CHEMSTRY
 A EUROPEAN JOURNAL

Supporting Information

© Copyright Wiley-VCH Verlag GmbH \& Co. KGaA, 69451 Weinheim, 2012

Weakly Associated TFPB Anions Are Superior to PF $_{6}$ Anions When Preparing (Pseudo)Rotaxanes from Crown Ethers and Secondary Dialkylammonium Ions**

Nai-Chia Chen, ${ }^{[a]}$ Chun-Ju Chuang, ${ }^{[\text {[a] }}$ Liang-Yun Wang, ${ }^{[a]}$ Chien-Chen Lai, ${ }^{[b]}$ and Sheng-Hsien Chiu* ${ }^{[a]}$
chem_201103464_sm_miscellaneous_information.pdf

A EUROPEAN JOURNAL

Weakly Associated TFPB Anions are Superior to PF 6 Anions When Preparing (Pseudo)Rotaxanes from Crown Ethers and Secondary Dialklyammonium Ions

Nai-Chia Chen, Chun-Ju Chuang, Liang-Yun Wang, Chien-Chen Lai, and Sheng-Hsien Chiu*

Supplementary Material

Data

Page Number
Experimental procedures and characterization data for new compounds.........S2-S5

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of the compounds 2-H•TFPB and 2-H•PF $. \ldots \mathrm{S} 8-\mathrm{S} 11$
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of the amine 4 and the salts $4-\mathrm{H} \cdot \mathrm{PF}_{6}$ and $4-\mathrm{H} \cdot \mathrm{TFPBS} 12-\mathrm{S} 17$
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of the macrocycle 5..S18-S19
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of threadlike salt 6-H•TFPBS20-S21
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of the [2]rotaxane 7-H•TFPB and salt 8-H•TFPBS22-S25
2D COSY NMR spectrum of the [2]rotaxane 7-H•TFPB................................S26
Using NMR and ITC to determine the values of K_{a} for the association of the macrocycle $\mathbf{3}$ with the salts $\mathbf{4}-\mathrm{H} \cdot \mathrm{PF}_{6}$ and $\mathbf{4}-\mathrm{H} \cdot \mathrm{TFPB}$ in various solventsS27-S32

First-order kinetic and van't Hoff plots for determining the kinetic parameters for the dissociations of 7-H•TFPB induced by various anions S33-S37
${ }^{1} \mathrm{H}$ NMR spectra revealing the dissociation of the [2]rotaxane $7-\mathrm{H} \cdot \mathrm{TFPB}$ in CDCl_{3} after adding various anions S38-S41

Threadlike salt $\mathbf{1}-\mathrm{H} \cdot \mathrm{TFPB}: \quad \mathbf{1}-\mathrm{H} \cdot \mathrm{PF}_{6}(114 \mathrm{mg}, 0.247 \mathrm{mmol})$ and NaTFPB (222 mg 0.25 mmol) were mixed in $\mathrm{MeOH}(10 \mathrm{~mL})$ and then the organic solvent was evaporated under reduced pressure. The residue was partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(50 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. The organic layer was collected, washed with $\mathrm{H}_{2} \mathrm{O}(4 \times$ 10 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated to give the desired product as a pale yellow liquid ($275 \mathrm{mg}, 93 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.30(\mathrm{~s}, 9 \mathrm{H}), 4.07(\mathrm{~s}, 4 \mathrm{H})$, 4.37 (s, 2H), 7.14 (d, $J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H})$, 7.46 (d, $J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.49-7.52(\mathrm{br}, 4 \mathrm{H}), 7.65-7.72(\mathrm{br}, 8 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=30.9,35.0,51.8,52.3,53.8,117.5,124.5\left(\mathrm{q},{ }^{1} J_{\mathrm{CF}}=272 \mathrm{~Hz}\right), 124.9,127.1$, $128.1,128.8\left(\mathrm{q},{ }^{2} J_{\mathrm{CF}}=31 \mathrm{~Hz}\right), 128.8,129.5,134.7,138.8,154.9,161.5\left(\mathrm{q},{ }^{1} J_{\mathrm{CB}}=50\right.$ Hz) (one signal is missing, possibly because of signal overlap); MS (ESI): $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{~N}_{4}{ }^{+}$ ([1-H] $]^{+}$) calcd $m / z ~ 309.2079$; found m / z 309.2073.
[2]Rotaxane 2-H•TFPB: Triethyl phosphite ($80 \mu \mathrm{~L}, 0.47 \mathrm{mmol}$) was added dropwise to a solution of $1-H \cdot$ TFPB ($266 \mathrm{mg}, 0.227 \mathrm{mmol}$) and DA24C8 ($243 \mathrm{mg}, 0.458 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.3 \mathrm{~mL})$. The mixture was stirred at ambient temperature overnight. The solvent was evaporated and the residue purified chromatographically $\left(\mathrm{SiO}_{2}\right.$; $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 5: 95$). The product was isolated as a pale yellow oil ($284 \mathrm{mg}, 69 \%$). ${ }^{1} \mathrm{H}$ NMR ($800 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.27-1.34(\mathrm{~m}, 15 \mathrm{H}), 2.21(\mathrm{~s}, 6 \mathrm{H}), 2.82-2.95(\mathrm{br}$, 8 H), 3.22-3.34 (br, 8H), 3.49-3.60 (br, 16H), 4.02-4.13 (m, 4H), 4.13-4.20 (m, 2H), 4.51-4.59 (br, 2H), 4.59-4.66 (br, 2H), $6.38(\mathrm{~d}, J=6 \mathrm{~Hz}, 4 \mathrm{H}), 6.92(\mathrm{~d}, J=8 \mathrm{~Hz}, 4 \mathrm{H})$, 7.42 (d, $J=8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.45-7.48 (br, 4H), 7.48-7.51 (br, 4H), 7.56 (d, $J=7 \mathrm{~Hz}, 2 \mathrm{H}$), 7.66-7.70 (br, 8H), 7.91-7.99 (br, 2H); ${ }^{13} \mathrm{C}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=16.1$ (d, $\left.{ }^{3} J_{\mathrm{CP}}=7 \mathrm{~Hz}\right), 20.3,31.1,34.9,44.9,52.3,52.8,53.1,62.7,69.9,71.0,71.1,117.2$, $117.4,124.5\left(\mathrm{q},{ }^{1} J_{\mathrm{CF}}=273 \mathrm{~Hz}\right), 126.1,127.7,127.9,128.9\left(\mathrm{q},{ }^{2} J_{\mathrm{CF}}=31 \mathrm{~Hz}\right), 130.0$, $130.3,130.5,130.8,134.8,142.2,144.6,154.1,161.7\left(\mathrm{q},{ }^{1} J_{\mathrm{CB}}=50 \mathrm{~Hz}\right)$ (one signal is missing, possibly because of signal overlap); MS (ESI): $\mathrm{C}_{53} \mathrm{H}_{82} \mathrm{~N}_{4} \mathrm{O}_{9} \mathrm{P}^{+}\left([2-\mathrm{H}]^{+}\right)$calcd $\mathrm{m} / \mathrm{z} 949.5819$; found $\mathrm{m} / \mathrm{z} 949.5779$.
[2]Rotaxane 2-H $\cdot \mathrm{PF}_{6}$: Amberlite ${ }^{\circledR}$ IRA-402 resin $(0.21 \mathrm{~g})$ was added to a solution of the [2]rotaxane $2-\mathrm{H} \cdot \mathrm{TFPB}(77 \mathrm{mg}, 43 \mu \mathrm{~mol})$ in $\mathrm{MeOH}(10 \mathrm{~mL})$. The suspension was stirred at room temperature for 5 min and then filtered. The same resin addition/filtration process was applied to the filtrate for another nine cycles. The organic solution was then treated with $1 \mathrm{~N} \mathrm{HCl}_{(\mathrm{aq})}(0.1 \mathrm{~mL}, 0.1 \mathrm{mmol})$ and saturated $\mathrm{NH}_{4} \mathrm{PF}_{6(\text { aq })}(20 \mathrm{~mL})$. The organic solvent was evaporated under reduced pressure and the residue was partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. The organic layer was separated, washed with $\mathrm{H}_{2} \mathrm{O}(4 \times 10 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated; the residue was purified chromatographically $\left(\mathrm{SiO}_{2} ; \mathrm{CH}_{3} \mathrm{CN} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$,

