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ABSTRACT

This is the second part of a two-part investigation of a coupled wind and wave model that includes the
enhanced form drag of breaking waves. The model is based on the wave energy balance and the conser-
vation of air-side momentum and energy. In Part I, coupled nonlinear advance—delay differential equations
were derived, which govern the wave height spectrum, the distribution of breaking waves, and vertical air
side profiles of the turbulent stress and wind speed. Numeric solutions were determined for mature seas.
Here, numeric solutions for a wide range of wind and wave conditions are obtained, including young,
strongly forced wind waves. Furthermore, the “spatial sheltering effect” is introduced so that smaller waves
in airflow separation regions of breaking longer waves cannot be forced by the wind. The solutions strongly
depend on the wave height curvature spectrum at high wavenumbers (the “threshold saturation level”). As
the threshold saturation level is reduced, the effect of breaking waves becomes stronger. For young strongly
forced waves (laboratory conditions), breaking waves close to the spectral peak dominate the wind input
and previous solutions of a model with only input to breaking waves are recovered. Model results of the
normalized roughness length are generally consistent with previous laboratory and field measurements. For
field conditions, the wind stress depends sensitively on the wave height spectrum. The spatial sheltering may
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modify the number of breaking shorter waves, in particular, for younger seas.

1. Introduction

Understanding coupled wind and wave dynamics
plays a key role in predicting transfer processes through
the air-sea interface (Melville 1996; Jihne and
HauBecker 1998). Above the air-sea interface, surface
waves perturb the airflow, which causes a “wave form
drag” so that energy and momentum exchange between
water and air takes place (Phillips 1977; Belcher and
Hunt 1998). In most previous coupled wind and wave
models, only the form drag of nonbreaking waves has
been considered, as reviewed by Komen et al. (1996)
and Cavaleri (2006). Airflow separation of breaking
waves, however, leads to enhanced momentum fluxes
to the wave field (Banner 1990; Kudryavtsev and
Makin 2001; Makin and Kudryavtsev 2002). This paper
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is the second part of a two-part investigation that ex-
plores how a random distribution of breaking waves
influences coupled wave and wind dynamics.

Previously Kukulka and Hara (2008, hereafter re-
ferred to as Part I) developed a coupled wind and wave
model that includes the enhanced form drag of break-
ing waves. The model is expressed in terms of coupled
nonlinear advance—delay differential equations, gov-
erning the wave height spectrum, the distribution of
breaking waves, and vertical air-side profiles of the tur-
bulent stress and the wind speed. Furthermore, numeri-
cal solutions for fully developed seas were obtained. In
this study, we investigate the solutions for a wide range
of wind and wave conditions, including young growing
wave fields.

For practical air-sea flux parameterizations, it is par-
ticularly interesting to understand the systematic de-
pendence of our model on environmental conditions,
such as wind speed and wave age. The wave age is here
defined by the ratio of the phase speed at the spectral
peak, c,, to the total air friction velocity, u, = \/1y/p,
(19 and p, symbolize the total wind surface stress and
the density of air, respectively).
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For moderate wind conditions, observations of wind-
driven seas indicate that the gravity wave height spec-
trum can be related to the wave age [see, e.g., discus-
sion by Donelan in Komen et al. (1996)]. For a given
peak wavenumber kp and different wind conditions, the
wave height spectrum increases with wave age for
waves at wavenumbers k that are relatively close to the
spectral peak (say, for 2k, < k < 10k,).

The behavior of the gravity short-wave spectrum (say
wavelengths between 0.05 and 2.0 m) is less under-
stood; some field measurements indicate that the spec-
trum is independent of wave age and wind speed (Ban-
ner et al. 1989; Melville and Matusov 2002), while other
laboratory observations show a spectral increase with
wind speed (Jdhne and Riemer 1990). For high wind
conditions, as they occur under tropical cyclones, the
behavior of the wave height spectrum is poorly under-
stood.

Laboratory and field measurements also suggest a
systematic dependence of the total air-sea momentum
flux (wind stress) on wind speed and wave age, which is
consistent with the fact that momentum is fluxed to the
wave field (Jones and Toba 2001). Often, the wind
stress is parameterized by the drag coefficient ¢, =
u3/U3,, where U, symbolizes the reference wind speed
at 10-m height. For neutrally stable conditions, it is con-
venient to express the drag coefficient in terms of aero-
dynamical roughness length

kU
20 = Myet exp( - u'm>7

or the normalized roughness length r = z,gu;.* (Char-
nock coefficient) with the acceleration of gravity g, the
von Kdrman constant k = 0.4, and the reference height
hes = 10 m. Observations of the Charnock coefficient,
to date, span a wide range with approximately three
orders of magnitude. This reflects, on one hand, the
enormous challenge of accurately determining the wind
stress and, on the other, poor understanding of the
Charnock coefficient dependency on environmental
conditions. In spite of the scatter in the data, recent
investigations of carefully selected field observations
(intermediate wave ages to fully developed seas) indi-
cate a decrease in the Charnock coefficient with wave
age for moderate wind speeds (say, U, = 7—25ms™ ')
(Drennan et al. 2003; Hwang 2005; Smedman et al.
2003). For very young wave fields, as observed in the
laboratory, the Charnock coefficient increases with
wave age (Toba et al. 1990). Under very high wind
speed conditions (say, >30 m s~ '), recent observations
suggest that the drag coefficient levels off for labora-
tory wave fields (Donelan et al. 2004) and under tropi-
cal cyclones (Powell et al. 2003; Jarosz et al. 2007).
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The breaking wave effect on the drag coefficient was
investigated by Kudryavtsev and Makin (2001) and
Makin and Kudryavtsev (2002). Their results indicate
that breaking waves contribute significantly to the total
wind stress for wind speeds greater than U;p = 10ms™!
and that the influence of breaking waves increases with
wind speed and inverse wave age (younger seas).

The following aspects of our model follow closely the
approach from Kudryavtsev and Makin (2001): 1) par-
titioning of the wave-induced stress into two parts due
to breaking and nonbreaking waves, 2) parameteriza-
tion of the breaking wave stress, and 3) conservation of
the total air-sea momentum flux at the sea surface. In
addition, we impose momentum and energy conserva-
tion at each height of the wave boundary layer (the thin
layer above the air-sea interface that is influenced by
wave-induced fluxes). Therefore, we vertically resolve
the wave boundary layer. Unlike the approach from
Makin and Kudryavtsev, we consider here the energy
input to breaking waves in the wave energy balance.
The breaking-wave energy input is particularly impor-
tant for young, strongly forced wave fields.

