0.21 0.23 0.21 0.23 0.22
Total 100.56 99.87 101.00 101.25 9955 100.35 100.93 100.91 100.88 101.13 101.42 100.13 100.17
Mg' 0.83 0.82 0.82 0.82 0.83 0.83 0.82 0.82 0.82 0.82 0.82 0.83 0.83
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APPENDIX TABLE 2: Major element compositions of host Olivines

MAGB47 OLIVINE 45 NI45A OLIVINE 46-47 OLIVINE 48 OLIVINE 49 OLIVINE 50 OLIVINE 51 OLIVINE! ISlA OLIVINE 52-53 OLIVINE 54 OLIVINE 55 OLIVINE 56 OLlVINE57
Si02 34.36 38.88 37.84 39.38 39.97 39.16 35.73 39.83 40.13 39.18 39.11 39.44
Ti02 0.10 0.01 0.Q2 0.00 0.00 0.00 0.08 om 0.00 0.00 0.00 0.01
A1203 0.03 0.02 0.04 0.03 0.00 0.04 0.16 0.02 0.00 0.00 0.01 0.00
Cr2Q3 0.03 0.03 0.01 0.04 0.05 0.02 0.16 0.04 0.04 om 0.04 0.03
F,O 39.06 17.26 18.91 13.15 13.33 17.86 3430 14.69 14.23 12.94 13.08 14.37
MnO 0.71 0.29 0.29 0,22 0.22 0.27 0.65 0.20 0.21 0.17 0.19 0.21
MgO 23.05 43.53 41.68 46.95 47.07 43.43 2755 44.94 46.13 4752 43.88 44.88
C,O 0.81 0.41 0.42 0.39 0.34 0.57 0.71 0.44 0.36 OAl 0.40 0.39

Na20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 '0.00 0.00 0.00 0.00 0.00
K20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
n05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
NiO 0.05 0.20 0.17 0.17 0.25 0.17 0.12 0.23 0.23 0.20 0.24 0.24
Total 98.20 100.62 99.37 100.33 101.22 101.52 99.45 100040 101.32 100.49 96.96 99.59
Mg' 0.57 0.85 0.83 0.89 0.89 0.84 0.64 0.87 0.88 0.89 0.88 0.87

MAGB 25
Si02
Ti02

A1203
Cr203

F,O
MnO
MgO
C,O

N020
K20
n05
NiO
Total
Mg'

TAAB 26 OLIVINE 67 OLIVINE 68
Si02 38.25 38.79
Ti02 0.00 0.00

A1203 0.06 0.04
Cr203 0.00 0.01
F,O 19.61 19.56
MnO 0.25 0.26
MgO 41.84 41.55
C,O 0.32 0.29

N020 0.00 0.00
K20 0.00 0.00

P205 0.00 0.00
NiO 0.20 0.20
Total 100.52 100.70
Mg' 0.83 0.82
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APPENDIX TABLE 2: Major element compositions of host Olivines

MAGB47 "OLlVINE58 OLlVINE59 OUVlNE60 OUVINE61 OLIVINE 6lA OLIVINE NI 62 OLIVINE 62 OLIVINE NI 63 OLIVINE 63 OLIVINE 64 OLNlNE NI 64 LIVINE NI 66 OLIVINE 65-6
SiOl 39.39 38.32 39.13 3836 38.66 38.10 39.06 39.12 39.40 39.62 40.36 45.88 38.83
TiOl om 0.01 0.00 om 0.01 0.02 om 0.00 0.00 0.02 0.00 1.17 0.03

AI203 0.04 0.18 0.02 0.05 0.06 0.02 0.03 0.Q2 0.02 0.03 0.04 13.48 0.Q1
Cr203 0.06 0.01 0.07 0.02 0.02 0.02 0.05 0.03 0.03 0.Q3 0.00 0.Q2 0.02
F,O 13.10 17.62 13.17 18.1 J 18.14 1531 14.67 15.21 14.97 13.12 15.22 8.22 17.69

MnO 0.21 0.28 0.19 0.29 0.30 0.22 0.24 0.26 0.24 0.21 0.22 0.13 0.29
MgO 45.47 41.98 45.46 42.15 42.18 46.19 45.23 45.26 45.34 45.92 44.81 734 42.55
C,O OAl 0.40 0.40 0.39 0.42 0.55 0.43 0,42 0.39 0.39 0,45 6.54 0.41

NolO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
K20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
nos 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
NiO 0.25 0.19 0.24 0.19 0.15 0.18 021 021 0.21 0.22 0.20 0.00 0.21
Total 98.91 98.99 98.67 99.57 99.93 100.59 99.92 100.53 100.60 99.57 101.30 82.79 100.05
Mg' 0.88 0.84 0.88 0.84 0.84 0.87 0.87 0.87 0.87 0.89 0.87 0.66 0.84

MAGB47 OLIVINE NI 65 OLIVINE 67 OLIVINE NI 67 OLIVINE 68 OLIVINE 69 OLIVINE 70 OLIVINE 71 OLIVINE 72 OLIVINE 173
Si02 38.90 39.10 38.21 39.45 39.11 39.04 39.31 38.91 38.43
Ti02 0.05 0.00 0.03 0.00 0.00 0.01 0.01 0.00 0.02

AI203 0.05 0.02 0.00 0.02 0.04 0.02 0.01 0.02 0.03
Cr203 0.D3 0.03 0.04 0.05 0.03 0.D3 0.06 0.05 0.D3
F,O 17.83 15.91 17.43 13.32 13.3l 15.00 13.00 15.10 17.79
MnO 0.28 0.22 0.26 0.21 0.17 0.23 0.21 0.21 0.28
MgO 42.02 43.85 43.39 45.49 44.59 44.06 45.78 44.26 41.47
C,O 0.41 0.41 0.50 0.40 0.42 0.40 0.36 0.39 0.39
Na20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
K20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
nos 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
NiO 0.20 0.19 0.14 0.24 0.26 0.21 0.24 0.22 0.20
Total 99.78 99.73 99.99 99.18 97.92 99.02 98.98 99.16 98.63

Mg' 0.84 0.86 0.85 0.88 0.88 0.87 0.89 0.87 0.84
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APPENDIX TABLE 3: Major element compositions of host and daughter Clinopyroxenes compositions

MAGB47 PYROXENI PYROXEN6 PYROXEN7 PYROXEN8 PYROXEN8 PYROXEN9 PYROXENIO PYROXEN 11 PYROXEN14 PYROXEN 15
SiQ2 42.81 44.57 44.03 42.03 42.15 42.51 44.46 44.71 4422 44.87
TiOl 5.87 4.54 4.64 5.24 5.56 4.59 4.08 3.72 4.47 2.84
AI203 9.80 12.17 10.65 10.65 12.28 10.40 10.04 9.95 9.54 8.76
Cr203 0.16 0.07 0.02 o.os 0.D7 0.07 0.08 am 0.12 0.66
F,O 6.29 7.07 8.29 8.96 7.95 8.41 7.99 8.22 6.09 7.67
MoO 0.11 0.13 0.14 0.19 0.14 0.18 0.15 0.15 0.08 0.11
MgO 1050 954 9.46 10.48 9.02 9.09 9.83 10.41 11.44 10.93
CaO 22.90 21.89 23.02 20.61 22.72 23.34 22.97 22.39 23.08 22.91

Na20 0.65 0.80 0.69 0.54 0.68 0.89 0.63 0.53 0.72 0.59
K20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ono
P20S 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
NiO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 on4
Total 99.07 100.77 100.93 98.77 100.57 99.48 100.22 100.16 99.78 99.39
Mg. 0.79 0.75 0.72 0.71 0.71 0.71 0.73 0.73 0.81 0.76

MAGB25 PYROXENHl PYROXENH4 PYROXENH5 PYROXEN H8-9 PYROXEN HID-II PYROXEN H 18 PYROXEN H19-23 PYROXENH24 PYROXEN H 25 PYROXEN H26

Si02 5056 49.62 50.12 50.84 50.06 51.29 51.29 50.90 50.92 50.53
Ti02 1.01 1.36 1.12 0.93 1.00 0.84 0.72 0.91 1.12 1.07

AI203 3.35 4.05 4.09 3.26 4.01 3.07 2.63 3.16 3,49 3.71
Cr203 0.66 0.64 0.97 0.78 0.91 0.64 0.90 0.60 0,48 0.81
F,O 5.16 5.37 4.95 4.91 4.99 4.89 4.31 4.83 5.29 4.74
MnO 0.12 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.17 ono
MgO 15.65 15.15 15.03 15.97 15.08 15.37 16.36 15.59 15,43 15.17
CaO 2257 22.71 22.40 21.86 22.24 22.36 22.15 22.13 22.34 22.29

Na20 0.33 0,45 0,47 0.42 0.47 0.38 0,41 0.38 0.38 036
K20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
P205 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

NiO om 0.06 0.00 0.00 0.00 0.00 0.00 0.Q3 0.19 OnI
Total 99.43 99.50 99.15 98.96 98.75 98.84 98.78 98.52 99.80 98.69

Mg' 0.87 0.86 0.87 0.88 0.87 0.87 0.89 0.88 0.87 0.88

TAAB26 PYROXENla PYROXENlb PYROXEN2 PYROXEN3 PYROXEN core 4 YROXEN margin PYROXEN5 PYROXEN 6a PYROXEN 6b PYROXEN8

Si02 40.66 39.85 4159 39.17 42.38 44.18 39.40 40.75 37.'l2 47.62
Ti02 5.91 5.98 6.90 6.05 3.73 3.32 7.54 2.36 7.03 2.44

AI203 13.34 13.00 12.24 13.75 14.57 18.02 13,47 13.83 17.18 12.47
Cr203 0.02 0.01 0.05 0.00 0.00 0.Q3 0.Q3 0.00 0.00 0.00
F,O 8.00 7.97 6.66 9.55 7.52 6.50 8.81 7.11 8.84 9.66

MoO 0.02 0.13 0.08 0.05 0.05 0.06 0.12 am 0.09 0.16
MgO 8.93 8.99 10.79 7.62 8.68 2.95 9.16 10.18 6.74 6.19
CaO 21.03 22.18 22.42 22.76 23.39 16.03 21.78 2354 21.95 19.78

Na20 050 0.44 0.61 053 0.49 2.77 0.65 0,42 1.61 1.12
K20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
P205 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 O~O

NiO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Total 98.42 98.54 101.33 99.48 100.81 93.86 100.95 98.36 100.74 99,44

Mg' 0.71 0.71 0.78 0.64 0.72 0.50 0.70 0.76 0.63 0.59
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APPENDIX TABLE 3: Major element compositions of host and daughter Clinopyroxenes compositions

MAGB47 PYROXEN16 PYROXEN 17 PYROXEN19 PYROXEN20 PYRQXEN21 PYROXEN21 PYROXEN22 PYROXEN23 PYROXEN24 PYROXEN27

Si02 43.95 45.07 44.80 4D52 52.19 47.83 42.98 41.21 47.18 45.42
TiOl 4.87 4.01 6.07 7.47 0.79 2.72 5.26 5.84 258 3.05
AI203 10.60 8.24 10.22 12.48 3.03 6.49 12.98 14.70 11.61 9.07
Cr203 0.10 0.05 033 0.12 1.20 033 0.06 0.06 0.01 0.28
F,O 7.69 8.49 6.32 6.63 4.00 7.34 6.44 7.63 9.23 7.00
MnO 0.09 0.13 0.08 am 0.04 0.11 0.08 D.ll 0.15 0.11
MgO 8.92 9.97 to.78 10.54 15.83 12.65 11.10 8.05 8.02 11.99
e,o 23.37 23.53 22.69 19.63 23.49 23.01 20.35 22.81 21.92 22.39

N.:lO 0.62 0.74 0.69 0.46 0.32 0.44 l.09 0.61 0.81 0.72
K20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
nos 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
NiO 0.00 0.00 0.02 0.00 0.06 0.Q2 0.01 0.02 0.02 0.02
Total 100.10 100.23 102.00 97.91 100.95 100.94 100.35 101.03 101.54 100.05
Mg' 0.72 0.72 0.79 0.78 0.90 0.79 0.79 0.70 0.66 0.79

MAGB25 PYROXENH27~28PYROXENH29 PYROXENH30-32 PYROXENH35 PYROXENH36 PYROXENH38-39 PYROXENH41-42 PYROXENH44 PYROXENH45 PYROXENHNI50

Si02 50.52 50.65 50.99 50.86 48.66 50.94 50.43 50.36 50.80 49.64
Ti02 1.06 l.01 0.88 0.93 0.77 0.94 1.12 132 0.94 1.29

A1203 3.65 3.65 3.32 3.41 2.77 3.44 3.79 4.09 3.17 4.08
Cr203 0.68 0.65 0.64 0.60 0.63 0.77 0.51 0.26 0.37 0.63
F,O 5.12 5.17 4.86 4.69 4.27 4.80 4.84 550 4.86 5.67
MnO 0.37 0.22 0.23 0.08 0.00 0.00 0.00 0.00 0.00 0.05
MgO 15.44 15.59 15.53 15.65 16.84 15.41 15.25 14.79 15.51 14.27
e,o 22.52 22.08 21.80 22.20 22.30 22.01 22.19 22.36 22.37 22.83

Na20 0.41 0.38 0.39 0.40 0.39 0.45 0.36 0.3? 0.34 0.00
K20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
P205 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
NiO 0.25 0.19 0.29 0.00 0.04 0.00 0.00 0.00 0.00 0.00
ToW 100.01 99.56 98.92 98.81 96.67 98.75 98.47 99.06 98.35 98.47
Mg' 0.87 0.87 0.88 0.88 0.90 0.88 0.87 0.86 0.88 0.85

TAAB26 PYROXEN9 PYROXEN lOa PYROXENlOb PYROXEN12 PYROXEN14 PYROXEN15 PYROXEN 16a PYROXEN 16b PYROXEN 16c PYROXEN 17a

Si02 43.29 39.07 43.34 44.02 39.98 45.28 49.30 50.28 43.31 49.02
Ti02 4.77 7.83 5.34 3.96 6.97 3.93 1.69 1.55 5.11 1.97

A1203 10.96 13.40 11.51 12.63 15.11 9.52 4.98 4.81 11.85 5.30
Cr203 0.15 0.04 0.00 0.00 0.00 0.06 0.90 0.86 0.12 0.62
F,O 7.61 7.35 8.06 951 9.15 7.48 6.44 6.35 5.99 6.88
MnO 0.10 0.12 0.15 0.13 0.12 0.15 0.12 0.13 0.15 0.13
MgO 11.60 9.61 11.52 6.68 10.47 12.44 14.93 15.03 11.58 14.77
e,o 21.79 22.29 20.61 21.93 17.33 21.74 21.90 21.89 21.93 21.86

N.:lO 059 0.72 0.74 125 1.47 0.57 0.42 0.44 0.59 0.42
K20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
P205 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
NiO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Total 100.85 100.42 101.27 100.11 100.62 lOLl8 100.67 101.32 100.63 100.97

Mg' 0.77 0.74 0.76 0.61 0.72 0.79 0.84 0.84 0.81 0.83
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APPENDIX TABLE 3: Major element compositions of host and danghter Clinopyroxenes compositions

MAGB47 PYROXEN 29 PYROXEN30 PYROXEN31 PYROXEN32 PYROXEN33 PYROXEN 33A PYROXEN 33B PYROXEN 33B PYROXEN36 PYROXEN37 PYROXEN38
Si02 44.50 4559 41.77 43.61 43.02 4622 43.26 48.20 40.93 41.54 42.31
Ti02 4.81 4.15 8.05 4.85 4.34 424 4.45 3.03 6.18 5.66 5.09

A1203 10.47 9.79 12.78 10.25 12.75 11.33 11.39 9.87 12.03 12.69 l1.I4
Cr203 0.12 0.10 0.08 0.18 am 0.11 0.06 om 0.03 0.08 0.04

F,O 5.79 6.36 7.35 6.94 7.49 7.33 7.68 6.76 7.05 8.01 7.95
MnO 0.07 0.10 0.09 0.09 0.11 0.14 0.15 0.14 0.09 0.10 0.09
MgO 10.79 11.19 7.71 11.lZ 9.11 10.22 9.93 12.66 9.89 11.65 8.64
CaO 23.33 23.10 23.02 22.84 2252 21.04 22.24 21.52 22.78 18.97 23.08

Na20 0.61 0.57 0.70 0.66 0.77 0.81 0.69 0.74 0.44 1.08 0.56
K20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
P20S 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
NiQ 0.06 ·0.02 0.Q2 0.02 0.03 0.02 0.00 0.00 0.00 0.00 0.00
Total 100.54 100.99 101.56 100.56 100.15 101.45 99.84 102.99 99.41 99.80 98.91
Mg' 0.80 0.79 0.70 0.78 0.73 0.76 0.74 0.80 0.76 0.76 0.71

MAGB25 PYROXEN H 50 PYROXEN H 51 PYROXEN H 54 PYROXEN H 56 PYROXEN3 PYROXEN 6 PYROXEN8 PYROXEN 12 PYROXEN13 PYROXEN14 PYROXEN 16
Si02 49.55 50.91 51.01 50.96 40.17 40.81 51.87 41.71 40.63 40.03 40.10
Ti02 1.24 0.99 1.07 1.18 5.60 4.99 0.78 4.55 5.69 4.73 5.24

A1203 3.72 3.39 3.34 4.23 10.22 10.78 2.94 11.09 10.40 11.59 11.21
Cr203 0.37 0.57 0.56 0.86 om 0.04 0.98 0.03 0.02 0.06 0.00
F,O 5.64 4.49 5.37 4.87 11.74 11.00 4.41 10.36 10.86 10.91 11.38
MnO 0.05 0.00 0.12 0.00 0.51 0.37 0.00 0.20 0.00 0.00 0.33
MgO 14.79 15.43 15.98 14.90 8.39 9.26 16.55 9.61 9.30 6.02 7.37
C,O 22.77 22.47 23.09 22.41 21.50 22.00 22.58 21.98 21.70 22.77 22.34

Na20 0.00 036 0.32 0.41 0.78 0.65 0.36 0.66 0.76 0.66 0.63
K20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.05
nos 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
NiO 0.00 0.00 0.00 0.00 0.35 0.27 0.00 0.00 0.00 0.00 0.00
Total 98.13 98.61 100.85 99.82 99.33 100.18 100.47 100.19 99.36 96.83 98.63
Mg' 0.85 0.88 0.87 0.87 0.61 0.65 0.89 0.67 0.65 0.55 059

TAAB26 PYROXEN17b PYROXEN18 PYROXEN20 PYROXEN 21 PYROXEN 22 PYROXEN30 PYROXEN32 PYROXEN33 PYROXEN34 PYROXEN 40 PYROXEN 48a
Si02 43.71 43.87 48.85 42.26 41.86 4.5.54 47.22 44.36 44.59 39.36 45.72
Ti02 4.33 4.98 2.39 3.04 5.39 3.61 2.93 4.26 4.33 6.76 3.87

A1203 10.24 12.26 5.03 13.86 12m 8.83 7.08 8.39 JO.58 14.76 9.16
CrZ03 0.03 0.08 0.10 0.00 om 0.Q2 0.20 0.05 0.21 0.00 0.04
P,O 7.76 7.44 7.50 8.18 7.03 7.00 7.44 8.96 6.17 8.14 7.75
MnO 0.10 0.18 0.12 0.11 0.14 0.12 0.13 0.15 0.12 0.09 0.13
MgO 11.99 11.28 14.82 8.58 11.06 12.59 13.63 11.79 12.29 8.12 12.40
CaO 22.01 20.04 22.06 23.40 21.83 21.80 21.76 21.75 21.92 22.73 21.67

