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Brazil nut effect in a rectangular plate under horizontal vibration
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Abstract An intruder to a group of identical small beads
enclosed in a rectangular plate will gradually migrate to either
the center or one side of the plate when the plate is subjected
to a horizontal vibration. By considering probabilities for a
bead to move into and off the space between the intruder and
the near side of the plate, we predict that the size ratio and the
mass ratio of the intruder to small bead have equal but oppo-
site effects in determining the direction of migration. The
prediction is confirmed by a molecular dynamics simulation.

Keywords Segregation · Vibration · Horizontal · Brazil
nut effect

1 Introduction

For the last 20 years, the phenomenon of the so-called
Brazil nut effect (BNE) has attracted a lot of attention [1–5].
The BNE can be easily observed in a simple experiment by
immersing a large granular particle in a cluster of smaller par-
ticles and shaking them vertically. One can see the large parti-
cle migrate all the way to the top, if it is not too much heavier
than the small ones. There have been several explanations for
the phenomenon [1,4–7]. Nevertheless, detailed experimen-
tal data [8–10] showed that a comprehensive mechanism is
still lacking.

Electronic supplementary material The online version of this
article (doi:10.1007/s10035-008-0122-2) contains supplementary
material, which is available to authorized users.

F. F. Chung · S.-S. Liaw (B) · C.-Y. Ju
Department of Physics, National Chung-Hsing University,
250 Guo-Kuang Road, Taichung, Taiwan
e-mail: liaw@phys.nchu.edu.tw

In 2005, Schnautz et al. found that beads in the circular
plate under horizontal swirling motion behave similarly [11].
Namely, a large bead will migrate to either the center or the
border of the plate. In this horizontal version of BNE, gravity
and interstitial air obviously play no role. The system seems
easier than the original BNE to study and might offer a good
pathway to understand the later.

In this paper, we give an explanation for the underlying
mechanism of horizontal BNE. We found that the large bead
migrates only when there are enough beads present so that
the energy loss due to collisions forces all the beads into a
collective periodic motion, and not too many so that beads
still have room to change their relative positions. We dem-
onstrate the migration mechanism by means of a rectangular
plate under one dimensional simple harmonic vibration—a
simplified version of the circular horizontal BNE. In our labo-
ratory we confined one layer of beads in a rectangular acrylic
box of length 12 cm and width 6 cm and drove the box sinusoi-
dally with a frequency of order 1 Hz in a horizontal direction
parallel to one side of the box. For sufficient large amplitude
but not so large that hopping is avoided, we observed that
a heavy intruder tends to migrate to the center of the group
of identical beads (radius d = 0.225 cm and m = 0.13 g)
as shown in Animation 1 of supplementary material, while a
large intruder will stay away from the center, which is qual-
itatively exactly the same as what have been observed in the
horizontal BNE of circular vibration [11]. In this paper, we
investigate the behavior of the group of identical beads the-
oretically using molecular dynamics (MD) simulation.

We adopt our previous simulation model [12] which has
been described in details by Luding et al. [13,14]. We had
shown in our previous work for the case of circular vibration
[12] that it is the collisions between beads that plays the cru-
cial role in the migration phenomenon. Though it has been
shown that friction plays an essential role in some phenomena
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Fig. 1 Velocity distributions in
the x and y directions of the
beads in the box which is driven
sinusoidally in the x direction
with amplitude A = 5d,
d = 0.3 cm and frequency
f = 1 Hz (the unit of the
velocity is cm/s)
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[15,16], it appears that as far as the migration phenomenon
is concerned, our simulation results produce the same results
either with or without friction. In particular, since migra-
tion along the vibration direction appears in a region only
when the density of the beads is small so that the Boltz-
mann equation is applicable [17]. We have checked that the
speed distribution in the vibration direction can indeed be
well approximated by the Maxwell–Boltzmann distribution
both for our MD results (no friction) and for experimen-
tal data (with friction). In this theoretical work we neglect
friction and focus on the movement of the intruder relative
to other beads. For simplicity, the coefficient of restitution
ε—the ratio of relative speeds before and after collision—is
assumed to be the same for all collisions. The value of ε is
taken to be 0.96 in our simulation.

