# **Chemical Communications**

### Capturing a [*c*2]Daisy Chain Using the Threading-Followed-by-Swelling Approach

Shau-Hua Ueng, Sheng-Yao Hsesh, Chien-Chen Lai, Yi-Hung Liu, Shie-Ming

Peng, and Sheng-Hsien Chiu\*

### SUPPORTING INFORMATION

|                                                                                                          | Page    |
|----------------------------------------------------------------------------------------------------------|---------|
|                                                                                                          |         |
| Experimental procedures and characterization data for                                                    |         |
| all new compounds                                                                                        | S2–S8   |
| Partial <sup>1</sup> H NMR spectra of macroring <b>2</b> , DBA·PF <sub>6</sub> and their mixture         | S9      |
| <sup>1</sup> H and <sup>13</sup> C NMR spectra of macrocycle <b>2</b>                                    | S10–S11 |
| <sup>1</sup> H and <sup>13</sup> C NMR spectra of the amine <b>7</b> and its precursors                  | S12–S21 |
| <sup>1</sup> H and <sup>13</sup> C NMR spectra of the aldehyde <b>6</b> and its precursors               | S22–S35 |
| <sup>1</sup> H and <sup>13</sup> C NMR spectra of the hermaphroditic monomer <b>5</b> -H·PF <sub>6</sub> | S36–S37 |
| <sup>1</sup> H and <sup>13</sup> C NMR spectra of the [c2]daisy chain 8-2H·2PF <sub>6</sub>              | S38–S39 |

Macrocycle 2. Sodium hydride (0.72 g, 30.0 mmol) was added to a DMF solution (600 mL) of the diol 4 (0.83 g, 6.0 mmol) and then the mixture was stirred at room temperature for 20 min. A solution of the dichloride  $3^{[1]}$  (2.32 g, 6 mmol) in DMF (60 mL) was slowly added over 2 h and then the mixture was stirred at room The organic solvent was evaporated under reduced temperature for 10 days. pressure and the vellow residue was then partitioned between ethyl acetate (300 mL) and water (100 mL). The organic layer was washed with water ( $2 \times 100$  mL), dried (MgSO<sub>4</sub>), and concentrated. The crude product was purified (SiO<sub>2</sub>; hexane/ethyl acetate, 6/4) to afford the macrocycle 2 as a yellow solid (0.19 g, 7%). M.p. 131–133 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 4.41 (s, 4 H), 4.51 (s, 4 H), 5.18 (s, 4 H), 6.73 (d, J = 8.1 Hz, 4 H), 7.12 (d, J = 8.1 Hz, 4 H), 7.28 (d, J = 7.7 Hz, 2 H), 7.30 (s, 4 H), 7.64 (t, J = 7.7 Hz, 1 H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  69.2, 71.3, 71.6, 115.4, 120.3, 126.8, 129.6, 136.9, 136.9, 157.4, 157.5 (one carbon signal is missing, possibly because of signal overlapping); HRMS (ESI):  $m/z [M + Na]^+ C_{29}H_{27}NO_4Na$  calcd. 476.1838, found 476.1812.