N020 051 0.95 0.35 0.45 0.62 0.45 0.46 0.52 0.58 0.61 0.53
K20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
nos 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
NiO 0.00 0.00 0.00 0.00 0.00 0.00 am 0.00 0.00 0.00 0.00
Total 100.68 101.07 101.22 99.85 100.08 99.97 ]00.86 JOO.22 100.79 100.57 J01.28
Mg' 0.77 0.77 0.81 0.70 0.78 0.80 0.80 0.74 0.81 0.69 0.78
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APPENDIX TABLE 3: Major element compositions or host and danghter Clinopyroxenes compositions

MAGB47 PYROXEN39 PYROXEN39B PYROXEN 40 PYROXEN41 PYROXEN42 PYROXEN44 PYROXEN 45 PYROXEN 45A PYROXEN 45A PYROXEN 46 PYROXEN48
SiQ2 43.35 43.44 42.12 46.42 41.05 42.22 43.89 49.69 47.70 40.01 41.37
Ti02 4.14 4.72 5.00 2.08 5.24 5,43 2.91 1.50 2.91 5.51 5.81

AI203 9.70 1028 10.46 6.71 13.70 13.38 10.24 1.52 4.35 13.06 13.35
CrZ03 0.04 0.06 0.04 0.02 0.04 0.00 0.00 0.00 0.00 om 0.01

F,O 7.17 7.42 6.81 12.46 6.71 9.25 8.84 14.92 13.80 8.86 10.13
MnO 0.09 0.11 0.10 0.20 0.11 0.16 0.15 0.32 025 0.11 0.13
MgO 10.05 9.89 10.23 8.78 7.92 7.51 9.15 8.92 838 9.19 8.42
C,O 23.18 23.62 23.09 22.39 22.43 21.34 21.96 21.18 21.45 21.62 19.90

Na20 0041 058 0.50 0.63 0.66 0.96 0.42 1.12 0.99 0.92 1.02
1<20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
n05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
NiO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Total 98.13 100.10 98.34 99.67 97.85 100.25 97.56 99.15 99.83 99.29 100.15
Mg' 0.76 0.75 0.77 0.61 0.72 0.64 0.68 0.57 0.57 0.69 0.64

MAGB25 PYROXEN 17 PYROXEN18 PYROXEN30 PYROXEN34 PYROXEN37 PYROXEN40 PYROXEN40A PYROXEN 43 PYROXEN46 PYROXEN49 PYROXEN54

Si02 41.37 45.62 42.86 41.49 47.91 43.96 41.16 42.68 41.83 42.9D 45.17
Ti02 5.38 2.62 4.60 3.79 3.45 3.87 5.52 4.59 4.78 4.58 3.33

Al203 10.76 7.47 9.99 12.57 10.57 7.63 11.63 9.75 9.70 8.10 7.54
Crl03 om 0.41 0.02 0.00 0.02 0.00 0.04 OM 0.04 0.08 0.04
F,O 9.80 7.54 9.96 10.57 9.79 11.22 10.59 10.25 11.01 10.55 10.24
M,O 0.36 0.07 0.15 0.12 0.15 0.19 0.14 0.15 0.19 0.17 0.20
MgO 9.34 11.98 9.84 8.05 835 9.62 7.65 9.15 8.34 9,42 10.88
C,O 21.99 2230 2150 23.44 20.15 21.82 21.07 21M 21.55 21.65 21.77

Na20 0.60 0.00 0.73 0.57 0.88 053 0.79 0.70 0.70 0.67 0.56
K20 0.03 0.00 0.02 0.00 0.26 0.02 0.32 0.05 0.04 0.02 0.02
n05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
NiO 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Total 99.69 98.03 99.66 JOO.59 101.52 98.86 98.89 98.84 98.18 98.13 99.74

Mg' 0.68 0.77 0.69 0.63 0.65 0.65 0.61 0.66 0.62 0.66 0.70

TAAB 26 PYROXEN48b PYROXEN 51a PYROXEN 51b PYROXEN 59a PYROXEN 59b PYROXEN61 PYROXEN 66 PYROXEN67
Si02 39.79 40.44 24.80 37.77 41.28 45.56 43.54 41.97
Ti02 732 6.37 11.87 8.99 4.76 3.70 4.25 6.01

A1203 16.42 12.53 18.78 l7.31 14.88 925 9.51 10.74
0203 0.00 0.01 0.14 0.00 0.00 0.02 0.06 0.D3

F,O 8.25 6.63 18.72 10.74 7.60 653 7.53 7.37
M,O 0.12 0.14 0.15 0.14 0.09 0.14 0.10 0.11
MgO 12.95 10.44 12.83 9.99 8.52 13.13 12.19 11.67
C,O 11.70 23.52 12.47 12.16 22.97 22.36 22.28 21.94

Na20 2.63 0.53 0.88 2.30 0.67 0.45 0,46 0.54
K20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
P205 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
NiO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Total 99.16 100.60 100.63 9938 100.77 101.14 99.91 100.37

Mg' 0.78 0.78 0.60 0.67 0.71 0.82 0.78 0.78
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APPENDIX TABLE 3: Major element compositions of host and daughter Clinopyroxenes compositions

MAGB47 PYRQXEN49 PYROXEN50 PYROXEN51 PYROXEN52 PYRQXEN53 PYROXEN54 PYROXEN54 PYROXEN55 PYROXEN56 PYROXEN57 PYROXEN58
Si02 41.41 44.39 44.37 43.25 42.92 45.37 40.65 42.29 44.38 40.20 44.83
TiQ2 8.04 4.25 4.07 4.51 4.86 3.65 5.79 5.52 4.22 6.92 4.75

AI2Q3 11.80 10.61 9.58 11.64 10.17 9.48 12.80 12.03 9.98 12.83 10.29
Cr203 0.01 0.04 0.00 0.04 0.06 0.06 0.05 0.10 0.09 0.06 0.10
F,O 8.20 6.81 6.93 6A4 9.97 5.99 5.95 6.93 8.70 8.93 6.84
MoO 0.10 0.10 0.12 0.06 0.15 0.13 0.08 0.11 0.13 0.34 0.54
MgO 8.96 10041 10.96 10.26 8.02 12.45 10.69 9.72 8.77 10.29 9.63
C,O 22.63 23.00 22.68 23.36 22.85 22.55 22.51 22.97 23.16 17.01 22.67

Na20 0.64 0.52 0.50 0.49 0.57 0.45 0.63 059 059 1.81 0.56
K20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
P205 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
NiO 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.17 0.36
Total 101.77 100.13 99.20 100.02 99.56 100.12 99.17 100.25 100.00 98.55 10057
Mg# 0.71 0.77 0.78 0.78 0.64 0.82 0.80 0.76 0.69 0.72 0.76

MAGB25 PYROXEN56 PYROXEN57
Si02 39.75 48.10
Ti02 6.17 1.91

A1203 11.61 5.45
Cr203 0.00 0.28
F,O 10.61 6.14
MoO 0.14 0.06
MgO 8.25 1436
C,O 21.40 22.72

Na20 0.69 0.40
K20 0.06 0.00
P20S 0.00 0.00
NiO 0.00 0.00
Total 98.67 99.43
Mg# 0.63 0.84
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APPENDIX TABLE 3: Major element compositions of host and daughter Clinopyroxenes compositions

MAGB47 PYROXEN 59 PYROXEN60 PYROXEN61 PYROXEN62 PYROXEN63 PYROXEN64 PYROXEN65 PYROXEN66 PYROXEN67 PYROXEN69 PYROXEN70
Si02 41.72 43.65 42.78 43.43 44.78 42.96 39.86 41.62 42.52 43.47 45.34
Ti02 5.68 5.11 5.18 3.66 3.37 421 5.62 6.47 4.49 4.16 4.39

AI203 13.03 10.06 12.05 10.32 lO.32 11.01 13.07 13.26 10.97 9.68 12.25
Cr203 0.06 0.09 0.02 0.06 0.11 0.03 0.09 0.06 0.11 0.06 0.14
F,O 9.33 738 7.64 7.35 7.28 6.40 7.16 8.19 7.28 8.23 5.16
MoO 0.59 0.61 0.12 0.33 034 0.53 0.18 0.14 0.09 0.15 0.08
MgO 7.14 10.08 9.91 10,47 10.94 11.47 9.41 7.70 1027 9.06 10.09
e,o 22.74 23.16 22.36 23.05 22.51 22.83 22.55 22.D9 22.37 22.20 19.19

Na20 0.67 0.66 0.64 0.58 0.57 054 0.71 0.63 059 0.92 1.25
K20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
nos 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
NiQ 0.40 0.40 0.00 0.18 0.17 0.33 0.06 0.00 0.00 0.00 0.00
To"" 10137 10121 100.71 99.42 100.38 100.32 98.70 100.15 98.68 97.91 97.90
Mg' 0.63 0.75 0.74 0.76 0.77 0.80 0.74 0.68 0.76 0.71 0.81

MAGB47 PYROXEN71 PYROXEN72
Si02 49.32 42.00
Ti02 1.91 5.26

Al203 5.10 11.74
Cr203 0.31 0.07
F,O 5.38 7.69
MoO 0.05 0.14
MgO 14.53 10.84
e,o 22.56 19.34

Na20 0.46 1.50
K20 0.00 0.00
nos 0.00 0.00
NiO 0.05 0.00
Total 99.66 98.58
Mg' 0.86 0.76
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APPENDIX TABLE 4: Major element compositions of danghter mineral

MAGB47 AMPH 13 AMPH 18 AMPH23 AMPH 27 AMPH 34 AMPH 44 AMPH 54 AMPH 61 AMPH65 AMPH66 AMPH 68 AMPH70
SiOl 38.18 39.53 37.76 36.92 40.10 37.71 37.75 38.93 36.95 38.37 40.84 40.93
TiOl 9.80 8.16 8.72 8.00 5.04 8.28 6.24 8.37 8.57 8.72 7.71 5.74

A1203 14.71 14,48 15.76 12.14 14.13 14.57 16.40 14.02 14.38 15.39 13.50 10.47
ca03 0.10 0.03 0.02 0.13 0.02 0.00 0.00 0.05 0.04 om 0.06 0.07

F,O 8.84 10.01 9.99 7.45 8.12 11.21 8.09 9.35 10.06 9.89 6.54 6.62
MnO 0.14 0.11 0.12 0.05 0.11 0.17 0.09 0.12 0.16 0.14 0.07 0.10
MgO 11.77 10.81 10.93 13.49 13.06 10.10 12.80 10.53 11.64 10.41 12.45 10.66
CaO 11.96 12.82 12.31 11.38 11.85 11.79 12.04 14.03 12.18 12.38 12.89 22.64
Na20 2.81 2.80 2.68 3.04 2.69 2.49 3.12 2.07 3.06 2.68 2.27 0.68
K20 0.07 0.10 0.31 0.40 0.47 0.00 0.00 0.05 0.00 0.24 0.54 0.06
P205 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
NiO 0.00 om 0.02 0.00 0.00 0.00 0.00 0.00 0.00 om 0.00 0.00
Total 98.38 98.85 98.62 92.99 95.59 96.32 96.52 97.52 97.04 98.24 96.86 97.96

MAGB 25 AMPH1 AMPH2 AMPH3 AMPH4 AMPH5 AMPH7 AMPH 8 AMPH9 AMPH 10 AMPH ItA AMPH 12 AMPH 15
SiQ2 36.67 38.60 42.39 37.43 38.09 38.44 38.00 38.36 37.29 36.48 38.68 37.43
TiOl 2.58 5.45 1.66 5.08 5.06 5.44 5.09 4.50 3.44 3.76 5.20 6.05

A1203 16.66 13.76 14.39 17.19 15.41 14.44 16.12 14.45 16.21 17.37 14.70 13.93
Ca03 0.00 0.00 0.00 0.00 0.06 0.00 0.03 0.04 0.06 0.09 0.02 0.04
F,O 18.31 12.63 13.09 14.75 12.93 10.84 12.84 12.66 15.12 13.37 11.52 12.58
MnO 0.23 0.06 0.20 0.27 0.12 0.11 0.00 0.00 0.00 0.00 0.00 0.19
MgO 6.35 10.45 12.76 8.84 10.42 13.11 10.12 10.82 8.79 9.82 11.64 11.49
CaO 11.53 11.88 11.15 11.73 11.51 11.67 11.74 11.52 11041 11.40 11.80 11.70

Na20 2.99 2.87 3.12 2.71 3.01 3.00 2.88 3.00 3.03 3.17 2.85 2.88
K20 0.42 0.56 0.62 0.63 0.39 0.59 0.39 0.42 0.45 0.43 0.60 0.64
P205 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
NiO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Total 95.74 96.26 99.37 98.64 96.98 97.63 97.21 95.77 95.79 95.90 97.00 96.92

TAAB26 ILM3 ILM4 ILM8 ILM 12 ILM 17 ILM 22 ILM 30 ILM49 ILM 61 SPINELla SPlNEL2b SPINELI9
Sial 0.00 0.00 0.00 1.11 0.07 0.06 0.00 0.00 0.00 6.06 3.65 0.00
TiOl 51.87 53.82 53.57 53.58 52.67 51.97 53.89 53.55 53.93 17.70 18.86 9.89

A1203 0.26 0.18 0.07 0.80 0.31 0.19 0.14 0.16 0.14 10.67 10.75 11.96
Cr203 0.04 0.08 0.04 0.13 0.00 0.00 0.00 0.02 0.00 11.16 12.01 12.89
F,O 42.93 42.61 36.94 37.11 40.39 42.52 41.04 38.71 40.34 43.71 46.66 55.93
MnO 0.52 0.53 0048 0.46 0.46 0.56 0.58 0.59 0.47 0.29 0.46 0.43
MgO 4.62 4.67 7.76 8.03 6.03 4.86 5.94 7.31 6.27 7.92 8.06 7.58
CaO 0.32 0.03 0.20 0.55 0.25 0.09 0.35 0.31 0.31 3.29 2.06 0.08

Na20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
K20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
P205 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
NiO om 0.03 0.00 0.00 0.02 0.00 0.00 0.00 0.03 0.15 0.20 0.44
Total 100.56 101.95 99.06 101.76 100.20 100.24 101.94 100.64 101.48 100.94 102.69 99.20
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APPENDIX TABLE 4: Major element compositions of daughter mineral

MAGB47 Ti-MNT21 ILM 45 ILM 64 SPINEL 4 SPINEL 6 SPINEL 8 SPINEL 9 SPINEL 11 SPINEL 11 in 01 SPINEL 13 SPINEL 15 SPINELc 19
Si02 0.13 0.48 0.08 0.09 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.14
Ti02 29.83 54.02 52.90 3.33 3.80 4.57 3.12 3.37 2.27 7.14 2.93 7.54

A1203 2.40 0.27 0.02 18.96 15.99 18.35 18.16 15.48 14.71 16.27 14.85 17.97
Cr203 0.07 0.34 0.00 40.33 40.57 36.67 42.65 42.78 44.78 33.00 40.14 33.81

FeO 62.74 37.81 40.27 26.16 31.66 32.57 26.62 30.84 27.72 33.09 32.27 33.62
MoO 0.88 0.73 0.72 0.34 0.46 0.54 0.36 0.58 0.37 0.52 0.47 0.44
MgO l.l5 5.53 5.05 9.72 8.01 7.54 9.44 7.37 12.24 8.39 8.24 7.09
CaO 0.09 0.58 0.07 0.11 0.25 0.29 0.21 0.24 0.08 0.20 0.18 0.09

Na20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
K20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
P205 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
NiO 0.06 0.00 0.05 0.07 0.27 0.28 0.04 0.30 0.38 0.28 0.29 0.07
Total 97.36 99.76 99.14 99.12 101.01 100.80 100.65 100.96 102.55 98.89 99.36 100.77

MAGB25 AMPH 24 AMPH 25 AMPH 27 AMPH28 AMPH 30 AMPH31 AMPH34 A1\.1PH 35 AMPH37 AMPH40 AMPH40A AMPH 41
Si02 37.60 36.80 37.58 36.97 39.45 37.66 37.70 37.91 39.98 39.53 42.18 36.54
Ti02 4.67 4.29 4.82 4.16 5.88 2.87 4.36 5.88 4.66 5.00 4.50 4.98

A1203 16.36 16.01 14.73 16.37 13.74 16.46 14.79 15.23 13.78 13.35 11.01 16.38
0203 om om 0.03 0.00 0.05 0.02 0.06 0.05 0.07 0.00 0.09 0.00

FeO 13.29 15.10 13.03 14.69 10.87 14.62 15.12 10.38 13.96 12.29 10.20 14.79
MoO 0.23 0.31 0.27 0.24 0.15 0.28 0.20 0.18 0.18 0.21 0.15 0.27
MgO 10.12 9.00 10.74 8.70 12.19 9.20 9.17 12.33 10.43 11.85 10.44 8.80
CaO 11.70 11.38 11.82 11.20 12.04 11.59 12.18 11.39 11.58 11.54 18.38 11.46

Na20 2.88 3.06 3.07 3.02 2.88 3.02 3.06 3.05 2.92 3.01 l.l8 2.95
K20 0.49 0.45 0.42 0.47 0.45 0.51 0.49 0.47 0.53 0.50 0.20 0.51
P205 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
NiO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Total 97.35 96.41 96.51 95.81 97.69 96.23 97.11 96.84 98.09 97.27 98.34 96.68

TAAB 26 SPINEL 22 SPINEL 24a SPINEL 24 b SPINEL 38 PLAG 40a PLAG2 40b PLAG 43 PLAG 49 PLAG 50 PLAG55a PLAG55b
Si02 0.00 0.00 0.00 0.00 49.20 46.56 45.66 47.22 46.84 46.42 47.46
Ti02 17.14 23.07 21.98 18.72 0.00 0.00 0.00 0.00 0.00 0.00 0.00

A1203 10.14 9.15 9.95 9.65 27.83 30.31 32.71 34.66 33.06 33.24 33.55
Cr203 11.03 7.70 7.69 13.98 0.00 0.00 0.00 0.00 0.00 0.00 0.00

FeO 54.16 54.11 55.62 50.89 1.01 1.01 1.25 0.89 0.73 1.34 0.76
MoO 0.59 0.56 0.56 0.59 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MgO 6.00 6.35 5.44 6.33 0.46 0.49 0.22 0.15 0.05 0.19 0.10
CaO 0.17 0.16 0.11 0.19 13.02 16.34 17.77 17.94 17.56 17.33 17.61

Na20 0.00 0.00 0.00 0.00 2.28 2.03 l.l7 1.20 1.43 1.49 1.58
K20 0.00 0.00 0.00 0.00 2.15 0.20 0.18 0.09 0.17 0.11 0.15
P205 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
NiO 0.43 0.40 0.42 0.48 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Total 99.66 101.50 101.77 100.84 95.94 96.95 98.95 102.15 99.83 100.13 101.22
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APPENDIX TABLE 4: Major element compositions of danghter mineral

MAGB47 PINEL m 1S SPINEL 20 SPINEL 32 SPINEL 33A SPINEL 33 SPINEL in 01 33 SPINEL 34 SPINEUn 01 134 SPINEL 41 SPINEL 43 SPINEL 45
SiQl 0.36 0.06 0.07 0.06 0.12 0.00 0.00 0.00 0.00 0.00 0.02
Ti02 19.19 18.56 3.28 3.74 3.64 2.56 3.11 2.07 2.47 3.32 7.55

A1203 8.27 12.67 16.22 17.93 16.22 15.70 16.48 18.94 15.35 16.94 15.10
Cr203 18.31 16.31 37.98 38.53 38.64 37.67 40.57 40.28 37.07 35.58 13.73
F,O 41.73 41.97 33.87 31.14 32.65 32.19 28.36 26.14 33.82 33.81 50.95
MnO 0.45 0.40 0.32 0.44 0.42 0.37 0.45 0.38 0.40 0.41 0.44
MgO 9.41 10.61 9.67 7.65 8.48 10.17 9.17 11.57 10.49 10.16 10.64
CaO 0.06 0.07 0.05 0.15 0.14 0.02 0.21 0.03 0.03 0.06 0.03