To understand the greatest possible influence of break-
ing waves, we developed previously a coupled wind and
wave model based on wave energy balance and air-side
energy and momentum conservation (Kukulka et al.
2007, hereafter KHB). Such a model may be applicable
to strongly forced wind waves observed in the labora-
tory. For field conditions, however, the input to non-
breaking waves cannot be neglected.

The goal of this study is to develop a coupled wind
and wave model that includes the effect of breaking
waves and is applicable to the full wave age range from
mature ocean seas to very young strongly forced labo-
ratory waves. In the next section we will briefly review
major model assumptions (section 2), which is followed
by a discussion on model results (section 3). In section
4 we will examine how the “spatial sheltering effect”
modifies the results from section 3. The paper is con-
cluded with the discussion of section 5.

2. Review of theory

We will first review briefly the system of governing
equations derived in Part I. Later, in section 4, we will
introduce the spatial sheltering effect and rederive the
equations in more detail.

a. Coupled wind-wave model with input to
breaking waves

Based on the conservation of wave energy and the
conservation of air-side energy and momentum, in Part
I we showed that the wave height curvature spectrum B
[here B(k, 0) = k*W(k, 6), where W(k, 0) is the two-
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dimensional wavenumber spectrum, k is the angular
wavenumber measured in SI units, and 6 is the angle of
propagation relative to the wind], the distribution of
breaking waves A [A(k, 6)kd0dk is the average break-
ing crest length per unit surface area (Phillips 1985)],
the mean wind speed u, and the turbulent wind stress 7,
is governed by the following system of nondimension-
alized equations:

as

E{:S_Mb_Muu @
d—U=1U—(S+S Y NE, +68,'%E, — UM,

dK 2 w b w w b

+ k1872, )
which need to be solved for the normalized turbulent
stress S = 7,/(p,c,) and normalized wind speed U = u/c.
Here 7,(k) is the turbulent stress evaluated at z = €e/k, k
is the wavenumber, € is the slope of breaking waves, p,
is air density, ¢ is the wave phase speed, and u is the
mean wind speed evaluated at z = e/k. The normalized
wavenumber K is related to the true wavenumber k
such that dk = dk/k. The constant coefficient &, is de-
fined by 6, = 6/e and 6 is the normalized inner layer
height. The normalized nonbreaking wave stress S,, is
calculated as
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dK - Pw + we ( )
The normalized flux terms in the governing nondimen-
sional equations are

/2
M, =
—7/2

s,[kBAA(K, 0)](U cosd — 1)* cosf do, (4)

/2
M, = Sf sgcpB(K — A, 0)hg(6) cosh db, (5)
—7/2
/2
E, = f 5, [kBAA(K, O)[U cosd — 112 db, ©6)
—7/2
/2
E,=S J spcgB(K — A, 0)hy(0) d, (7)
—7/2

where 6 denotes the angle between the directions of
wind and wave propagation, hg = cos?6 is the direction-
ality of the wave growth rate, and the factors s, sg
equal one for forced waves and zero otherwise. The
constant delay or advance coefficient A is defined by

= —log(8/€). The wave height curvature spectrum (or
saturation spectrum) B and the breaking wave distri-
bution A are given by

for B(K, 6) < B, and sz = 1, and for B(K, 6) — B, by

czB(K, 6) = czB

B(K,0) = | 8.S(K + A 15(0) . 8)
cpBK. 6) = [ S ) - yzpu,(zsp(UcosG - 1)2] ’
kBAA(K, 0) = ¥’y [cgB(K, O)T, 9)
sat> (10)
Y?8.hg(0)spS(K + A) + ¥ (ur” — 1 ) cpBear)’ (B D

kBAA(K, 6) =

Here cg is the coefficient of the wave growth rate, 8, =
2c.¢, c,, is the drag coefficient of breaking wave crests,
v* = B,/b', b = bp,lp, b is the coefficient of the
breaking energy loss, and p,, is water density. The co-
efficients w and p, are related to the proportionality
constant of the dissipation and nonlinear interaction
terms in the wave energy equation. In this study, we set
L = m,, so that nonlinear interactions are neglected
(see discussion in Part I). The model Egs. (1) to (11)
have been solved in Part I for mature seas. If our model
is applied to growing wave fields, there are more un-
certainties in the model coefficients, and the boundary
conditions change, as discussed in the following subsec-
tion.

1 — ¥’s,[Ucosb — 1T

b. Boundary conditions and model coefficients

1) MODEL COEFFICIENTS

As discussed in Part I, it is essential to constrain six
critical model parameters: two height input coefficients:
d and ¢, two wave input coefficients: cg and vy, as well as
the two wave height spectrum coefficients: u and Bg,,.
The coefficients 8, € and the input coefficient to non-
breaking waves cg are held constant as in Part [; that is,
8 = 0.05, € = 0.3, and ¢z = 25. The input coefficient to
breaking waves, v, is by default set to 0.07 as in Part 1.
To investigate, however, the extent of the possible
breaking wave effect, we will examine solutions for
the full range of breaking wave input parameter -y with



OCTOBER 2008

0.04 = y = 0.5 (KHB), corresponding to the uncertainty
of the breaking energy dissipation coefficient b; that is,
0.003 < b < 0.07).

In Part I we identified two parameters, B,  and
w, that determine the wave height spectrum for high
and low wavenumbers, respectively. For mature seas,
0.125 < wn < 0.813 and 0.001 < B, < 0.005: typical
estimates are given by B, = 0.002 and p = 0.6. Ob-
servations suggest that the saturation level By, how-
ever, changes with wind speed and wave age (Komen et
al. 1996). In particular, there is evidence that B, in-
creases for growing seas. Therefore, in this study we set
somewhat arbitrary but practical limits of B, to By, —
o as the upper limit and the lower limit to By, = 5 X
10~* Note that, even though B,, — %, B is still
bounded by

B(k, 6 5 1
(k, 0) > 3— o
for high k, as discussed in the appendix.
Besides the model coefficients, boundary conditions
critically determine the solutions.

2) BOUNDARY CONDITIONS

Since the governing equations are third order, three
boundary conditions for the dependent variables S, U,
and S, are needed. As in Part I, we set u asymptotically
to zero at the sea surface. For numeric solutions, u is set
to zero at finite high k, so that the solutions presented
here are independent of the actual value of k;. The
boundary value of the other two variables S and S,, are
given at k = k,, which is the lower wavenumber limit of
the model calculation. The subscript “0” denotes a vari-
able evaluated at k = k,. Using this notation, S, =
u3,/ct is related to a wave-age-like parameter co/u,,
which we refer to as “boundary wave age.”