We use the radius d and the mass m of the identical beads
as the units of length and mass respectively in all our sim-
ulations. The size of the rectangular plate is chosen to be
l × w = 40d × 20d. The relevant parameters are therefore:
the vibration frequency f and amplitude A of the plate, the
total number N of identical beads (or equivalently, the fill-
ing fraction µ), as well as the radius D and the mass M of
the intruder. The typical values used in our simulation are
f = 1 Hz, N = 120(µ = 0.47), A = 5d, D = 1.0 ∼
2.4d, M = 1.0 ∼ 2.4m. Note that the amplitude A has been
chosen large enough to generate collective motion for the
beads, but not too large in avoiding the occurrence of hop-
ping of the beads over one another. For M/m > 0.5 and
D/d < 3.0, a simple estimation shows that when a small
bead hits the large intruder at rest it needs at least 40 cm/s
to make the large intruder jump a height of 0.5d = 1.5 cm.
Thus we set 40 cm/s as the upper bound for the speed of each
bead and choose A accordingly. The velocity distributions of
beads along both x and y directions are plotted in Fig. 1 for
the case of A = 5d. We see that as long as A is 5d or less, the
speeds of the small beads are well confined within 40 cm/s.

With appropriate frequency f and amplitude A, we found
that, when N is large enough, the center of mass (CM) of the
whole group of beads moves back and forth periodically with

the same frequency as that of the external drive. Fig. 2 shows a
typical distribution of positions and velocities of all the beads
in one period at every 1/8 period time interval. The top frame
of Fig. 2 shows the distribution when the CM is closest to the
left wall. After a half period, the CM is closest to the right
wall as shown in the 5th frame. Another half period brings
the distribution back to the first frame again. We calculated
the average distance between beads and average velocities
as a function of position along the vibration direction, and
plotted the curves on the right column of Fig. 2. We see that
the average separation distance is only a little more than the
diameter of the beads from one end of the plate up to a certain
point and then rises to a maximal value at the other end. In the
region where the separation distance is small, the beads are
densely packed and are unable to change their relative posi-
tions. For the example shown in Fig. 2, a bead in the central
1/3 region has little chance to change its position at any time.
Similarly, if an intruder of whatever size and mass is intro-
duced initially into the central region, it will stay there for a
long time because there is no room for it to change its relative
position and no migration can be observed. If, on the other
hand, the intruder is initially in the left or right 1/3 regions of
the plate, it has a chance to move inward or outward. As we
will explain below, it can have a definite migration direction
on average if the value of p = (

1 + D
d

)
/
(
1 + M

m

)
is not

close to 1.
Thus the curve of separation distances against positions

plays a crucial role in the migration phenomenon. This curve
is dependent on the parameters µ and A. It has a general
feature that on one side there is a roughly flat region where
its value is slightly larger than 2d, and on the other side it
rises to a maximal value at the wall. Figure 3 is a schematic
diagram of the average distance between the beads as a func-
tion of position. Migration is not possible in the flat region
where the average distance is small. The optimal choice of A
and µ for observing migration is such that the flat region of
the curve has a length equal to half the plate size so that the
intruder can move all the way either from one wall to center or
from center to one wall (Fig. 3a). For a fixed A, an increase
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Fig. 2 Position and velocity
distribution of beads at different
stages of motion. Left column
shows beads distribution in the
rectangular plate in one period
of vibration. Each bead is
colored according to its
x-component velocity, red for
positive value and blue for
negative. The average separation
distance and average velocity as
functions of position are plotted
in red and blue, respectively, in
right column. Beads can change
their relative positions only
when both separation distance
and speed are large. These
conditions are satisfied at the
right end of the whole group of
beads in the first stage (2nd
frame down) and at the left end
in the third stage (6th frame
down)

of µ will decrease the migration range so that an intruder
near the CM will not have directed migration (Fig. 3b). On
the other hand, when µ decreases, the migration range could
cover more than half of the plate size (Fig. 3c). In this case,
an intruder near the CM is able to migrate in both directions
and will move back and forth around the center so that it has
little chance to escape to the border. Similar to the effect of
µ, we found that increasing the amplitude A can decrease
the migration range too. This explains why an increase of
A can help to observe the migration phenomenon when µ

is small, but make it disappear when µ is large in circular
horizontal BNE (Fig. 5 of Ref. [11]). However, a more sys-
tematic quantitative investigation on the effect of the filling
fraction is needed. In this article we only chose near optimal
filling fractions (µ ≈ 0.5) to focus on the migration mecha-
nism. Note that there have been a few previous works on the

study of segregation phenomena under horizontal vibration
[18,19]. However they focused on the patterns produced by
small vibration amplitudes. The horizontal BNE could not
occur in their systems mainly because the vibration ampli-
tudes they used are an order smaller than required.