Na20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
K20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
n05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
NiQ 0.06 0.12 0.14 0.31 0.21 0.25 0.21 0.32 0.27 0.26 0.30
Total 97.83 100.78 101.58 99.94 100.52 98.93 98.55 99.72 99.90 100.55 98.76

MAGB 25 AMPH42 AMPH43 AMPH44 AMPH45 AMPH47 AMPH48 AMPH49 AMPH50 AMPH51 AMPH53 AMPH54
Si02 36.68 39.23 35.32 36.06 41.30 39.04 39.13 36.62 37.86 41.11 37.79
TiOl 4.05 4.88 4.88 4.51 2.39 6.42 5.79 3.20 5.17 3.98 4.99

A1203 16.93 13.78 16.82 17.00 10.78 11.92 13.50 18.55 16.53 13.24 14.38
Cr203 0.07 0.00 0.03 0.02 0.00 0.13 0.00 0.00 0.05 0.00 om

F,O 14.44 12.57 14.66 14.04 11.36 12.04 12.70 17.57 12.99 11.59 14.41
MnO 0.24 0.13 0.20 0.22 0.17 0.16 0.14 0.34 0.20 0.15 0.20
MgO 8.65 11.55 8.97 9.12 10.77 8.19 10.44 6.62 9.48 12.43 10.17
CaO 11.76 11.27 11.67 11.31 16.77 18.10 11.60 11.1 I 11.67 11.54 11.63

Na20 3.01 3.03 3.05 2.97 2.15 1.52 2.87 2.86 2.69 2.89 3.11
K20 0.46 0.56 0.50 0.44 0.26 0.23 0.63 0.48 0.50 0.60 0.45
P205 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
NiO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Total 96.27 96.99 96.10 95.69 95.94 97.74 96.80 97.34 97.13 97.53 97.13
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APPENDIX TABLE 4: Major element compositions of danghter mineral

MAGB47 SPINEL in 01 46 SPINEL 51Ac SPINEL 51A m SPINEL 52 SPINEL 153 SPINEL 54 SPINEL63 SPINEL 67 PLAG 45A PLAG 51 BIOTITE 49
Si02 0.07 0.00 0.11 0.06 0.00 0.05 0.00 0.04 66.73 65.66 34.18
Ti02 2.46 2.15 17.99 0.42 3.35 2.57 2.46 3.56 0.00 0.00 11.00

A1203 15.19 15.36 5.97 20.54 15.83 14.12 15.19 15.11 19.27 2.0.72 13.83
Cr203 36.13 41.65 17.72 45.38 41.81 42.54 40.45 37.57 0.00 0.00 0.00

FeO 34.96 30.85 54.75 22.75 30.10 27.89 30.43 35.28 0.73 0.72 9.80
MnO 0.25 0.34 0.75 0.30 0.55 0.31 0.98 0.34 0.00 0.00 0.07
MgO 10.43 10.83 2.95 11.44 8.45 11.15 9.98 8.03 0.00 0.00 13.77
CaO 0.00 0.02 0.04 0.02 0.29 0.14 0.13 0.04 0.11 0.23 0.40

Na20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.85 4.71 0.47
K20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 8.69 7.67 7.81
P205 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
NiO 0.10 0.27 0.19 0.08 0.26 0.15 0.59 0.13 0.00 0.00 0.00
Total 99.60 101.46 100.46 100.99 100.63 98.91 100.20 100.10 100.37 99.70 91.31

MAGB25 Ti-MNT 1 Ti-:MN1' 4 Ti-l\1NT 5 Ti-MNT 6 Ti-:MNT 8 Ti~MNT 9 Ti-MNT 10 Ti-MNT 13 Ti-MNT 15 Ti-MNT 18 Ti-MNT 24
SiOl 0.19 0.09 0.12 0.41 0.12 0.16 0.11 0.14 4.77 0.12 0.12
TiOl 15.23 16.33 17.15 20.49 15.51 17.73 14.91 16.42 14.06 16.88 17.13

A1203 8.81 8.52 7.97 6.08 8.30 7.91 8.45 6.75 5.66 8.14 8.02
Cr203 0.03 0.05 0.09 0.07 0.03 0.02 0.05 0.05 0.07 0.04 0.03

FeO 71.35 70.06 71.58 66.23 71.67 68.84 71.79 71.68 69.20 70.68 70.02
MnO 0.73 1.13 0.89 1.06 0.93 0.54 0.54 0.59 0.75 0.80 0.67
MgO 1.39 2.24 2.53 2.25 3.01 2.47 2.62 2.67 5.19 1.66 2.04
CaO 0.33 0.37 0.24 0.19 0.19 0.37 0.28 0.06 0.10 0.12 0.19

Na20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
K20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
P205 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
NiO 0.00 0.35 0.26 0.30 0.40 0.00 0.00 0.02 0.09 0.02 0.04
Total 98.06 96.26 99.37 97.06 96.98 97.63 97.21 95.77 95.79 95.90 97.00
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APPENDIX TABLE 4: Major element compositions of daughter mineral

MAGB47 BIOTITE 51A BIOTITE 54 APATITE 52 APATITE 54 APATITE 61 SPHENE 16 SPHENE 31 SPHENE 53
Si02 43.86 35.50 4.86 2.33 2.67 31.05 30.50 30.95
TiOl 4.11 1.02 0.00 0.00 0.00 31.75 36.95 34.55

A1203 13.11 18.37 2.45 0.66 0.51 5.06 1.89 3.83
ca03 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FeO 9.81 13.08 1.08 1.13 1.04 1.37 0.85 0.69
MnO 0.12 0.15 0.00 0.00 0.00 0.00 0.00 0.00
MgO 17.30 16.54 0.86 1.87 0.78 0.32 0.00 2.55
CaO 0.06 0.08 49.33 50.94 51.53 29.32 29.16 27.41

NolO 0.80 0.29 0.00 0.00 0.00 0.05 0.02 0.00
K20 8.46 7.46 0.00 0.00 0.00 0.00 0.00 0.00
n05 0.11 0.00 33.59 0.00 36.57 0.00 0.00 0.00
NiO 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.00
Total 97.84 92.58 92.17 56.92 93.09 98.92 99.37 99.98

MAGB25 Ti-:MNT 25 Ti-:MNT 27 Ti-MNT 28 Ti-MNT 35 Ti-MNT 35 Ti-MNT 38 Ti-MNT 40 Ti-:MNT 42 Ti-:MNT 44 Ti-MNT 48 Ti-:MNT 53 Ti-MNT 54
SiOl 0.14 0.47 0.11 0.10 0.89 0.19 0.91 0.15 0.19 1.14 1.90 5.70
Ti02 15.89 20.20 17.23 15.09 13.98 12.92 17.90 16.93 16.62 20.46 16.53 26.15

A1203 7.21 7.70 7.71 8.11 9.04 10.34 5.47 8.86 8.33 4.22 6.99 4.63
Cr203 0.05 0.03 0.04 0.06 0.04 0.06 0.10 0.04 0.05 0.12 0.52 om
FeO 70.54 65.83 70.48 70.35 69.31 71.20 69.49 71.09 68.33 70.83 67.46 54.55
MnO 0.42 0.70 0.51 0.46 0.33 0.48 0.51 0.58 0.50 0.79 0.34 0.31
MgO 3.78 1.40 1.68 2.72 2.30 2.11 2.01 1.41 1.98 0.15 2.52 1.92
CaO 0.14 0.25 0.17 0.19 0.36 0.35 0.58 0.21 0.58 0.37 0.30 0.91

NolO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
K20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
P205 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
NiO 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Total 96.92 97.35 96.41 96.51 95.81 97.69 96.95 97.11 96.84 98.09 97.27 94.17

MAGB25 ILM 16 ILM 34 ILM52 SPINEL 7 SPINEL 55 PLAG 5 PLAG 23
Si02 0.21 11.24 5.58 0.00 am 59.57 58.33
TiOl 47.24 38.24 44.86 5.72 3.05 0.00 0.00

A1203 0.39 3.59 2.30 16.30 17.22 22.30 26.64
Cr203 0.03 0.00 0.34 20.13 30.56 0.00 0.00
FeO 49.48 40.32 43.36 46.69 38.94 0.97 0.81
MnO 1.06 0.50 0.72 0.88 0.27 0.00 0.00
MgO 0.46 2.28 1.76 9.19 9.53 0.04 0.07
CaO 0.35 4.56 2.03 0.19 0.08 2.67 7.81

NolO 0.00 0.00 0.00 0.00 0.00 3.00 6.70
K20 0.00 0.00 0.00 0.00 0.00 1.92 0.50
n05 0.00 0.00 0.00 0.00 0.00 0.00 0.00
NiO 0.02 0.00 0.00 0.78 0.14 0.00 0.00
Total 96.68 96.27 96.99 96.10 95.69 95.94 97.74
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APPENDIX TABLE 5: Major element compositions of carbonate globules

MAGB25 4a 4b 5a 9a 9b lOa lOb lOe 11a 20a 25a 25b
Si02 0.19 0.06 0.06 0.05 0.12 0.00 0.00 0.05 0.02 3.87 0.10 0.10
FeO 14.73 41.22 33.87 10.37 37.02 39.16 12.34 12.09 31.72 42.45 34.08 43.10
MnO 1.99 2.26 3.14 0.41 0.85 1.64 0.28 6.42 0.55 0.88 1.23 1.20
MgO 4.05 6.03 8.94 34.62 11.67 8.16 34.56 11.10 4.72 3.39 8.25 7.12
CaO 36.10 7.20 11.54 7.08 6.09 6.48 5.05 23.79 19.02 9.48 15.32 9.06

Na20 0.08 0.10 0.14 0.22 0.18 0.12 0.21 0.28 0.17 0.19 0.30 0.12
SrO 0.11 0.05 0.02 0.00 0.00 0.00 0.00 0.00 0.07 0.06 0.00 0.00
BaO 0.00 0.07 0.02 0.00 om 0.00 0.00 0.00 om om 0.11 0.08
CO2 43.40 39.09 41.71 50.20 41.03 39.09 49.57 42.45 40.03 43.52 43.07 42.28
Total 100.65 96.09 99.43 102.96 96.97 94.65 102.00 96.18 96.31 103.85 102.48 103.05

MAGB25 25c 25d 25e 32a 35a 36a 44a
Si02 0.05 0.71 0.10 0.03 3.00 0.09 0.11
FeO 17.38 26.86 30.27 28.97 46.39 13.94 0.87
MnO 0.26 0.46 0.66 0.56 0.81 3.08 0.78
MgO 30.49 11.09 13.91 2.39 4.12 8.01 1.01
CaO 4.25 18.20 12.85 24.67 4.61 29.42 51.91

Na20 0.42 0.15 0.20 0.09 0.23 0.28 0.06
SrO 0.02 0.05 0.12 0.10 om 0.04 0.07
BaO 0.03 0.04 0.05 0.04 0.00 0.00 0.00
CO2 47.80 44.31 44.58 40.23 41.59 42.62 43.10
Total 100.68 101.86 102.74 97.09 100.75 97.47 97.91



MAGB47 423 683 703 70b
.Fe 3357 58.28 60.01 32.69
Co 0.68 0.18 0.13 0.93
Ni 31.59 2.16 0.32 32.11
Cn 0.27 0.22 0.16 0.28
Zn 0.21 0.12 0.18 0.16
Pb 0.00 0.00 0.00 0.00
S 33.03 37.95 39.39 33.65

Total 99.34 98.90 100.20 99.81

APPENDIX TABLE 6: Major element compositions of sulfides

....
~

MAGB25 13 1b Ie 53 5b 123 133 163 253 25b 283 28b 28c 323 32b 333 363 423
Fe 39.98 40.05 59.48 44.58 43.85 58.79 3256 61.77 45.03 44.79 48.78 56.87 56.14 46.11 45.11 45.87 33.04 58.79
Co 0.13 0.07 0.09 0.28 0.23 0.05 0.05 0.09 0.09 0.13 0.09 0.37 0.16 0.11 0.67 0.08 0.16 0.03
Ni 0.33 055 0.06 0.80 0.83 0.13 051 0.19 0.64 0.86 0.34 0.63 0.34 0.09 0.48 0.04 0.67 0.10
Cn 22.07 21.73 0.06 0.22 0.32 0.03 30.22 0.10 0.11 0.30 9.08 1.93 0.65 om 0.00 0.04 23.64 0.04
Zn 0.15 0.03 0.03 0,00 0.00 0.04 0.22 0.00 0.00 0.02 0.04 0.04 om om 0.00 0.00 0.06 om
Pb 0.18 0.11 0.08 0.00 0.00 0.11 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00
S 3558 35.70 3752 50.08 51.10 36.43 33.64 32.36 52.87 54.22 39.06 38.97 39.19 51.45 52.74 51.42 36.92 36.49

Total 98.42 98.25 97.32 95.95 96.33 9557 97.26 9451 98.75 100.33 97.40 98.80 9650 97.82 99.02 97.44 94.49 9553

TAAB26 143 153 343 34b 383 523
Fe 55.79 44.64 58.37 58.93 56.63 30.76
Co 0.14 050 0.13 0.14 0.21 0.08
Ni 059 12.83 0.88 0.41 1.60 052
Cn 0.36 0.19 0.11 om 0.22 30.00
Zn 0.09 0.11 0.08 0.02 0.12 0.21
Pb 0.00 0.00 0.10 0.06 0.00 0.00
S 3755 35.84 3957 38.64 38.14 34.58

Total 9452 94.12 99.23 98.26 96.91 96.15



....
Ul....

APPENDIX TABLE 7:Trace element compositions of melt inclusions

MAGB47 13a 13b 16a 18a 21a cpx 25a 38a 39a 44a 44b 45Aa
Rb 3.48 8.00 1.81 15.68 1.40 5.40 21.22 8.50 8.87 2.61 34.56
Ba 1.74 193.42 0.Q7 765.99 0.10 1.85 522.82 235.66 8500.68 3311,41 5295.27
Nb 4.13 72.65 0.Q3 20727 0.88 0.33 92.76 31.56 184.60 22.73 27.04
La 0.55 70.16 0.02 44.84 2.00 0.45 60.15 7.51 61.18 58.32 41.25
Ce 0.65 137.53 0.02 104.30 6.54 0.44 121.49 18.11 125.96 114.80 62.27
S, 10.05 3276.29 0.34 2096.13 50.23 8.64 473.09 148.45 1810.12 295.09 825.82
Nd 0.23 85.52 0.11 55.13 6.78 0.22 54.40 9.79 6022 55.00 26.62
Sm 0.09 17.89 0.15 11.35 2.41 0.Q3 10.74 2.19 13.48 11,41 4.28
II 30.22 427.48 0.69 284.56 41.65 2.94 303.59 97.58 282.31 279.31 56.42
Hf 0.43 8.36 0.12 6.47 1.22 0.06 7.90 1.60 7.00 6.54 6.78
Eu 0.04 6.94 0.02 4.59 0.60 0.01 1.26 0.89 4.55
Ti 1833.47 22747.72 92.04 42314.17 5744.25 90.54 19245.94 6877.13 38226.08 18353.15 704.87
Gd 0.08 20.41 0.05 13.57 2.12 0.06 6.22 2.15 8.95 6.94 6.34
Dy 0.14 12.04 0.08 8.31 2.02 0.05 7.18 1.66 9.87 7.11 4.18
Y 2.37 58.73 0.16 38.66 9.94 1.05 31.97 9.02 44.67 30.99 15.22
E, 0.19 5.13 0.13 4.02 0.93 0.06 3.61 0.72 12.67 7.74 1.01
Yb 0.16 3.08 0.11 2.49 0.49 0.08 1.89 0.64 2.73 1.97 0.56
Li 1.41 5.66 1.74 1427 11.96 0.48 11.85 3.64 0.90 2.78 10.21
Be 0.75 1.85 om 2.15 0.11 0.69 5.05 1.65 2.95 3.30 2.18
S, 14.39 39.41 4.98 31.36 117.60 33.57 22.89 21.67 26.74 17.67 24.06
C, 252.90 575.10 389.18 164.53 5036.82 553.06 168.72 254.74 140.11 85.14 20.34

MAGB25 la 4a 5a 8a 9a 9bcpx l1Aa 12a 16a 25a 25b
Rb 32.39 2.21 6.18 35.19 3.65 1.03 44.63 7.38 26.52 26.57 2.76
Ba 587.39 293.24 131.38 733.09 177.55 0.13 722.34 16.98 585.83 523.93 144.59
Nb 48.94 5.75 30.67 87.67 22.45 0.48 53.51 10.89 60.23 74.90 7.94
La 94.26 0.27 12.81 48.34 1.25 2.44 95.52 26.41 76.56 131.09 6.31
Ce 161.21 0.19 20.27 77.52 1.39 8.93 159.46 77.89 120.67 231.70 10.95
S, 1072.33 28536.95 25224.46 1195.59 26401.69 50.28 1211.03 21O.Q3 1060.42 972.70 14454.72
Nd 53.05 16.13 18.55 18.76 11.02 8.93 51.41 60.59 34.07 78.60 4.64
Sm 7.67 8.03 5.78 2.54 4.29 2.71 7.64 15.16 5.10 14.93 0.89
II 253.95 187.75 254.51 314.77 148.96 44.57 162.47 368.86 169.63 271.93 33.78
Hf 4.35 2.Q9 3.33 4.72 1.66 1.46 3.16 8.45 2.92 4.90 0.38
Eu 2.98 0.28 0.44 2.57 0.11 0.79 3.72 4.50 0.44 4.47 0.18
Ti 910.95 71.28 533.74 1994.10 162.57 6664.85 1052,48 33175.39 1147.65 1528.91 96.50
Gd 10.75 1.37 3.81 2.09 10.65 19.05 3.20 11.00 0.61
Dy 3.94 0.11 1.58 2.25 4.09 10.10 2.91 7.14 0.45
Y 17.36 23.65 27.29 6.41 21.71 9.29 16.17 40.20 15.39 33.88 2.70
E, 1.86 0.22 0.50 0.Q3 0.83 1.74 4.12 1.98 2.41 0.21
Yb 0.75 0.81 0.59 0.57 0.54 0.68 0.71 2.53 0.91 1.13 0.14
Li 23.47 0.04 2.16 3.89 0.44 0.37 18.15 2.81 17.91 6.69 0.23
Be 3.53 0.12 0.46 3.39 0.31 0.56 3.46 0.75 7.03 5.38 2.31
S, 26.09 28.60 23.97 24.63 21.81 74.11 26.29 103.37 5.36 12.90 5.83
C, 2.58 4.51 12.42 3.38 5.55 2995.12 5.17 189.75 1.05 1.56 3.53
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APPENDIX TABLE 7:Trace element compositions of melt inclnsions