Strictly speaking, our coupled model is applicable
only in the equilibrium range of the surface wave spec-
trum, where the nonlinear wave interaction is either
negligible or simply proportional to the wind input and
dissipation. Therefore, a wave model with a more ac-
curate nonlinear interaction term [such as WAM (Ko-
men et al. 1996) or WAVEWATCH (Tolman 1999)]
should be used to predict the wave spectrum near the
peak, and our model can be used to provide the tail
(equilibrium range) of the spectrum. Then, k = k; is
interpreted as the lower bound of the equilibrium
range, which can be very different from the peak wave-
number. Hence, the boundary value S, may not be re-
lated to the true wave age, and S,,, may be greater than
ZEero0.

Alternatively, we may simply extend our coupled
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model to the spectral peak of a growing wave field and
set B= A = 0 for k < k. (We will call this an “idealized
growing sea model.”) In this approach we anticipate
that the boundary wave age cy/u,,, is closely related to
the real wave age c,/u,, if k is close to the true spectral
peak and the wind input to waves beyond the peak is
relatively weak (here ¢, is the peak phase speed and u,,
the total air friction velocity). Since the nonlinear in-
teraction is known to be significant near the spectral
peak, this approach will not accurately predict the wave
spectrum and breaking statistics near the peak. Never-
theless, the model may provide reasonable estimates of
overall energy/momentum balance (i.e., energy/mo-
mentum balance integrated over the entire wavenum-
ber range) and the drag coefficient, as the nonlinear
interaction redistributes—but not generates or dissi-
pates—energy and momentum. The same approach
was taken by KHB to model very young seas with input
to breaking waves only.

Since S, is related to the state of the sea surface in
either approach, we will investigate below how solu-
tions depend on §,. The other boundary condition S,,,
is related to the momentum input to nonbreaking
waves with k < k. For given S, S, is set to zero below,
consistent with the idealized growing sea model. The
dependence of solutions on §,,, # 0 for a given S, can
be investigated by shifting (in k) solutions with §,,, = 0
and different values of S, until S coincides at k.

To integrate the system from K = K|, to K;, one must
specify M,, and E,, between K, and K, + A, which
requires knowledge of U between K, — A and K. In
the calculations below we set M,, = E,, = 0 between K|,
and K, + A. This is consistent with the assumption that
B = A = 0 for k < k; in the idealized growing sea
model.

3. Results

Here, we will present the solutions of the idealized
growing seas for a wide range of S, (i.e., for a wide
range of wave age). As discussed earlier, these solutions
(or part of them) may be interpreted as equilibrium
range model results, which are attached to more com-
plex wave fields around their peaks.
a. Solutions depend sensitively on B,

sat

First, the solutions of S, U, B, and A for y = 0.07 and
= 0.6 (default values) and different B, are shown in
Figs. 1-4. We have found that the solutions for growing
seas are generally insensitive to the value of w: w is only
important for B < B, close to peak, where the effect
of breaking waves is negligible. Therefore, the effect of
varying p is not discussed here.



2168

10 10 10

2
ku, " /g

10 10

10°
kui 5 /g

10

-2

10 10 10

FI1G. 1. Numeric solutions (black lines) for B

sat

JOURNAL OF PHYSICAL OCEANOGRAPHY

6

6

VOLUME 38

10°

10

)

107 10°

2
ku, - /g

10 10 10

b A

10° 10° 10*

2
kat', /8

102 6

10

=5x 1074 vy = 0.07, and boundary wave ages 15, 3.0, 1.0, 0.5,

0.2, and 0.1 (corresponding to S, = 0.0044, 0.11, 1.0, 4.0, 25, 100, indicated by circles from left to right). Solution
without input to breaking waves (gray dashed line, S, = 0.0044), solution with only input to breaking waves (gray

solid line, S, =

The wavenumber is normalized in terms of the
boundary friction velocity u.,, (which is expected to be
close to the true friction velocity for the idealized grow-
ing sea) so that the solutions with decreasing S, show
the development of the wind and wave field with wave
age for fixed u,, and Bg,,.

The normalized turbulent stress S and normalized
wind speed U reveal important information about the
coupled wind-wave system. First, notice that the circles
in the top left panel, corresponding to a particular S
boundary condition, are on top of the constant stress
line S = 70k/(p,g)- At the wavenumber where S devi-
ates from the constant stress line, the turbulent stress is
significantly reduced due to momentum fluxes into

Smin» 25, 100), and asymptotic solutions (A28) for different 7,, (parallel straight gray lines).

waves. This wavenumber can be compared to the “shel-
tering wavenumber” from Hara and Belcher (2002).
The U graph (top right), on the other hand, concisely
shows if breaking waves dominate the wind input, as in
this case U converges to the constant found in KHB.
Note that for U < 1 breaking waves are not forced by
the wind.

For the lowest value of B, = 0.0005, B converges
quickly to By, (bottom left, Fig. 1). For the two lower
S, corresponding to more developed seas, the distribu-
tion of breaking waves at low normalized wavenumbers
coincides with the nonbreaking (NB) solution (gray
dashed line, see the appendix), indicating the domi-
nance of wind input to nonbreaking waves (bottom
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F1G. 2. As in Fig. 1, but for By, = 0.002.

right, Fig. 1). The momentum uptake of these longer
waves is relatively small since the total stress is approxi-
mately constant (top left, Fig. 1). As the normalized
wavenumber increases, solutions first converge to the
breaking-only (BO) solution of KHB (gray solid line,
see the appendix) and then to the breaking-dominant
(BD) solution (parallel straight gray lines, see the ap-
pendix). Therefore, the breaking wave effect is more
pronounced for shorter, strongly forced (young) wind
waves, which was suggested by KHB. The transition
from the BO solution to the BD solution is discussed in
the appendix. Note in particular that A at large k is
asymptotically constant in the BO solution and is pro-
portional to k*? in the BD solution.

These results highlight at least two important wave-
number scales: first, the wavenumber at which B tran-

sitions to B, and, second, a wavenumber at which the
wind input changes from a nonbreaking- to a breaking-
wave-dominated input. The latter wavenumber roughly
coincides with the wavenumber at which the turbulent
stress is significantly reduced, as the input to nonbreak-
ing is relatively small in this case.

When B, is increased to 0.002 (Fig. 2), the solutions
remain qualitatively similar, but B and b'A at low nor-
malized wavenumbers are raised. Note that for the NB
solution and low B, A varies approximately linearly in
B,,,, as suggested by (51) (see discussion in the appen-
dix). Intuitively, an elevated wave spectrum increases
the wind input to nonbreaking waves, which must be
balanced by an enhanced wave dissipation, that is, an
enhanced A.