1:9) to give the product as a white solid ($43 \mathrm{mg}, 92 \%$). M.p. $=182-183{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): $\delta=1.23(\mathrm{t}, J=7 \mathrm{~Hz}, 6 \mathrm{H}), 1.33(\mathrm{~s}, 9 \mathrm{H}), 2.19(\mathrm{~s}, 6 \mathrm{H})$, 2.89-2.98 (br, 8H), 3.25-3.34 (m, 8H), 3.59-3.66 (m, 16H), 3.92-4.00 (m, 4H), 4.09-4.13 (m, 2H), 4.59-4.67 (m, 4H), 6.47 (d, $J=8 \mathrm{~Hz}, 4 \mathrm{H}), 6.93(\mathrm{~d}, J=8 \mathrm{~Hz}, 4 \mathrm{H})$, $7.44(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{~d}, J=8$ $\mathrm{Hz}, 2 \mathrm{H}$), 7.95-8.10 (br, 2H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=16.7\left({ }^{3} \mathrm{~J}_{\mathrm{CP}}=7 \mathrm{~Hz}\right.$), $20.4,31.6,35.5,45.5,53.2,53.4,53.5,63.0\left({ }^{2} J_{\mathrm{CP}}=5 \mathrm{~Hz}\right), 70.7,72.0,72.1,117.4$, $127.0,128.9,129.6,129.7,130.8,131.5,131.9,146.6\left({ }^{3} J_{\mathrm{CP}}=5 \mathrm{~Hz}\right), 154.3$; MS (ESI): $\mathrm{C}_{53} \mathrm{H}_{82} \mathrm{~N}_{4} \mathrm{O}_{9} \mathrm{P}^{+}\left([2-\mathrm{H}]^{+}\right)$calcd $\mathrm{m} / \mathrm{z} 949.5819$; found $\mathrm{m} / \mathrm{z} 949.5788$.
N-Benzyl-1-(3,5-di-tert-butylphenyl)methanamine (4): A mixture of benzylamine (0.5 $\mathrm{mL}, 4.58 \mathrm{mmol}$), 3,5-di-tert-butylbenzaldehyde ($1.0 \mathrm{~g}, 4.58 \mathrm{mmol}$), and molecular sieves $(1.0 \mathrm{~g})$ in dry $\mathrm{MeOH}(23 \mathrm{~mL})$ was stirred at room temperature for 16 h before being cooled to $0{ }^{\circ} \mathrm{C}$ and treated with $\mathrm{NaBH}_{4}(0.348 \mathrm{~g}, 9.16 \mathrm{mmol})$ in portions. The resulting mixture was stirred at room temperature for 4 h and then the organic solvent was evaporated under reduced pressure. The residue was partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$. The organic phase was collected, washed with $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated; the residue was purified chromatographically $\left(\mathrm{SiO}_{2} ; \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 2: 98\right)$ to give the product as a colorless oil ($0.73 \mathrm{~g}, 51 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.32(\mathrm{~s}, 18 \mathrm{H}), 3.79(\mathrm{~s}, 2 \mathrm{H}), 3.82(\mathrm{~s}$, $2 \mathrm{H}), 7.15(\mathrm{~d}, J=2 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-7.34(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $31.6,34.8,53.3,53.7,120.7,122.1,126.6,128.0,128.1,139.1,140.2,150.4 ; \mathrm{MS}$ (ESI): $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{~N}^{+}\left([4-\mathrm{H}]^{+}\right)$calcd $m / z ~ 310.2535$; found $\mathrm{m} / \mathrm{z} 310.2567$.

