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ABSTRACT 

In this study, we investigated wave transformation and wave set-up between a submerged permeable breakwater and 

a seawall. Modified time-dependent mild-slope equations, which involve parameters of the porous medium, were used to 

calculate the wave height transformation and the mean water level change around a submerged breakwater. The 

numerical solution is verified with experimental data. The simulated results show that modulations of the wave profile 

and wave set-up are clearly observed between the submerged breakwater and the seawall. In contrast to cases without a 

seawall, the node or pseudo-node of wave height evolution can be found between the submerged breakwater and the 

seawall. Higher wave set-up occurs if the nodal or pseudo-nodal point appears near the submerged breakwater. We also 

examined the influence of the porosity and friction factor of the submerged permeable breakwater on wave transformation 

and set-up. 

Key words: wave height transformation; water piling-up; wave set-up; submerged permeable breakwater; seawall; 
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1. Introduction 

Taiwan experiences 3.5 typhoons per year on average. As a result, coastal disasters, including 

beach erosion and coastal inundation, often occur in many low-lying coastal areas during the storms. 

Since 1973, traditional seawalls have been built along many coastlines of Taiwan to help mitigate these 

hazards. The total length of seawalls now is about 542 km, which is nearly half of the total coastline of 

Taiwan Island. However, as a result of the failure of the seawall structure or serious toe scours, some 

seawalls have not completely prevented the occurrence of coastal disasters. In response, multiple 

countermeasures, such as a submerged breakwater constructed in front of a seawall, have been proposed 

to create a new system of shoreline protection. 

Numerous theoretical and numerical investigations have been completed to explore wave 

transformation over submerged or low-crested breakwaters, such as Rojanakamthorn et al. (1989), 

Losada et al. (1996), Liu et al. (1999), Hur and Mizutani (2003) and Tsai et al. (2006). Many 

laboratory and field investigations have also been performed, such as Diskin et al. (1970), Dattatri et al. 

(1978), Davies and Kriebel (1992), Loveless et al. (1998) and Garcia et al. (2004). It is well known 
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that an incident wave may decay over a permeable submerged breakwater as a result of energy 

dissipation, but the mean water level set-up may also be observed behind a breakwater, arising from 

the wave breaking and the water piling-up (Diskin et al., 1970; Méndez et al., 2001; Garcia et al., 

2004). 

Regardless of whether a submerged or low-crested breakwater was permeable or impermeable, 

the submerged structure has been investigated without consideration of the existence of a seawall behind 

it. However, in the case of a combined submerged breakwater and seawall, wave transformation over 

the submerged structure will become more complex because of the interaction between transmitted 

waves and waves reflected from the seawall. In addition, the phenomenon of water level set-up behind 

a submerged breakwater, arising from waves breaking and water piling-up, will also be influenced by 

the existence of the seawall, which has not been sufficiently considered in previous studies. 

In the present study, we report the numerical results of wave height variations and water level 

variations between a submerged permeable breakwater and a seawall. The formulations of the time- 

dependent mild-slope equations are outlined first, and then the numerical results are presented. The 

influences of the types of seawall, the porosity and friction factor of the submerged permeable 

breakwater, and the incident wave conditions on the wave transformation are then discussed. 

2. Formulations 

The boundary value problem considered in this study is for wave transformation between a 

permeable submerged breakwater and a seawall, which can be formulated based on the wave 

transformation over a bottom with porous medium, as shown in Fig. 1. Referring to Chen et al. (2006), 

the time-dependent mild-slope equations involving the parameters of the porous medium can be given 

as: 
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where  is the surface elevation; Q = c is the flow rate of linear progressive waves; c is defined by 

/ k ,  = 2/T, T being the wave period; and k is the wave number that can be determined from the 

relationship: 
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Fig. 1. Definitional sketch of waves propagating 

on a porous medium. 

In the above equations, h is the water depth, hb is the thickness of the porous medium, b is the 

porosity of the medium, and b r biC f   . The coefficient fb is the linearized friction factor. Cr is an 

inertial coefficient of flow in a porous medium and is defined as r M b b1 (1 ) /C C      (Sollitt and 

Cross, 1972), where CM is the added mass coefficient. In the wave dispersion relationship, Eq. (3), the 

wave number is a complex variable, which can be solved by using the Newton-Raphson iteration 

scheme. The first mode of a complex solution can be obtained and expressed as r iik k k  , in which 

the imaginary part of wave number ( ik ) represents the wave damping factor, while the real part ( rk ) is 

the wave number defined as r p2π/k L , Lp being the wavelength. 

By taking into consideration that wave breaking may occur over the submerged breakwater, a 

nonlinear wave shoaling corrector and the energy dissipation factor proposed by Tsai et al. (2001) are 

incorporated into the mild-slope equation. Eq. (2) is then modified as:  
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in which e d(1 )f f f    , ef  is the nonlinear wave shoaling correction factor, and df  is the wave 

energy dissipation factor.  is assumed to be one before wave breaking and zero after wave breaking. 