MAGB47 46a 46b 49a 50a 54a 54b 55a 55b 57a 57b
Rb 1.78 1.28 17.58 2.06 6.12 2216.25 4.81 3.82 5.76 11.07
B. 1.06 19.02 720.84 27.S7 30.46 1.39 63.60 143.51 232.99 321.83
Nb S.22 17.61 37.46 24.00 30.08 86.13 22.45 78.65 52.90 15.79
La 4.59 7.28 44.88 7.05 5.77 0.22 8.46 28.88 96.80 179.75
Ce 8.82 15.85 89.50 14.38 12.34 3.74 21.25 64.77 178.98 264.30
S, 25.72 78.62 449.34 117.10 94.60 2.76 79.79 362.80 594.94 147.32
Nd 4.73 8.91 45.28 6.81 4.08 12.21 12.33 30.68 84.76 106.54
Sm 0.96 1.95 10.Q3 1.70 0.55 12.08 2.66 6.34 15.57 15.87
Z, 48.66 69.53 146.69 104.06 50.66 12.79 133.37 213.96 326.25 150.60
Hf 0.74 1.52 5.18 1.09 0.47 2.44 2.13 3.83 7.14 4.46
Eu 0.27 0.53 5.69 0.48 0.34 3.59 0.58 1.42 4.64 5.77
Ti 3086.71 4396.12 28348.80 5800.80 1554.71 115.25 7750.01 15780.62 27918.77 12698.95
Gd 0.74 1.29 14.25 1.54 0.94 1.05 2.24 4.15 21.59 26.83
Dy 0.57 1.33 8.16 1.02 0.44 3.93 2.04 4.11 10.24 9.07
Y 3.42 5.28 39.23 6.36 2.45 68.14 10.01 22.16 59.90 66.14
E, 0.22 0.60 3.13 0.47 0.23 2.57 1.04 2.30 5.02 4.13
Yb 0.18 0.39 2.58 0.39 0.15 0.90 0.74 1.31 2.57 1.25
Li 0.43 0.42 7.61 3.08 4.09 3.16 2.75 5.01 7.86
Be 0.38 0.48 3.11 0.96 1.78 1.94 2.04 1.94 1.94 1.57
Sc 11.09 7.08 45.05 20.05 18.14 0.33 17.41 20.24 58.84 49.67
C, 225.75 146.86 302.33 302.26 198.01 10805.22 190.87 195.49 333.19 312.73

MAGB25 25c carbonate 25d 25e carbonate 25f 25gcpx 35. 35b 35c 36a 38a 39a
Rb 0.84 8.94 4.20 1.32 2.37 14.13 1.54 4.85 0.98 41.78 4.89
Ba 33.27 15.Q3 100.08 20.19 14.54 100.35 133.09 101.44 125.79 2957.32 163.19
Nb 29.47 43.27 90.69 10.03 4.92 11.03 5.74 17.31 11.87 29.78 34.25
La 29.91 1.02 60.22 7.39 9.37 10.45 0.28 22.33 3.08 31.45 79.94
Ce 54.66 1.49 136.77 10.04 28.70 15.91 0.22 38.96 3.05 47.00 154.80
S, 312.80 402.42 10281.54 921.03 103.20 20990.34 18889.52 16023.07 18309.69 1424.06 15218.46
Nd 19.41 0.54 57.07 2.43 24.48 16.98 1.45 12.15 0.55 16.43 73.42
Sm 2.76 0.23 10.87 0.52 7.33 4.23 0.24 1,49 0.28 2.75 14.48
z, 112m 151J4 553.76 41.75 170.90 70.22 13.42 87.19 78.30 159.54 409.52
Hf 1.17 2.58 5.31 0.45 4.87 1.48 0.14 1.29 0.98 4.82 8.92
Eu 0.68 0.Q3 3.16 0.08 1.99 0.47 0.36 7.74 3.84
Ti 805.13 716.73 16049.68 244.29 13156.52 516.94 86.50 496.09 78.55 480.65 6947.67
Gd 1.35 0.10 7.25 0.13 5.63 2.43 0.70 0.05 3.87 16.08
Dy 1.24 0.08 6.75 0.31 5.74 1.69 0.08 0.67 0.10 2.00 9.31
Y 7.67 1.29 50.28 2.64 26.67 33.16 12.09 13.77 9.98 8.07 46.78
E, 0.56 0.14 5.29 0.28 2.60 1.72 0.15 0,41 0.24 4.57
Yb 0.59 0.20 8.93 0.51 1.58 2.53 0.17 0.34 0.16 0.29 2.93
Li 1.97 17.17 603.97 32.91 1.25 8.95 0.38 4.30 0.17 1.67 1.35
Be 1.64 3.46 20.53 3.71 1.63 6.50 1.73 1.89 2.95 1.61 1.05
Sc 0.25 4.97 15.64 0.83 47.16 27.15 5.50 3.24 1.58 40.56 20.19
C, 3.67 25.89 274.82 19.36 73.45 83.84 2.55 7.70 1.11 9.20 31.00



APPENDIX TABLE 7:Trace element compositions of melt inclusions

fAABz6 I 1a 3a 4a 4b 5a 7a 8a 8a average 9a 16a 18a

Ba 107734 459.73 934.49 822.41 892.44 580.37 948.39 994.62 419.53 754.26 941.13
Nb 42.57 57.99 61.71 49.29 95.98 140.12 96.08 73.59 59.70 29.08 91.35
La 51.04 45.51 49.29 37.W 23.74 108.26 57.71 54.69 47.23 16.74 52.53
Ce 76.44 86.07 99.08 81.89 42.36 246.36 122.40 119.53 90.09 41.83 122.31
S, 1022.24 708.63 1086.49 1022.43 801.57 1521.38 857.63 912.78 1253.56 286.04 1465.04
Nd 20.52 37,42 50.99 38.44 30.41 12635 64.03 65.67 31.34 36.51 70.78
Sm 2.61 6.59 9.49 8.34 14.41 22.21 13.05 13.51 6.75 9.50 17.90
Ze 326.65 441.09 372.23 358.96 401.21 874.88 655.24 854.95 348.69 306.11 544.63

Ti 5113.88 7384.32 22821.60 9390.45 29915.19 33529.36 17901.41 15497.09 9092.98 22280.12 33493.87

Dy 1.11 5.37 5.94 4.62 7.95 14.53 9.57 9.14 2.34 8.34 10.21
Y 10.47 18.57 25.47 21.41 12.95 60.07 37.10 31.46 13.30 36.17 45.42

Yb

I
0.41 1.45 1.36 1.14 3.53 5.45 2.96 2.69 2.08 2,45 3.56

I....
Ut
W

MAGB25 44a 52a 54a
Rb 10.13 19.36 28.32
Ba 138.08 545.71 341.87
Nb 29.36 59.24 119.55
La 39.33 57.12 31.37
Ce 69.11 104.97 84.75
S, 564.40 1061.80 1010.66
Nd 20.61 41.29 57.17
Sm 2.42 8.79 13.19
Ze 145.90 163.57 362.69
Hf 2.50 2.41 7.31
Ell 0.97 1.02 4.75
Ti 371.06 2839.44 26968.74
Gd 0.97 0.84 19.28
Dy 1.13 5.82 9.73
y 7.14 27.31 45.31
E, 0.70 3.10 4.34
Yb 0.60 1.22 2.81
Li 3.31 14.17 16.86
Be 3.76 4.75 2.07
Sc 2.80 6.00 65.08
C, 22.73 10.63 273.30
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APPENDIX TABLE 7:Trace element compositions of melt inclusions

TAAB26 20a 21a 22a 29a 29a average 30a 30a average 32a average 59a 60a

Ba 1086.94 923.58 1369.79 312.35 285.86 673.33 636.33 1001.29 1293.78 1078.10
Nb 52.36 102.23 130.93 115.98 104.80 50.16 47.40 61.07 95.91 64.23
La 60.86 55.22 75.52 161.75 177.41 39.26 34.75 52.42 55.74 41.41
Ce 103.82 120.73 137.69 287.76 324.67 84.98 72.11 102.80 116.49 72.88
Sr 1215.50 1318.70 1733.73 941.71 985.07 637.82 602.46 1404.35 2031.49 1397.17
Nd 36.01 61.47 48.91 134.26 152.39 44.85 39.23 50.64 63.53 28.45
Sm 5.27 12.62 7.49 26.64 28.81 9.51 9.06 9.53 11.47 4.97
Zr 432.24 741.84 456.58 1065.89 1394.17 485.71 472.11 496.47 541.68 457.36

Ti 11524.91 11110.07 21430.24 24561.40 24980.75 13944.40 12159.60 16056.62 22750.82 9460.36

Dy 4.11 7.58 4.14 13.69 15.83 6.57 6.45 5.86 8.90 2.97
y 20.33 31.41 21.60 69.38 79.78 30.45 27.22 26.86 46.94 17.31

Yb 1.35 2.26 1.99 5.51 7.84 3.21 2.15 2.40 3.47 1.28



4. Chapter Four

U series isotopic variability in Galapagos lavas, evidence of a
warm-spot

4.1 Abstract

Evaluation of U series disequilibrium, trace element composition and Sr, Nd and

Pb isotopes of Galapagos lavas indicates that magma mixing between plume and

asthenospheric melts has been the main process responsible for the geochemical variation

observed in the archipelago. Correlation between He isotopes and TifTi*, KlRb and NblLa

ratios suggest that the mantle plume has positive anomalies of Nb and Ti and negative

anomalies of K. 230Th excesses measured in the lavas indicate that the basalts from

Galapagos originated total or partially in the garnet stability field. Mantle upwelling

velocity for the Galapagos plume (Fernandina) ranges from'" 1 to 2 cm/y with a maximum

porosity of 0.3% indicating that Galapagos is a mildly buoyant plume. Very slow mantle

upwelling rates and very low porosity for Pinta (0.5 to 1 cm/y and 0.1 %) and Floreana

(0.1 cm/year and <0.1 %) support the hypothesis that the movement of the plume across

the 91 °50' transfonn fault produced slow upwelling and small extents of melting.

4.2 Introduction

U decay series isotopes provide infonnation on magmatic processes and mantle

source compositions that are inaccessible by any other isotopic systems. Thus, 238U_230Th

disequilibrium provides quantitative evaluation of the present-day depletion of the mantle

source, the extent of melting represented by erupted lavas, and helps to constrain estimation

on the mantle porosity and upwelling velocities duting melting (Elliot, 1997 and references

therein). Two end-member models have been used to explain the extent of disequilibrium

in volcanic rocks:

1) as an index of elemental fractionation during melting (Sims et a!., 1995),

and
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2) as an indication of 23°Th ingrowth during time-dependent melting and

melt transport (McKenzie, 1985; Williams and Gill, 1989; Spiegelman and Elliott, 1993).

U series isotopes have also been useful in dating young lavas, estimating magma

chamber residence times (Allegre and Condomines, 1976; Goldstein et aI., 1994,

Sigmarsson, 1996), and in probing the slab-component input in subduction zone volcanism

(Gill and Williams, 1990; Hawkesworth, et aI., 1997, Elliot et al., 1997). Moreover 238U_

23"Th disequilibrium has been used as a geodynamic indicator of the strength of the plumes

traveling through the convecting mantle (Chabaux and Allegre, 1994) and as a sign of

ridge-hotspot interaction (Bourdon et al., 1996). Thus, U decay series isotopes have

become one of the most powerful geochemical tools to answer fundamental questions in

igneous petrogenesis (Condomines et al., 1988, Goldstein et aI., 1992; Rubin and

Macdougall, 1992; Cohen and O'Nion, 1993; Hemond et 'aI., 1994; Chabaux and Allegre,

1994; Lundstrom et ai., 1995; Bourdon et aI., 1996; among others).

The Galapagos archipelago has been the object of many geologic studies since

Darwin's (1860) first report on the islands. Although the Galapagos islands have been

interpreted as the surface manifestation of a mantle plume, geological, geophysical and

geochemical studies have found it challenging to fit the Galapagos plume to a "standard"

hotspot model. In contrast to Hawaii (the "archetype" of the plume model), the Galapagos

islands do not form a linear chain. The volcanism is not strictly time-transgressive in the

direction of the plate motion, nor is there a consistent petrological or geochemical evolution

of the volcanism as seems to be the case in Hawaii. In fact, the differences between

Galapagos and the standard hotspot model make this archipelago unique. For example, the

historic to Holocene volcanism occurs throughout a region of 30,000 km2 , and the

geographical distribution of various petrological and geochemical lava types within the

archipelago is quite diverse (McBirney and Williams, 1969; Geist, 1992; White et ai., 1993

and references therein). These differences have been explained by entrainment of

astenospheric mantle into the plume subject to velocity shear, and by interaction of the

plume with the Galapagos Spreading Center (Geist et aI., 1988; Richards and Griffiths,

1989; White et aI., 1993; Ito et aI., 1997). Thus, the Galapagos islands provide a unique

natural laboratory to test petrologic, tectonic and fluid dynamic models of ridge-hotspot

interaction. Although the Galapagos plume is one of the two best known examples for

ridge-hotspot interaction, data for U series isotopes in Galapagos lavas do not exist.
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We present here the first data for 238U_23°Th_232Th isotopes on a suite of 29 basalt

samples from the Galapagos islands. The samples are geochemically well-characterized and

of known age, and were chosen to represent the different petrographic and geochemical

groups observed in the Galapagos archipelago (McBirney and Williams, 1969; Geist,

1992; White et al., 1993, Kurz and Geist, 1999). The main objective of this work is to

constrain the mantle composition, extent of melting, mantle upwelling velocity and porosity

beneath the Galapagos islands. We compare our U decay series results with those obtained

from three dimensional numerical model of the interaction between mantle plumes and

migrating mid-ocean ridges (Ito et a!., 1997). The diffuse nature of the Galapagos plume

suggests it is significantly less intense thermally than the Hawaiian hotspot.

4.3 Geodynamic Background

The Galapagos archipelago is located in the eastern equatorial Pacific, 1000 km

west of South America, and approximately 150 km south of the active Galapagos

Spreading Center (GSC) (Figure 1). The islands and numerous seamounts are constructed

mainly upon a shallow submarine volcanic platform overlying a very young lithosphere «
10 Ma). The GSC is a moderately fast spreading ridge ('" 6 cm/year); judging from the

volcanic traces of the hotspot (the Cocos and the Carnegie Ridges), the ridge has migrated

northward away from the Galapagos hotspot in the last 5 to 6 Ma (Hey, 1977). The

transform fault at 90°50' offsets the GSC by 150 km and is the boundary between

symmetric spreading to the west and asymmetric spreading to the east. This fracture zone

divides the Galapagos platform into two main sectors (the western and eastern sectors) with

an estimated 5 Ma age discontinuity across the lithospheric sectors (Hey, 1977). Analysis

of bathymetric and gravity data indicates that the eastern sector of the archipelago is

underlain by a weak, younger lithosphere with an elastic thickness of 6 km or less and

close to Airy compensation. In contrast, the western sector is flexurally supported by a

lithosphere with an elastic thickness of 12 km (Feighner and Richards, 1994). It is

important to remark that the transition from the eastern to the western sector is sharp and

can be modelled as a fault zone (Figure 1). The crustal thickness increases from

approximately 10 km on the margin of the Galapagos platform to as much as 18 km

beneath southeastern Isabela.

Galapagos volcanoes are aligned in two rough trends N30W and N60E (Darwin,

1860). Prominent block faulting can also be seen in the central and southern islands

157



(McBimey and Williams, 1969). Altogether, the evidence suggests that faulting either

controls or greatly modifies the major structural features of the Galapagos hotspot region

(Feighner and Richards, 1994). There is not yet a good explanation for these alignments,

as they bear no simple relationship to plate motion, local transform directions or likely

direction of plume flow (Geist and Reynolds 1998).

The first geologic report on the Galapagos was made by Darwin (1860); since then,

many reports and studies have followed. The first detailed geologic and petrologic study of

the archipelago as a whole was done by McBirney and Williams, (1969); this was followed

by the work of Geist et aI, (1988); Geist, (1992); and White et aI, (1993). Many studies

have contributed in considerable detail to our understanding of individual volcanoes and

islands (see Geist, 1992; White et aI, 1993; and reference therein). We present here a brief

synthesis of these works. To the west of the 90°50' transform fault, the eruptive edifices

are large central shield volcanoes of unusual shape ('inverted soup-bowl") with well

developed calderas, and with lavas erupting from radial and ring fissures. These volcanoes

have the most frequent historic volcanic and seismic activity due to their location close to

the present position to the plume at Fernandina, (Kurz and Geist, 1999). In contrast, the

volcanoes to the east of the fracture zone are seismically quiet and they present more varied

morphologies and eruptive histories. This difference in size of the volcanic edifices

probably reflects the effect of lithospheric thickness, with older and thicker lithosphere

being able to support larger volcanic structures.

From the 21 emergent volcanoes in the Galapagos, 9 have been active historically

and four others have been active in the Holocene. There is no clear age progression in the

geographic distribution of the volcanoes. However, the ages of the oldest lava dated in each

volcano form a progression from young in the west to old in the east (White et ai., 1993;

Kurz and Geist, 1999). The islands, as they drift away from the hotspot, have had

intermittent eruptions for at least 2.4 Ma, as in the case of San Cristobal island (White et

al., 1993; Kurz and Geist, 1999). The continuous volcanism in this most easterly island

indicates either an extended zone of melting downstream from the plume or the existence of

postshield extensional volcanism across the Galapagos platform.

Geochemically, Galapagos lavas have lower Si02 and higher FeO, Nap, CaO,

Kp and Ti02 than MORE (at the same MgO content). Lavas erupted from the large

westem volcanoes are in general moderately fractionated tholeiites, while lavas erupted

158



from small cones and vents from the eastem islands are compositionally diverse, ranging

from picrites to basanitoids. Most of the isotopic variation observed in the Galapagos

archipelago occurs between islands or even between volcanoes in the same island, as in the

case of Isabela island. However, lavas erupted in some of the eastern islands (San

Cristobal, Santa Cruz Santiago) show significant intra-island variation in isotopes, largely

related to geographic or temporal sequences. Major and trace element contents and ratios

have been used to suggest that melting appears to be less extensive and shallower to the

east and south, a possible indication of a cooler mantle away from the center of the plume

(White et aI., 1993; Geist, 1992; Geist et aI, 1988). However, it has been extremely

difficult to unequivocally separate effects due to the extent and depth of melting from those

of source composition. For example, Geist (1992) proposed that the depth of melt

segregation can be estimated in Galapagos lavas from an inverse correlation between Sis

and Fe,. Although Fe,andNa, are frequently used as indicators of pressure and extents of

melting respectively (Geist et aI., 1988; White et aI., 1993), in Galapagos these indices

correlate with He isotopes, which is an indicator of source composition (Kurz and Geist,

1999). White et ai. (1993) estimated the degree and depth of melting by considering ratios

of LREE to MREE and MREE to HREE, for samples of similar Nd isotopes composition.

Thus, White et al. concluded that lavas from the eastern islands, especially Floreana and

San Cristobal, were probably produced by a low extent of melting in the spinel stability

field (shallow depths). However, these same authors also show that in Galapagos lavas

(La/Sm)PM" ratios (La/Sm ratios normalized to primitive mantle and at MgO content ::: 8,

averaged by volcano) correlate with averaged isotopic compositions, suggesting a source

control on the REE.

Isotopes and incompatible element ratios from Galapagos lavas define a "horse

shoe"-like geographic pattern, with the most depleted signatures (MORB) appearing in the

center of the archipelago and the most enriched signatures emerging on the eastern,

northern and southern peripheries (Geist et ai. 1988; White et aI., 1993). This horse shoe

pattern has been explained by entrainment of astenospheric mantle into the plume,

controlled by velocity shear produced by the moving lithosphere (Richards and Griffiths,

1989).

The GSC basalts at 92°W have anomalously enriched Sr isotopic compositions,

clear evidence of the interaction between the ridge and the Galapagos plume (Schilling et

aI., 1982; Verma and Schilling, 1982). Surprisingly, the geochemical anomaly does not
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occur at the closest position of the GSC to the Galapagos archipelago, but further to the

northwest, at the intersection of the Darwin-Wolf lineament and the GSC. Morgan (1978)

suggested that the plume flow was channeled at shallow level beneath the Darwin-Wolf

lineament. However, basalts dredged from this lineament become isotopically more plume

like toward the GSC (Harpp et al. , 1990). This observation requires plume flow in the

opposite direction to that in which the shallow asthenosphere is being dragged by the

moving plate. Therefore, the flow from the plume toward the ridge must be deep rather

than shallow, perhaps related to deep asthenospheric counterflow toward the ridge (White

et aI., 1993).