Scheme S1. Synthesis of the amine 7

(1*S*,2*R*)-*cis*-2-Butyryloxymethyl-1-[(*Z*)-4-cyanobut-1-enyl]cyclopropane (II). A solution of (3-cyanopropyl)triphenylphosphonium bromide (53.1 g, 130 mmol) in THF (650 mL) was cooled to 0 °C; NaHMDS (2 M in THF, 69 mL, 138 mmol) was added and then the mixture was stirred for 10 min. A solution of the aldehyde  $I^{[2]}$  (14.7 g, 86.3 mmol) in THF (130 mL) was added and then the mixture was stirred at 0 °C for 3.5 h before being poured into petroleum ether (1 L). The precipitate was filtered off, and the filtrate was concentrated and purified (SiO<sub>2</sub>; hexane/ethyl acetate, 7:3 then 6:4) to afford the alkene II as a yellow oil (15.9 g, 83%).  $[\alpha]_D^{23} = -75.0^\circ$ ; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  0.45 (q, *J* = 4.8 Hz, 1 H), 0.94 (t, *J* = 7.2 Hz, 3 H), 1.09 (td, *J* = 8.0, 4.8 Hz, 1 H), 1.39–1.44 (m, 1 H), 1.59–1.71 (m; overlapped with a sextet at 1.62, *J* = 7.2 Hz, 3 H), 2.28 (t, *J* = 7.2 Hz, 2 H), 2.39–2.43 (m, 2 H), 2.49–2.55 (m, 2 H), 3.92 (dd, *J* = 11.8, 8.8 Hz, 1 H), 4.18 (dd, *J* = 11.8, 7.0 Hz, 1 H), 5.23 (t, *J* = 9.8 Hz, 1 H), 5.45 (td, *J* = 9.8, 7.6 Hz, 1 H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  12.5, 13.7,

14.2, 17.1, 17.4, 18.5, 23.6, 36.1, 64.6, 119.1, 126.6, 131.1, 173.3; HRMS (ESI) m/z [M + Na]<sup>+</sup> C<sub>13</sub>H<sub>19</sub>NaNO<sub>2</sub> calcd. 244.1314, found 244.1318.

(1*S*,2*R*)-*cis*-1-[(*Z*)-4-Cyanobut-1-enyl]-2-hydroxymethylcyclopropane (III). Alkene II (15.9 g, 71.8 mmol) and K<sub>2</sub>CO<sub>3</sub> (29.8 g, 216 mmol) were stirred in MeOH (72 mL) at room temperature for 1.5 h. The mixture was then partitioned between CH<sub>2</sub>Cl<sub>2</sub> (300 mL) and H<sub>2</sub>O (200 mL) and the organic layer was dried (MgSO<sub>4</sub>) and concentrated to give the crude alcohol III as a colorless oil (10.9 g, quant.).  $[\alpha]_D^{23}$  -73.9°; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  0.43 (q, *J* = 5.2 Hz, 1 H), 1.06 (td, *J* = 8.8, 5.2 Hz, 1 H), 1.37–1.47 (m, 1 H), 1.53 (br s, 1 H), 1.62–1.75 (m, 1 H), 2.41–2.46 (m, 2 H), 2.48–2.61 (m, 2 H), 3.46 (t, *J* = 8.8 Hz, 1 H), 3.76–3.82 (m, 1 H), 5.30 (t, *J* = 10.4 Hz, 1 H), 5.47 (dt, *J* = 10.4, 7.2 Hz, 1 H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  11.7, 13.5, 16.8, 20.2, 22.9, 61.7, 119.1, 125.5, 131.1; HRMS (ESI): *m/z* [M + Na]<sup>+</sup> C<sub>9</sub>H<sub>13</sub>NaNO calcd. 174.0895, found 174.0920.

(1*R*,2*S*)-*cis*-1-Formyl-2-[(*Z*)-4-cyanobut-1-enyl]cyclopropane (IV). A solution of the alcohol III (15 g, 87.2 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (45 mL) was added to a mixture of PCC (37.6 g, 174 mmol), NaOAc (4.3 g, 52.3 mmol), 4 Å molecular sieves (15.0 g), and Celite (15 g) in CH<sub>2</sub>Cl<sub>2</sub> (45 mL) and then the mélange was stirred at room temperature for 2 h. After additional Celite (90 g) and ethyl ether (300 mL) had been added, the mixture was filtered through a pad of silica gel; the filtrate was concentrated and purified (SiO<sub>2</sub>; hexane/ethyl acetate, 7:3) to afford the desired aldehyde IV as a colorless oil (11.8 g, 79% from II).  $[\alpha]_D^{23}$  –231.9°; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  1.48 (t, *J* = 7.2 Hz, 2 H), 2.17–2.30 (m, 2 H), 2.37–2.47 (m, 2 H), 2.47–2.60 (m, 2 H), 5.43–5.55 (m, 2 H), 9.36 (d, *J* = 5.2 Hz, 1 H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  15.5, 17.2, 21.5, 23.5, 30.0, 119.0, 128.0, 128.9, 200.0; HRMS (ESI): *m/z* [M + Na]<sup>+</sup>C<sub>9</sub>H<sub>11</sub>NaNO calcd. 172.0738, found 172.0762.