We used the energy dissipation factor, df , expressed by Watanabe and Dibajnia (1988) and given as: 
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in which tan is the average bottom slope around the breaking point; the coefficients are set to 

D 2.5  , s 0.4(0.57 5.3 tan )    and r b0.4( / )a h  ; b( / )a h  is the ratio of the wave amplitude 

to the water depth at the breaking point; Qm is the amplitude of the actual flow rate of wave; Qr is the 

amplitude of the flow rate of recovery waves; and Qs denotes the amplitude of the wave-induced flow 

rate inside the surf zone of a beach with uniform slope. The energy dissipation factor, fd, is set equal to 

zero outside the surf zone and in any region in which m rQ Q . 

The nonlinear wave shoaling corrector, fe, expressed by Tsai et al. (2001) is given as: 
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where ko is the wave number at deep water. In Eq. (10), 2 2/Ur gHT h  is the local Ursell parameter 

defined by Shuto (1974), and H is the local wave height. 

We used the wave breaking criteria on a submerged permeable breakwater proposed by 

Rojanakamthorn et al. (1990), which is given by 
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where Hb is the wave height at the breaking point, Lo is the deep-water wavelength, and (h0)b is the 

water depth at the breaking point. 

The mean water level variation is solved b the time-averaged and depth-integrated momentum 

equation, given as: 
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where xxS  is the radiation stress of wave,   is the mean water level,   is the water density, and g  

is the gravitational acceleration. 

A finite-difference scheme with staggered meshes and mid-time grids (Copeland, 1985) was 

adopted to solve the set of time-dependent mild-slope equations. Two types of geometric boundary 

conditions are required for computing the boundary value problem: offshore and wall boundaries. 

Some of the parameters of the rigid porous medium are needed in the computations. The first 

parameter, inertial coefficient Cr, is dependent on the virtual mass effect due to an unsteady flow 

around a body; it is not readily determined for a randomly and densely packed solid material 

(Rojanakamthorn et al., 1989). Therefore, after Madsen (1974) and Sollitt and Cross (1972), we used 

r 1.0C   for the computation. The second parameter is the friction factor, bf , which can be evaluated 

based on Lorentz’ condition of equivalent work (Sollitt and Cross, 1972). This factor is dependent on 

the intrinsic permeability, porosity, seepage velocity and the turbulent friction in the porous medium. 

Their proper values in real applications must be estimated from experiments. For these computations, 

b 0.92f  is adopted . The effect of different values of bf  on the wave attenuation on a submerged 

breakwater will be discussed later on. The third parameter needed for the computations is the porosity 

of the rigid porous medium, which does not have a wide range of values in the real situation. It was 
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selected as b 0.4   after Rojanakamthorn et al. (1989). 

3. Numerical Results 

3.1 Verifications 

Fig. 2 shows that the present calculations are valid because they are comparable with the 

experimental results presented by Rivero et al. (1998). It should be noted that the results shown in the 

figure are for the case without a seawall. These results show that there is a better agreement between 

the experimental and numerical results if the nonlinear shoaling corrector is considered theoretically. 

Fig. 2 demonstrates that the modulations of wave height and the mean water level are induced by the 

reflection in front of the breakwater. In addition, the decay of wave height and the set-up of the water 

level can be observed clearly as wave passes over the breakwater as the result of the wave breaking. 

Fig. 3 shows the comparisons of wave height and the mean water level changes between the computed 

results and experimental data (Chen et al., 2007) for the case with a vertical seawall behind the 

submerged breakwater. This figure also shows a good agreement between the measured and numerical 

results.  

   

Fig. 2. Comparison of wave height and the mean water level changes between the computed results and experimental  

data for the case without a seawall. 

 

Fig. 3. Comparison of wave height and the mean water level changes between the computed results and experimental 

data for the case with a seawall. 

3.2 Influence of Seawall Types 

Two types of seawall, a vertical seawall and an inclined seawall (shown in Figs. 4a and 4b), are 
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considered in the following numerical simulations for computing wave heights and the mean water 

levels behind a submerged permeable breakwater. For the case of a vertical seawall, the numerical 

results of Fig. 5 show the modulation of wave height and nodal points existing between the submerged 

breakwater and the seawall as the result of the full reflection from the vertical wall. It should be noted 

that the modulation did not appear behind the submerged breakwater in the case without a seawall as 

depicted in Fig. 2. The significant modulation of the mean water level can also be observed both in 

front of and behind the submerged breakwater. This result shows that the wave set-up is significant 

when s p/ 0.25X L  and 0.75 (Xs is the distance between the center section of the submerged breakwater 

and the seawall, and Lp is the wavelength at location Xs); thus, we can find the nodal point of wave 

height appearing near the top of the submerged breakwater. In addition, higher wave height in front of 

the submerged breakwater can also be found when s p/ 0.25X L  and 0.75. In contrast, wave set-down 

may be found in the cases of s p/ 0.50X L  and 1.00 so that the wave nodes appear distant from the 

submerged breakwater. 