4.4 Sampling and Analytical techniques

We sampled historic to Holocene lavas from numerous volcanoes and islands from

the Galapagos archipelago. Our strategy was to obtain representative samples from the

different lava types that define the geographical "horse shoe" pattern in isotopes and

incompatible element ratios observed in the Galapagos (Geist et aI., 1988; Geist, 1992;

White et al., 1993). The sampling was simplified by the fact that the observed isotopic

variation in the Galapagos archipelago occurs between islands or even between volcanoes

in the same island; the intra-volcanic variations are generally small. We selected samples

from the large central shield volcanoes from the western area and from volcanoes

representing more varied morphologies and eruptive histories in the eastern sector of the

archipelago. At the same time, this strategy took into account basalts erupted through

lithosphere of different ages and elastic thickness by sampling east and west of the fracture

zone defined by Feighner and Richards (1994). We selected 29 samples for U-series

analysis:

a) samples from Fernandina Vn. (8), Cerro Azul Vn. (4), Wolf Vn. (4), Sierra

Negra (3), Darwin Vn. (2) and Ecuador (I) represent the large shield volcanoes, closest to

the center of the plume, erupted on the older and thicker lithosphere to the west of the

90°50' fracture zone.

b) basalts from San Cristobal (3), Santiago (1), Floreana (1), Pinta (1) and

Marchena (1) represent small volcanoes erupted away from the center of the plume on a

thin and young lithosphere, east of the fracture zone.
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When possible several samples with similar Sr, Nd , Pb and He (i.e. constant

source composition) isotopic composition were taken from a single volcano to evaluate the

melting process. However, we faced the problem that lavas from isotopically homogeneous

volcanoes (western volcanoes) generally are less primitive (e.g. low MgO contents), and

are typically homogeneous in trace element ratios (i.e., Fernandina lavas). Therefore, the

limited variation in trace element ratios does not allow us to make a precise evaluation of

melting processes. In the eastern islands, where the trace element variations are larger,

either the lavas are variable in isotopic composition, or they are too old for U decay series

analysis (i.e., Floreana lavas). Moreover, lavas from the northern islands, like Marchena,

are very poor in olivine phenocrysts (the mineral used for surface exposure dating

techniques), making it impossible to obtain ages for those basalts. This is the main reason

that the number of analyses in the eastern and northern islands are fewer than in the western

volcanoes.

The selection of samples for U decay series analysis was constrained mainly by the

age data available for the lavas. Many of the samples are from well recorded historic

eruptions, such as in Fernandina and Marchena. All our samples have been dated by

surface exposure dating, with the exception of those samples obtained from well recorded

historic eruptions. This technique, using cosmogenic 'He (Kurz, 1986; Kurz et aI., 1990,

Kurz and Geist, 1999), has been ideal for the Galapagos archipelago where other dating

techniques have failed. The 14C dating technique is difficult to apply because the arid

climate in the Galapagos makes charcoal virtually nonexistent. Also, 4°K_40Ar and '9Ar

40Ar techniques have been difficult to apply to lavas younger than 100,000 years, mainly

due to the low potassium content of most Galapagos lavas.

Most of the samples for surface exposure dating were collected from the top 5 to 10

cm of lava flows to minimize the correction for depth in the lava flows. Wherever possible,

we sampled pahoehoe lavas or large blocks from aa flows wbere original orientation was

preserved (Kurz and Geist, 1999). The preservation of the lava flow surface is extremely

good in the Galapagos due to the slow rate of weathering in the arid climate. A serious

limitation to the surface exposure dating was the scarcity of olivine phenocrysts, the ideal

mineral phase for surface exposure dating (Kurz and Geist, 1999). For example, the lack

of olivines was a serious limitation in lavas from the western and northern Galapagos

volcanoes (Sierra Negra, Alcedo, Wolf, Fernandina, Marchena, among the most

important). The ages were calculated using sea level and high latitude production rate scaled

161



to equatorial areas (Lal, 1991). The uncertainties reported only consider the analytical

uncertainty and not the errors in the absolute production rate (Kurz and Geist, 1999). For

more detail on the analytical techniques please refer to Kurz (1986) and Kurz et al. (1996).

The analytical technique and uncertainties for Sr, Nd, Pb and He isotopes are

reported in Kurz et al., (1995; 1996) and Kurz and Geist, (1999). Major and trace element

data reported here were done by XRF and ICP-MS at Washington State University. The

precision for XRF data (major and trace elements) for seven repeat analyses of BCR-P was

< 1% (20) for all major elements, except MnO, IC,O, Nap and PPs with <3% (20). The

precision for XRF analyses for trace elements was <5% (20) for most elements, <10%

(20) for Rb, Ga, Cu and Zn, <20% (20) for Sc, and <30% (20) for Ba. The precision for

ICP-MS data on a single sample BCR-P run over a four month period (n=24) was <5%

(20) for most trace elements, <10% (20) for Cs, Rb, Pb and <20% (20) for Th and U.

To determine U-Th concentrations and Th isotope ratios the fresh interiors of the

samples were crushed ('"1 kg) in a steel jaw crusher. The coarse fraction (between 1 to 2

cm), was cleaned in an ultrasonic bath with ultrapure water. The chips were dried at low

temperature on a hot plate, and inspected under the binocular microscope to avoid any

altered material. To avoid problems of sample inhomogeneity, we selected approximately

30 to 50 g of material to be powdered. The chips were powdered in an agate shatter box for

no longer than a couple of minutes to minimize contamination. 1 to 2 grams of sample were

dissolved and aliquots from the solution were used to chemically separate U and Th by

standard chromatographic techniques (similar to the procedure reported in Goldstein et aI.,

1989a and b). For Th isotope determinations, a grade A spectrographycally pure carbon

planchette, pre-cleaned with isopropanol in an ultrasonic bath, is heated on a hot plate

between 80 and 100°C. A low temperature polyethylene tube 900}l in inside diameter is

positioned perpendicular to the planchette such that when the tube touches the hot

planchette a ring of melted plastic 750}l in diameter is formed on the carbon. The unspiked

Th concentrated from the chromatographic column is dissolved in l}ll of O.3N HN03 and

loaded onto the planchette at 80°C, inside the plastic ring. The ring is used as a dam to

avoid spreading of the Th solution as it dries down into the planchette (spreading of the Th

load produces a decrease in Th concentration per unit area, resulting in low intensity

measurements). The solution is dried down into the carbon generating a conductive matrix

that allows the Th to be analyzed by ion probe. The plastic ring was monitored to be

absolutely sure it did not contribute any contaminant or artifact to the measurements.
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The Th isotopic ratios were determined on the IMS Cameca 1270 ion microprobe at

the Woods Hole Oceanographic Institution (Layne and Sims, 1999). We used a nominal

primary accelerating voltage of 12.5 keY with a 160- beam, a secondary accelerating voltage

of 10 keY, and currents ranging from 90 to 225 nAmps in a 250p square raster. The

dynamic transfer optics were utilized to recover 100% of the rastered beam. To resolve

isobaric interferences, secondary ions were analyzed at a mass resolution of 2000, with no

energy filtering. Each analysis comprised 150 cycles of alternating measurements of 232Th

in the Faraday cup (2 s counting), 230Th in the electron mUltiplier (6 s counting),

background in the electron mUltiplier (2 s counting) and background in the Faraday cup (2 s

counting). Calibration for the gains of the detectors were done by measuring 230rh in a pure

metal in both the Faraday cup and the electron multiplier. We used a gravimetric standard

solution from the University of California Santa Cruz (gel).erously supplied by J. Gill and

C. Lundstrom), previously analyzed by TIMS as a standard during the period of our Th

isotopes measurement. Layne and Sims (1999) measured the Th metal and the standard

one after the other in sequence to correct for gain calibrationand and to evaluate

reproducibility. The ion probe analyses for the standard 232Thp30Th = 1.71xlO'±0.7%

(n=20), reproduced within errors the TIMS value of 1.706xlO'±0.8% (20, n= 30) (Figure

20). The standard was measured two to three times a day, interpersed with our runs. The

total Th content of the loaded standard was similar to that of the samples. During the

course of our runs only ones we determine the gain calibration by measuring 232Th in a

pure metal with the Faraday cup and electron mUltiplier. To correct for mass fractionation

and detector gain variation in our samples, we normalized the 232Thp30Th values obtained

for the standards measured each day to a standard value for 232Thp30Th = 1.71xlO' (n=20).

The rational behind directly normalizing the measured values for the standard to a

232Thp30Th = 1.71xlO' is the constancy of the obtained value for gain calibration using Th

metal during several days (Layne and Sims, 1999; G. Layne pers. com., 1999). Typical

230Th and 232Th count rates for our samples were approximately> 200 cps for 230Th and >

107 cps 232Th. The typical in-run precision for the Th isotopic measurements in the

Galapagos samples ranges from'" 0.5% (20) to 1% (20) similar to or slightly better than

the external reproducibility.The agreement for a duplicate analysis of sample NSK97-224 is

'" 1.0 %.

Th and U concentrations were determined by isotopic dilution using a Finnigan

MAT Element ICP-MS at the Woods Hole Oceanographic Institution. A small aliquot (3 -
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5%) from the initial solution is spiked with 229Th and 233U spikes such that the 232Thp29Th

and 238U/233U ratios are approximately 30 and 10 respectively. Special care was taken to

insure sample/spike equilibration, by drying down the solution several times with HCIO•.

The Th and U are separated by standard chromatographic methods and the Th-U

concentrate is diluted in 5 mlof 1-2 N HN03 solution. The ICP-MS is tuned and calibrated

twice a day with a 0.5 ppm solution of 16 different elements (from Li to U). Each sample

analysis comprised 2000 cycles of alternating measurements of 232Th, 229Th, 238U and

233U. The typical in-run precision for the 232Th/229Th and 238U/233U measurements are

<0.3% (2a).The concentrations of 229Th and 233U in our spikes are known to

approximately 0.5% (20). To avoid memory effect,washout time of 15 to 20 minutes were

used between samples. To monitor the memory effect, we ran blanks of 1-2 N HN03
solution between every four samples.

We used the U standard NBS 960 to correct for U mass fractionation, and assumed

the same fractionation per amu for Th. The observed mass fractionation in the standard was

'" 0.2% per amu. Each sample was bracketed between runs of the standard, and corrected

individually based on the mean mass fractionation value of the two standard. To evaluate

external reproducibility of NBS 960 U standard, we corrected the standard for fractionation

in the same way as we did for the samples. Namely, Standard #1 and #3 were used to

correct standard #2 for fractionation; standard #2 and #4 were used for standard #3, etc.

Results are shown in Figure 2b. The external reproducibility of the NBS960 U standard

was'" 0.2% (20, n = 23). Two total procedure blanks gave values of 50 and 160 pg for

Th and U respectively. All samples have been corrected for blank contribution.

4.5 Results

4.5.1 Major elements, trace elements and Sr, Nd, Pb and He isotopes

Most of the major, trace element and isotope data used in this work have been

already published. The dataset used here is mainly from Kurz and Geist, (1999),

complemented with data from Geist and coworkers (Geist, 1992 and reference therein),

and from White et al. (1993); we have included some unpublished data from Kurz and

Geist (personal communication). Table 1 lists representative major, trace element, and

isotope analyses from the published and unpublished data set of Kurz for those samples

analyzed for U series isotopes.
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All of the lavas are basalts, mostly tholeiitic with only a few alkali basalts (Figure

3a). Mg# ranges from 0.56 to 0.26 indicating that all the samples have undergone

fractioual crystallizatiou, mainly at low pressure (Geist, 1992; White et aI., 1993) (Figure

3b). In some cases, like Cerro Azul, Nauman and Geist, (1998) have suggested that the

range in major element conteuts in contemporaneous lavas (from tholeiites to alkali basalt),

is the result of high pressure fractional crystallization.

Figure 4 shows primitive-mantle-normalized trace element diagrams for

representative samples analyzed for U decay series. There are important variations in trace

element patterns between lavas erupted in the western volcanoes (e.g., Fernandina and

Darwin) and those from the eastern islands (e.g., San Cristobal and Floreana). Lavas from

the western volcanoes have higher MREEIHREE ratios and less intra-volcano variability

than lavas from the eastern islands; features already observed by White et aI., (1993).

These authors suggested that the variation in MREEIHREE ratios between lavas from the

western volcanoes and those from the eastern islands was produced by difference in the

depth of melting, from the gamet to the spinel stability field respectively. However, the

lower MREEIHREE ratios in basalts from the eastern area are mainly produced by the

variations in MREE rather than the variations in the HREE (Figure 5a). For example,

Floreana lavas have similar LREElHREE ratios and higher LILE, but lower MREE

contents than those measured in basalts from the western volcanoes (Figure 5 a and b).

This is an unexpected result assuming the variation in trace element content is produced by

difference in the extent of melting or depth of melt segregation. Moreover, lavas from

Darwin and Wolf volcanoes have relatively low LREEIHREE but high MREEIHREE ratios

compared to other lavas from the western volcanoes (Figure 5b).

Lavas from the western volcanoes are characterized by positive anomalies of Nb,

Ta and Ti and negative anomalies of K and Y. These anomalies tend to decrease or

disappear in lavas with flat trace element pattern (low HflLu) from the eastern islands, with

the exception of a Ti anomaly in the Floreana basalts (Figure 4a and 6). Positive Sr

anomalies seems to be ubiquitous in the Galapagos archipelago. The Sr anomaly tends to

be small in the western volcanoes, probably due to plagioclase fractionation, and large in

basalt from the eastern islands (Figure 4a). Lavas from Floreana and San Cristobal islands

have low Th and U contents relative to elements of similar compatibility, features that are

not observed in basalts from the western volcanoes (Figure 4a).
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The Marchena and Pinta samples have not been analyzed for trace or major

elements. White et ai, (1993) reported REE data for samples from both islands. The REE

content in Marchena samples defmes a flat slightly concave downward pattern. In contrast,

Pinta samples have enriched LREE similar to the lavas from the southern Isabela

volcanoes.

Sr, Nd, Pb and He data have been discussed extensively in Geist et a!. (1988);

White et a!. (1993) and Kurz and Geist (1999). The data set utilized here confirms the same

remarks previously made in those papers. Namely, the western volcanoes tend to be

homogeneous isotopically and with higher Sr, Pb and He and lower Nd isotopic

composition than MORB. The exceptions are lavas from Darwin and Wolf volcanoes,

which have MORB-like isotopic signature. In contrast, the eastern islands show a

relatively large isotopic heterogeneity frequently with MORB isotopic signatures. Most of

the isotopic variation in the archipelago occurs between volcanoes, and this generates a

geographic distribution of the isotopic variations, which defme a horse shoe pattern. A

good correlation exists between Sr, Nd and Pb isotopes, but the correlation of these with

He isotopes is not significant with the exception of Nd isotopes (Kurz and Geist, 1999).

Also, these correlations hold when average isotopic compositions of volcano are compared

(White et al, 1993). Four main components are needed to bracket the isotopic composition

of the Archipelago: a a MORB component defined by the Galapagos Spreading Center and

Genovesa island, two components more enriched isotopically than MORB defined by

Floreana and Pinta and the high He component characterized by Fernandina (White et a!.,

1993, Graham et a!., 1993; Kurz and Geist, 1999). As is the case in all Ollis with high

'He/4He ratios (Hawaii, Iceland, Samoa), the component with the highest 'He/4He ratios

(Fernandina), is associated with intermediate Sr, Nd and Pb isotopic ratios (Kurz and

Geist, 1999).

The relationship between incompatible trace element ratios and isotopes is

interesting. White et ai, 1993, and Geist, 1992 showed that (LalSm)PM.8 (normalized to

primitive mantle and to MgO = 8), averaged by volcano, correlates with averaged Sr, Nd

and Pb isotopic composition. Kurz and Geist (1999) found that NblLa ratios correlate

positively with 3HdHe isotope ratios and negatively with Nd isotope ratios. Fitton et a!.

(1998) suggested that the enrichment of Nb in Galapagos lavas correlates with Sr, Nd, Pb

and Hf isotope ratios, indicating mixing between plume and MORB components.

Complementing these previous observations, we also found that He isotopes ratios
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correlate with Tiffi* (Ti anomaly), TilZr and KlRb ratios (Figure 7). Moreover, Nb/Zr,

BalLa, KlRb and Ba/Ce ratios correlate with Sr, Nd and Pb isotope ratios (Figure 8), and

Ti/Ti* defines a rough correlation with Nd isotope ratios. The exceptions to these

correlations are the alkali basalts from Floreana, which seem to be enriched in LILE

contents at similar LREE contents relative to other Galapagos samples. Moreover, the

Floreana lavas are depleted in Th and U, and enriched in Ba compared to elements with

similar incompatibility (Figure 4a).

4.5.2 U decay series

U, Th concentrations and e 30ThP32Th), e 38U/232Th) and e 30Th/238U) ratios for

Galapagos samples are reported in Table 2. The e 30ThP32Th) and e 30ThP38U) activity

ratios have been corrected by eruption ages determined by surface exposure dating

techniques (Kurz, 1986; Kurz et a!., 1990, Kurz and Geist, 1999). Most of the samples

have eruption ages well below 10,000 years. The exceptions are three samples from San

Cristobal, with ages of 9200, 13,000 and 15,000, (±1000) years, and one sample from

Floreana with an age of 26,000±7000 years. The e 30ThP38U) disequilibrium of 80% in

the case of the Floreana sample is extreme. To evaluate the possibility of alteration effects,

we used trace element ratios such as Rb/Cs and BalRb which are easily modified by

secondary process. The Floreana sample has BalRb '" 14 and Rb/Cs "'89, indistinguishable

from the canonical mantle values of 13±1 and 90±1O respectively (Hart and Reid, 1991;

Hofmann and White, 1983). This indicates that alteration is not the explanation for the large

e 30ThP"U) disequilibrium in the Floreana sample.

Extended magma chamber residence times will produce a decrease in the extent of

disequilibrium, leading to a smaller inferred UlTh fractionation during the melting process.

This is a concern for the western shield volcanoes that, in general, have erupted evolved

and homogeneous lavas, indicating some processing in magma chambers. However, lavas

from the western volcanoes with variable Mg# and similar Sr, Nd and Pb isotopic

compositions have similar e30Th/232Th) and e 30ThP38U) ratios (Figure 9). For example,

the Cerro Azullavas range from Mg#0.52 to 0.28, but have almost constant e 30ThP32Th)

'" 1.04. Moreover, Fernandina, Cerro Azul and Ecuador, who share very similar Sr, Nd

and Pb isotopic ratios (White et al., 1993; Kurz and Geist, 1999) show a large variation in

Mg# but are similar in Th isotopes, suggesting no significant effects due to magma

chamber residence time. Therefore, although this process could have produced slight
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variation in the Th isotopes, for example in some of the lavas from Fernandina (Figure 9),

the effect of magma chamber residence time on Th isotopes appears to be insignificant.

e30Th!'32Th) versus e38U!,32Th) activity ratios for Galapagos lavas are displayed in

Figure lOa. The two most important observations are:

a) The measured e30Th/238U) ratios in the samples is much larger than 1,

indicating significant disequilibrium with 23°Th enriched relative to 238U. The extent of

e30Th!'38U) disequilibrium observed in the whole suite of Galapagos samples is surprising:

from ",20 up to ",80%. Compared to a compilation of other OIBs (Lundstrom, personal

communication), Galapagos samples extend to extreme disequilibrium, especially when

compared to Hawaii (Figure lOb).

b) e30Th!'32Th) ratios correlate positively with e38U!,32Th). Most of the

age corrected samples, except those from Floreana and San Cristobal, plot on a quasi linear

trend extending toward higher e30Th/232Th) and higher e38U!,32Th), and overlapping with

the field for analyzed MORBs (Figure 10). Moreover, samples analyzed from the GSC

(Williams and Gill, 1989) and the EPR at 9°N (Goldstein et aI., 1993; Volpe and

Goldstein, 1993) appear to plot on an extension of the Galapagos trend. Floreana and San

Cristobal lavas plot slightly above the linear array, showing a less well defined trend

toward the GSC data. Sierra Negra and Cerro Azul samples show a variation of up to 12%

in e38UF32Th) at almost constant e30Thf3"Th) for each suite. This variation in e38U!,32Th)

produces a weak cross-deviation from the linear trend defined by the rest of the Galapagos

samples.

e30Th!'3"Th) correlates with Nd isotope ratios (Figure lla) and Sr isotope ratios

(not shown). Although few analyses exist for both Pb and Th isotopes in the same

samples, the isotope ratios average by volcano also show a good correlation between Th

and Sr, Nd and Pb. In contrast, 3He/4He ratios do not correlate with e30Thf3"Th).