The behavior of the solutions becomes more complex
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input to breaking waves (gray dashed line); solution with only input to breaking waves (gray solid line), S, = S,

25, 100.

if the total input to nonbreaking waves is significant and
input to both breaking and nonbreaking waves at a
single wavenumber is important (Fig. 3). For B, =
0.01 (a value close to its limit of 8/(3mcg) ~ 0.034; see
the appendix), the input to nonbreaking waves domi-
nates at low wavenumbers, as one expects from the
previously discussed low B, cases. Because B, is el-
evated, more momentum is fluxed to waves, so the
spectral sheltering is stronger. For the two lower S,
corresponding to more developed seas, breaking waves
play a relatively small role so that the solutions are well
approximated by the NB solution for the entire wave-
number range. For greater S, (intermediate and
younger wave ages), however, the wind speed profiles

min>

indicate that breaking waves contribute significantly to
the wave energy input closer to the spectral peak. For
very young seas, the model approaches the BO solution
close to the spectral peak. Unlike the low B, case, Fig.
3 indicates that the solutions for younger seas are sen-
sitive to the advance-delay effect of the governing
equations. This is because the input to nonbreaking
waves near the peak is significant. The solutions tend to
behave differently above and below k = k,e/6 because
we have set B = 0 for k < k; that is, B is discontinuous
at k = k. If B decays more gradually below k, this
discontinuity will disappear.

The picture becomes somewhat simpler without lim-
ing B, (Fig. 4). Here, the input to breaking waves is
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FIG. 4. As in Fig. 3, but without limiting B,,,.

relatively weak so that the solution is approximately
described by the NB solution. The effect of breaking
waves is most pronounced for younger wave fields
where breaking waves can introduce local extreme
points as well as sign changes in the curvature of B. In
the next subsection, we will investigate the sensitivity of
our results for enhanced breaking wave input param-
eter v.

b. Breaking parameter vy also influences the
solution

In Part I, we determined the default value of the
input coefficient to breaking waves to y = 0.07 so that
the total air-sea momentum flux is consistent with ob-
servations for mature seas. The specified value is close

to the lower limit y = 0.04 found in KHB. Considering
the large uncertainties in the breaking-related param-
eters, we will also discuss solutions for the upper limit
vy =0.5.

Figures 2 and 5 contrast the results at y = 0.07 and
0.5 with the same Bg,, = 0.002. The top left panels show
that the enhanced input to breaking waves causes an
increased momentum and energy uptake by breaking
waves and, therefore, a larger spectral sheltering effect.
Note also that the increasing vy reduces the high k mag-
nitude of A, as found previously in KHB. Therefore,
the wind input to breaking waves is enhanced but the
number of breaking waves is reduced. The enhanced
input coefficient to breaking waves also increases the
total air-sea momentum flux, which we will discuss in
the next subsection.
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= 0.002, y = 0.5, and boundary wave ages 15, 3.0, 1.0, 0.5, 0.2,

and 0.1 (corresponding to S, = 0.0044, 0.11, 1.0, 4.0, 25, 100, indicated by circles from left to right). Solution without
input to breaking waves (gray dashed line, S, = 0.0044), solution with only input to breaking waves (gray solid line,
So = Spmin» 25, 100), and asymptotic solutions (A28) for different ,, (parallel straight gray lines).

¢. Momentum flux

In this section we will calculate the total momentum
fluxed into the idealized growing seas and express it in
terms of normalized roughness length (or Charnock co-
efficient), r = zog/u’, where z, is the aerodynamical
roughness length (see also Part I). The roughness
length z, is defined through the logarithmic wind speed
profile u(z) = u,/kln(z/z,) for a neutrally stable atmo-
sphere. Here, we set u,. = u,, so that the input to waves
with k& < k, equals zero. The Charnock coefficient is
presented for different values of y and as a function of
boundary wave age, ¢,/u,, = Sy />, which is a proxy for
the real wave age (Fig. 6). Upper and lower limits are

estimated for each y based on the uncertainties of the
wave height spectrum, that is, uncertainties in the pa-
rameters w and Bg,,.

As expected, the Charnock coefficient increases for
increasing vy, as the input to breaking waves increases
also. Furthermore, the range of solutions becomes nar-
rower for enhanced vy because the relative input to non-
breaking waves decreases; that is, the influence of the
wave height spectrum declines. With the lowest value
of y = 0.04 the momentum flux to nonbreaking waves
is significant and the Charnock coefficient strongly de-
pends on the spectral level. For the largest B, and pu,
the solution converges to the upper bound of the NB
model (dashed gray line in Fig. 6) as the wave age
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F1G. 6. Modeled Charnock coefficient as function of boundary wave age cy/u., Default values of w = 0.06,
B, = 0.002, and y = 0.07 (thick black line), upper and lower limit (medium-width black lines) due to uncertainties
in p and B, for y = 0.04, 0.07, 0.2, 0.5 (dashed-dotted, solid, dashed, solid, dotted, respectively). Analytic
solutions for BO model with same vy (solid gray lines: y decreases from top to bottom lines); upper limit for solution
without input to breaking waves (dashed gray line), lower limit is <10™* (not shown). With spatial sheltering for
v = 0.1 (thin black line) and v = 0.4, 3.0 (dots top to bottom at c,/u., = 1, 15) with default parameters (u = 0.06,

B, = 0.002, y = 0.07).

increases. For the largest y = 0.5, on the other hand, the
input to nonbreaking waves is negligible. In this case,
the results converge to the BO model from KHB at
lower wave ages. In all cases, as the wave age decreases,
the momentum flux to breaking waves becomes in-
creasingly important. Therefore, the uncertainty of the
Charnock coefficient (due to the uncertainty of the
spectral level) decreases and the solution converges to
the BO model results. Interestingly, our results confirm
one of the basic assumptions made by KHB, namely
that breaking waves dominate the input to young,
strongly forced wave fields.

We will next compare our model results for y = 0.07
(default value) and previous observations and empirical
parameterizations. To do this conveniently, we equate
the boundary wave age with the real wave age. Again,
we allow the wave height spectrum to vary because we
anticipate that w and B, depend on environmental

conditions, such as wind speed and wave age. Although
details of the spectral peak have been neglected in our
approach, the range of solutions roughly covers the pre-
vious observations (Fig. 7). The two empirical formulas
fall almost entirely inside the modeled range. For
younger wave fields, the model captures well the in-
crease in the Charnock coefficient with wave age. As
discussed above, results for very young wave fields are
less sensitive to the representation of the wave height
spectrum (i.e., the values of u and Bg,,), indicating that
the drag of very young wave fields is dominated by
breaking waves. For very young wave fields the obser-
vations are mostly above the upper bound of the NB
model results (dashed gray line). This indicates that the
input to breaking waves is critical to support the total
air-sea momentum flux.