4- $\mathrm{H} \cdot \mathrm{PF}_{6}$: A solution of the amine $4(216 \mathrm{mg}, 0.704 \mathrm{mmol})$ in $\mathrm{MeCN}(10 \mathrm{~mL})$ was treated with $1 \mathrm{~N} \mathrm{HCl}_{(\mathrm{aq})}(5 \mathrm{~mL})$ and saturated $\mathrm{NH}_{4} \mathrm{PF}_{6(\mathrm{aq})}(10 \mathrm{~mL})$. After evaporating the organic solvent under reduced pressure, the white precipitate was filtered off, washed with water $(5 \mathrm{~mL})$ and ether $(2 \mathrm{~mL})$, and then dried to give a white solid (232 mg, 72\%). M.p. $=173-178{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.31(\mathrm{~s}, 18 \mathrm{H})$, 4.12-4.20 (br, 4H), 7.14 (d, $J=2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.29-7.36 (br, 2H), 7.38-7.44 (br, 3H), 7.45-7.49 (br, 1H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): $\delta=31.6,35.6,52.4,52.8,124.4$, 125.2, 129.8, 130.5, 130.5, 131.0, 131.2, 152.5; MS (ESI): $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{~N}^{+}\left([4-\mathrm{H}]^{+}\right)$calcd $\mathrm{m} / \mathrm{z} 310.2535$; found $m / z 310.2562$.

4-H•TFPB: A solution of the amine $4(290 \mathrm{mg}, 0.945 \mathrm{mmol})$ in $\mathrm{MeOH}(10 \mathrm{~mL})$ was treated with $1 \mathrm{~N} \mathrm{HCl}_{(\mathrm{aq})}(10 \mathrm{~mL})$. The organic solvent was evaporated under reduced pressure and then the precipitate was filtered off, dissolved in $\mathrm{MeOH}(10 \mathrm{~mL})$, and treated with NaTFPB ($256 \mathrm{mg}, 0.289 \mathrm{mmol}$). After evaporating the organic solvent
under reduced pressure, the residue was partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$. The organic layer was collected, washed with $\mathrm{H}_{2} \mathrm{O}(4 \times 50 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated to give a pale green liquid ($194 \mathrm{mg}, 57 \%$). M.p. $>66^{\circ} \mathrm{C}$ (dec.); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.29(\mathrm{~s}, 18 \mathrm{H}), 4.08-4.16(\mathrm{~m}, 4 \mathrm{H}), 7.06(\mathrm{~d}, \mathrm{~J}$ $=2 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{~d}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{t}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{~d}, J=7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.48-7.52(\mathrm{br}, 4 \mathrm{H}), 7.56(\mathrm{t}, \mathrm{J}=2 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.72(\mathrm{br}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=31.2,35.0,52.2,53.0,117.4,124.5\left(\mathrm{q},{ }^{1} J_{\mathrm{CF}}=272 \mathrm{~Hz}\right), 123.2,125.1$, $127.5,128.1,128.8\left(\mathrm{q},{ }^{2} J_{\mathrm{CF}}=32 \mathrm{~Hz}\right), 129.0,129.9,130.9,134.7,153.1,161.5\left(\mathrm{q},{ }^{1} J_{\mathrm{CB}}\right.$ $=50 \mathrm{~Hz}$); MS (ESI): $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{~N}^{+}\left([4-\mathrm{H}]^{+}\right)$calcd $\mathrm{m} / \mathrm{z} 310.2535$; found $\mathrm{m} / \mathrm{z} 310.2525$.

Macrocycle 5

A solution of the dichloride $\mathbf{5 a}(3.12 \mathrm{~g}, 8 \mathrm{mmol})$ and bis(2-mercaptoethyl) ether (1 mL , 8 mmol) in a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ and toluene (700 mL) was added slowly (addition funnel) to a solution of $\mathrm{KOH}(896 \mathrm{mg}, 16.0 \mathrm{mmol})$ in EtOH (2.4 L). The mixture was then stirred at room temperature for 7 days. The organic solvents were evaporated under reduced pressure and then the residue was purified chromatographically $\left(\mathrm{SiO}_{2} ; \mathrm{EtOAc} /\right.$ hexanes, $\left.2: 8\right)$ to give a white solid ($1.2 \mathrm{~g}, 33 \%$). M.p. $=129-130{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=2.42(\mathrm{t}, J=7 \mathrm{~Hz}, 4 \mathrm{H}), 3.47(\mathrm{t}, J$ $=7 \mathrm{~Hz}, 4 \mathrm{H}), 3.63(\mathrm{~s}, 4 \mathrm{H}), 5.17(\mathrm{~s}, 4 \mathrm{H}), 6.67(\mathrm{~d}, J=8 \mathrm{~Hz}, 4 \mathrm{H}), 7.04(\mathrm{~d}, J=8 \mathrm{~Hz}, 4 \mathrm{H})$, $7.30(\mathrm{~s}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=29.6,35.5,69.5,70.5,115.5,127.0$, 129.6, 130.0, 136.9, 156.6; MS (ESI): $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{NaO}_{3} \mathrm{~S}_{2}{ }^{+}\left([5+\mathrm{Na}]^{+}\right)$calcd $\mathrm{m} / \mathrm{z} 475.1378$; found $m / z 475.1343$.