(1*S*,2*R*)-*cis*-1-[(*Z*)-4-Cyanobut-1-enyl]-2-ethenylcyclopropane (V). NaHMDS (2 M in THF, 24.3 mL, 48.6 mmol) was added to a THF solution (320 mL) of methyltriphenylphosphonium bromide (17.4 g, 48.6 mmol) at -78 °C and then the mixture was stirred for 10 min. A solution of the aldehyde IV (6.04 g, 40.5 mmol) in THF (80.0 mL) was added and then the mixture was stirred at -78 °C for 0.5 h and then warmed to 0 °C for 3.5 h. The mixture was poured into petroleum ether (500 mL) and filtered. The filtrate was concentrated and the residue purified (SiO<sub>2</sub>; hexane/ethyl acetate, 9:1) to afford the desired product V as a yellow oil (4.0 g, 67%). [ $\alpha$ ]<sub>D</sub><sup>23</sup> –133.2°; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  0.61 (q, *J* = 5.6 Hz, 1 H), 1.19 (td, *J* = 8.0, 5.6 Hz, 1 H), 1.71–1.85 (m, 2 H), 2.35–2.47 (m, 2 H), 2.45–2.57 (m, 2 H), 5.00 (d,

J = 10.4 Hz, 1 H), 5.12 (d, J = 17.2 Hz, 1 H), 5.19–5.30 (m, 1 H), 5.40–5.50 (m, 1 H), 5.50–5.60 (m, 1 H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  14.8, 17.1, 17.5, 22.6, 23.7, 114.8, 119.3, 125.7, 132.1, 137.2; HRMS (ESI): m/z [M + Na]<sup>+</sup> C<sub>10</sub>H<sub>13</sub>NaN calcd. 170.0945, found 170.0924.

(1*S*,2*R*)-*cis*-1-[(*Z*)-5-Aminopent-1-enyl]-2-ethenylcyclopropane (7). Lithium aluminum hydride (2.51 g, 66.0 mmol) was added in small portions to a THF solution (200 mL) of the nitrile V (2.0 g, 13.2 mmol) at 0 °C. The mixture was stirred at 0 °C for 5 h and then wet THF (100 mL), water (2 mL), and MgSO<sub>4</sub> (20 g) were added sequentially. The suspension was filtered and the filtrate concentrated to afford the crude amine 7 as a yellow oil (2.05 g, quant.), which was used in the next reaction without further purification.  $[\alpha]_D^{22}$  –129.7°; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  0.48–0.62 (m, 1 H), 1.05–1.23 (m, 1 H), 1.53 (quintet, *J* = 7.5 Hz, 2 H), 1.64–1.75 (m, 1 H), 1.75–1.90 (m, 1 H), 2.18 (q, *J* = 7.5 Hz, 2 H), 2.70 (t, *J* = 7.5 Hz, 2 H), 4.98 (d, *J* = 11.6 Hz, 1 H), 5.03–5.18 (two overlapped doublets: *J* = 10.8 Hz at 5.05 and *J* = 16.4 Hz at 5.11, 2 H), 5.38–5.45 (m, 1 H), 5.45–5.60 (m, 1 H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  14.8, 17.2, 22.5, 25.0, 33.7, 41.8, 114.3, 128.8, 130.1, 137.8; HRMS (ESI): m/z [M + H]<sup>+</sup> C<sub>10</sub>H<sub>18</sub>N calcd. 152.1439, found 152.1380.