Th isotope ratios correlate with trace element ratios such as Nb/Zr, K/Nb, K/Rb,

and SrlSr* (for lavas that did not fractionate plagioclase, SrISr*>I) (Figure lIb). In

general e30ThPsU) ratios do not correlate with either trace element contents, ratios, or any

indicator of extent of melting, with the exception of BalNb (Figure lIc), BalLa, Ba/Ce

ratios. This correlation is mainly defined by samples from Floreana and San Cristobal,

while most of the western volcanoes plot very close to each other.
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4.6 Discussion

4.6.1 Extent of melting and pressure of melt segregation.

Previous work on Galapagos lavas has suggested that the variation in trace and

major elements can be used to infer the extent of melting and the pressure of melt

segregation (Geist, 1992, White et aI, 1993). These observations are in direct contradiction

with several results found in this work. Namely, the correlations between Nb/Zr ratios and

Sr, Nd and Pb isotopes are difficult to explain solely by different extents of melting (Figure

8). Kurz and Geist, (1999) found a correlation between NblLa and Nd isotopes, and stated

that the variation in NblLa ratios was a result of source heterogeneity. In this case, it can be

argued that the extent of melting was sufficiently high and that Nb and La bulk partition

coefficient (DNb , DL,J are low and close enough for the lavas to have NblLa ratios similar to

that of their source (assuming simple batch melting process). In contrast, the DNb and D"

are not that similar, especially during melting in the garnet stability field, making it difficult

to use the previous reasoning regarding the correlation between isotopes and Nb/Zr ratios.

The difference between NblLa and Nb/Zr can be seen in Figure 12. The samples define two

trends: one is steep and contains most of the lavas, the other is more shallow and defined

mainly by the Floreana samples. These two trends are compared with two simple batch

melting models for garnet and spinel peridotite. However, the correlation between

isotopes, NblLa and Nb/Zr, except for Floreana, suggests that most of the trace element

variations are controlled by either mixing of melts or mixing of mantle sources. Also, this

hypothesis is consistent with the observed correlation between LalSmpM,8 and Sr, Nd and

Pb isotopic ratios averaged by volcano (Geist, 1992; White et a!., 1993). The hypothesis of

mixing of mantle sources requires an extra step: lavas with progressively more enriched

isotopes (high Sr, Pb, and low Nd isotopic ratios) have higher NblLa and Nb/Zr,

indicating a lower extent of melting for a more enriched source. Therefore, the correlation

between Nb/Zr ratios and isotopes (Figure 8) requires the extent of melting to be inversely

proportional to the fertility of the source.

The model for melting in the garnet stability field seems to reproduce the Floreana

trend. The similarity between the Floreana trend and the melting model brings us to a

second of the contradiction with previous papers. Specifically, the flat MREE to HREE

pattern in the Floreana lavas (Figure 4b) has been traditionally used as an indication of

melting in the spinel stability field (White et a!., 1993). As we mentioned before, the low

MREEIHREE ratios appear to be related more to the depletion of MREE than to changes in
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the HREE (Figure 5). Floreana basalts have similar LREElHREE ratios to lavas from

Fernandina (Figure 4b and 5); this result is unexpected, assuming that the two suites of

lavas were segregated from different depths (spinel and gamet stability field, respectively),

and have undergone different extents of melting. The concave upward REE pattern of

Floreana lavas, with enriched LREE and depleted MREE and HREE at relatively low total

REE contents, is not easy to reproduce by simple melting models. However, a reasonable

way to reproduce the pattern is by mixing between magmas produced by low extent of

melting from a fertile source, segregated from the gamet stability field, and magmas

produced by moderate extents of melting from a depleted source, segregated from the

spinel stability field (Figure 13a). The high trace element content of the magma produced

by a low extent of melting controls the budget of the most incompatible elements, and

therefore dominates the isotopic composition of the mix~re. Thus, melting processes in

Floreana basalts seem to have displaced some of the incompatible trace elements ratios

(e.g., Nb/Zr) away from the overal mixing trend (Figure 8 and 12).

The flat REE patterns observed in lavas from San Cristobal and Santa Cruz can be

explained in the same manner as the Floreana basalts (Figure 13b). These simple models

illustrate that although the HREE may not reveal any indication of gamet, the mixture

encodes the gamet signature in the most incompatible elements such as UlTh ratios. In

contrast to the lavas from the eastern islands, all the western volcanoes show steep REE

pattern suggesting melting in the gamet stability field (White et a!., 1993). Basalts from

Wolf and Darwin volcanoes have high MREEIHREE ratios but low LREEIHREE ratios

(Fig).lre 4a). This tendency can be explained either by low extent of melting from a

previously depleted mantle source or by magma mixing. In any case, the steep REE pattern

is an indication of melting in the gamet stability field. Either hypothesis is consistent with

the depleted isotopic composition observed in these lavas.

The high e30ThP38U) disequilibrium found in Galapagos lavas (greater than 1 for

all the samples analyzed) indicates fractionation of Th from U during magmatic processes

(Figure lOa). Based on experimental data, the observed Th-U fractionation in Galapagos

melts can be produced by melting in the presence of gamet (Beattie, 1993; LaTourrette et

a!., 1993, Hauri et all., 1994; Salters and Longhi, 1999). This is in agreement with our

previous interpretation of the REE patterns and trace element ratios. Especially in the case

of Floreana and San Cristobal lavas, which have flat REE patterns, the e30Th/238U) ratios
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are much greater than 1 ('" 1.8 and'" 1.4 respectively) reinforcing the hypothesis of mixing

between magmas derived from both the garnet and spinel stability fields.

In the Th-U isochron diagram, Galapagos lavas, with the exception of Fiorena and

San Cristobal, define a quasi linear trend between MORB (GSC-EPR 9°N) at one end, and

Pinta at the other extreme (Figure 10 a and b). The positive correlation between

e30Thf32Th) and e 38Uf32Th) can be accounted for in the same way as the NbfLa-Nb/Zr

trend and the REE; namely, by mixing of magmas generated from a fertile and a depleted

source or by mixing of these mantle sources. As before, the second case would require an

inverse correlation between the extent of melting and the fertility of the source. Moreover, it

would also require that the effect of melt transport on e3°Thf3~h) was either insignificant,

or equivalent, for all the islands. Thus, the hypothesis of mixing mantle sources requires

more restricted conditions than magma mixing. The correlation between e 30Thf32Th) and

Sr and Nd isotope ratios (Figure lla) or Sr, Nd and Pb averaged by volcano (not shown)

obtained from White et ai., (1993) suggests that the Th isotope composition represents

either the Th isotope composition of the lavas produced by mixing, or the isotopic

composition of their mantle sources.

e 30Thf38U) does not correlate with any geochemical indicator of the extent of

melting. The lack of correlation suggests that the variation in the extent of disequilibrium is

controlled by a combination of melting, melt transport and mixing processes. Although

BalLa, Ba/Ce and Ba/Nb ratios correlate with e 30Thf'8U), these ratios also define positive

trends with Sr and Pb isotopes suggesting that the variation in the ratios is produced mainly

by mixing.

To estimate the extent of melting for Galapagos lavas using U decay series isotopes

is not an easy task. This is mainly because e30Thl23~h) could indicate the isotopic ratio in

the mantle source, the conditions of melt transport (Elliot, 1997), or mixing processes

(Lundstrom et ai., 1998). Samples from Cerro Azul have a variation in LalYbPM (from

2.66 to 5.98) and in (23°Th/238U) (from 1.240 to 1.374) at similar e30Th/232Th) and similar

Sr, Nd and Pb isotope ratios. The simplest interpretation of the data is that in Cerro Azul,

the e30Th/238U) of the lavas is mainly controlled by the extent of melting of the mantle

source. More data will be necessary to evaluate this hypothesis. Although it would be

premature to estimate the extent of melting, given the complexities of the data, it is clear

from the measured e30Thf38U) disequilibrium that the mantle sources with higher Sr and
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Pb and lower Nd isotope ratios represented by Floreana and Pinta lavas have melted to a

much lower extent than the MORB-like sources supplying the Wolf and Darwin volcanoes.

Regardless of the assumptions made or melting model used, disequilibrium of 50 to 80%

indicate that the extent of melting for Pinta and Floreana has been small (0.5 to 2%)

compare to that for Wolf and Darwin volcanoes (5 to 7%). Moreover, all analyzed

Galapagos lavas seem to have melted, or have a component (in the mixture) that melted, in

the garnet stability field.

4.6.2 Seeing through melting and the mixing, to source characteristics.

Giving the complexity of Galapagos lavas it is difficult to make firm statements

about the mantle source. However, trace element ratios seems to show certain features that

are not explained either by variable extents of melting or by mixing. For example, the

correlation between NblLa ratios and He and Nd isotopes suggest that the plume mantle

source have a positive anomaly in Nb and Ta or that the mantle melts in the precense of

mineral phases that would fractionate Nb from elements with similar compatibility (Kurz

and Geist, 1999, Fitton, et aI., 1998). In addition to NblLa, also TilTi*, KlRb correlate

with isotopes, even with 3He/4He and e30ThF32Th) (Figure 7 and llb). If high 3He/4He

ratios are a good indicator of the plume source, it is then unavoidable to suggest that the

plume mantle has positive anomalies of Nb and Ti and negative anomalies of K. Note that

we used NblLa and KlRb as approximations to the K and Nb anomalies, because both

elements are situated next to each other in the normalized plots the measured Nb/Nb* and

KIK* are influenced by the K and Nb contents respectively. We also detected negative Y

anomalies, but they do not correlate as well with the isotopes as do the other anomalies.

These various trace element anomalies appear to decrease toward the eastern islands where

the trace element patterns are flatter (low MREEIHREE, low HflLu) and the isotopic ratios

become more depleted, suggesting an increase in the proportion ofMORB (asthenospheric)

component in the mixture (Figure 6). Finally, all the lavas, except those that have

fractionated plagioclase, have SrlSr* higher than 1. In contrast to the K, Nb, Y and Ti

anomalies, the SrlSr* anomalies are higher in lavas from the eastern islands. The Sr

anomaly does not correlate with isotopes, most probably because the lavas in the western

volcanoes have fractionated plagioclase, which decreases this anomaly. For SrISr*>1, the

anomaly does not correlate with EulEu* or CaOIAI20 3 ratios suggesting that the anomaly is

not produced by plagioclase accumulation, but is probably related to the mantle source

composition.
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As before, Floreana seems to be an exception, sharing characteristics from both the

western volcanoes, (high 'He/4He ratios, positive anomaly of Ti), and the eastern islands

(flat REE, small to nonexistent anomalies ofY and K, and a large Sr anomaly). Moreover,

Floreana lavas are enriched in Ba and depleted in Th and U relative to elements of similar

incompatibility (Figure 4a). We believe the dichotomy observed in Floreana is produced by

mixing magmas representing very low degree melts from an enriched source, and moderate

degree melts from a depleted source. Thus, in Floreana many of the characteristics ascribed

to either asthenospheric or plume mantle sources are clouded by melting processes, which

seem to have caused the ratios of incompatible trace element (Nb/Zr, ThlU) to diverge

from the mixing trends.

The trace element anomalies observed in Galapagos lavas are also common m

Hawaii and Iceland (Fitton, et al 1998, Hofmann, 1998 and Sobolev et ai, 1998), all

known areas with high 3HdHe ratios. The origin of the Nb, Ti, Sr, K and Y anomalies in

the Galapagos mantle plume is controversial. However, the enrichment of HFSE and Sr,

the depletion in K, and the correlation with isotopes, especially 206PbPo4Pb ratios (up to

19.5 in volcanoes from Isabela) are consistent with the model that invokes tapping of

recycled oceanic crust (Hofmann, 1982; Hofmann and White, 1980). Even the

characteristics of Floreana (Ti, Nb and Sr enrichments, Th-U depletions, and 206PbPo4Pb

ratios up to 20) are consistent with the hypothesis of recycled oceanic crust gabbros

proposed by Sobolev et al. (1998) and Hofmann, (1998) for Hawaii and Iceland. If this is

the case, the correlation between the trace element anomalies (index of ocean crust

recycling) and the 3HdHe ratios (indicator of undegassed mantle) is puzzling. One simple

and circumstantial explanation could be the thermal entrainement of undegassed mantle in a

plume formed by recycled material (Hart et aI., 1992). On the other hand, minerals such as

Ca and Mg-Perovskites could fractionate HFSE and K from other incompatible elements

(Kato et aI., 1988, Shimizu pers. comm., 1999). Thus, a second hypothesis is that the

correlation between the trace element anomalies (index of Ca-Perovskite fractionation) and

3He/4He ratios (undegassed mantle) could be a simple indication of the early Earth

differentiation. However, the near primitive mantle BaIU ratios for lavas from Fernandina

islands, which have the highest 3He/4He ratios, are inconsistent with both the above

hypotheses. The relative uniformity and near primitive mantle values of ratios such as

CelU and to lesser extent BalU, BaiCe in oms compared to MORB is surprising and

challenges both the recycling and the early Earth differentiation hypothesis (Halliday et ai,
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1995). Finally, more work is required to distinguish the effects of recycling from those of

local assimilation of oceanic crust. Local assimilation could be an important source of

geochemical variation in Galapagos lavas, where the oceanic crust platform ranges up to 18

km in thickness (Feighner and Richards, 1994). Nevertheless, the high 206Pb/204Pb (up to

20, White et aI., 1993) and the high 3HdHe isotopes, (up to 30, Kurz and Geist, 1999)

are not easily explained by interaction of Galapagos magmas with a young lithosphere «10

Ma).

4.6.3 Mantle porosity and upwelling velocities

In the last 10 years, a series of elaborate models were developed to explain the

effects of melting and melt transport on U decay series isotopes. There are two end

member models: dynamic melting and equilibrium porous flow. Both models consider that

melting processes in the presence of garnet is responsible for the Th-U fractionation

producing lavas with higher ThlU ratios than those of their mantle source (Beattie, 1993;

LaTourrette et aI., 1993, Hauri et all.,1994; Salters and Longhi, 1999).

Dynamic melting was applied to U series isotopes by McKenzie (1985) and

modified by Williams and Gill (1989). It considers that the melting process can be

described by accumulated fractional melting with a threshold porosity (Shaw, 1970). In

this model, the melt is extracted continuously and accumulated in chemical isolation from

the solid residue, with the result that Th and U are extracted from the solid very early

during the melting.

The second model, equilibrium porous flow (EPF), was proposed by Spiegelman

and Elliott (1993). It postulates that as the melt migrates, it reacts with the solid residue,

reaching equilibrium at each step. This process allows the U to remain in the solid matrix

for a longer time, producing greater disequilibrium than in the dynamic melting model.

230Th cannot remain in the melting columns longer than about 6 half-lifes. Therefore, a

slow effective velocity in a long melting column will erase the extent of disequilibrium due

to the fast decay of 230Th relative 238U. The beauty of EPF is that the 23°Th excesses are

controlled both by melting and by differential (melt/matrix) transport. At the bottom of the

column, for degrees of melting comparable to the bulk partition coefficient (D), the initial

excesses are large, principally controlled by the chemical fractionation during melting. As

the extent of melting gets larger, this effect disappears and the transport processes dominate

the ingrowth. As long as the 238U parent isotope continues to spend more time in the
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column than its daughter, the excess will persist even to high extent of melting (Spiegelman

and Elliott, 1993). Thus, in contrast to dynamic melting, in EPF the length of the melting

column influences the resulting 23"Th excesses. At slow upwelling rates and faster effective

velocity for Th than U, long melting columns will produce larger 230Th excesses than

shorter columns. At present, there is no clear evidence that would allow us to choose

between dynamic or equilibrium porous flow models. The only reason we consider

dynamic melting more realistic is that there is no evidence in major and trace element data

for basalt and peridotite that support the hypothesis that the melt equilibrate with the

surrounding mantle matrix as proposed by (Spiegelman and Elliot, 1993).

We have applied both the dynamic melting and equilibrium porous flow models to

the Galapagos plume. The main objective is to derive information on mantle porosity and

upwelling rates. Both models should be considered approximations, due to the

uncertainties in the mineral modes, partition coefficients, mantle compositions, melt

productivity, etc. We used two sets of partition coefficient (Beattie, 1993; LaTourrette et

a!., 1993). The bulk partition coefficients (D) define the maximum obtainable

disequilibrium for any model, which is the ratio between the parent and daughter bulk

partition coefficient. Moreover, the Ds control the effective velocity of the element and the

rate at which the element is transfered from the solid to the melt.

In general, past U series work on magmatic processes has been done using

garnet/clinopyroxene ratios for the mantle source that appear to be high (0.12/0.08, Beattie,

1993) compared to ratios obtained from melting experiments in the garnet stability field

(0.06/0.25, Walter, 1998). This observation constrains either the source composition

(peridotite versus eclogite-pyroxenite) or the partition coefficients to be used. For example,

to obtain 80% disequilibrium as observed in the Floreana lavas, assuming Walter's mineral

modes, we are forced to use Beattie, (1993) partition coefficients. Any other partition

coefficient set will not reproduce the observed disequilibrium [e30ThF38U) = 1.8] because

the ratio between the parent/daughter bulk partition coefficient set is smaller than 1.8. On

the other hand, if we use LaTourrette's partition coefficients, the observed disequilibrium

would require the existence of eclogite (garnet/clinopyroxene '" 0 .5/0.5) in the melting

column.

For these exercises, we have assumed the generally used garnet/clinopyroxene =
0.12/0.08 ratios (Beattie, 1993). Both models applied here utilize modal, one-stage
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melting, that is, melting occurs only in the garnet stability field (Figure 14, 15). Moreover,

in the EPF model 230Th excesses are dependent on the length of the column. Therefore, we

show the results using melting column lengths varying from 0.5 to 10% melting for

Floreana, Pinta, and Fernandina respectively (Figure 15). In contrast, if we utilize non

modal melting models, the source mineral modes of Walter (1998), and consider two stage

melting models, in the garnet and spinel field, to obtain the same disequilibrium the output

of the model will result in a smaller mantle porosity and slower upwelling rates. Moreover,

the EPF model will require longer melting columns, starting at greater depth, and will

involve larger extent of melting. Thus, the results obtained here are an upper bound for the

mantle porosity and upwelling velocities and a minimum limit for the length of the melting

column in the Galapagos plume.

Figure 14 and 15 show contours of constant 230Th excess as a function of the

mantle porosities and upwelling velocities for both Dynamic melting and EPF. Each

contour represent the maximum 230Th excess found in each volcano or island. The first

important observation from Figure 14 is that lavas from Darwin and Wolf volcanoes, or

even from Santiago island, give faster apparent mantle upwelling velocities and larger

porosities than Fernandina which is the assumed center of the hot-spot. The lower 23°Th

excess in those lavas compared with Fernandina basalts is mainly produced by the larger

MORB component involved in the mixing for Wolf and Darwin volcanoes. Therefore,

from these results we can argue that the smaller 23"Th excesses found in lavas from Darwin

and Wolf indicate:

I) the MORB-like mantle below Darwin and Wolf volcanoes upwell faster

than the center of the plume (Fernandina). This hypothesis is unlikely, because the center

of the plume is considered to be the hottest and therefore should upwell with the fastest

velocities.