There is some evidence, based on field and labora-
tory observations (Komen et al. 1996; Donelan et al.
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FIG. 7. Observed and modeled Charnock coefficient as function of wave age c,/u,: Range
of solutions due to uncertainties in w (or @) and By, for y = 0.07 (gray area), solution with
B (c,/uy) and w = 0.6 (black thick solid line); upper limit for solutions without input to
breaking waves (gray dashed line); previous model results for u,, = 0.7 m s ! in solid gray lines
from Janssen (1989) (asterisks), Jenkins (1992) (pluses), Jenkins (1993) (circles); data com-
posite for laboratory and field data (Toba and Ebuchi 1991), black pluses; fit to these data
(Toba et al. 1990), black dashed line; data based on recent field experiments (squares) and
best fit (dashed—dotted line) (Drennan et al., 2003); estimates based on laboratory observa-
tions (Donelan et al. 2004) for wind speeds of 30 and 50 m s~ ! (black circles), where the wave
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age for the lower wind speed has been estimated using the scaling relation ¢, « ;> (Jones and

Toba 2001).

1985) and numerical modeling results, that u and B,
depend systematically on sea state and wind speed.
Within the framework of our model, p and B,,, deter-
mine the function A (B). It is physically very sensible
that A (B) depends on sea state and wind speed. For
example, B, is equivalent to a breaking threshold.
Such a threshold is known to depend on environmental
conditions because wave breaking is controlled by wave
interactions with the turbulent wind, surface currents,
and waves of multiple scales (Melville 1996).

Keeping in mind that p and By, likely depend non-
trivially on sea state and wind speed, we will next illus-
trate how our model can be applied for varying u and
B, to obtain practical wind stress predictions. As an
example, we will consider a wave-age-dependent By,,.
Based on the analysis of field data, B, can be ex-
pressed by the empirical formula (Komen et al. 1996)

o 05T ¢\ "
sat 20 U, ’ ( )

which yields, for fully developed seas with c,/u, = 20,
B, = 0.001, consistent with the lower limit estimated
in Part I. These results capture well the enhanced form
drag for intermediate wave ages (solid line in Fig. 7).
For older to intermediate wave ages, our results are
also consistent with previous theoretical estimates,
based on the quasi- linear approximation of the hydro-
dynamic equations neglecting the breaking wave effect
(Janssen 1989; Jenkins 1992, 1993). In these previous
studies, the one-dimensional wave spectrum was pre-
scribed by the Phillips (1958) spectrum; comparisons in
Fig. 7 are made for a spectrum that varies with the same
power law in wave age as our wave-age-dependent Bg,,.
The wave-age-dependent Bg,, provides an interesting
alternative explanation of the enhanced Charnock co-
efficient at intermediate wave ages to the earlier expla-
nation given by Makin and Kudryavtsev (2002). The
model results from Makin and Kudryavtsev indicate
that the enhancement at intermediate wave ages is due
to the form drag of the dominant breaking wave, which



OCTOBER 2008

Z/zT

KUKULKA AND HARA

2175

107

1 0

10 10

Fi1G. 8. Stress partitioning as function of height normalized by top of the wave boundary
layer, z; = €/k,, for boundary wave ages 0.1, 0.5, 2, 15 (thick to thin lines): 7,/7, (solid), 7,,/7,
(dashed), 7,/7, (dashed—dotted); By, = 5 X 10™* and default values for other parameters.

was calculated explicitly based on the breaking prob-
ability of dominant waves.

Recent observations suggest that the drag coefficient
C,; = [u,/u(10 m)]* decreases for very high wind con-
ditions, for example, under tropical cyclones (Powell et
al. 2003; Jarosz et al. 2007). Powell et al. find that C, ~
2 X 1073 for u (10 m) = 40 ms™*, so » ~ 0.007. Within
our modeling framework, such a low drag coefficient
can be explained by assuming a relatively low high-k
spectral level, that is, a low B, (see Figs. 6 and 7).
Physically, B, might be significantly lower for shorter
gravity waves at very high winds because the surface
wind drift increases with wind speed (see also discus-
sion in Kudryavtsev et al. 1999). The enhanced surface
drift, in turn, lowers the slope threshold at which waves
break (Banner and Phillips 1974). By the same mecha-
nism, wind gusts could reduce wave heights (Jenkins
2001). In addition, there is some evidence that intense
rainfalls, as they occur under hurricanes, dampen the
short-wave spectrum (Thorpe 2005). It is interesting to
note that our model could explain a reduced drag co-
efficient under high wind conditions, although the ef-
fect of sea spray has been neglected in our approach
(for models that include the sea spray effect, see, e.g.,
Andreas 2004; Makin 2005; Bye and Jenkins 2006;
Kudryavtsev 2006).

d. Stress partitioning

Figures 8 and 9 show how the total stress 7, partitions
into the turbulent stress 7, the stress due to breaking
waves T1,, and nonbreaking waves 7, at different
heights. The results are plotted against the height nor-
malized by the height of the wave boundary layer, z, =
elk, for different boundary wave ages and two differ-

0

F1G. 9. Stress partitioning for B, = 0.01 and default values for
other parameters: line style is identical to Fig. 8.
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ent values (one low and one high) of B, = 0.0005, 0.01.
Similar to the study by Janssen (1989), the turbulent
stress decreases much more rapidly with decreasing
height for younger seas close to the top of the wave
boundary layer. This is because more energy and mo-
mentum is fluxed to waves close to the spectral peak.
The result that the contribution of the wave-induced
stress increases for younger seas is qualitatively consis-
tent with previous models (Janssen 1989; Jenkins 1992,
1993). Unlike the model by Jenkins (1993), our turbu-
lent stress profiles do not increase linearly with height.
Our results suggest that the input to the peak is more
important for younger waves and that for older seas the
peak is only weakly forced by the wind. Generally, the
effect of breaking waves increases for younger seas and
lower By, For mature seas, the breaking wave stress
plays a significant role only if B, is low. The lower B,
is, the smaller the input to nonbreaking waves because
of the decreased wave height spectrum. It is interesting
to point out that our results are qualitatively consistent
with the model from Makin and Kudryavtsev (2002; cf.
with their Fig. 2). In particular, both models predict an
increase of the breaking stress contribution close to the
spectral peak as the wave age decreases.