Threadlike salt 6-H \cdot TFPB: A solution of $6-\mathrm{H} \cdot \mathrm{PF}_{6}(300 \mathrm{mg}, 0.676 \mathrm{mmol})$ and NaTFPB ($599 \mathrm{mg}, 0.676 \mathrm{mmol}$) in $\mathrm{MeOH}(20 \mathrm{~mL})$ was treated with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. The mixture was stirred at room temperature for 5 min and then the organic solvent was evaporated under reduced pressure. The solution was partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(150 \mathrm{~mL})$. The organic layer was collected, washed with $\mathrm{H}_{2} \mathrm{O}(4 \times 150 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated to give a deep green oil (707 mg , 90%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.60(\mathrm{q}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 1.13-1.22(\mathrm{~m}, 2 \mathrm{H})$,
1.29 (s, 9H), 1.66-1.82 (m, 4H), 2.16-2.34 (m, 2H), 2.91-3.07 (m, 2H), 4.00 (t, J=6 $\mathrm{Hz}, 2 \mathrm{H}), 4.94(\mathrm{dd}, J=2,10 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{dd}, J=1,17 \mathrm{~Hz}, 1 \mathrm{H}), 5.16-5.67(\mathrm{~m}, 2 \mathrm{H})$, 6.73-6.93 (br, 2H), 7.18 (d, $J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.45$ (d, $J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.50-7.53$ (br, 4H), 7.67-7.76 (br, 8H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=15.1,17.1,22.9,24.3,25.1$, $31.0,34.9,48.1,52.2,115.1,117.4,124.4\left(\mathrm{q},{ }^{1} J_{\mathrm{CF}}=272 \mathrm{~Hz}\right), 125.1,126.7,127.0$, $128.8\left(\mathrm{q},{ }^{2} J_{\mathrm{CF}}=27 \mathrm{~Hz}\right), 132.7,134.6,137.4,154.4,161.5\left(\mathrm{q},{ }^{1} J_{\mathrm{CB}}=50 \mathrm{~Hz}\right) ; \mathrm{MS}(\mathrm{ESI}):$ $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{~N}^{+}\left([6-\mathrm{H}]^{+}\right)$calcd m / z 298.2535; found $m / z 298.2482$.
[2]Rotaxane $7-\mathrm{H} \cdot \mathrm{TFPB}$ and dumbbell-shaped salt $\mathbf{8}-\mathrm{H} \cdot \mathrm{TFPB}$: A solution of the threadlike salt 6-H•TFPB ($466 \mathrm{mg}, 0.401 \mathrm{mmol}$) and the macrocycle $5(363 \mathrm{mg}, 0.802$ $\mathrm{mmol})$ in $\mathrm{CDCl}_{3}(2.0 \mathrm{~mL})$ was heated at $50{ }^{\circ} \mathrm{C}$ with stirring for 48 h . After evaporating the organic solvent under reduced pressure, the residue was purified chromatographically $\left(\mathrm{SiO}_{2} ; \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ /hexanes, $8: 2$) to give the [2]rotaxane 7-H•TFPB, which solidified in hexane to give a white powder (193 mg, 30\%). The corresponding dumbbell-shaped salt $\mathbf{8}-\mathrm{H} \cdot \mathrm{TFPB}$ was isolated as a colorless liquid (106 $\mathrm{mg}, 23 \%)$ after two sequential chromatographic purification processes $\left(\mathrm{SiO}_{2}\right.$; $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 9: 1$ and then $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 98: 2$). Data for 7-H•TFPB: m.p. $=$ $125-127{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.25-0.75(\mathrm{~m}, 6 \mathrm{H}), 1.37(\mathrm{~s}, 9 \mathrm{H})$, $1.95-2.26(\mathrm{~m}, 3 \mathrm{H}), 2.65-2.85(\mathrm{~m}, 5 \mathrm{H}), 2.92-3.09(\mathrm{~m}, 3 \mathrm{H}), 3.36-3.62(\mathrm{~m}, 8 \mathrm{H})$, $5.08-5.25(\mathrm{~m}, 4 \mathrm{H}), 5.38(\mathrm{dd}, J=5,11 \mathrm{~Hz}, 1 \mathrm{H}), 5.64-5.79(\mathrm{~m}, 3 \mathrm{H}), 6.54-6.86$ (several overlapping broad peaks, 10 H), $6.99(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{~s}, 4 \mathrm{H}), 7.48-7.52(\mathrm{br}$, $4 \mathrm{H}), 7.56(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.65-7.73(\mathrm{br}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $24.2,29.0,31.1,32.1,32.4,33.8,34.9,36.3,37.0,47.1,51.6,67.7,69.0,117.4,124.6$ $\left(\mathrm{q},{ }^{1} J_{\mathrm{CF}}=272 \mathrm{~Hz}\right), 125.7,126.4,128.5,128.6,128,7,128.9\left(\mathrm{q},{ }^{2} J_{\mathrm{CF}}=31 \mathrm{~Hz}\right), 129.2$, $129.4,131.3,134.0,137.3,137.4,154.7,156.9,161.7\left(\mathrm{q},{ }^{1} J_{\mathrm{CB}}=50 \mathrm{~Hz}\right)$ (two signals missing, possibly because of signal overlap); MS (ESI): $\mathrm{C}_{47} \mathrm{H}_{60} \mathrm{NO}_{3} \mathrm{~S}_{2}{ }^{+}$([7-H $]^{+}$) calcd $\mathrm{m} / \mathrm{z} 750.4014$; found $\mathrm{m} / \mathrm{z} 750.3990$. Data for $8-\mathrm{H} \cdot \mathrm{TFPB}$: ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=1.26-1.40(\mathrm{~m}, 11 \mathrm{H}), 1.50-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.99-2.10(\mathrm{~m}, 1 \mathrm{H}), 2.13-2.24$ $(\mathrm{m}, 1 \mathrm{H}) 2.35-2.48(\mathrm{br}, 1 \mathrm{H}), 2.62-2.73(\mathrm{~m}, 1 \mathrm{H}), 2.80(\mathrm{t}, \mathrm{J}=8 \mathrm{~Hz} 2 \mathrm{H}), 2.86-2.98(\mathrm{~m}$, $1 \mathrm{H}), 3.65-3.80(\mathrm{br}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 2 \mathrm{H}), 5.39-5.47(\mathrm{~m}, 1 \mathrm{H}), 5.55-5.70(\mathrm{~m}, 3 \mathrm{H}), 7.08(\mathrm{~d}$, $J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{~s}, 4 \mathrm{H}), 7.69(\mathrm{~s}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta=24.7,28.6,31.1,32.6,32.6,34.9,36.7,48.4,52.4,117.4,124.4\left(\mathrm{q},{ }^{1} J_{\mathrm{CF}}=\right.$ $271 \mathrm{~Hz}), 126.8,127.1,128.5,128.6,128.8\left(\mathrm{q},{ }^{2} J_{\mathrm{CF}}=32 \mathrm{~Hz}\right), 129.1,133.9,134.7$, 154.1, $161.5\left(\mathrm{q},{ }^{1} J_{\mathrm{CB}}=50 \mathrm{~Hz}\right.$) (one signal missing, possibly because of signal overlap); MS (ESI): $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{~N}^{+}\left([8-\mathrm{H}]^{+}\right)$calcd $\mathrm{m} / \mathrm{z} 298.2535$; found $\mathrm{m} / \mathrm{z} 298.2518$.