Scheme S2. Synthesis of the [c2] daisy chain 8-2H·2PF<sub>6</sub>

**2,6-Bis(acetoxymethyl)-4-bromopyridine (VII).** Acetic anhydride (14.8 mL, 16.1 g, 158 mmol) was added to a solution of 2,6-bis(hydroxymethyl)-4-bromopyridine (**VI**, 8.60 g, 39.4 mmol) and triethylamine (24.9 mL, 17.9 g, 177 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (200 mL) and then the mixture was heated under reflux for 2 h. After cooling to room temperature, the mixture was partitioned between CH<sub>2</sub>Cl<sub>2</sub> (200 mL) and saturated aqueous NaHCO<sub>3</sub> (100 mL). The organic layer was washed with water (2 × 100 mL), dried (MgSO<sub>4</sub>), and concentrated to afford **VII** as a yellow solid (11.0 g, 92%). M.p. 78–80 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  2.13 (s, 6 H), 5.13 (s, 4 H), 7.41 (s, 2 H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  20.9, 65.9, 123.8, 134.2, 157.1, 170.4; HRMS (ESI): *m/z* [M + H]<sup>+</sup> C<sub>11</sub>H<sub>13</sub>BrNO<sub>4</sub> calcd. 302.0028, found 302.0008.

**2,6-Bis(acetoxymethyl)-4-[4-(formyl)phenyl]pyridine (VIII).** A mixture of 4-formylphenylboronic acid (0.76 g, 5.1 mmol), bromide **VI** (1.39 g, 4.6 mmol), and Pd(PPh)<sub>4</sub> (0.11 g, 92 µmol) in degassed toluene (37 mL) and saturated aqueous NaHCO<sub>3</sub> (31 mL) was stirred at 50 °C for 72 h. After cooling to room temperature, the reaction mixture was extracted with ethyl acetate ( $3 \times 30$  mL); the organic layers were combined, dried (MgSO<sub>4</sub>), and concentrated. The crude product was purified (SiO<sub>2</sub>; hexane/ethyl acetate, 1:1) to afford the aldehyde **VIII** as a white solid (1.22 g, 81%). M.p. 76–78 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  2.14 (s, 6 H), 5.25 (s, 4 H), 7.49 (s, 2 H), 7.76 (d, *J* = 8.2 Hz, 2 H), 7.97 (d, *J* = 8.2 Hz, 2 H), 10.05 (s, 1 H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  20.9, 66.6, 119.1, 127.9, 130.3, 136.5, 143.7, 148.8, 156.5, 170.5, 191.5; HRMS (ESI): *m/z* [M + H]<sup>+</sup> C<sub>18</sub>H<sub>18</sub>NO<sub>5</sub> calcd. 328.1185, found 328.1191.

**2,6-Bis(acetoxymethyl)-4-[4-(1,3-dioxolanyl)phenyl)]pyridine (IX).** A mixture of the aldehyde **VIII** (5.2 g, 15.9 mmol), ethylene glycol (1.97 g, 31.8 mmol), and TsOH·H<sub>2</sub>O (0.3 g, 1.59 mmol) was heated under reflux in toluene (100 mL) for 16 h in a Dean–Stark apparatus. After cooling to room temperature, the mixture was partitioned between ethyl acetate (200 mL) and water (100 mL). The organic layer was washed with water ( $2 \times 100$  mL), dried (MgSO<sub>4</sub>), and concentrated. The crude product was then purified (SiO<sub>2</sub>; hexane/ethyl acetate, 1:1) to afford the acetal **IX** as a yellow oil (4.82 g, 82%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  2.14 (s, 6 H), 3.95–4.20 (m, 4 H), 5.23 (s, 4 H), 5.84 (s, 1 H), 7.45 (s, 2 H), 7.57 (d, *J* = 8.5 Hz, 2 H), 7.61 (d, *J* = 8.5 Hz, 2 H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  20.8, 65.3, 66.7, 103.1, 119.0, 127.1, 127.1, 138.7, 139.1, 149.8, 156.1, 170.5; HRMS (ESI): *m/z* [M + H]<sup>+</sup> C<sub>20</sub>H<sub>22</sub>NO<sub>6</sub> calcd. 372.1447, found 372.1436.