4. Spatial sheltering

We introduce the spatial sheltering effect following
KHB so that shorter waves in airflow separation areas
of longer breaking waves cannot be forced by the wind.
An airflow separation cell extends from the breaking
wave crest to a distance, D = &k !, along the wind
direction with a height equal to the breaking wave am-
plitude a (Fig. 10). The constant coefficient € is called

0 /2
a(2)1,(2) = J J’ a(z = 8/k)p,, 0Bk, )W (k, 0)F (z, k) cosbk db dk,
0 — /2

where w is the wave frequency and F(z, k) denotes a
decay function to account for the decrease in wave-
induced stress with height, which is approximated by a
step function. The factor o = 1 assures that wind forc-
ing of waves is reduced due to the sheltering of airflow
separation regions. The growth rate of wind-driven
gravity waves, [3,, is given by

B.(k. 6) T(z = 6/k)
. = SpC B
g BCp® 0o

[

hg(6). (16)

With spatial sheltering the form drag of breaking
waves changes to (cf. Part I)
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the spatial sheltering coefficient. When breaking waves
of multiple scales coexist, the fractional horizontal area
(area per unit surface area) free of airflow separation,
a (z), can be defined: a = 1 for heights z outside the
wave boundary layer where the airflow is not influ-
enced by breaking waves. In the wave boundary layer,
a(z) monotonically decreases with decreasing height if
breaking waves are forced by the wind. One may also
introduce a(k) = a(z = e/k), which is the fractional
area free of airflow separation due to breaking waves
with wavenumbers less than k. This function decreases
monotonically with increasing k. Shorter breaking
waves generate new airflow separation regions if they
break outside airflow separation regions of longer waves
(Fig. 10). Hence, breaking waves at k change a by

do /2
— = —ea(k) f A(k, 8) cos de.
—7/2

ik (13)

a. Governing nondimensional equations

With spatial sheltering one needs to distinguish be-
tween the turbulent Reynolds stress, 7, = —p (u'w’)
(where u' and w' are measured outside airflow separa-
tion regions, angle brackets denote phase averaging),
and the “effective” turbulent stress, ar,, which is the
average downward transport of horizontal momentum
due to turbulent eddies. The wave stress is 7,, = —p, ({iW),
where @ and w are measured outside airflow separation
regions so that the effective wave stress is ar,,. Air-side

momentum conservation now dictates
7o = a(z2)1(2) + a(2)7,(2) + T,(2) = const.  (14)

The wave-induced momentum flux at height z into non-
breaking waves is expressed as

(15)

€/z (/2
Tb(z) = f f paspBAA(ka B)C((k)
0 —7/2

X (u(k) cos0 — ¢)? cos db dk. 17)

Similarly, the two-dimensional spectral energy flux to
breaking waves at k (corresponding to height ek ') is

I,(k, 8) = p,s,Bra(k)A(k, O)k ' cu(k) cosd — ¢ (18)

and to nonbreaking waves (corresponding to the inner
layer height 8k ') it is

Lk, 0) = casghp(0)k 2calz = /k)r/(z = 8/k)B(k, 0).
(19)
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FiG. 10. Illustration of airflow separation regions (sheltered area) for waves at two different wavenumbers: (a)
bird’s-eye view and (b) cross section at y = y;.
Since spatial sheltering causes a reduction of the ef- and
fective air space, the flux terms as well as loss terms 2
must also be reduced by a factor « in the air-side energy ey(z)dz = — f I,(k, 0)k do dk (22)
balance, —72

dlou(T, + 7,)] dloll,, ] 3
4 — as — a4 —e,=0, (20
where the energy transfer terms are
d/z /2
a(2)IL,(z) = —f J L (k,0)kdodk (21)
0 —71/2

and the loss term & due to dissipation of turbulent ki-
netic energy is

e=—". (23)

pa Kz
It is convenient to combine the governing air-side
equations and to introduce the nondimensional vari-
ables and model coefficients from Part I. The normal-
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ized turbulent and nonbreaking wave stress is now, re-
spectively, defined by

aT,
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Furthermore, we introduce the model spatial sheltering
coefficient (same as the & coefficient in KHB) as

S= (24) é &
0. p== ot (26)
b"  bp,
and
S = oTw (25) The resulting system of nondimensional equations
Y et closely resembles the one from Part I:
ds
K-S~ M,—M,, (27)
du 1 -1 -12 —1_-1/2¢32
d—[<:§U—(S+SW) (E, +6, 7°E,— UM, + k o '°S7), (28)
da 72 2
JK- TV @ [kBAA(K, 6)] cosb do, 29)
—7/2
ds,,
K - S, +M,. (30)
The normalized flux terms in the governing nondimen- 2
sional equations are E,=S§ - sgcpB(k — A, 0)hg(6) d6. (34)
/2 . From the wave energy equation
= A -1
Mo j g SHPANE O 086 = 1 cost b 1,(k.6) + I (k. 6) + NL(k, 0) ~ D(k.0) =0, (35)
(31) and the relation A(B),
1, 3 B(k, 6)\"
w2 Ak, 0) = v3b™ K '[BG, OF| 1+ (5 ) |, G6)
M, = SJ sgcpB(K — A, 0)hg(0) coso db, (32) sat
2 with n > 1 and v, = py’(pa/p.)cp (cf. Part I), one
o further obtains expressions for B and A in nondimen-
E, = f as,[kBAA(K, 0)][U cosb — 11> dp, (33) sional variables.
— /2 For B(K, 0) < By, and sz = 1,

B(K, 6) [a S(K + A) /15(6) ]m (37)
4 ) = €’ — — )
P 2 yzquasp(U cosf — 1)

kBAA(k, 6) = y*ux[cgB(K, 0)]° (38)
For B(K, 6) — By,

cgB(K, 0) = cgBgay, (39)

25 h5(0)sgS(K + A) + v (ury? — n 2)cpBe)’
kBAA(K, 6) = Y ,3( ) B ( _ )+ v (pa LZL ) B o) CBBsat- (40)
1 — y°as,[Ucosd — 1]

As in the case without spatial sheltering, solving the
system of equations from k to k; (or K, to K;) requires
specification of the model coefficients as well as bound-
ary conditions (including the delay and advance terms

outside the domain of integration). We assume that the
spatial sheltering effect closer to the peak is weak so
that @« = 1 at height e/ky and o = 1 for all k < k,. In
principle, & can assume values from zero (no spatial
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FiG. 11. Spatial sheltering solutions for c,/u,, = 15 with v = 0.0 (black), v = 0.1 (dark gray),
v = 0.4 (gray), v = 3 (light gray), and B, = 0.002: Numeric solutions (solid lines) for S, U,
a, and b'A; asymptotic solution for nonbreaking waves (A11) with same cy/u. (dotted line),
asymptotic high-k limit with spatial sheltering effect from KHB (dashed lines).

sheltering) to 2 (airflow separation area extends from
wave crest to wave crest). Based on laboratory obser-
vations by Reul et al. (1999), we assume here by default
that the airflow separation cell extends from the wave
crest to trough so that € = . With b’ = 8 (correspond-
ing to our default b = b'p,/p,, = 0.01; see Part I) this
results in v = &€/b’ =~ 0.4. For the upper bound of b’ and
the default & one obtains v ~ 0.1. Because these pa-
rameters are not well constrained, however, and to in-
vestigate strong spatial sheltering, we also consider the
greatest possible value of v =~ 3 (¢ = 27 and smallest
b' = 2, see KHB).