1-H•TFPB

2-H•TFPB

 Ω \qquad
96

の○नのm「	の	$\checkmark \sim \infty$	∞	－	\checkmark	$\cdots 6 \mathrm{~m}$
	$\stackrel{-}{1}$	$\infty \bigcirc \mathrm{m}$	\bigcirc	L	च	$\cdots \infty$
「○ை○の心	$\stackrel{ }{ }$	$\bigcirc \infty \times$	∞	∞	\checkmark	м -r
へトツ－0の	N	$m \sim N$	\square	\cdots	\checkmark	066
人NrNre	6	n）in ⿺丄	7	m	m	$\mathrm{N}-\mathrm{H}$
						V

2－H•TFPB

$2-\mathrm{H} \cdot \mathrm{PF}_{6}$

6	$\infty \mathrm{m}$	$\sim \sim \infty \sim$ ¢				
$\stackrel{\square}{0}$	6 0	「ヘサへの	$\infty \bigcirc$	$\stackrel{\sim}{\sim}$		
m	$\vdash \bigcirc$		$\cdots \bigcirc \infty$	\cdots		
\bigcirc	$\bigcirc{ }^{\circ}$	$\infty \times \dot{\sim} \times$	\cdots ¢．	\bigcirc ．	${ }^{\infty}$.	
$\stackrel{\square}{\square}$	¢m	$\sim \sim \sim \sim$	－	m m	み	\cdots
\checkmark	－「	－r \dagger ¢	人	மค		m
	$1 /$	V／11	$\ 1$	V		

 $\begin{array}{lllll}7.5 & 7.4 & 7.3 & 7.2 & p p m\end{array}$

4-H. PF_{6}

$\stackrel{\square}{ }$	\wedge
6	\sim
の	6
\checkmark	\ulcorner

4-H.TFPB

10 m	[0 -	क	\#
190	N ${ }^{\circ}$	*	6
906	$0 \cdot 1$	\bigcirc	\cdots
-	M N	เก	\cdots
$\mathrm{T}-1-$	(1) in	m	m
1	1		

4-H•TFPB

9	8	7		6	5	4		3		2	1	0 ppm
			$\left\lvert\, \begin{gathered} \underset{\sim}{\mathrm{O}} \\ \underset{寸}{ } \end{gathered}\right.$		$\underset{\substack{\mathrm{N} \\ \underset{\sim}{2} \\ \hline}}{ }$		$\left\|\right\|$		$\left\lvert\, \begin{gathered}\underset{\sim}{\mathbf{N}} \\ \text { ¢ }\end{gathered}\right.$			
		S18										

[^0]

6-H•TFPB

TLT"87—
T8T"25—

6-H•TFPB

[^1]

2-H•TFPB

8-H.TFPB

Partial ${ }^{1} \mathrm{H}$ NMR spectra for the complexation of macrocycle 3 to threadlike salts $[4-\mathrm{H}]^{+}$in Various Solvents ($400 \mathrm{MHz}, 298 \mathrm{~K}, 5 \mathrm{mM}$)

$\mathrm{X}=\mathrm{TFPB}$
$K=27000 \mathrm{M}^{-1}$

$\mathrm{X}=\mathrm{PF}_{6}$
$K=370 \mathrm{M}^{-1}$

$\mathrm{X}=$ TFPB
$K=3000 \mathrm{M}^{-1}$
$K=470 \mathrm{M}^{-1}$

$\mathrm{CD}_{3} \mathrm{CN}$
$\mathrm{X}=\mathrm{PF}_{6}$
$\mathrm{X}=\mathrm{PF}_{6}$
$K=160 \mathrm{M}^{-1}$
$K=110 \mathrm{M}^{-1}$

X =TFPB
$\mathrm{X}=$ TFPB
$K=190 \mathrm{M}^{-1}$
$K=100 \mathrm{M}^{-1}$

ITC measurements were performed using a Microcal MCS calorimeter interfaced with a microcomputer. All sample solutions were carefully degassed prior to titration using the equipment provided with the instrument. The host molecule in solution $\left(\mathrm{CHCl}_{3}\right)$ was titrated into the guest solution $\left(\mathrm{CHCl}_{3}\right)$ using a $280-\mu \mathrm{L}$ syringe. Each titration consisted of a preliminary $3-\mu \mathrm{L}$ injection followed by 27 subsequent additions of 10 $\mu \mathrm{L}$. The entropy of complexation was determined by subtracting the heat of dilution for each titration from the enthalpy of the titration. All experiments were performed at $25{ }^{\circ} \mathrm{C}$. Microcal LLC software was used to compute the thermodynamic parameters of the titration based on the one-site binding model or competitive binding model.