**2,6-Bis(methanol)-4-[4-(1,3-dioxolanyl)phenyl)]pyridine (X).** Sodium methoxide (0.28 g, 5.2 mmol) was added to a MeOH solution (65 mL) of the acetal **IX** (4.82 g, 13.0 mmol) and then the mixture was heated under reflux for 4 h. After cooling to room temperature, IR-120 (H<sup>+</sup>) resin was added to the mixture until the pH reached 6.0–7.0. The suspension was filtered and the filtrate concentrated to afford the diol **X** as a white solid (3.16 g, quant.). M.p. 123–125 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>/CD<sub>3</sub>CN, 1:1)  $\delta$  3.62 (br s, 2 H), 3.73–3.95 (m, 4 H), 4.48 (s, 4 H), 5.56 (s, 1 H), 7.26 (s, 2 H), 7.33 (d, *J* = 8.2 Hz, 2 H), 7.46 (d, *J* = 8.2 Hz, 2 H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>/CD<sub>3</sub>CN, 1:1)  $\delta$  63.6, 64.5, 102.3, 115.8, 126.2, 126.5, 138.2, 138.4, 148.2, 159.4; HRMS (ESI): *m/z* [M + H]<sup>+</sup> C<sub>16</sub>H<sub>18</sub>NO<sub>4</sub> calcd. 288.1236, found 288.1228.

**Macrocycle XI.** Sodium hydride (1.3 g, 54.0 mmol) was added to a solution of diol **X** (4.18 g, 10.8 mmol) in DMF (1.08 L) and then the mixture was stirred at room temperature for 20 min. A solution of the dichloride  $3^{[1]}$  (2.63 g, 10.8 mmol) in DMF (150 mL) was added slowly to the alkoxide solution over 2 h and then the mixture was stirred at room temperature for 10 d. After evaporating the organic solvent under reduced pressure, the yellow residue was suspended in ethyl acetate (300 mL) and washed with water (3 × 100 mL); the solution was dried (MgSO<sub>4</sub>) and concentrated. The crude product was purified (SiO<sub>2</sub>; CH<sub>2</sub>Cl<sub>2</sub>/MeOH, 98:2) to afford the macrocycle **XI** as a white solid (0.44 g, 7%). M.p. 180–182 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  4.00–4.23 (m, 4 H), 4.45 (s, 4 H), 4.53 (s, 4 H), 5.18 (s, 4 H), 5.86 (s, 1 H), 6.73 (d, *J* = 8.6 Hz, 4 H), 7.12 (d, *J* = 8.6 Hz, 4 H), 7.28 (s, 4 H), 7.49 (s, 2 H), 7.57 (d, *J* = 8.3 Hz, 2 H), 7.67 (d, *J* = 8.3 Hz, 2 H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  65.4, 69.3, 71.4, 71.8, 103.3, 115.4, 118.4, 126.9, 127.1, 127.2, 129.7, 129.8, 137.0, 138.7, 139.3, 149.1, 157.6, 158.3; HRMS (ESI): *m*/z [M+H]<sup>+</sup> C<sub>38</sub>H<sub>36</sub>NO<sub>6</sub> calcd. 602.2543, found 602.2528.