 

Fig. 4. Definitional sketches of (a) the vertical seawall and (b) the inclined seawall behind the  
submerged permeable breakwater. 

The computed results of different distances between the two structures are shown in Fig. 6 for the 

case of an inclined seawall behind a submerged breakwater. An obvious wave set-up appears between 

the submerged breakwater and the inclined seawall when s p/ 0.75X L  , in which the pseudo-node of 

wave height is near the submerged breakwater. When compared with Fig. 5, the wave height between 

the submerged breakwater and the inclined seawall is smaller than that of the vertical seawall, due to 

only the partial reflection from the inclined seawall. In addition, it is clear that the wave set-up 

increases swiftly at the end of the wall, due to the wave run-up on the inclined seawall. 

Fig. 7 shows comparisons of wave height and the mean water level changes among different 

seawall types when s p/ 0.75X L  . The modulation of wave height and the mean water level variations 

occur behind the submerged breakwater in the case with a seawall present, but they are generally 

constant behind the submerged breakwater in the case without a seawall, as described above. Under the 

same incident wave conditions, larger wave height can be seen in the case of the vertical seawall as the 

result of the full wave reflection, except near the locations of nodal points. However, the wave set-up 

behind the breakwater for the cases of both vertical and inclined seawalls is larger than that for the case 

without a seawall. 
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Fig. 5. Wave height and the mean water level changes for different distances between the vertical seawall and 

the submerged permeable breakwater. 

 

Fig. 6. Wave height and the mean water level changes for different distances between the inclined seawall and the 
submerged permeable breakwater. 

 

Fig. 7. Comparison of the wave height and the mean water level changes among different seawall types ( s p/ 0.75X L  ). 

3.3 Influence of the Porosity and Friction of the Breakwater 

The porosity of the submerged permeable breakwater affects the variations in wave height and 
water level when s p/ 0.75X L   for the fixed friction factor b 0.92f  , as shown in Fig. 8. Fig. 8 

shows that increasing the porosity of the submerged breakwater produces larger wave height decay and 
smaller wave set-up behind the submerged breakwater; however, the difference is not significant for 
different porosities. 

In contrast, Fig. 9 shows the influence of the friction factor of the submerged permeable 
breakwater on variations in wave height and water level when s p/ 0.75X L   for the fixed porosity 

b 0.4  . The larger the friction factor of the breakwater is, the higher the water set-up behind the 
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submerged breakwater will be. However, different friction factors with the fixed porosity do not 
significantly influence wave height variation behind the breakwater. 

 
Fig. 8. Wave height and the mean water level evolution for different porosities of the submerged permeable 

breakwater ( 0.3 mH  , s p/ 0.75X L  ). 

 
Fig. 9. Wave height and the mean water level evolution for different friction factors of the submerged permeable 

breakwater ( 0.3 mH  , s p/ 0.75X L  ). 

3.4 Influence of Incident Wave Conditions 

Fig. 10 shows the wave height and the mean water level changes for different incident wave 

heights when s p/ 0.75X L  . Furthermore, this figure shows that increasing the incident wave height 

leads to an increase in the wave set-up between the submerged breakwater and the seawall. In contrast, 

as shown in Fig. 11, different wave periods will produce different locations of nodal points; the height 

of the wave set-up is dependent on the locations of nodal points as discussed above regarding Fig. 5. 

 

Fig. 10. Wave height and the mean water level evolution for different incident wave heights ( s p/ 0.75X L  ). 
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Fig. 11. Wave height and the mean water level evolution for different incident wave periods. 

4. Conclusions 

We used modified time-dependent mild-slope equations, which involve parameters of the porous 

medium, to investigate wave height transformation and wave set-up or water piling-up between a 

submerged permeable breakwater and a seawall. The computed results show that the modulations of 

the wave profile and wave set-up are clearly observed between the submerged breakwater and the 

seawall, whereas they stay almost constant for the case without a seawall. A wave node or pseudo- 

node of wave height evolution could be found between the submerged breakwater and the seawall as a 

result of the wave reflection from the seawall. We found that the position of the nodal or pseudo-nodal 

point seems to control the magnitude of the wave set-up. Higher wave set-up can be found if the node 

or pseudo-node of the wave appears near the top of the submerged breakwater. It is inferred that the 

nodal point might influence the mass flux from the submerged breakwater to induce the water piling- 

up; this could be further studied in more detail by use of flow investigations. We also found that the 

porosity and friction factor of the submerged permeable breakwater could somewhat influence both the 

wave height transformation and the wave set-up. 
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