$4-H \cdot \mathrm{PF}_{6}$

entry	\mathbf{N}			\boldsymbol{K}			$\Delta \mathbf{H}$			$\Delta \mathbf{S}$	
1	1.060	\pm	0.0128	$6.64 \mathrm{E}+03$	\pm	276	-11150	\pm	188.4	-19.9	
2	1.040	\pm	0.0141	$7.17 \mathrm{E}+03$	\pm	344	-11690	\pm	220.7	-21.6	
average	1.050	\pm	0.0141	$6.91 \mathrm{E}+03$	\pm	375	-11420	\pm	382	-20.8	\pm

4-H•TFPB

entry	\mathbf{N}			\boldsymbol{K}			$\Delta \mathbf{H}$			$\Delta \mathbf{S}$	
1	1.050	\pm	0.00188	$7.36 \mathrm{E}+06$	$\pm 1.27 \mathrm{E}+06$	-10010	\pm	44.81	-2.15		
2	0.998	\pm	0.00261	$5.21 \mathrm{E}+06$	\pm	$1.59 \mathrm{E}+06$	-10790	\pm	75.36	-5.45	
average	1.024	\pm	0.03677	$6.29 \mathrm{E}+06$	\pm	$1.52 \mathrm{E}+06$	-10400	\pm	552	-3.80	
\pm	2.33										

Using a Microcal VP-ITC titration microcalorimeter, aliquouts ($10 \mu \mathrm{~L}, 7.5 \mathrm{mM}$) of degassed CHCl_{3} solution of macrocycle 3 were titrated into stirring CHCl_{3} solution of $4-\mathrm{H} \cdot \mathrm{PF} 6(0.5 \mathrm{mM})$ at 298 K . The entropy of complexation was determined by subtracting the heat of dilution for each titration from the enthalpy of the titration. Microcal LLC software was used to compute the thermodynamic parameters of the titration based on the one-site binding model.

Time (min)

Using a Microcal VP-ITC titration microcalorimeter, aliquouts ($10 \mu \mathrm{~L}, 7.5 \mathrm{mM}$) of degassed CHCl_{3} solution of macrocycle 3 were titrated into stirring CHCl_{3} solution of $4-\mathrm{H} \cdot \mathrm{PF} 6(0.5 \mathrm{mM})$ at 298 K . The entropy of complexation was determined by subtracting the heat of dilution for each titration from the enthalpy of the titration. Microcal LLC software was used to compute the thermodynamic parameters of the titration based on the one-site binding model.

Time (min)

Using a Microcal VP-ITC titration microcalorimeter, aliquouts ($10 \mu \mathrm{~L}, 5.0 \mathrm{mM}$) of degassed CHCl_{3} solution of macrocycle 3 were titrated into stirring CHCl_{3} solution of 4-H•TFPB (0.5 mM) at 298 K . The entropy of complexation was determined by subtracting the heat of dilution for each titration from the enthalpy of the titration. Microcal LLC software was used to compute the thermodynamic parameters of the titration based on the one-site binding model.

Time (min)

Using a Microcal VP-ITC titration microcalorimeter, aliquouts ($10 \mu \mathrm{~L}, 5.0 \mathrm{mM}$) of degassed CHCl_{3} solution of macrocycle 3 were titrated into stirring CHCl_{3} solution of $4-\mathrm{H} \cdot \mathrm{TFPB}(0.5 \mathrm{mM})$ at 298 K . The entropy of complexation was determined by subtracting the heat of dilution for each titration from the enthalpy of the titration. Microcal LLC software was used to compute the thermodynamic parameters of the titration based on the one-site binding model.

Time (min)

Kinetic Data for the Dissociation of 7-H•TFPB into Its Components

Figure S1. Dethreading of the macrocycle 5 from the dumbbell-shaped component after adding a tetra- n-butylammonium salt $\left(\mathrm{NBu}_{4} \mathrm{X} ; \mathrm{X}\right.$ was chloride, bromide, iodide, or hexafluorophosphate) to a CDCl_{3} solution of the [2]rotaxane $7-\mathrm{H} \cdot \mathrm{TFPB}$.

Experiments were performed in CDCl_{3} with an initial concentration of $7-\mathrm{H} \cdot \mathrm{TFPB}$ of 4 mM , followed by the addition of 1 equiv of $\mathrm{NBu}_{4} \mathrm{X}[\mathrm{X}=\mathrm{Cl}$ (Part A), Br (Part B), or I (Part C)] or 6 equiv of $\mathrm{NBu}_{4} \mathrm{PF}_{6}$ (Part D). The values of $k_{\mathrm{d}}\left(\mathrm{s}^{-1}\right)$ were obtained from the slopes of the straight line in the plots of $\ln \left(\left[A_{0}\right] /\left[A_{t}\right]\right)$ against $t(\mathrm{~s})$ at five temperatures. The values of $\left[A_{t}\right]$ were determined based on the standard signal at δ 7.69 (br, 8 H ; the aromatic protons of TFPB) and by integration of the signals of the macrocycle $5\left(\mathrm{H}_{\mathrm{E}}\right.$ or $\left.\mathrm{H}_{\mathrm{F}}\right)$ over a period of time. The values of $\Delta G^{\ddagger}\left(\mathrm{kcal} \mathrm{mol}^{-1}\right)$ were calculated using the relationship $\Delta G^{\ddagger}=-R T \ln \left(k_{\mathrm{d}} h / k_{\mathrm{B}} T\right)$, where R, h, and k_{B} correspond to the gas, Planck, and Boltzmann constants, respectively. The values of ΔH^{\ddagger} (kcal mol^{-1}) and $\Delta S^{\ddagger}\left(\mathrm{cal} \mathrm{mol}^{-1} K^{-1}\right)$ were obtained from the intercepts and slopes, respectively, of the straight lines in the plots of ΔG^{\ddagger} against T, using the relationship $\Delta G^{\ddagger}=\Delta H^{\ddagger}-\mathrm{T} \Delta S^{\ddagger}$.