2) The mantle below Darwin and Wolf has higher porosity than that of

Fernandina. Again this hypothesis seems unlikely; because the center of the plume

(Fernandina) should be the hottest, and lavas from Fernandina indicate a more fertile mantle

source (higher Sr, Pb and lower Nd isotope ratios) than those from Darwin and Wolf, we

would expect higher extent of melting, and therefore higher porosity in the mantle source of

Fernandina than in those of Darwin and Wolf.
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3) The lower 23°Th excess in lavas from Darwin and Wolf volcanoes than

those of Fernandina are produced by mixing between lavas originated from the plume

mantle with lavas from the MORE mantle. Because we do not know the end-member that

represent the MORB component we could argue that the MORE end member was in secular

equilibrium. Therefore, the lower 230Th excess could be the result of simple mixing with

no indication of mantle porosity or upwelling velocities. It cannot be unambiguously

argued that the 230Th excess in Darwin and Wolf lavas indicates faster upwelling velocities

or larger porosities than that for Fernandina.

Thus, we will consider here only Fernandina as the best example to establish the melting

conditions in the plume. We choose Fernandina as representative of the plume because its

lavas have the highest 3He/4He, indicative of its proximity to the present position of the

plume (Kurz and Geist, 1999). We will also consider the 'melting conditions for Pinta and

Floreana samples, because they exemplify lavas erupted on the thin lithosphere, which

represent the lowest extents of melting, and the smallest contamination with MORE in the

archipelago (Figure 10).

To reproduce the measured e30ThP"U) in Fernandina, Pinta and Floreana

dynamic melting will require mantle upwelling velocities of approximately 8.5xlO·3,

4.5x1O·3, 2xlO·3m/y and porosities of3xlO·3, 2x1O·3, lx1O-3, respectively. In contrast, the

EPF allows faster upwelling mantle velocities than dynamic melting (approximately 3xlO-2,

Ix10.2 , 5xlo·3 m/y and similar porosities of 3xlO·3, 1.5xlO·3, lxlO·3 respectively). Two

important points can he obtained from this exercise:

I) The mantle upwelling velocity for the Galapagos plume (Fernandina) is

extremely slow (s I to 3 cm/y), compared to the tholeiites from Hawaii (40 to 100 cm/y,

Sims et aI., 1999, using same bulk Ds and modal proportions).

2) Very slow mantle upwelling for Pinta (0.5 to I cm/y) and Floreana (0.2

to 0.5 cm/year) indicates that the plume is dragged approximately toward the east almost

horizontally after impinging in the lithosphere, thus limiting the decompression and

producing low extent of melting.

Ito et aI. (1997), presented a three-dimensional numerical model of hot-spot ridge

interaction for the Galapagos and GSC, with variable viscosities. The model match the

residual bathymetry and mantle Bouguer anomaly along isochrons. The amplitude of the
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gravity anomalies can be explained by a plume source 100 to 200 Ian in radius and a

temperature anomaly of 100 to 50°C respectively. Thus, the plume is only mildly buoyant

(buoyancy flux of 2 x 103 kg sol). Considering the case of a plume source 200 Ian in radius

and a temperature anomaly of 50°C, the plume volume flux and the mantle upwelling

velocities modeled by Ito et al. are '" 9.1 X 106 Km3/Ma. and '" 7 cmly respectively. Thus,

the mantle upwelling velocities obtained from modeling the residual bathymetry and mantle

bouger anomaly are slightly higher than the upwelling mantle velocities of '" 3cm/y

estimated from e30ThP38U) disequilibrium for the center of the hotspot (Fernandina). Both

studies (the numerical model and the 23°Th excesses) indicate that the Galapagos plume is

quite weak, with a plume temperature anomaly of the order of 100 to 50°C. The agreement

between the numerical model for Galapagos by Ito et al.,(l997) and our work here

confirms the correlation observed by Chabaux and Allegre, (1994) between 230Th excesses

and buoyancy flux. .

Many of the characteristics observed in the Galapagos islands can be explained by

different aspects of the interaction between the plume, the GSC and the Feighner and

Richards' fault (90°50' transform fault?). Bathymetric and gravimetric data indicate that this

fault divides the archipelago into two sectors: the west sector with an old, thick and cold

lithosphere ('" 10 Ma , 12 Ian elastic thickens) and an eastern sector with a young, thin and

warm lithosphere ('" 5 Ma, 6 Ian elastic thickness) (Feighner and Richards, 1994). The

plume impinges under the western sector, where the sloping lithosphere forms a

rheological boundary layer (RBL) that thins toward the ridge. The plume is dragged by the

moving plate toward the SE, into the eastern sector, where the lithosphere is thin and

relatively flat. Fluid dynamics laboratory experiments found a correlation between the

magnitude of the RBL slope, and the proportion of material that the plume feeds to the

nearby ridge (Kincaid et ai, 1995). The three-dimensional variable-viscosity experiment

indicates that the greater the RBL slope, the more effectively it diverts the buoyant low

viscosity plume material toward the ridge. In the western sector, the plume is warmer and

less viscous, and the lithosphere has a more pronounced slope than in the east. To the east

of the fault, the lower thermal difference between the flatter lithosphere and the colder

plume facilitates the dragging of the plume away from the GSC. Although the effect of the

lithosphere on the plume may be small because the Galapagos is a mildly buoyant plume

(Ito et aI., 1997), the ability of the lithosphere to divert the plume toward the ridge will be

larger in the western sector than in the eastern sector. Thus, this different behavior on
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opposite sides of the fault can explain why the geochemical anomaly does not occur at its

closest position to the Galapagos archipelago, but to the northwest, at the intersection of the

Darwin-Wolf lineament and the GSC. Moreover, the lower thermal difference between the

flatter lithosphere and the colder plume in the eastern sector facilitates the dragging of the

plume away from the GSC and allows the upwelling MORB material to fill the central area

of the Archipelago producing the "horse shoe pattern".

After impinging under the western sector, the plume cools and is dragged toward

the east, moving across the fault. The west to east difference in thickness of the lithosphere

('" 6 km) allows the relatively cold plume, that was moving almost horizontally, to move

upward, producing decompression and a low extent of melting (approximately 2%,

assuming melting rate of O.3%/km and a 6 km distance). As the dragged plume moves to

the SE, the central part of the archipelago will be underlain largely by thermally entrained

asthenospheric mantle, as postulated by Richard and Griffiths (1989). As with the plume,

when the asthenosphere crosses the fault, decompression and melting occurs. Thus, the

effect of the transform fault and the abrupt thinning of the lithosphere may account for the

broad distribution of the volcanoes and the long periods of eruption in the eastern sector.

Moreover, this process can explain the negative Bouguer anomaly observed in the center of

the archipelago (Case et al., 1973, Feighner and Richards, 1994). The effect of transform

faults on melting was proposed by Reynolds and Langmuir (1997) to explain the trace

element composition of MORE erupting close to the intersection of the MARK area with

the Kane transform fault. We believe that consideration of variations in lithospheric

thickness and transform fault effects are of utmost importance in understanding Galapagos

magmatism.

4.7 Conclusions

The correlation between isotopes and trace element ratios (such as NblLa, Nb/Zr,

BalLa, KlRb and BalCe) suggests that most of the trace element variations in the Galapagos

are controlled by mixing of magmas from at least two different mantle sources. The' extent

of melting represented by the extreme components of the mixing seems to be inversely

proportional to the fertility of the sources. This simple model illustrates that such a mixture

carries a garnet signature in the most incompatible elements (such as U, Th, Nb, Zr) even

though the variation of the MREE to HREE does not reveal any indication of melting in the

garnet stability field.
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The high e30Th/238U) disequilibrium found in Galapagos (ranging from 1.16 to

l.SI), indicates that melting occurs in the garnet stability field in agreement with the trace

element results. The positive correlation between e 30ThP32Th) and e 38Up32Th), with

230Th excesses decreasing toward higher e 30ThP32Th) ratios, can be accounted for by

mixing of magmas generated by low extents of melting from a fertile source with magmas

produced by relatively large extents of melting from a depleted source. The correlations

between (23°Th/232Th) and Sr, Nd and Pb isotopes confirm that the Th isotopic ratios are

mainly source-controlled and are the result of magma mixing between the plume and

asthenosphere melts.

Correlation between He isotopes and TilTi*, KlRb and NblLa ratios suggests that

the mantle plume has positive anomalies of Nb and Ti and negative anomalies of K. The

decrease of these anomalies toward the eastern islands where the trace element pattern are

flatter and the isotopic ratios become more depleted, suggests that the increase of the

proportion of a MORB component in the mixture tend to erase these anomalies. The origin

of the Nb, Ti, Sr, K and Y anomalies in the mantle plume of Galapagos is still a matter of

debate.

Dynamic melting and equilibrium porous flow models constrain mantle upwelling

velocities for the Galapagos plume (Fernandina) to ,,; 3 cmly and maximum porosities of

0.3%, indicating that Galapagos is a mildly buoyant plume; this is consistent with a 3D

numerical model of plume-ridge interaction. Evidence for very slow mantle upwelling and

low porosity for Pinta (0.5 to I cmly and 0.15%) and Floreana (0.2 to 0.5 cmly and 0.1 %)

supports the hypothesis that the lateral transport of the plume across the 90° 50' transform

fault produced additional slow upwelling and further small extent of melting.

Dynamic melting and equilibrium porous flow models may give erroneous

estimations of mantle porosity and upwelling rates when the suite of lavas has undergone

mixing processes.
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4.9 Table Caption

Table 1: Representative majors and trace elements and isotope analyses from the

published and unpublished data set of Kurz. Pb isotopes are reported relative to value for

NBS 981 z06Pb/z04Pb = 16.9356; z07PbP04Pb = 15.4891 and z08PbP04Pb = 36.7006. Nd

isotopes were corrected for fractionation to 146Nd/\44Nd = 0.7219 and normalized to La

Jolla value of 0.51184. Sr values are normalized to NBS 987= 0.710240. Typical

uncertainties for Sr and Nd are approximately 18 ppm. Uncertainties for Pb are 1, 1.4 and

1.6 per mil for z06PbP04Pb, z07Pb/z04Pb, z08PbP04Pb respectively.

Table 2: Th and U concentration determined by isotopic dilution and Th isotopes for

Galapagos lavas. Ages determined by surface exposure dating techniques by Kurz. The Th

isotopes have been corrected by the reported ages, assuming the ages represent the time of

eruption. Parenthesis denote activity ratios; ""'30= 9.195 X 1006 yr
o
\, Az3z=4.948 xlOo11 yro

\,

Az38= 1.551 X 100
\0 yrl

•

4.10 Figure Caption

Figure 1: Map of the Galapagos Archipelago. GSC is the Galapagos Spreading Center.

The dash line represents the inferred fault from Feighner and Richards (1994). The fault

separates thick (12 km elastic thickness), old (= 10 Ma) and strong lithosphere to the west

from a thin (6 km elastic thickness), young (= 5Ma) and weak lithosphere to the east. The

inset shows a regional view of the GSC.

Figure 2: a) Th isotope reproducibility for the UCSC standard measured by IMS 1270

ion probe. The TIMS value is reported for comparison. b) ICP-MS reproducibility for U

isotope ratios for the NBS 960 standard measured, after correction for mass fractionation to

the certified value of 137.88.

Figure 3 : a) SiOz versus Na,O+KzO according to the classification of Le Bas et a!.,

(1986). All of the samples plot in the field for basalts. Light dash-line separates the fields

for alkaline and tholeiitic basalts (Macdonald and Katsura, 1964). Several samples (two

from Floreana and two from Cerro Azul) are alkali basalts. b) TiOz versus Mg# for

Galapagos lavas. Most of the lavas have undergone significant crystal fractionation.

However, this differentiation did not reach saturation with ilmenite-magnetite in the

analized samples.
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Figure 4 : a) Primitive mantle-nonnalized diagram for representative samples from the

western (Fernandina and Darwin volcanoes) and eastern (Floreana and San Cristobal

island) sector of the Galapagos Archipelago. Nb, Ti, K and Y anomalies are larger in

lavas from the western volcanoes, while the Sr anomaly is larger in the lavas from the

eastern islands. b) Primitive mantle-normalized REB. Note the flattening of the MREE to

HREE in lavas from the eastern sector. Nonnalizing values are from Sun and

McDonough,(1989), except for Pb and Cs 0.15 and 0.021 respectively.

Figure 5: a) Sm versus Yb contents (ppm). The lavas from the eastern islands have

lower Sm!Yb ratios than those from the western volcanoes. Note that the variation in

Sm/Yb ratios is mainly controlled by the variation in Sm content. The lines defines constant

values of Sm!Yb ratios b) (LaIYb)PM versus (Sm!Yb)PM ratios. Most of the lavas from the

eastern islands have lower (LaIYb)PM and (Sm!Yb)PM ratios than those of the western

volcanoes, with the exception of the Floreana lavas, which have similar (LaIYb)PM ratios to

the lavas from the western volcanoes. Moreover, note that the Darwin and Wolf volcanoes

have lavas with high (SmlYb)PM but low (LaIYb)PM ratios compared to the other western

volcanoes. See text for explanation.The lines defme values of constant (LalSm)PM ratios.

Figure 6: Ti/Ti* =[2TipM/(EupM+GdpM)] and Y/Y* = [2YpM/(DYPM+HoPM)] versus HflLu

ratios. With the exception of Floreana, the anomalies in Ti and Y tend to disappear in lavas

from the eastern islands.

Figure 7: 'He/4He versus KlRb and Ti/Ti*. The correlation between the anomalies of Ti

and K (we used KlRb as an approximation of KlK*; see text) indicates that the mantle

source responsible for the high 'He/'He is also responsible for the positive Ti and negative

K anomalies.

Figure 8: '43Nd/'44Nd, 206PbPo4Pb and 87Sr/86Sr versus Nb/Zr. Nb/Zr correlates with

isotopes, with the exception of the Floreana alkaline basalts for Sr and Nd isotope ratios,

and one sample from San Cristobal that has anomalously high Sr isotopes. Although Nb/Zr

ratios do not correlate with Sr and Nd isotopes, they correlate with Pb isotopes suggesting

that even in Floreana lavas, the trace element are in some way affected by mixing. The

correlation between Nb/Zr and isotopes indicates that the trace elements in Galapagos lavas

are controlled mainly by source variations and mixing processes. Reference as in Figure 7
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Figure 9: (23°Thf32Th) and e 38U/232Th) versus Mg#. Samples having a range in Mg#

with similar Sr, Nd and Pb isotopic composition have similar e 30Thf32Th) and

e38UP'~h) ratios; the best example of this is the suite of lavas from Cerro Azul volcano.

Figure 10: e30Thf3~h) versus e 38Uf32Th). a) Isochrone diagram for Galapagos lavas.

Dashed lines are given for e 30Thf38U) ratios of 1.2, 1.5 and 2.0; the solid line is the

equiline. The measured e 30Thf38U) ratios in all of the samples is much higher than I,

indicating melting in the garnet stability field. e 30Thf32Th) correlates roughly with

e 38U/232Th), approaching the equiline as the e30Th/232Th) ratio increases. The samples

define two linear trends: one is well defined and contains most of the samples analyzed; the

second trend is less well defined with samples from Floreana and San Cristobal. b)

Comparison between the Galapagos lavas and a compilation of alB and MORB data (C.

Lundstrom, personal communication). Note that one extreme of the linear trend defined by

the Galapagos samples (dashed line) overlaps with the field defined by MORB, especially

with samples from the GSC and EPR 9°N, which are geographically the closest MORB

samples to the Archipelago. At the other end of the trend, the Galapagos samples show

extreme disequilibrium, when compared to other alB lavas, especially when compared

with Hawaii. Analytical uncertainties for Galapagos samples are smaller than the symbols

Figure 11: a and b) e 30Thf32Th) versus 143Nd/144Nd and KlRb ratios. The e 30Thf32Th)

correlates with Sr Nd and Pb isotopes and with some trace element ratios, suggesting that

source variations and mixing processes have also controlled the Th isotopic composition of

Galapagos samples. c) e 30Thf38U) versus BaiNb. This correlation is mainly defined by

samples from Floreana and San Cristobal. Although BalLa, BaiCe and BaINb ratios

correlate with e 30Thf38u), these ratios also define positive trends with Sr and Pb isotope

ratios, suggesting that the variation in the ratios is produced mainly by source variation and

mixing. References as in Figure 10

Figure 12: NblLa versus Nb/Zr ratios. With the exception of two alkali basalts from

Floreana, the Galapagos lavas define a steep trend. Dashed-lines represent results of non

modal batch melting models in the garnet and the spinel stability field, the number next to

the (+) symbols represents the extent of melting in %. We assumed an enriched source that

melts in the garnet stability field, from an initial NblLa = 1.3, Nb/Zr = 0.07. Note that the

NblLa and Nb/Zr ratios are slightly more enriched than the PM '" 1.02 and 0.063

respectively, because we assumed a source with a positive anomaly in Nb. We assumed a
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depleted MORB source with NblLa = 0.6 and Nb/Zr = 0.03, with melting in the spinel

stability field. The mineral mode for the enriched garnet source is taken from Beattie

(1993), and the melting reaction is from Walter (1998), for 3 GPa. For the depleted source

we used the mineral mode and melting reaction from Kinzler and Grove (1992). Most of

the Galapagos lavas plot in the area defined by mixing between lavas representing a low

extent of melting from an enriched source (in the presence of garnet) and a moderate extent

of melting from a depleted source (in the spinel field). The partition coefficients are from a

compilation made by Takazawa (1996) for La and Zr, and from Kelemen et al. (1993), for

Nb. Note that the alkaline basalts from Floreana seem to reproduce melting along a trend

comparable to the garnet trend. This would suggest that melting processes in Floreana

basalts seem to have displaced some of the incompatible trace elements ratios (such as

NblLa and Nb/Zr) away from the overal mixing trend.

Figure 13: Primitive mantle-nonnalized REE for Floreana and San Cristobal lavas. In

both cases, the flat MREE to HREE patterns can be explained by mixing between magmas

produced by a low extent of melting from an enriched garnet source and melts produced by

moderate extent of melting from a depleted spinel source. In both cases the pattern for the

mixture is shown by thick gray lines. a) Floreana lavas are reproduced by a 7.3:1 mixture

of 5% melt from a 5% previously depleted primitive spinel mantle and a 0.1 % melt from

primitive garnet mantle. b) San Cristobal lavas are reproduced by a mixture 1:32 of 0.5%

melt from primitive garnet mantle and 7% melt from a 5% previously depleted spinel

primitive mantle. We used the source mineralogy and melting reaction of Kinzler and

Grove (1992) for the spinel mantle, and the source mineralogy from Beattie (1993) and the

3 GPa melting reaction of Walter (1998) for the garnet source. The initial composition is

the primitive mantle of Sun and McDonough (1989). Partition coefficients are from a

compilation made by Takazawa (1996). These models are not unique solutions and many

other combinations can explain the data. The main goal of the modeling is to demonstrate

that flat MREE to HREE patterns are not necessarily an indication of melting in the spinel

stability field. Rather, lavas with flat REE patterns can carry a garnet signature in the highly

incompatible elements, as in the case ofThlU fractionation (see Figure 10).

Figure 14: Mantle upwelling velocities versus mantle porosities. These figures show

contours of constant e30Th/238U). We choose the maximum 230Th excess observed in each

volcano/island analyzed from Galapagos, such that each contour represent one volcano.

The figure shows the results of dynamic melting processes (McKenzie, 1985) applying two
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different sets of partition coefficients (Beattie, 1993; LaTourrette et aI., 1993). In dynamic

melting, Th and U are readily stripped from the mantle solid, therefore the extent of melting

does not play an important role in the extent of disequilibrium. Using LaTourrettte's Du and

DTh will require smaller mantle porosities and upwelling rates than those obtained using

Beattie's D.

Figure 15: Mantle upwelling velocities versus mantle porosities for equilibrium porous

flow. As before, we used the same two sets of partition coefficients. We also considered

four different melt column lengths: 1.7 Ian ('" 0.5% melting), 3 Ian ('" I % melting), 17 Ian

('" 5% melting) and 33 Ian ('" 10% melting), assuming a constant melt productivity of '"

O.3%/km. In these models we have used the analytical solution of Sims et aI., (1999),

which considers a constant porosity as an approximation to the numerical solution. As

shown by Sims et al. (1999) for Th-U disequilibrium, the analytical solution gives

comparable results to the numerical solution. The model assumes modal melting, the

source mineral composition taken from Beattie, (1993) and melting in the garnet field. As

in dynamic melting, LaTourrette's D's require slower mantle upwelling rates and porosities

than Beattie's D's, especially for the case of very high 23°Th excesses. Note that the

differences between the models generated by using both sets of partition coefficients is

larger at a low extent of melting (F '" D), where melting processes playa more important

role in the extent of Th-U disequilibrium. As F increases (F»D), the transport processes

control the extent of disequilibrium. Thus, porosity and length of the columns begin to be

major factors in affecting the 23°Th excesses, decreasing the effect of using different Ds.
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TABLEt

Sample ID NSK97-202 NSK97-206 NSK97-214 NSK97-215 NSK97-216 NSK97-224 NSK97-228 SG 93-16
island/volcano Fernandina Fernandina Fernandina Fernandina Fernandina Fernandina Fernandina Fernandina

8i02 49.39 49.61 49.44 48.5 48.88 49.18 48.9 49.38
AI203 15.87 15.52 14.77 13.98 15.05 15.71 16.08 15.59
Ti02 2.5 2.58 3.12 2.72 3.42 3.09 3.13 2.72
Feo 9.66 9.63 11.3 10.42 11.46 10.22 10.72 10.45
MoO 0.17 0.17 0.1 9 0.17 0.19 0.18 0.18 0.18
MgO 7.63 7.5 6.41 10.4 5.84 6.21 5.81 6.52
CaD 11.88 11.89 11.6 10.68 11.34 11.75 11.45 12.09
K20 0.31 0.32 0.39 0.36 0.54 0.47 0.48 0.38
N020 2.36 2.34 2.46 2.49 2.91 2.88 2.92 2.5
P205 0.25 0.25 0.31 0.27 0.38 0.34 0.34 0.27
Total 100 100 100 100 100 100 100 100

)IfF

NI 97 87 49 225 37 51 37 58
C, 323 288 155 641 143 186 185 193
Sc 35 34 33 35 35 35 30 38
V 309 316 366 331 383 357 351 330
Ba 35 37 37 34 41 58 29 40
Rb 6 6 6 8 9 10 5 6
8, 311 304 321 303 350 344 354 330
Z, 126 128 155 135 196 171 172 146
Y 23 23 29 23 31 29 29 25
Nb 17.4 17.3 21.0 19.1 26.0 23.8 22.3 19.3
Ga 22 22 26 22 23 27 25 25
Co 80 75 83 63 87 78 72 94
Zo 101 96 110 104 110 106 107 97

ICPMS
Cs 0.06 0.06 0.07 0.06 0.08 0.09 0.08 0.07
Rb 5.4 5.3 7.6 6.0 9.7 8.2 8.6 6.2
Sa 68 67 89 73 114 99 101 80
Th 0.97 0.94 1.31 1.05 1.64 1.35 1.36 1.14
U 0.28 0.27 0.38 0.3 0.49 0.39 0.4 0.34

Nb 15.2 15.1 20.0 16.9 24.3 21.5 21.6 17.1
T, 1.08 1.08 1.5 1.24 1.75 1.51 1.59 1.23
L, 10.5 10.4 14.1 11.8 17.9 15.7 15.5 12.9
ce 24.3 24.0 32.3 27.0 40.2 35.4 34.8 28.1
Pb 1.42 1.16 0.93 1.15 1.1 3.21 0.96 1.18
P, 3.22 3.24 4.23 3.66 5.27 4.72 4.65 3.79
8, 305 301 351 289 371 360 383 323

Nd 15.6 15.2 19.5 17.1 23.9 21.6 21.5 17.7
8m 4.50 4.48 5.77 4.88 6.92 6.26 6.13 5.02
HI 3.06 3.12 4.15 3.35 4.96 4.34 4.S 3.59
Eo 1.60 1.61 2.04 1.78 2.37 2.10 2.18 1.84
Gd 4.74 4.69 6.01 5.09 7.04 6.32 6.50 5.32
Tb 0.80 0.79 1.03 0.87 1.17 1.07 1.09 0.92
Dy 4.69 4.76 6.08 5.13 6.94 6.30 6.40 5.47
Y 23.9 24.1 30.1 24.3 34.5 31.6 32.1 26.8

Ho 0.93 0.93 1.21 0.99 1.37 1.21 1.25 1.04
E' 2.27 2.35 3.04 2.46 3.42 3.10 3.21 2.59

Tm 0.31 0.33 0.41 0.34 0.47 0.43 0.44 0.36
Yb 1.82 1.85 2.46 2.00 2.80 2.48 2.57 2.07
Lo 0.27 0.28 0.36 0.29 0.41 0.37 0.38 0.31
Sc 35.6 35.5 44.3 33.6 42.2 40.0 39.1 38.7

3He!4He 25 23 30 22 22 23 25 27
87Sr/86Sr 0.703272 0.703304 0.70329 0.703264 0.703251 0.703249 0.703207 0.703234

143Nd/144Nd 0.512921 0.512929 0.512937 0.512922 0.512958 0.51294 0.512947 0.512965
206Pb/204Pb
207Pb/204Pb
208Pb!204Pb
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TABLE 1

Sample ID NSK97-238 NSK97-252 NSK97-254 8693-22 5G 93-5 5G 93-7 5G 93-8 5G 93-12
island/volcano Santia"o San Cristobal San Cristobal Floreana Cerro Azul Cerro Azul Cerro Azul Cerro Azul

Si02 48.4 47.3 47.44 46.4 48.09 50.93 48.89 49,08

AI203 14.85 16.77 16.4 14.39 14.79 13.6 15.49 14.34
Ti02 2.13 1.01 0.98 1.67 2.04 1.45 2.66 3.4
FoO 10.67 8.83 9.04 9.78 9.96 9.47 10.22 12.37
MoO 0.18 0.16 0.17 0.17 0.18 0.16 0.19 0.22
MgO 10.22 11.17 11.8 13.3 10.2 11.64 7.03 5.72
CaD 10.25 12.37 11.55 10.6 11.75 9.9 11.28 10.24
K20 0.31 0.12 0.19 0.83 0.34 0.18 0.66 0.78
Na20 2.74 2.16 2.31 2.66 2.45 2.34 3.23 3.44
P20S 0.24 0.1 0.11 0.22 0.21 0.14 0.35 0.42
Total 100 100 100 100 100 100 100 100-Ni 241 211 259 324 201 356 97 46
C, 495 481 479 698 50B 583 227 90
So 34 40 40 33 37 30 35 34
V 246 226 210 247 268 169 326 412
Sa 27 26 44 257 77 36 107 136
Ab 5 3 3 20 6 5 13 15

8' 234 173 173 390 264 162 356 356
Z, 139 66 67 91 113 77 176 211
Y 29 21 21 21 22 17 29 35
Nb 11.1 5.2 6.5 23.5 17.8 9.1 28.8 36.4
Ga 21 15 16 13 19 17 21 24
Co 80 291 330 76 68 77 74 71
Zo 92 56 60 66 65 60 97 116

ICPMS
Os 0.05 0.02 0.04 0.23 0.06 0.04 0.13 0.18
Rb 5.1 1.2 2.3 19.4 6.1 3.6 12.5 14.9
sa 49 24 36 279 66 44 146 166
Th 0.76 0.24 0.37 1.3 1.08 0.57 1.99 2.35
U 0.21 0.06 0.1 0.22 0.29 0.16 0.54 0.64

Nb 9.6 3.6 4.9 22.2 15.5 7.7 27.6 33.9
Ta 0.65 0.25 0.31 1.22 1.01 0.52 1.79 2.19
La 9.0 3.4 4.3 16.0 12.0 5.6 20.8 25.0
ce 21.0 6.5 9.5 26.6 26.1 12.9 43.2 51.6
Pb 1.07 0.9 0.75 2.99 1.1 0.99 1.89 2.27
P, 2.99 1.31 1.36 3.04 3.4 1.82 5.61 6.55
S, 230 174 167 390 263 167 376 362

Nd 14.9 6.6 6.6 12.5 15.5 6.9 24.9 28.9
8m 4.90 2.40 2.18 3.24 4.42 3.05 6.53 7.74
HI 3.53 1.65 1.54 1.6 2.97 2.1 4.6 5.45
Eo 1.79 0.96 0.89 1.18 1.56 1.13 2.22 2.59
Gd 5.61 3.16 2.84 3.50 4.73 3.60 6.68 7.71
Tb 0.94 0.61 0.55 0.64 0.80 0.64 1.08 1.27
Dy 5.86 4.08 3.87 4.03 4.88 3.77 6.56 7.77
Y 29.2 23.0 22.1 21.9 23.3 19.7 32.4 37.1

Ho 1.12 0.89 0.83 0.82 0.95 0.75 1.26 1.48

"' 2.93 2.56 2.37 2.34 2.40 1.93 3.20 3.74
Tm 0.39 0.37 0.34 0.32 0.34 0.26 0.44 0.51
Yb 2.37 2.36 2.32 1.96 1.96 1.55 2.63 3.00
Lo 0.35 0.37 0.36 0.32 0.30 0.23 0.39 0.45
So 32.4 45.4 41.6 36.77 31.74 36.73 34.86

3He/4He 9 6 10 14 14 14 14 12
87Sr/86Sr 0.703036 0.702991 0.703485 0.703415 0.703323 0.703366 0.703288 0.703344

143Nd/144Nd 0.512998 0.513041 0.513042 0.512946 0.512958 0.512929 0.512917
206Pb/204Pb 19.783
207Pb/204Pb 15.619
208Pb/204Pb 39.515
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TABLE!

Sample 10 G192-S G192-B G192-17 G192-18 G192-19
island/volcano Sierra Nenra Sierra Nenra Darwin Darwin Ecuador

8102 49.33 49.06 48.98 48.8 47.93
AI203 13,97 14.18 16.61 16.74 14.32
Ti02 3.01 3.36 2.79 2.58 2.29

"'" 12.2 12.71 10.37 10.05 11
MnO 0.19 0.21 0.17 0.16 0.17
MgO 6.5 5.99 5.65 6.07 10.9
CaD 11.19 10.62 11.88 12.39 9.9
K20 0.44 0.49 0.39 0.32 0.52
Na20 2.86 3.03 2.89 2.64 2.69
P205 0.29 0.34 0.27 0.24 0.28
Total 100 100 99.99 100 100

XFF
NI 53 40 53 56 265
CI 158 104 99 152 499
So 40 36 34 35 27
V 367 362 331 309 226
Ba 63 92 22 24 95
Rb 8 9 6 3 10
51 296 302 37. 382 344
Z, 160 183 166 155 150
V 32 35 27 26 25
Nb 25.3 28.5 14.5 12.8 22.1
Ga 24 24 26 23 19
Co 105 92 120 125 68
Zn 110 117 89 82 94

ICPMS
Os 0.08 0.1 0.05 0.06 0.11
Rb 7.5 8.7 4.7 3.6 9.2
Ba 97 115 51 44 120
Th 1.13 1.39 0.78 0.66 1.27
U 0.25 0.36 0.2 0.18 0.28

Nb 23.3 26.8 13.4 11.9 20.5
Ta 1.5 1.75 0.91 0.8 1.2
La 15.6 17.9 13.0 11.5 15.7

Os 34.3 39.4 30.1 26.8 32.3
Pb 0.98 1.38 2.49 2.27 1.68
PI 4.68 5.31 4.1 3.68 4.09
51 296 302 374 382 344

Nd 21.4 24.5 19.0 17.4 18.8
Sm 6.19 6.99 5.78 5.20 5.23
HI 3.94 4.53 3.61 3.36 3.36
Eo 2.21 2.46 2.06 1.89 1.81
Gd 6.12 6.95 5.75 5.36 5.22
Tb 1.10 1.24 0.98 0.89 0.89
Dy 6.56 7.25 5.81 5.29 5.12
V 31.7 35.7 27.8 25.4 26.0

Ho 1.28 1.40 1.14 1.01 0.99
EI 3.35 3.75 2.95 2.70 2.67

Tm 0.43 0.50 0.39 0.35 0.35
Vb 2.59 2.91 2.25 2.01 2.04
Lo 0.39 0.44 0.33 0.29 0.30
So

3He/4He 16 17 12 12 10
87Sr/86Sr 0.703365 0.703504 0.702898 0.702856 0.7032

143Nd/144Nd 0.512904 0.512941 0.513011 0.51302 0.512951
206Pb/204Pb 19.342 18.797 18.78 19.294
207Pb/204Pb 15.569 15.518 15.512 15.575
208Pb/204Pb 38.989 38.296 38.26 38.968
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TABLE 2

Sam Ie ID island/volcano Th ppm 10 U m 10 23BU/232Th 230Th/232Thl 28t err % (230Th/238U aoe Ka\ 230Th/232Th) aM 230Th/238U aoe
NSK97-202 Fernandina 0.95 0.25 0.812 1.063 1.03 1.310 1.87 :to.4 1.067 1.315
NSK97-206 Fernandina 0,97 0.26 0.816 1.055 0.90 1.292 3:0.3 1.061 1.300
NSK97-Z14 Fernandina 1.16 0.31 0.821 1.035 0.53 1.261 >0.9 1.037 1.263

NSK97-215 Fernandina 1.20 0.32 0.801 1.012 0.50 1.264 <0.1 1.012 1.265

NSK97-216 Fernandina 1.54 0.42 0.822 1.072 0.80 1.303 historical (1982) 1.072 1.303
NSK97-224 Fernandina 1.39 0.38 0.824 1,034 0.45 1.256 historical (1995) 1.034 1.256
NSK97-224R Fernandina 1.39 0.38 0.824 1.045 0.74 1.269 historical (1995) 1.045 1.268
NSK97-228 Fernandina 1.42 0.38 0.819 1.047 0.77 1.278 <0.6 1.048 1.279
SG 93-16 Fernandina 1.13 0.31 0.830 1.067 0.66 1.287 1:!:0.6 1.070 1.289

NSK97-238 Santiago 0.75 0.20 0.811 1.040 0.64 1.284 <0.9 1.042 1.286
NSK97-126 San Cristobal 0.64 0.16 0.765 1.100 0.90 1.438 9.2:!:0.7 1.130 1.477

NSK97-252 San Cristobal 0.24 0.07 0.833 1.132 0.96 1.359 15:!:1 1.177 1.412
NSK97-254 San Cristobal 0.37 0.10 0.821 1.087 1.05 1.325 13:!:0.5 1.121 1.366

SG93-22 Floreana 1.52 0.29 0.574 0.938 0.60 1.635 26±7 1.036 1.806
SG 93-5 Cerro Azul 1.06 0.27 0.759 1.040 0.58 1.371 <1 1.043 1.374
SG 93-7 Cerro Azul 0.50 0.14 0.843 1.042 1.12 1.236 9,4 1.045 1.240
SG 93-8 Cerro Azul 1.99 0.51 0.772 1.043 0.57 1.351 <0.8 1.045 1.353

SG 93-12 Cerro Azul 2.32 0.58 0.757 1.027 0.58 1.357 1.7:!:0.3 1.032 1.363
G192-5 Sierra Negra 1.31 0.34 0.786 1.010 0.82 1.285 0.6 :!:0.4 1.011 1.287
8192-8 Sierra Negra 1.61 0.47 0.884 1.027 0.69 1.163 0.9 ±0.4 1.028 1.164

SN 91-60 Sierra Negra 1.63 0.43 0.798 1.030 0.46 1.291 1.6±1 1.034 1.295

8192-17 Darwin 0.91 0.27 0.905 1.120 0.97 1.238 0.8±0.3 1.122 1.240
G192-18 Darwin 0.70 0.21 0.907 1.140 0.78 1.257 1.7 ±0.4 1.144 1.261

8192-19 Ecuador 1.44 0.36 0.761 1.053 0.74 1.384 <0.8 1.055 1.387

W95-25 Wolf 0.81 0.24 0.912 1.160 1.03 1.272 <0.2 1.160 1.272
W95-54 Wolf 1.22 0.38 0.932 1.186 0.83 1.272 1.186 1.272
W95-74 Wolf 0.74 0.24 1.001 1.186 0.77 1.185 <1 1.188 1.187
W95-84 Wolf 1.05 0.33 0.940 1.164 0.69 1.238 <1.4 1.167 1.241

SKV98-108 Pinta 1.25 0.28 0.677 1.014 0.77 1.499 <1.5 1.019 1.506
SKV98-101 Marchena 0.73 0.20 0.834 1.092 0.65 1.309 historical (1991) 1.092 1.309
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Conclusions
The main goal of this study has been to use geochemical tracers to constrain the

geologic processes responsible for the composition, formation and age of geochemically

distinct Earth reservoirs. The strategy has been to work in a broad range of topics which

are relevant to this end. This dissertation focus on four independent geochemical problems:

defining the composition, formation and age of the lower continental crust and mantle

lithosphere using Re-Os systematics, evaluating the scale of the mantle heterogeneities

through a melt inclusion study from oceanic island basalts, and constraining the

geodynamic parameters during upwelling and melting of mantle plume using V-series

isotopes.

The Re-Os systematics in the deeper parts of the 'continental crust indicate that the

lower crust has, on average, higher Os (;;, 2 times) and lower Re concentrations than

current estimates of the average upper crust, and may thus be comparatively less

radiogenic. Materials with relatively high Os concentrations and radiogenic Os isotopic

compositions exist in the lower crust, and may act as contaminants to basaltic magmas that

differentiate there. The Re-Os system is extremely sensitive to APC processes at relatively

small degrees of differentiation (i.e.,« 20% APe), and APC processes are more effective

than bulk mixing in changing Os isotopic compositions of melts, due to Os depletion

during fractional crystallization. Like other isotopic systems, the Re-Os system is not a

good indicator of the crystallization age of rocks that formed through APC processes.

Re-Os isotope systematics in Horoman peridotites indicate that 1870S/1880S ratios

are mainly controlled by variations in Re content, while Re contents are controlled by the

variation of a "basaltic component" in the ultramafic rocks. Geochemical, geological and

petrographic information are consistent with the hypothesis that the N-Type plagioclase

lherzolites and the layered structure of the Horoman massif are produced by refertilization

processes. That is, the addition of a garnet-rich mafic cumulate to a depleted peridotite. Re

Os systematics suggest that depletion model ages of '" 1.8 Ga represent the time of the

melting event. The colinearity between mafic and ultramafic rocks in the Re-Os isochron

diagram defines an apparent age of '" 1Ga.. The similar "ages" determined by Re-Os and

Sm-Nd isotopes and the high Re/Os ratios in the most fertile peridotites plotting to the right

of the geochron, indicate that the mafic layers and the ultramafic rocks are genetically

related by a refertilization process which took place'" 1 Ga ago.
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