Aldehyde 6. TsOH·H<sub>2</sub>O (0.13 g, 0.66 mmol) was added to a solution of the macrocycle XI (0.4 g, 0.66 mmol) in acetone/water (10:1, 4.4 mL) and then the mixture was stirred at room temperature for 16 h before being partitioned between CH<sub>2</sub>Cl<sub>2</sub> (30 mL) and water (10 mL). The organic layer was washed with water (2 × 10 mL), dried (MgSO<sub>4</sub>), and concentrated. The crude product was purified (SiO<sub>2</sub>; CH<sub>2</sub>Cl<sub>2</sub>/MeOH, 98:2) to afford the aldehyde **6** as a white solid (0.33 g, 90%). M.p. 67–69 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  4.46 (s, 4 H), 4.54 (s, 4 H), 5.18 (s, 4 H), 6.73 (d, *J* = 8.1 Hz, 4 H), 7.12 (d, *J* = 8.1 Hz, 4 H), 7.28 (s, 4 H), 7.52 (s, 2 H), 7.81 (d, *J* = 8.0 Hz, 2 H), 7.97 (d, *J* = 8.0 Hz, 2 H), 10.1 (s, 1 H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  69.2, 71.2, 71.9, 115.4, 118.4, 126.9, 127.8, 129.5, 129.8, 130.3, 136.4, 137.0, 144.4, 148.1, 157.6, 158.6, 191.7; HRMS (ESI): *m*/*z* [M + H]<sup>+</sup> C<sub>36</sub>H<sub>32</sub>NO<sub>5</sub> calcd. 558.2280,

found 558.2275.

Hermaphroditic Monomer 5-H·PF<sub>6</sub>. Macrocycle 6 (0.33 g, 0.59 mmol), the amine 7 (0.11 g, 0.71 mmol), and potassium carbonate (49 mg, 0.35 mmol) were stirred in CH<sub>2</sub>Cl<sub>2</sub> (10 mL) at 0 °C and then slowly warmed to room temperature over 16 h. The mixture was then filtered and the filtrate concentrated to give a solid residue. The residue was dissolved in MeOH/CH<sub>2</sub>Cl<sub>2</sub> (10:3, 13 mL) at 0 °C and then NaBH<sub>4</sub> (45 mg, 1.18 mmol) was added; the mixture was then stirred for 4 h at 0 °C. The mixture was then partitioned between CH<sub>2</sub>Cl<sub>2</sub> (30 mL) and water (10 mL); the organic layer was washed with water  $(2 \times 10 \text{ mL})$ , dried (MgSO<sub>4</sub>), and concentrated. The crude product was purified (SiO<sub>2</sub>; CH<sub>2</sub>Cl<sub>2</sub>/MeOH, 96:4) to afford the amine 5 as a vellow residue (90.0 mg, 23%).  $[\alpha]_{D}^{25}$  -36.0 °; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  0.55 (q, J = 5.2 Hz, 1 H), 1.13 (td, J = 8.2, 5.2 Hz, 1 H), 1.63 (quintet, J = 7.2 Hz, 2 H),1.65–1.80 (m, 1 H), 1.80–1.92 (m, 1 H), 2.20 (q, *J* = 7.2 Hz, 2 H), 2.67 (t, *J* = 7.2 Hz, 2 H), 3.84 (s, 2 H), 4.45 (s, 4 H), 4.53 (s, 4 H), 4.98 (d, J = 10.5 Hz, 1 H), 5.02–5.15 (m, 2 H), 5.18 (s, 4 H), 5.44 (dt, J = 10.5, 7.3 Hz, 1 H), 5.48–5.60 (m, 1 H), 6.72 (d, J= 8.6 Hz, 4 H), 7.12 (d, J = 8.6 Hz, 4 H), 7.28 (s, 4 H), 7.42 (d, J = 8.0 Hz, 2 H), 7.49 (s, 2 H), 7.62 (d, J = 8.0 Hz, 2 H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  14.7, 17.1, 22.4, 25.3, 29.8, 48.9, 53.5, 69.2, 71.4, 71.7, 114.4, 115.4, 118.2, 126.9, 127.1, 128.7, 129.1, 129.7, 130.2, 137.0, 138.0, 141.4, 149.2, 157.5, 158.1 (two carbon signals are missing, possibly because of signal overlapping); HRMS (ESI):  $m/z [M + Na]^+ C_{46}H_{48}N_2O_4Na$ calcd. 715.3512, found 715.3501. 1 N HCl (57 µL) was added to a solution of the amine 5 (40 mg, 57 µmol) in CH<sub>2</sub>Cl<sub>2</sub> (1 mL) and CH<sub>3</sub>CN (10 mL) and then saturated aqueous KPF<sub>6</sub> solution (20 mL) was added. The organic solvent was evaporated under reduced pressure and the precipitate was filtered off to give the monomer **5**-H·PF<sub>6</sub> as a white solid (40 mg, 84%). M.p. >230 °C;  $[\alpha]_D^{25}$  -13.0°; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>/CD<sub>3</sub>CN, 10:1)  $\delta$  -0.25 to -0.50 (m, 2 H), 0.67 (q, J = 5.3 Hz, 1 H), 1.11–1.25 (m, 2 H), 1.30 (td, J = 8.2, 5.3 Hz, 1 H), 1.40–1.55 (m, 2 H), 1.80–1.95 (m, 2 H), 2.27–2.42 (m, 2 H), 4.38 (br t, J = 7.0 Hz, 2 H), 4.53–4.69 (m, 4 H), 4.77 (br d, J = 8.0 Hz, 2 H, 5.02 (d, J = 10.2 Hz, 1 H), 5.10–5.30 (m, 7 H), 5.48–5.63 (m, 1 H), 6.82-6.91 (m, 2 H), 6.93-7.07 (m, 4 H), 7.10-7.20 (m, 6 H), 7.27 (s, 4 H), 7.42 (br s, 2 H), 7.55 (br d, J = 5.6 Hz, 2 H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>/CD<sub>3</sub>CN, 5:1)  $\delta$  15.0, 17.2, 22.7, 23.7, 26.3, 46.4, 50.6, 67.4, 73.6, 73.8, 114.1, 115.2, 119.2, 126.6, 126.9, 127.2, 128.0, 129.0, 129.2, 129.7, 130.5, 135.8, 136.7, 136.9, 147.7, 154.6, 156.8; HRMS (ESI): m/z [5-H]<sup>+</sup> C<sub>46</sub>H<sub>49</sub>N<sub>2</sub>O<sub>4</sub> calcd. 693.3693, found 693.3674.