Part A

In the chloride experiments, the $\mathrm{k}_{\mathrm{d}}\left(\mathrm{s}^{-1}\right)$ were obtained at $258 \mathrm{~K}, 268 \mathrm{~K}, 278 \mathrm{~K}, 288 \mathrm{~K}$ and $298 \mathrm{~K} .[\mathrm{A}]_{\mathrm{t}}$ were determined by integration of the signals of macrocycle 5 at $\delta 6.66\left(\mathrm{H}_{\mathrm{E}}, \mathrm{d}, J=9 \mathrm{~Hz}, 4 \mathrm{H}\right)$.

Figure S 2.
$\mathrm{k}_{\mathrm{d}}=$ Slope $=2.7 \times 10^{-6}\left(\mathrm{~s}^{-1}\right), \Delta G^{\ddagger}=21.6(\mathrm{kcal} / \mathrm{mol})$

Figure 54.

$$
\mathrm{k}_{\mathrm{d}}=\text { Slope }=3.1 \times 10^{-5}\left(\mathrm{~s}^{-1}\right), \quad \Delta G^{\ddagger}=22.0(\mathrm{kcal} / \mathrm{mol})
$$

Figure 56.

$$
\mathrm{k}_{\mathrm{d}}=\text { Slope }=2.5 \times 10^{-4}\left(\mathrm{~s}^{-1}\right), \Delta G^{\ddagger}=22.3(\mathrm{kcal} / \mathrm{mol})
$$

Figure S 3.
$\mathrm{k}_{\mathrm{d}}=$ Slope $=9.1 \times 10^{-6}\left(\mathrm{~s}^{-1}\right), \Delta G^{\ddagger}=21.8(\mathrm{kcal} / \mathrm{mol})$

Figure S 5.

$$
\mathrm{k}_{\mathrm{d}}=\text { Slope }=1.1 \times 10^{-4}\left(\mathrm{~s}^{-1}\right), \Delta G^{\ddagger}=22.0(\mathrm{kcal} / \mathrm{mol})
$$

Figure 57.
$\Delta H^{\ddagger}=$ intercept $=17.1(\mathrm{kcal} / \mathrm{mol})$,

$$
\Delta S^{\ddagger}=- \text { slope }=-17.3(\mathrm{cal} / \mathrm{mol})
$$

Part B

In the bromide experiments, the $\mathrm{k}_{\mathrm{d}}\left(\mathrm{s}^{-1}\right)$ were obtained at $268 \mathrm{~K}, 278 \mathrm{~K}, 288 \mathrm{~K}, 298 \mathrm{~K}$ and $308 \mathrm{~K} .[\mathrm{A}]_{\mathrm{t}}$ were determined by integration of the signals of macrocycle 5 at $\delta 6.66\left(\mathrm{H}_{\mathrm{E}}, \mathrm{d}, J=9 \mathrm{~Hz}, 4 \mathrm{H}\right)$.

Figure S 8.
$\mathrm{k}_{\mathrm{d}}=$ Slope $=4.3 \times 10^{-6}\left(\mathrm{~s}^{-1}\right), \quad \Delta G^{\ddagger}=22.2(\mathrm{kcal} / \mathrm{mol})$

Figure S10.

$$
\mathrm{k}_{\mathrm{d}}=\text { Slope }=3.9 \times 10^{-5}\left(\mathrm{~s}^{-1}\right), \quad \Delta G^{\ddagger}=22.6(\mathrm{kcal} / \mathrm{mol})
$$

Figure S 9.

$$
\mathrm{k}_{\mathrm{d}}=\text { Slope }=1.3 \times 10^{-5}\left(\mathrm{~s}^{-1}\right), \Delta G^{\ddagger}=22.4(\mathrm{kcal} / \mathrm{mol})
$$

Figure S11.

$$
\mathrm{k}_{\mathrm{d}}=\text { Slope }=3.5 \times 10^{-4}\left(\mathrm{~s}^{-1}\right), \Delta G^{\ddagger}=22.9(\mathrm{kcal} / \mathrm{mol})
$$

Figure S 12.

$$
\mathrm{k}_{\mathrm{d}}=\text { Slope }=1.1 \times 10^{-4}\left(\mathrm{~s}^{-1}\right), \Delta G^{\ddagger}=22.8(\mathrm{kcal} / \mathrm{mol})
$$

Figure S13.
$\Delta H^{\ddagger}=$ intercept $=17.5(\mathrm{kcal} / \mathrm{mol})$,

$$
\Delta S^{\ddagger}=- \text { slope }=-17.9(\mathrm{cal} / \mathrm{mol})
$$

Part C

In the iodide experiments, the $\mathrm{k}_{\mathrm{d}}\left(\mathrm{s}^{-1}\right)$ were obtained at $288 \mathrm{~K}, 293 \mathrm{~K}, 298 \mathrm{~K}, 303 \mathrm{~K}$ and $308 \mathrm{~K} .[\mathrm{A}]_{\mathrm{t}}$ were determined by integration of the signals of macrocycle 5 at $\delta 6.66\left(\mathrm{H}_{\mathrm{E}}, \mathrm{d}, J=9 \mathrm{~Hz}, 4 \mathrm{H}\right)$.