b. Results

We will first illustrate that for the default value of
B, = 0.002, spatial sheltering can significantly alter the
wind and wave dynamics. Figures 11 and 12 show re-
sults for boundary wave ages of 15 and 1, respectively,
and v = 0, 0.1, 0.4, 3.0, as discussed above. The satura-

tion spectrum B is not shown as it is hardly influenced
by spatial sheltering and because B converges quickly
to its limiting-value B, and remains constant. Note
that for high wind speeds and short surface waves,
Kudryavtsev and Makin (2007) attribute a decrease in
microwave backscatter response, which has been ob-
served by Donelan et al. (2004), to the spatial sheltering
effect. In section 3c we discuss different mechanisms
that could be responsible for such a decrease in back-
scatter response due to a reduced B.

The normalized turbulent stress S (top left) is higher
for greater v, indicating that the momentum input to
the wave field is reduced. The normalized wind speed
profile is notably altered (top right) once a significant
air fraction is covered by airflow separation regions
(bottom left). For mature seas, the spatial sheltering
effect is only important for shorter waves where it in-
fluences the number of breaking waves (bottom right,
Fig. 11). For younger seas, spatial sheltering also affects
waves closer to the spectral peak (Fig. 12). The break-



2180

-2

10 7t

0.8¢

0.67

0.4r¢

027

10 10° 10*

2
ku, o /g

JOURNAL OF PHYSICAL OCEANOGRAPHY

VOLUME 38

10°

10 ¢

10° 10

2
ku*o/g

10°

—2

10 10

FiG. 12. As in Fig. 11, but for cy/u,, = 1.

ing wave distribution first approaches the asymptotic
high-k limit for the BO model of KHB (dashed lines in
bottom right panel). For higher k, however, spatial
sheltering changes the asymptotic high-k limit from the
BO solution to a nonbreaking solution (shown as dot-
ted black line).

Figure 6 shows the effect of spatial sheltering on the
Charnock coefficient. With a weak sheltering effect
(v = 0.1), the Charnock coefficient is only slightly re-
duced. The difference disappears for very young seas,
which is consistent with the BO model (KHB) that pre-
dicts no spatial sheltering effect on the Charnock coef-
ficient. This is because most of the momentum and en-
ergy is transferred to waves closer to the spectral peak
for very young seas.

With a larger v numerical solutions cannot be ob-

tained for very young seas. Note that KHB also found
a theoretical lower limit for the boundary wave age,
such that cy/u,, > \/v/2 when the spatial sheltering
effect was included. Therefore, it might not be trivial to
investigate the sheltering effect on very young wave
fields with boundary wave ages much lower than this
threshold. For wave ages above one, the larger the spa-
tial sheltering effect is, the smaller the normalized
roughness length. However, only with the greatest pos-
sible spatial sheltering coefficient of v = 3.0 does the
Charnock coefficient decrease significantly (up to a fac-
tor of ~10; see Fig. 6).

Figures 13 and 14 show how the stress partitioning is
affected by spatial sheltering for boundary wave ages of
15 and 1, respectively. Spatial sheltering modifies the
stress partitioning close to the surface; it reduces the
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F1G. 13. Stress partitioning as function of height normalized by
top of the wave boundary layer for v = 0.0 (black), v = 0.4 (dark
gray), v = 3 (light gray), co/u5, = 15, and B, = 0.002: 7,/7, (solid),
7,,/7y (dashed), 7,/7, (dashed-dotted).

contribution of breaking waves and increases the tur-
bulent stress contribution. Notice also that the spatial
sheltering effect is much stronger for younger waves.
We have also investigated the sheltering effect for
different values of Bg,,. If By,, is relatively large (B, >
0.01), spatial sheltering affects little the overall wind
and wave dynamics and results are similar to the no-
spatial-sheltering results. Potentially, spatial sheltering
might still influence other air-side processes, such as
scalar fluxes, since the air space available for scalar
transport might still be significantly reduced.

5. Conclusions

We have developed a coupled wind and wave model.
The conservation of air-side momentum and energy, as
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FiG. 14. As in Fig. 13, but for c¢y/u,, = 1.
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well as wave energy, leads to a coupled system of non-
linear advance—delay differential equations for the
wave height spectrum, the breaking wave distribution,
and the two air-side profiles of wind speed and turbu-
lent stress. The system of equations was closed by in-
troducing a relation between the breaking wave distri-
bution A and the wave height curvature spectrum B
such that for a threshold of B, called the “threshold
saturation-level” Bg,, (Alves and Banner 2003), the
number of breaking waves strongly increases.

In the companion paper (Part I), the model was ap-
plied for mature seas. In this study, we have applied the
model to the equilibrium range under a variety of con-
ditions, including very young, strongly forced labora-
tory waves to mature ocean wave fields. In particular,
we have introduced an idealized growing-sea model by
extending our model to the spectral peak. Consistent
with model results by Makin and Kudryavtsev (2002),
the input to breaking waves continuously increases with
inverse wave age until the input to the spectral peak is
dominated by breaking waves. For low B, the major
wind input to shorter waves away from the spectral
peak spectrum is determined by breaking waves. If B,
increases, however, the wind input is dominated by
nonbreaking waves. Therefore, model results depend
sensitively on the value of By,.

In general, if breaking waves dominate the wind in-
put, the solution converges to the breaking-only or
breaking-dominated model result. The one-dimen-
sional breaking wave distribution, A(k), as a function of
wavenumber k converges to a constant in the BO
model and approaches asymptotically k& in the BD
model. If, on the other hand, nonbreaking waves domi-
nate the wind input, the solution converges to the non-
breaking model result and A(k) varies as power law in
k with an exponent that depends on the threshold satu-
ration level.

Our model results at intermediate to large wave ages
are generally consistent with previous field observa-
tions. In particular, the model suggests that the ob-
served decrease in the Charnock coefficient (normal-
ized roughness length) with wave age for moderate
wind conditions may be due to a decrease of the thresh-
old saturation level with wave age. Our model results
are also consistent with laboratory observations at
lower wave ages, which indicate an increase in normal-
ized roughness length with wave age. The low drag co-
efficient observed for high wind hurricane conditions
could be explained by assuming a relatively low thresh-
old saturation level.

Finally, we have introduced the spatial sheltering ef-
fect so that shorter waves in airflow separation regions
of breaking longer waves cannot be forced by the wind.
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Spatial sheltering always causes a significant reduction
in air space available for transport processes through
the air-sea interface. For lower values of B, spatial
sheltering also strongly modifies the coupled wind and
wave dynamics. However, the sheltering effect on the
Charnock coefficient is generally small; it becomes sig-
nificant only if the largest possible sheltering effect is
imposed.

In summary, the effect of breaking waves plays a
significant role and needs to be incorporated so as to
model coupled wind and wave dynamics more realisti-
cally. Clearly, more observations of the breaking wave
distribution, energy dissipation of breaking waves, and
form drag of breaking waves are needed to better con-
strain our model parameters. Furthermore, for practical
air-sea momentum flux predictions, it is critical to un-
derstand the dependence of the short-wave spectrum
on environmental conditions, such as sea state and wind
speed.
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APPENDIX

Solutions with Wind Input to Either Breaking or
Nonbreaking Waves

As discussed in Part I, if the input to breaking waves
is weak (strong), the full model converges to the sim-
plified models without any input to breaking (non-
breaking) waves. To understand better the full model,
we will therefore briefly discuss these simplified cases.
Throughout this appendix the spatial sheltering effect is
not included for simplicity.

a. Nonbreaking solutions

The model without wind input to breaking waves was
previously derived by Hara and Belcher (2002, 2004).

, L[ 8Y 8S
kb'Ak, 0) = px*\ 3| [ 1+

If, on the other hand, ¢zB,,, < 8/(3m), B(k, 6) converges
to B, at high k. At lower wavenumbers where B < B,
the above solutions are still valid. Asymptotic solutions
for B — B, are found by solving (A1) with (A3) and
(A6). Then, the turbulent stress is given by
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These models, however, did not introduce the satura-
tion limit B,,,. Here, we will focus on how introducing
the limiting B, will change the model results by Hara
and Belcher (2002, 2004).

Let us first introduce variables evaluated at the inner
layer height z = &8/k instead of the breaking wave height
z=¢lksothat K - K+ A, § - 8., and U — 8*U.
Then, the equations for the normalized stress and nor-
malized wind speed become

as

R =5~ M Ay
dU 1
k=3 U~ S0 exp(=K)(E, + k'S (A2)

The normalized flux terms in the governing nondimen-
sional equations are

/2
M, = Sf sgcpB(k, 0)hg(0) cosd db,  (A3)
—a/2
/2
E, = Sf sgcpB(k, 0)hg(0) db. (A4)
—7/2
Furthermore, for B(K, 0) < By, and sz = 1
cgB(K, 0) = u[S(K)hg(6)]"?, (AS)
and for B(K, 0) - By,
cgB(K, 0) = CBBsat. (A6)
The breaking distribution is given by
kb'A(k, 0) = sgS(K)[cgB(K, 0)]hg(0). (A7)

Without By,,, cgB(k, 0) converges to 8/(3m) for k — «
due to spectral sheltering. Therefore, for any cgB, >
8/(37), By, does not affect the solutions at high k. For
B, > B(k, 0), the saturation spectrum and distribution
of breaking waves are, respectively, given by

8 1 8S71/2_3 k 1271
B(K,6)=§TC—[1+O—W all cos

f 3T k
(A8)
and
-12 _ 3mp (& 127-3
>0 SR (Z0 3
3 k cos”6. (A9)
k \ —(4/3)cpBsar
T, = 7'0<k—0> . (A10)

From the wave energy balance (A7), A is determined
to be
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k 1— (4/3)CBBSM
) . (A11)

ko
Interestingly, the last result suggests that the power law

behavior of the breaking distribution is not universal
but depends on the spectral level.

kb'A(k, 0) = SO[cBBsal]hB(G)(

b. Breaking-only and breaking-dominated solutions

KHB obtained the solution with wind input to break-
ing waves only (BO solution). The full model solution
indeed converges to this limit if the wind input to non-
breaking waves is small over the entire wavenumber
range. If, on the other hand, the input to nonbreaking
waves is small at higher wavenumbers but is significant
at low wavenumbers, the full model solution at higher
wavenumbers converges to a different asymptotic solu-
tion (breaking-dominated solution) as described below.

We assume that breaking waves dominate the input
to waves for all k > k, and S, = S(k,). It is further
assumed that the nonbreaking wave stress remains con-
stant at 7,,(k,) for all k > k, If breaking waves are
dominant, A is approximately unidirectional (see Part
I), so the wave energy balance becomes

M, = b'A(k) (A12)
and M, = E,. The governing normalized equations are
given by

(A13)

1
0=3US +5,) + MU~-1) - 'S (Al4)

U=1+y*', (A15)
a5, _ ) A16
dK — O ( )

Note that, although flux terms to nonbreaking waves
are negligible, the normalized wave-induced stress S,,
may not be, as longer nonbreaking waves could have
induced a significant stress, which remains constant at
high k and influences the energy flux term u(rt, + 7,,). A
combination of the last equations yields

Y

s 3+ 1+
Y Y g

K- o p 5 Sw (A17)

We may distinguish two cases:

1) §> S, or 7,> 7, (BO limit)
The nonbreaking-wave stress is small compared
to the turbulent stress. We recover the BO model by
KHB, for which

+y
2y

3 2/3
kb' Ak, e)=<K ) 860). (A1)
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2) S« S, or 1, < 1, (BD limit)

This case will always occur in the asymptotic limit
of large k, if there is a finite flux to nonbreaking
waves. This is because the breaking wave stress in-
creases and T, goes to zero at large wavenumbers,
but 1, remains finite. The governing equation sim-
plifies to

das Yoan LTy
K- _ES +TSW. (A19)
For 7,, = const
2
P T S (A20)
" pac2 To Cg ko ko’

where I' is a constant coefficient. Substitution re-
sults in
as Y +y

_k_1S3/2 + 1

== T, (A21)

where k now is the wavenumber normalized by k.
We define

S =k*q (A22)
so that
dq Y 1+ 2
2379 _ _ 1 32 _Z.-13
o= T ; I3k e

(A23)

Because

—1/3 S S

k q:%OCS—<<1, (A24)

w

we may neglect the last term, and the governing

equation becomes
dq Y 3n, 147
GK) q’c+ 5 I. (A25)

Critical-point analysis shows that there is a stable

node at
1+ 2/3
e = ( 2y KF) '

(A26)

Therefore, the asymptotic solutions S and A for k —

o are
1+ 23
S = ( zyy Kr> K23, (A27)
1/1+ 23
bAK) =3 ( 2'yy Kr> K>, (A28)

The breaking-wave distribution is influenced by the
presence of a nonbreaking wave stress and is pro-
portional to k** at large wavenumbers.
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These simple asymptotic solutions are helpful in in-
terpreting the results of the more complex full model
with input to both breaking and nonbreaking waves.
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