

Supporting Information

© Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2010

Using a Threading-Followed-by-Swelling Approach to Synthesize [2]Rotaxanes

Jia-Ling Ko,^[a] Shau-Hua Ueng,^[a] Ching-Wei Chiu,^[a] Chien-Chen Lai,^[b] Yi-Hung Liu,^[a] Shie-Ming Peng,^[a] and Sheng-Hsien Chiu^{*[a]}

chem_201000074_sm_miscellaneous_information.pdf

	Page
¹ H and ¹³ C NMR spectra of all new compounds	S2–S57
¹ H NMR spectra of an equimolar mixture of macrocycle 12	
and thread 1-H·PF ₆	S58
The ¹ H NMR spectra of the swelling synthesis of rotaxane 14 -H·PF ₆	S59
The ¹ H NMR spectra of the swelling synthesis of rotaxane 28 -H·PF ₆	S60
The ¹ H NMR spectra of the swelling synthesis of rotaxane 32 -H·PF ₆	S61
The ¹ H NMR spectra of rotaxane 29- H•PF ₆ heated at 353 K in CD_3SOCD_3	S62
The ¹ H NMR spectra of rotaxane 31 -H•PF ₆ heated at 353 K in CD ₃ SOCD ₃	S63
The ¹ H NMR spectra of rotaxane 33 -H·PF ₆ heated at 353 K in CD_3SOCD_3	S64
The ¹ H NMR spectra of rotaxane 15 -H·PF ₆ heated at 353 K in CD_3SOCD_3	S65

Ţ

Pulse Sequence: s2pul

S3

•

·

Pulse Sequence: s2pul

٠

S7

S10

4

٧

13C OBSERVE

ppm (f1)

400MHz H¹ CD₃NO₂

 $400 MHz \ H^1 \ CD_3 CI_3$

S32

.

•

Pulse Sequence: s2pul

.

Varian-Haman Tayuring ang uning u	ningunda segunda segund			₩		11.j110.j11.e111.f11.y11.st11.st11.y11.st11.y11.st11.y11.st11.st			fortig the displacement of the last
180	160	140	120	100	80	60	40	20	ppm

.

•

-

Pulse Sequence: s2pul

*

Pulse Sequence: s2pul

32-H-PF6

.

¹H NMR spectra (400 MHz, CD₃CN, 298 K) of a) macrocycle 12, b) an equimolar mixture of 12 and 1-H·PF₆ (10mM), and c) 1-H·PF₆.

S59

The swelling synthesis of [2]rotaxane from 13 and 20-H·PF₆ (70 mM) in CD_3NO_2 at 318 K

¹H NMR spectra (400 MHz, CD₃SOCD₃, 298 K) of a) macrocycle 12, b) [2]rotaxane [31-H][PF₆] and c) heating solution b) at 343 K for 2 h. a) b) c) з 8 Ż 6 5 4 ż ppm 1

S64

S65