The motion of the beads can be separated into four stages
in each period (Fig. 2). In the first stage, the CM begins to
move to the right from its position closest to the left wall. It
ends when the front beads have just reached the right wall.
In the second stage, the plate begins to move to the left while
the CM continues to move to the right so that at the end of
this stage beads are densely packed against the right wall and
every bead has gained a velocity to the left. At the end of the
second stage, the CM is closest to the right wall. The third
and fourth stages are similar to the first and second stages
respectively except the CM moves in the opposite direction.
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Fig. 3 Schematic diagram showing the effects of A and N on the
average distance between beads as a function of position. a Choos-
ing A and N appropriately, the function curve can have a flat region of
half plate size. The upper plate is moving to the left and the lower to
the right; b increasing the value of either A or N from that in (a) will
increase the length of flat region; c decreasing the value of either A or
N from that in (a) will decrease the length of flat region

(b)

(a)

Fig. 4 Schematic diagram for the mechanism of migration of the
intruder. a A small bead moves into the region between the intruder
and its nearest wall so that the intruder is observed to migrate away
from the wall. b A small bead is kicked off the track of the intruder so
that the intruder migrates closer to the wall

Notice that in the first stage, beads in the left region where
separation distance is small can hardly change their relative
positions. On the other hand, beads in the right region where
separation distance is large are moving to the right and mak-
ing forward collisions with one another so that it is possible
for them to change their relative positions. In the second
stage, beads in the right region are dense so that they have
no chance to change positions. Beads in the left region can
hardly change relative positions either because they have too
little speed to do so albeit their separation distance is large.
To sum up, we find in each period of vibration, beads in the
right region have good chance to change their relative posi-
tions only in the first stage, while beads in the left region can
do so only in the third stage.

Consider now an intruder among the right part of the group
of identical beads. According to the above discussion, it can
change its relative position in the group only at the first stage
of the back and forth motion. Schematically, let us consider
for simplicity all beads lined up in columns. Suppose the

intruder and its neighbors in the adjacent columns are at the
same distance to the right border (Fig. 4) and they move to the
right with the same speed (at the first stage, all beads move
rightward). The intruder will migrate closer to the right wall
if, before its neighbors do the same, it is hit and (1) moves
to an adjacent column or (2) kicks the bead in front off its
column. On the other hand, if its neighbors kick a bead into
its column in front (i.e., to the right) of it or it moves to a
position behind (i.e., to the left of) its neighbors, the intruder
migrates away from the right wall. Thus it is the relative
probability of the intruder and its neighbors to be hit and the
relative speed increment of them after being hit that deter-
mines the migration direction of the intruder. The probability
of a bead being hit depends on its size. For the intruder it is
proportional to D + d. The speed increment of a bead after
being hit depends on its mass. For the intruder this is pro-
portional to (1+ε)m

M+m , where ε is the coefficient of restitution.
Therefore, the relative probability and speed increment are
simply D+d

d+d = (1+D/d)
2 and m+m

M+m = 2
(1+M/m)

, respectively.
That is, the intruder tends to migrate to the border when its
size D is larger than d, and to the center when its mass M
is larger than m. The size and mass effects play equal but
opposite roles in the migration of the intruder.

We use MD simulation to test the above explanation of
the migration behavior of the intruder. We vary the values
of M/m and D/d and determine the final position of the
intruder. We put the intruder initially on the border of the
whole group of beads and test whether it will migrate into
the group or not. Specifically, we define the average inward
migration distance of the intruder as

�x(t) = 〈r − |x(t) − xCM(t)|〉 (1)

where x(t) and xCM(t) are the positions of the intruder and
CM of the cluster, respectively, and r is the half size of the
cluster in its compact form.1 The notation 〈 〉 means average
over one period of vibration. The initial value for �x is 0.
We plot some typical value �x(t) as a function of time for
p = 0.417, 0.625, 1.25, 1.670 in Fig. 5. One can see that it
may be hard to predict the precise position of the intruder
at a particular time, but beside some fluctuations, it seems
for most cases the position of the intruder after 25 periods
of vibrations can be identified as inside or outside the clus-
ter without question. We therefore for each set of M/m and
D/d values simulate the system 55 periods and average the
intruder position of the last 30 periods. If this value is larger
than r, i.e., �x > 0, we plot a blue disk in the phase diagram
of M/m versus D/d as shown in Fig. 6, otherwise a red disk.
Thus a blue intruder in the phase space migrates to the center,