Figure S14.

$$
\mathrm{k}_{\mathrm{d}}=\text { Slope }=7.1 \times 10^{-6}\left(\mathrm{~s}^{-1}\right), \Delta G^{\ddagger}=23.6(\mathrm{kcal} / \mathrm{mol})
$$

Figure S16.

$$
\mathrm{k}_{\mathrm{d}}=\text { Slope }=3.3 \times 10^{-5}\left(\mathrm{~s}^{-1}\right), \Delta G^{\ddagger}=23.9(\mathrm{kcal} / \mathrm{mol})
$$

Figure S18.

$$
\mathrm{k}_{\mathrm{d}}=\text { Slope }=2.2 \times 10^{-5}\left(\mathrm{~s}^{-1}\right), \Delta G^{\ddagger}=23.8(\mathrm{kcal} / \mathrm{mol})
$$

Figure S15.

$$
\mathrm{k}_{\mathrm{d}}=\text { Slope }=1.2 \times 10^{-5}\left(\mathrm{~s}^{-1}\right), \Delta G^{\ddagger}=23.7(\mathrm{kcal} / \mathrm{mol})
$$

Figure S17.

$$
\mathrm{k}_{\mathrm{d}}=\text { Slope }=6.6 \times 10^{-5}\left(\mathrm{~s}^{-1}\right), \Delta G^{\ddagger}=23.9(\mathrm{kcal} / \mathrm{mol})
$$

Figure S19.

$$
\begin{gathered}
\Delta H^{\ddagger}=\text { intercept }=18.8(\mathrm{kcal} / \mathrm{mol}) \\
\Delta S^{\ddagger}=- \text { slope }=-16.9(\mathrm{cal} / \mathrm{mol})
\end{gathered}
$$

Part D

In the hexafluorophosphate experiments, the $\mathrm{k}_{\mathrm{d}}\left(\mathrm{s}^{-1}\right)$ were obtained at $298 \mathrm{~K}, 303 \mathrm{~K}, 308 \mathrm{~K}, 313 \mathrm{~K}$ and 318 K . [A]t were determined by integration of the signals of macrocycle 5 at $\delta 3.62\left(\mathrm{H}_{\mathrm{F}}, \mathrm{s}, 4 \mathrm{H}\right)$.

Figure S20.

$$
\mathrm{k}_{\mathrm{d}}=\text { Slope }=7.0 \times 10^{-6}\left(\mathrm{~s}^{-1}\right), \Delta G^{\ddagger}=24.9(\mathrm{kcal} / \mathrm{mol})
$$

Figure S 22 .

$$
\mathrm{k}_{\mathrm{d}}=\text { Slope }=1.8 \times 10^{-5}\left(\mathrm{~s}^{-1}\right), \Delta G^{\ddagger}=25.1(\mathrm{kcal} / \mathrm{mol})
$$

Figure S24.

$$
\mathrm{k}_{\mathrm{d}}=\text { Slope }=4.1 \times 10^{-6}\left(\mathrm{~s}^{-1}\right), \Delta G^{\ddagger}=24.8(\mathrm{kcal} / \mathrm{mol})
$$

Figure S21.

$$
\mathrm{k}_{\mathrm{d}}=\text { Slope }=1.2 \times 10^{-5}\left(\mathrm{~s}^{-1}\right), \Delta G^{\ddagger}=25.0(\mathrm{kcal} / \mathrm{mol})
$$

Figure S 23 .
$\mathrm{k}_{\mathrm{d}}=$ Slope $=3.2 \times 10^{-5}\left(\mathrm{~s}^{-1}\right), \Delta G^{\ddagger}=25.2(\mathrm{kcal} / \mathrm{mol})$

Figure S 25 .
$\Delta H^{\ddagger}=$ intercept $=18.5(\mathrm{kcal} / \mathrm{mol})$,
$\Delta S^{\ddagger}=-$ slope $=-21.2(\mathrm{cal} / \mathrm{mol})$

```
7-H\cdot TPFB + Bu44NCI
```


Fig. ${ }^{1} \mathrm{H}$ NMR spectra ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) revealing the disociation ofthe macrocycle 5 from an equimolar mixture of $\mathrm{Bu}_{4} \mathrm{NCl}$ and $7-\mathrm{H} \cdot \operatorname{TPFB}(4 \mathrm{mM})$ over time; a) 4, b) 7 , c) 13 , d) 19 , e) 28 , f) 43 min .

Fig. ${ }^{1} \mathrm{H}$ NMR spectra ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) revealing the dissociation of the macrocycle 5 from an equimolar mixture of $\mathrm{Bu}_{4} \mathrm{NBr}$ and $7-\mathrm{H}^{\cdot} \quad$ TPFB (4 mM) over time; a) 14 , b) 20, c) 32 , d) 38 , e) 50 , and f) 56 min .

Fig. ${ }^{1} \mathrm{H}$ NMR spectra ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) revealing the dissociation of the macrocycle 5 from an equimolar mixture of $\mathrm{Bu}_{4} \mathrm{NI}$ and $7-\mathrm{H} \cdot \operatorname{TPFB}(4 \mathrm{mM})$ over time; a) 21 , b) 30 , c) 39 , d) 48 , e) 57 , and f) 63 min .

7-H. TPFB $+\mathrm{Bu}_{4} \mathrm{NPF}_{6}$

Fig. ${ }^{1} \mathrm{H}$ NMR spectra ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) revealing the dissociation of the macrocycle 5 from a mixture of $\mathrm{Bu}_{4} \mathrm{NPF}_{6}(24 \mathrm{mM})$ and $7-\mathrm{H} \cdot \mathrm{TPFB}(4 \mathrm{mM})$ over time; a) 0.4 , b) 2.5 , c) 4.6, d) 6.7 , e) 8.8 , and f) 10.9 h .

[^0]:

[^1]:

