Chemical Communications

Capturing a [c2]Daisy Chain Using the Threading-Followed-by-Swelling Approach

Shau-Hua Ueng, Sheng-Yao Hsesh, Chien-Chen Lai, Yi-Hung Liu, Shie-Ming

Peng, and Sheng-Hsien Chiu*

SUPPORTING INFORMATION
Page

Experimental procedures and characterization data for
all new compounds \quad S2-S8

Partial ${ }^{1} \mathrm{H}$ NMR spectra of macroring 2, $\mathrm{DBA}^{2} \cdot \mathrm{PF}_{6}$ and their mixture S 9
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of macrocycle $2 \quad \mathrm{~S} 10-\mathrm{S} 11$
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of the amine 7 and its precursors \quad S12-S21
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of the aldehyde 6 and its precursors \quad S22-S35
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of the hermaphroditic monomer $5-\mathrm{H} \cdot \mathrm{PF}_{6} \quad \mathrm{~S} 36-\mathrm{S} 37$
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of the [c2]daisy chain $8-2 \mathrm{H} \cdot 2 \mathrm{PF}_{6} \quad \mathrm{~S} 38-\mathrm{S} 39$

Macrocycle 2. Sodium hydride ($0.72 \mathrm{~g}, 30.0 \mathrm{mmol}$) was added to a DMF solution $(600 \mathrm{~mL})$ of the diol $4(0.83 \mathrm{~g}, 6.0 \mathrm{mmol})$ and then the mixture was stirred at room temperature for 20 min . A solution of the dichloride $\mathbf{3}^{[1]}(2.32 \mathrm{~g}, 6 \mathrm{mmol})$ in DMF $(60 \mathrm{~mL})$ was slowly added over 2 h and then the mixture was stirred at room temperature for 10 days. The organic solvent was evaporated under reduced pressure and the yellow residue was then partitioned between ethyl acetate (300 mL) and water $(100 \mathrm{~mL})$. The organic layer was washed with water $(2 \times 100 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. The crude product was purified $\left(\mathrm{SiO}_{2}\right.$; hexane/ethyl acetate, 6/4) to afford the macrocycle 2 as a yellow solid ($0.19 \mathrm{~g}, 7 \%$). M.p. $131-133{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.41(\mathrm{~s}, 4 \mathrm{H}), 4.51(\mathrm{~s}, 4 \mathrm{H}), 5.18(\mathrm{~s}, 4 \mathrm{H})$, 6.73 (d, $J=8.1 \mathrm{~Hz}, 4 \mathrm{H}$), $7.12(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 4 \mathrm{H}), 7.28(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~s}$, 4 H), $7.64(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 69.2,71.3,71.6,115.4$, $120.3,126.8,129.6,136.9,136.9,157.4,157.5$ (one carbon signal is missing, possibly because of signal overlapping); HRMS (ESI): $m / z[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{29} \mathrm{H}_{27} \mathrm{NO}_{4} \mathrm{Na}$ calcd. 476.1838, found 476.1812.

Scheme S1. Synthesis of the amine 7
(1S,2R)-cis-2-Butyryloxymethyl-1-[(Z)-4-cyanobut-1-enyl]cyclopropane (II). A solution of (3-cyanopropyl)triphenylphosphonium bromide ($53.1 \mathrm{~g}, 130 \mathrm{mmol}$) in THF (650 mL) was cooled to $0^{\circ} \mathrm{C}$; NaHMDS (2 M in THF, $69 \mathrm{~mL}, 138 \mathrm{mmol}$) was added and then the mixture was stirred for 10 min . A solution of the aldehyde $\mathbf{I}^{[2]}$ $(14.7 \mathrm{~g}, 86.3 \mathrm{mmol})$ in THF $(130 \mathrm{~mL})$ was added and then the mixture was stirred at 0 ${ }^{\circ} \mathrm{C}$ for 3.5 h before being poured into petroleum ether $(1 \mathrm{~L})$. The precipitate was filtered off, and the filtrate was concentrated and purified $\left(\mathrm{SiO}_{2}\right.$; hexane/ethyl acetate, 7:3 then 6:4) to afford the alkene II as a yellow oil ($15.9 \mathrm{~g}, 83 \%$). $\quad[\alpha]_{\mathrm{D}}{ }^{23}=-75.0^{\circ}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.45(\mathrm{q}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.94(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.09$ (td, $J=8.0,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.39-1.44(\mathrm{~m}, 1 \mathrm{H}), 1.59-1.71$ (m; overlapped with a sextet at $1.62, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.28(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.39-2.43(\mathrm{~m}, 2 \mathrm{H}), 2.49-2.55(\mathrm{~m}$, $2 \mathrm{H}), 3.92(\mathrm{dd}, J=11.8,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{dd}, J=11.8,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{t}, J=9.8$ $\mathrm{Hz}, 1 \mathrm{H}), 5.45(\mathrm{td}, J=9.8,7.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 12.5,13.7$,
14.2, 17.1, 17.4, 18.5, 23.6, 36.1, 64.6, 119.1, 126.6, 131.1, 173.3; HRMS (ESI) m / z $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NaNO}_{2}$ calcd. 244.1314, found 244.1318.

(1S,2R)-cis-1-[(Z)-4-Cyanobut-1-enyl]-2-hydroxymethylcyclopropane

Alkene II ($15.9 \mathrm{~g}, 71.8 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(29.8 \mathrm{~g}, 216 \mathrm{mmol})$ were stirred in MeOH $(72 \mathrm{~mL})$ at room temperature for 1.5 h . The mixture was then partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}(300 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(200 \mathrm{~mL})$ and the organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to give the crude alcohol III as a colorless oil (10.9 g, quant.). $[\alpha]_{\mathrm{D}}{ }^{23}-73.9^{\circ} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.43(\mathrm{q}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.06(\mathrm{td}, J=$ $8.8,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.37-1.47(\mathrm{~m}, 1 \mathrm{H}), 1.53$ (br s, 1 H), 1.62-1.75 (m, 1 H$), 2.41-2.46$ (m, 2 H), 2.48-2.61 (m, 2 H), 3.46 (t, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.76-3.82(\mathrm{~m}, 1 \mathrm{H}), 5.30(\mathrm{t}, J$ $=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.47(\mathrm{dt}, J=10.4,7.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.7$, 13.5, 16.8, 20.2, 22.9, 61.7, 119.1, 125.5, 131.1; HRMS (ESI): $m / z[\mathrm{M}+\mathrm{Na}]^{+}$ $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{NaNO}$ calcd. 174.0895, found 174.0920.
(1R,2S)-cis-1-Formyl-2-[(Z)-4-cyanobut-1-enyl]cyclopropane (IV). A solution of the alcohol III $(15 \mathrm{~g}, 87.2 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(45 \mathrm{~mL})$ was added to a mixture of PCC $(37.6 \mathrm{~g}, 174 \mathrm{mmol}), \mathrm{NaOAc}(4.3 \mathrm{~g}, 52.3 \mathrm{mmol}), 4 \AA$ molecular sieves $(15.0 \mathrm{~g})$, and Celite (15 g) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(45 \mathrm{~mL})$ and then the mélange was stirred at room temperature for 2 h . After additional Celite (90 g) and ethyl ether (300 mL) had been added, the mixture was filtered through a pad of silica gel; the filtrate was concentrated and purified $\left(\mathrm{SiO}_{2}\right.$; hexane/ethyl acetate, 7:3) to afford the desired aldehyde IV as a colorless oil ($11.8 \mathrm{~g}, 79 \%$ from II). $\quad[\alpha]_{\mathrm{D}}{ }^{23}-231.9^{\circ} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.48(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.17-2.30(\mathrm{~m}, 2 \mathrm{H}), 2.37-2.47(\mathrm{~m}, 2 \mathrm{H})$, 2.47-2.60 (m, 2 H), $5.43-5.55(\mathrm{~m}, 2 \mathrm{H}), 9.36(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 15.5,17.2,21.5,23.5,30.0,119.0,128.0,128.9,200.0 ;$ HRMS (ESI): $m / z[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NaNO}$ calcd. 172.0738, found 172.0762.
(1S,2R)-cis-1-[(Z)-4-Cyanobut-1-enyl]-2-ethenylcyclopropane (V). NaHMDS (2 M in THF, $24.3 \mathrm{~mL}, 48.6 \mathrm{mmol}$) was added to a THF solution (320 mL) of methyltriphenylphosphonium bromide ($17.4 \mathrm{~g}, 48.6 \mathrm{mmol}$) at $-78{ }^{\circ} \mathrm{C}$ and then the mixture was stirred for 10 min . A solution of the aldehyde IV ($6.04 \mathrm{~g}, 40.5 \mathrm{mmol}$) in THF (80.0 mL) was added and then the mixture was stirred at $-78^{\circ} \mathrm{C}$ for 0.5 h and then warmed to $0{ }^{\circ} \mathrm{C}$ for 3.5 h . The mixture was poured into petroleum ether (500 $\mathrm{mL})$ and filtered. The filtrate was concentrated and the residue purified $\left(\mathrm{SiO}_{2}\right.$; hexane/ethyl acetate, $9: 1$) to afford the desired product \mathbf{V} as a yellow oil ($4.0 \mathrm{~g}, 67 \%$). $[\alpha]_{\mathrm{D}}{ }^{23}-133.2^{\circ} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.61(\mathrm{q}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.19(\mathrm{td}, J=$ $8.0,5.6 \mathrm{~Hz}, 1 \mathrm{H}$), 1.71-1.85 (m, 2 H), 2.35-2.47 (m, 2 H), 2.45-2.57 (m, 2 H), 5.00 (d,
$J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.19-5.30(\mathrm{~m}, 1 \mathrm{H}), 5.40-5.50(\mathrm{~m}, 1 \mathrm{H})$, $5.50-5.60(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.8,17.1,17.5,22.6,23.7,114.8$, 119.3, 125.7, 132.1, 137.2; HRMS (ESI): $m / z[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NaN}$ calcd. 170.0945, found 170.0924 .
(1S,2R)-cis-1-[(Z)-5-Aminopent-1-enyl]-2-ethenylcyclopropane (7). Lithium aluminum hydride ($2.51 \mathrm{~g}, 66.0 \mathrm{mmol}$) was added in small portions to a THF solution $(200 \mathrm{~mL})$ of the nitrile $\mathbf{V}(2.0 \mathrm{~g}, 13.2 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 5 h and then wet THF (100 mL), water (2 mL), and $\mathrm{MgSO}_{4}(20 \mathrm{~g})$ were added sequentially. The suspension was filtered and the filtrate concentrated to afford the crude amine 7 as a yellow oil (2.05 g , quant.), which was used in the next reaction without further purification. $[\alpha]_{\mathrm{D}}{ }^{22}-129.7^{\circ} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $0.48-0.62(\mathrm{~m}, 1 \mathrm{H}), 1.05-1.23(\mathrm{~m}, 1 \mathrm{H}), 1.53$ (quintet, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.64-1.75(\mathrm{~m}$, 1 H), 1.75-1.90 (m, 1 H), 2.18 (q, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), $2.70(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.98$ (d, $J=11.6 \mathrm{~Hz}, 1 \mathrm{H}$), $5.03-5.18$ (two overlapped doublets: $J=10.8 \mathrm{~Hz}$ at 5.05 and $J=$ 16.4 Hz at $5.11,2 \mathrm{H}), 5.38-5.45(\mathrm{~m}, 1 \mathrm{H}), 5.45-5.60(\mathrm{~m}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 14.8,17.2,22.5,25.0,33.7,41.8,114.3,128.8,130.1,137.8 ;$ HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{10} \mathrm{H}_{18} \mathrm{~N}$ calcd. 152.1439, found 152.1380.

Scheme S2. Synthesis of the [$c 2$]daisy chain $\mathbf{8 - 2 H} \cdot 2 \mathrm{PF}_{6}$

2,6-Bis(acetoxymethyl)-4-bromopyridine (VII). Acetic anhydride ($14.8 \mathrm{~mL}, 16.1$ $\mathrm{g}, 158 \mathrm{mmol}$) was added to a solution of 2,6-bis(hydroxymethyl)-4-bromopyridine (VI, $8.60 \mathrm{~g}, 39.4 \mathrm{mmol}$) and triethylamine ($24.9 \mathrm{~mL}, 17.9 \mathrm{~g}, 177 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(200 \mathrm{~mL})$ and then the mixture was heated under reflux for 2 h . After cooling to room temperature, the mixture was partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$ and saturated aqueous $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$. The organic layer was washed with water (2 $\times 100 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated to afford VII as a yellow solid $(11.0 \mathrm{~g}$, 92%). M.p. $78-80{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.13(\mathrm{~s}, 6 \mathrm{H}), 5.13(\mathrm{~s}, 4 \mathrm{H})$, 7.41 (s, 2 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 20.9,65.9,123.8,134.2,157.1,170.4 ;$ HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{11} \mathrm{H}_{13} \mathrm{BrNO}_{4}$ calcd. 302.0028, found 302.0008.

2,6-Bis(acetoxymethyl)-4-[4-(formyl)phenyl]pyridine (VIII). A mixture of 4-formylphenylboronic acid ($0.76 \mathrm{~g}, 5.1 \mathrm{mmol}$), bromide VI ($1.39 \mathrm{~g}, 4.6 \mathrm{mmol}$), and $\operatorname{Pd}(\mathrm{PPh})_{4}(0.11 \mathrm{~g}, 92 \mu \mathrm{~mol})$ in degassed toluene (37 mL) and saturated aqueous $\mathrm{NaHCO}_{3}(31 \mathrm{~mL})$ was stirred at $50^{\circ} \mathrm{C}$ for 72 h . After cooling to room temperature, the reaction mixture was extracted with ethyl acetate $(3 \times 30 \mathrm{~mL})$; the organic layers were combined, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. The crude product was purified (SiO_{2}; hexane/ethyl acetate, 1:1) to afford the aldehyde VIII as a white solid (1.22 g , 81\%). M.p. $76-78{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.14(\mathrm{~s}, 6 \mathrm{H}), 5.25(\mathrm{~s}, 4 \mathrm{H}$), $7.49(\mathrm{~s}, 2 \mathrm{H}), 7.76(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.97(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 10.05(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 20.9,66.6,119.1,127.9,130.3,136.5,143.7,148.8,156.5$, 170.5, 191.5; HRMS (ESI): $m / z[M+H]^{+} \mathrm{C}_{18} \mathrm{H}_{18} \mathrm{NO}_{5}$ calcd. 328.1185, found 328.1191 .

2,6-Bis(acetoxymethyl)-4-[4-(1,3-dioxolanyl)phenyl)]pyridine (IX). A mixture of the aldehyde VIII ($5.2 \mathrm{~g}, 15.9 \mathrm{mmol}$), ethylene glycol ($1.97 \mathrm{~g}, 31.8 \mathrm{mmol}$), and $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(0.3 \mathrm{~g}, 1.59 \mathrm{mmol})$ was heated under reflux in toluene $(100 \mathrm{~mL})$ for 16 h in a Dean-Stark apparatus. After cooling to room temperature, the mixture was partitioned between ethyl acetate $(200 \mathrm{~mL})$ and water $(100 \mathrm{~mL})$. The organic layer was washed with water $(2 \times 100 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. The crude product was then purified $\left(\mathrm{SiO}_{2}\right.$; hexane/ethyl acetate, $\left.1: 1\right)$ to afford the acetal $\mathbf{I X}$ as a yellow oil ($4.82 \mathrm{~g}, 82 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.14(\mathrm{~s}, 6 \mathrm{H}), 3.95-4.20(\mathrm{~m}$, 4 H), $5.23(\mathrm{~s}, 4 \mathrm{H}), 5.84(\mathrm{~s}, 1 \mathrm{H}), 7.45(\mathrm{~s}, 2 \mathrm{H}), 7.57(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 2 \mathrm{H}$) ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 20.8,65.3,66.7,103.1,119.0,127.1$, 127.1, 138.7, 139.1, 149.8, 156.1, 170.5; HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{20} \mathrm{H}_{22} \mathrm{NO}_{6}$ calcd. 372.1447, found 372.1436.

2,6-Bis(methanol)-4-[4-(1,3-dioxolanyl)phenyl)]pyridine (X). Sodium methoxide $(0.28 \mathrm{~g}, 5.2 \mathrm{mmol})$ was added to a MeOH solution $(65 \mathrm{~mL})$ of the acetal IX $(4.82 \mathrm{~g}$, 13.0 mmol) and then the mixture was heated under reflux for 4 h . After cooling to room temperature, IR-120 $\left(\mathrm{H}^{+}\right)$resin was added to the mixture until the pH reached 6.0-7.0. The suspension was filtered and the filtrate concentrated to afford the diol \mathbf{X} as a white solid (3.16 g , quant.). M.p. ${ }^{123-125}{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3} / \mathrm{CD}_{3} \mathrm{CN}, 1: 1\right) \delta 3.62(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.73-3.95(\mathrm{~m}, 4 \mathrm{H}), 4.48(\mathrm{~s}, 4 \mathrm{H}), 5.56(\mathrm{~s}, 1 \mathrm{H})$, $7.26(\mathrm{~s}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3} / \mathrm{CD}_{3} \mathrm{CN}, 1: 1\right) \delta 63.6,64.5,102.3,115.8,126.2,126.5,138.2,138.4,148.2$, 159.4; HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{16} \mathrm{H}_{18} \mathrm{NO}_{4}$ calcd. 288.1236, found 288.1228 .

Macrocycle XI. Sodium hydride ($1.3 \mathrm{~g}, 54.0 \mathrm{mmol}$) was added to a solution of diol $\mathbf{X}(4.18 \mathrm{~g}, 10.8 \mathrm{mmol})$ in DMF $(1.08 \mathrm{~L})$ and then the mixture was stirred at room temperature for 20 min . A solution of the dichloride $\mathbf{3}^{[1]}(2.63 \mathrm{~g}, 10.8 \mathrm{mmol})$ in DMF (150 mL) was added slowly to the alkoxide solution over 2 h and then the mixture was stirred at room temperature for 10 d . After evaporating the organic solvent under reduced pressure, the yellow residue was suspended in ethyl acetate $(300 \mathrm{~mL})$ and washed with water $(3 \times 100 \mathrm{~mL})$; the solution was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The crude product was purified $\left(\mathrm{SiO}_{2} ; \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 98: 2\right)$ to afford the macrocycle XI as a white solid ($0.44 \mathrm{~g}, 7 \%$). M.p. $180-182{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.00-4.23(\mathrm{~m}, 4 \mathrm{H}), 4.45(\mathrm{~s}, 4 \mathrm{H}), 4.53(\mathrm{~s}, 4 \mathrm{H}), 5.18(\mathrm{~s}, 4 \mathrm{H}), 5.86(\mathrm{~s}$, $1 \mathrm{H}), 6.73(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.12(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.28(\mathrm{~s}, 4 \mathrm{H}), 7.49(\mathrm{~s}, 2 \mathrm{H})$, $7.57(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.67(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $65.4,69.3,71.4,71.8,103.3,115.4,118.4,126.9,127.1,127.2,129.7,129.8,137.0$, 138.7, 139.3, 149.1, 157.6, 158.3; HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{38} \mathrm{H}_{36} \mathrm{NO}_{6}$ calcd. 602.2543 , found 602.2528 .

Aldehyde 6. $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(0.13 \mathrm{~g}, 0.66 \mathrm{mmol})$ was added to a solution of the macrocycle XI ($0.4 \mathrm{~g}, 0.66 \mathrm{mmol}$) in acetone/water ($10: 1,4.4 \mathrm{~mL}$) and then the mixture was stirred at room temperature for 16 h before being partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ and water $(10 \mathrm{~mL})$. The organic layer was washed with water $(2 \times$ $10 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. The crude product was purified $\left(\mathrm{SiO}_{2}\right.$; $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 98: 2\right)$ to afford the aldehyde $\mathbf{6}$ as a white solid ($0.33 \mathrm{~g}, 90 \%$). M.p. $67-69{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.46(\mathrm{~s}, 4 \mathrm{H}), 4.54(\mathrm{~s}, 4 \mathrm{H}), 5.18(\mathrm{~s}, 4 \mathrm{H})$, $6.73(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 4 \mathrm{H}), 7.12(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 4 \mathrm{H}), 7.28(\mathrm{~s}, 4 \mathrm{H}), 7.52(\mathrm{~s}, 2 \mathrm{H}), 7.81(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.97(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 10.1(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 69.2,71.2,71.9,115.4,118.4,126.9,127.8,129.5,129.8,130.3,136.4,137.0,144.4$, 148.1, 157.6, 158.6, 191.7; HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{36} \mathrm{H}_{32} \mathrm{NO}_{5}$ calcd. 558.2280,

Hermaphroditic Monomer 5-H•PF \mathbf{F}_{6}. Macrocycle $\mathbf{6}(0.33 \mathrm{~g}, 0.59 \mathrm{mmol})$, the amine $7(0.11 \mathrm{~g}, 0.71 \mathrm{mmol})$, and potassium carbonate ($49 \mathrm{mg}, 0.35 \mathrm{mmol}$) were stirred in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ and then slowly warmed to room temperature over 16 h . The mixture was then filtered and the filtrate concentrated to give a solid residue. The residue was dissolved in $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(10: 3,13 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ and then NaBH_{4} $(45 \mathrm{mg}, 1.18 \mathrm{mmol})$ was added; the mixture was then stirred for 4 h at $0^{\circ} \mathrm{C}$. The mixture was then partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ and water $(10 \mathrm{~mL})$; the organic layer was washed with water $(2 \times 10 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. The crude product was purified $\left(\mathrm{SiO}_{2} ; \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 96: 4\right)$ to afford the amine 5 as a yellow residue ($90.0 \mathrm{mg}, 23 \%$). $[\alpha]_{\mathrm{D}}{ }^{25}-36.0^{\circ} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.55$ (q, $J=5.2 \mathrm{~Hz}, 1 \mathrm{H}$), 1.13 (td, $J=8.2,5.2 \mathrm{~Hz}, 1 \mathrm{H}$), 1.63 (quintet, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), $1.65-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.92(\mathrm{~m}, 1 \mathrm{H}), 2.20(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.67(\mathrm{t}, J=7.2 \mathrm{~Hz}$, 2 H), 3.84 ($\mathrm{s}, 2 \mathrm{H}$), 4.45 ($\mathrm{s}, 4 \mathrm{H}$), 4.53 ($\mathrm{s}, 4 \mathrm{H}$), 4.98 (d, $J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.02-5.15$ (m, 2 H), $5.18(\mathrm{~s}, 4 \mathrm{H}), 5.44(\mathrm{dt}, J=10.5,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.48-5.60(\mathrm{~m}, 1 \mathrm{H}), 6.72(\mathrm{~d}, J$ $=8.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.12(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.28(\mathrm{~s}, 4 \mathrm{H}), 7.42(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.49$ (s, 2 H), $7.62(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.7,17.1,22.4$, 25.3, 29.8, 48.9, 53.5, 69.2, 71.4, 71.7, 114.4, 115.4, 118.2, 126.9, 127.1, 128.7, 129.1, 129.7, 130.2, 137.0, 138.0, 141.4, 149.2, 157.5, 158.1 (two carbon signals are missing, possibly because of signal overlapping); HRMS (ESI): $m / z[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{46} \mathrm{H}_{48} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}$ calcd. 715.3512, found 715.3501. $1 \mathrm{~N} \mathrm{HCl}(57 \mu \mathrm{~L})$ was added to a solution of the amine $5(40 \mathrm{mg}, 57 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ and $\mathrm{CH}_{3} \mathrm{CN}(10 \mathrm{~mL})$ and then saturated aqueous KPF_{6} solution (20 mL) was added. The organic solvent was evaporated under reduced pressure and the precipitate was filtered off to give the monomer 5-H $\cdot \mathrm{PF}_{6}$ as a white solid ($40 \mathrm{mg}, 84 \%$). M.p. $>230{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25}-13.0^{\circ} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CD}_{3} \mathrm{CN}, 10: 1\right) \delta-0.25$ to $-0.50(\mathrm{~m}, 2 \mathrm{H}), 0.67(\mathrm{q}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H})$, $1.11-1.25(\mathrm{~m}, 2 \mathrm{H}), 1.30(\mathrm{td}, J=8.2,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.40-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.80-1.95(\mathrm{~m}$, 2 H), 2.27-2.42 (m, 2 H), 4.38 (br t, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}$), 4.53-4.69 (m, 4 H), 4.77 (br d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 5.02 (d, $J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.10-5.30(\mathrm{~m}, 7 \mathrm{H}), 5.48-5.63(\mathrm{~m}, 1 \mathrm{H})$, 6.82-6.91 (m, 2 H), 6.93-7.07 (m, 4 H), 7.10-7.20 (m, 6 H), 7.27 (s, 4 H), 7.42 (br s, 2 H), 7.55 (br d, $J=5.6 \mathrm{~Hz}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CD}_{3} \mathrm{CN}, 5: 1$) $\delta 15.0$, 17.2, 22.7, 23.7, 26.3, 46.4, 50.6, 67.4, 73.6, 73.8, 114.1, 115.2, 119.2, 126.6, 126.9, 127.2, 128.0, 129.0, 129.2, 129.7, 130.5, 135.8, 136.7, 136.9, 147.7, 154.6, 156.8; HRMS (ESI): $m / z[5-H]^{+} \mathrm{C}_{46} \mathrm{H}_{49} \mathrm{~N}_{2} \mathrm{O}_{4}$ calcd. 693.3693, found 693.3674.
[$\mathbf{c 2}$]Daisy Chain $\mathbf{8 - 2 H} \cdot \mathbf{2 P F} \mathbf{F}_{6}$. A solution of monomer $\mathbf{5}-\mathrm{H} \cdot \mathrm{PF}_{6}(40 \mathrm{mg}, 48 \mu \mathrm{~mol})$ in chloroform/acetonitrile ($10: 1,4.4 \mathrm{~mL}$) was heated at $40^{\circ} \mathrm{C}$ for 120 h . The solution
was concentrated and the residue purified $\left(\mathrm{SiO}_{2} ; \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 96: 4\right)$ to afford $8-2 \mathrm{H} \cdot 2 \mathrm{PF}_{6}$ as a white solid ($31 \mathrm{mg}, 77 \%$). M.p. $>235{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3} / \mathrm{CD}_{3} \mathrm{CN}, 5: 1\right) \delta-0.42$ to $-0.25(\mathrm{~m}, 4 \mathrm{H}), 0.38-0.62(\mathrm{~m}, 4 \mathrm{H}), 0.92-1.08(\mathrm{~m}, 4$ H), 2.00-2.15 (m, 2 H), 2.17-2.32 (m, 4 H), 2.35-2.45 (m, 4 H), 2.67-3.02 (m, 4 H), $4.34(\mathrm{dd}, J=9.0,6.4 \mathrm{~Hz}, 4 \mathrm{H}), 4.55(\mathrm{~s}, 8 \mathrm{H}), 4.69(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 8 \mathrm{H}), 5.16(\mathrm{~s}, 8 \mathrm{H})$, 5.52 (dd, $J=11.3,4.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.61-5.77(\mathrm{~m}, 6 \mathrm{H}), 6.82(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 6.94$ (d, $J=6.9 \mathrm{~Hz}, 4 \mathrm{H}), 7.02(\mathrm{~s}, 4 \mathrm{H}), 7.04-7.15(\mathrm{~m}, 8 \mathrm{H}), 7.22(\mathrm{~s}, 8 \mathrm{H}), 7.30(\mathrm{~d}, J=6.9 \mathrm{H}, 4$ H), $7.46(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CD}_{3} \mathrm{CN}, 5: 1$) $\delta 23.8,28.6$, $31.8,32.4,36.7,46.6,50.6,67.4,73.7,73.8,115.4,119.6,127.1,127.4,127.9,128.4$, $128.5,128.6,129.5,130.2,130.9,134.3,136.3,137.3,148.2,155.2,157.4$; HRMS (ESI): $m / z\left[8-2 \mathrm{H} \cdot \mathrm{PF}_{6}\right]^{+} \mathrm{C}_{92} \mathrm{H}_{98} \mathrm{~F}_{6} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{P}$ calcd. 1531.7028, found 1531.7066.
[1] A. Kannan and P. Rajakumar Synth. Commun., 1995, 25, 3053-3065.
[2] D. Grandjean, P. Pale and J. Chuche, Tetrahedron, 1991, 47, 1215-1230.

Figure 1. Partial ${ }^{1} \mathrm{H}$ NMR spectra ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}$) of (a) macrocycle 2, (b) an equimolar mixture of $\mathbf{2}$ and $\mathrm{DBA} \cdot \mathrm{PF}_{6}(10 \mathrm{mM})$, and (c) $\mathrm{DBA} \cdot \mathrm{PF}_{6}$. The descriptors "UC" and "C" refer to the uncomplexed and complexed states, respectively.

400 MHz H 1 hsy ring

400 MHz C13 (250 p to -10 p) hsy ring

Pulse Sequence: szpul

Puise Sequence: s2pul

Pulse Sequence: s2pul

Standard 1 H observe

Pulse Sequence: s2pul

Pulse Sequence: s2pul

Pulse Sequence: s2pul

Pulse Sequence: s2pul

Pulse Sequence: s2pul

$400 \mathrm{MHz} \mathrm{C} 13(250 \mathrm{p}$ to $-10 \mathrm{p})$ shu4104a

VII

$400 \mathrm{MHz} \mathrm{H1} \mathrm{shusuzuki} \mathrm{aldehyde}$

$400 \mathrm{MHz} \mathrm{C13} \mathrm{(250p} \mathrm{to}-10 \mathrm{p})$ suzuki aldehyde

VIII

ppm	180	160	140	120	100	80	60

400 MHz H1 suzukiacetal

$400 \mathrm{MHz} \mathrm{C13} \mathrm{(250p} \mathrm{to}-10 \mathrm{p})$ suzuki acetal
(

ppm	180	160	140	120	100	80	60	40	20

400 MHz H 1 suzuki diol

$400 \mathrm{MHz} \mathrm{C13} \mathrm{(250p} \mathrm{to}-10 \mathrm{p}$ ）suzuki diol

品塄志呂
－000io

400MHz H1 shu4037a

$400 \mathrm{MHz} \mathrm{C13} \mathrm{(250p} \mathrm{to}-10 \mathrm{p}$) shu4037a

ल

$400 \mathrm{MHz} \mathrm{H1}$ shu4052a

$400 \mathrm{MHz} \mathrm{C13} \mathrm{(250p} \mathrm{to}-10 \mathrm{p})$ shu4052a

$400 \mathrm{MHz} \mathrm{H1}$ shuDCHOh

$400 \mathrm{MHz} \mathrm{H1}$ shuDC dimer

$8-2 \mathrm{H} \cdot 2 \mathrm{PF}_{6}$

6

 - - 00000