1 When the cluster of beads enclosed by a rectangular boundary is in
its compact hexagonal form, its width is the same with the plate, and its
length can be calculated as a function of N . An explicit formula for its
length is given in Ref. [13, Eq. (14)].
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Fig. 5 Inward migration
distance �x(t) (in units of d) as
a function of time. We choose
four values of p = 1+D/d

1+M/m and
plot two possible combinations
of size and mass ratios for each
p. The intruder migrates inward
for the upper two curves with p
smaller than 1(p = 0.417,

0.625), and stays most of time
outside the cluster of the
background beads for the two
lower curves with p larger than
1 (p = 1.25, 1.670)

Fig. 6 Final position of the intruder shown in the M/m versus D/d
phase plot. The size of the rectangular plate is 40d ×20d and f = 1 Hz,
A = 5d, N = 120(µ = 0.47). We calculate the average distance to the
center of mass of the whole group of beads after 25 periods of vibrations
and subtract it from the half of the longitudinal size of the group in its
compact form. When this value is positive, we color it blue with hue
proportional to its value. Negative values are plotted in red. The bound-
ary (solid line) between the blue and red regions is consistent with the
line 1 + M/m = 1 + D/d as predicted by the theory

while a red one to the border. The simulation results show
that the boundary between the blue and red regions is close
to the line prescribed by the equation 1 + M/m = 1 + D/d
as predicted by the argument given in the last paragraph.

We have also simulated the system with a larger filling
fraction µ = 0.64(N = 170) than the one shown in Fig. 6
while kept the container size fixed. At four different choices

1.2 1.6 2 2.4 2.8
0.1

1

10

100

(D/d) Size ratio

(M
/m

) 
M

as
s 

ra
tio

N= 170, W=20.5d, L=2W
A=2.5d, f=1.2Hz, =0.96

Fig. 7 Phase diagram as Fig. 6. N = 170(µ = 0.64) in this simula-
tion. Some system parameters have changed as shown in the figure. We
vary the mass ratio over a wide range from 0.1 up to 50 in this system
and the resultant boundary between inward migration (filled inverted
triangle) and outward migration (open uptriangle) is consistent with
our theory (dashed line)

of the size ratios D/d = 1.5, 1.8, 2.0, 2.2, 2.5, we vary the
mass ratio over a wide range from 0.1 up to 50. The phase
diagram shown in Fig. 7 (a semi-log plot) is also consistent
with our prediction in the migration of the intruder. Based on
the mechanism we proposed above, we did not expect any
difference on the phase diagram of the migration direction
when the system has a larger container size. A check on the
system with the container size l × w = 53.4d × 26.7d has
been carried out to support this point.
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Fig. 8 Inward migration distance �x (in units of d) of the intruder
after 25 periods of vibrations as a function of p = 1+D/d

1+M/m . The solid

curve is y(p) = 14 · 1−p
p+1 having the function form predicted by the

theory

We can further try to estimate the speed of the migration.
Let p be the relative probability of the intruder and its neigh-
bors to hit the bead in front of them. From the discussion
above, p = (1+D/d)

2 · 2
(1+M/m)

= 1+D/d
1+M/m . Assuming a bead

being hit can have a certain constant possibility c to stay in
the same column when the average distance between beads
is large, and probability (1 − c)/2 to move to each of its two
neighbor columns. In each period T, the intruder has proba-
bility (1 − c) · p

p+1 to migrate a distance 2d (for most cases)

closer to the border and probability (1 − c) · 1
p+1 to migrate

the same distance to the center. Putting all these together, the
outward migration speed of the intruder is then given by

v = (1 − c) · p − 1

p + 1
· 2d

T
· g(x) (2)

where g(x) is the spacing factor, depending on the distance
between beads at the position x . It is equal to 1 when the
distance between beads is infinite and 0 when the distance is
2d. Assuming g(x) is a slow varying function for our sys-
tem, the migration distance �x of the intruder in a given
time interval is, according to Eq. 2, proportional to | p−1

p+1 |.
We choose f = 1Hz, A = 5d, N = 140(µ = 0.55) such
that the separation curve has the form close to Fig. 2a. We test
the dependence of �x on p by putting the intruder of various
p values at the border of the whole group of beads and vibrate
the beads. The average inward migration distance �x after
25 periods of vibrations is plotted against p in Fig. 8. Quali-
tatively, the simulation data fits the curve y(p) = 2d2 N

w
· 1−p

p+1 ,

where w is the width of the plate, for p < 1 quite well.
In Fig. 9, we present a preliminary comparison of our sim-

ulation results with experiment using the average migration
distance defined in Eq. 1. In experiment, we have tried two
different background beads, aluminum and copper, for com-

parison. We recorded the migration distance of the intruder
of various sizes and masses averaging over 10 arbitrary initial
configurations. The average migration distance �x as a func-
tion of p roughly follows Eq. 2 except for very small value
of p in both aluminum and copper cases (Fig. 9a). In simula-
tion we used the same parameters as the experimental setup:
the size of the box, vibration frequency, vibration amplitude.
When the same number of background beads as in experi-
ment, i.e., N = 300(µ = 0.66), was used, the simulation
results (Fig. 9b) are qualitatively closer to the results for cop-
per than that of aluminum in experiment. Changing the value
of the coefficient of restitution from 0.96 to a smaller value
made little difference to our simulation results. On the other
hand, using a different number of background beads, say
N = 250(µ = 0.55), we could bring the simulation results
to be similar to experimental results for aluminum(Fig. 9b).
Presumably, the difference between the experiments and the
simulations is due to the neglect of the friction between the
beads and the bottom plate in our simulation. Further inves-
tigation is under way to clear this point.

In summary, we have studied the motion of an intruder
among a group of mono-layer identical background beads
inside a box subjected to a horizontal harmonic vibration.
We observed that when the vibration frequency, amplitude,
and the number of the background beads are chosen appro-
priately, the whole group of beads moves in a quasi-periodic
motion. Under this condition, we argued that the migration
direction of the intruder is completely determined (on sta-
tistical average) by the parameter p = (

1 + D
d

)
/
(
1 + M

m

)
,

where D/d and M/m are size and mass ratio of the intruder
to the background bead, respectively. For an intruder with
p < 1, it migrates toward the center of the cluster of the
background beads. For p > 1, it migrates to the rim of
the cluster. The prediction was supported by our molecu-
lar simulations of the system. We have further checked the
inward migration speed for the cases of p < 1 and com-
pared with some preliminary experiments using aluminum
and copper beads as background, respectively. The simula-
tion results are qualitatively consistent with the experiments
but not in good agreement quantitatively. We believe the dis-
crepancy between experiment and simulation is mainly due
to our neglect of the friction between the beads and the bot-
tom plate of the box in the simulations.

Finally we would like to mention two straightforward
extensions of our model. One is the 2D system under 2D
vibrations, which is nothing but the circular BNE system
studied in Refs. [11,13]. Our analysis can be immediately
applied to this case. The radial motion of beads in circular
vibration is very similar to the motion of beads in rectangu-
lar plate we studied here. The motion of beads in the circu-
lar case can also separated into four stages and an intruder
can migrate inward or outward only in the stage when for-
ward collisions occur in the region where the average distance

123



Brazil nut effect in a rectangular plate under horizontal vibration 85

Fig. 9 Comparison between
experiment (a) and simulation
(b) for the inward migration
distance �x as a function of p.
The simulation did not produce
satisfactory result quantitatively
since the friction between the
beads and the bottom plate has
not been taken into
consideration
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between beads is large. Consequently, the mechanism for an
intruder to migrate to either the center or the border of the
circular plate is the same and the boundary of these two cases
in the phase space is determined by the same equation [12]:
p = 1+D/d

1+M/m = 1. Of course, there is a unique feature for
the circular case: the spinning of the whole group of beads
[20]. An investigation along this line has been reported in
Ref. [21]. The second extension is a 3D system under 1D
vibrations, which corresponds to a rectangular box contain-
ing many layers of beads under vibrations in one direction
in the absence of gravity. We expect an intruder to migrate
along the vibration direction exactly as in the 2D case. There
is one difference, however. The probability for an intruder to
be hit in the 3D case is proportional to (D + d)2 instead of
D +d. Thus the border of the two parameter regions, one for
intruder to migrate outward and one inward, in phase space
would be a parabola instead of a straight line. We notice that
simulations performed by Hong et al. [5] for the vertical BNE
system with gravity show that the borders are also a straight
line and a parabola in the 2D and 3D cases respectively. It
is interesting to investigate further what exactly the role of
gravity is in BNE.
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