[c2]Daisy Chain 8-2H-2PF<sub>6</sub>. A solution of monomer 5-H-PF<sub>6</sub> (40 mg, 48  $\mu$ mol) in chloroform/acetonitrile (10:1, 4.4 mL) was heated at 40 °C for 120 h. The solution

was concentrated and the residue purified (SiO<sub>2</sub>; CH<sub>2</sub>Cl<sub>2</sub>/MeOH, 96:4) to afford **8**-2H·2PF<sub>6</sub> as a white solid (31 mg, 77%). M.p. >235 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>/CD<sub>3</sub>CN, 5:1)  $\delta$  –0.42 to –0.25 (m, 4 H), 0.38–0.62 (m, 4 H), 0.92–1.08 (m, 4 H), 2.00–2.15 (m, 2 H), 2.17–2.32 (m, 4 H), 2.35–2.45 (m, 4 H), 2.67–3.02 (m, 4 H), 4.34 (dd, *J* = 9.0, 6.4 Hz, 4 H), 4.55 (s, 8 H), 4.69 (d, *J* = 9.0 Hz, 8 H), 5.16 (s, 8 H), 5.52 (dd, *J* = 11.3, 4.3 Hz, 2 H), 5.61–5.77 (m, 6 H), 6.82 (d, *J* = 8.0 Hz, 4 H), 6.94 (d, *J* = 6.9 Hz, 4 H), 7.02 (s, 4 H), 7.04–7.15 (m, 8 H), 7.22 (s, 8 H), 7.30 (d, *J* = 6.9 H, 4 H), 7.46 (d, *J* = 8.0 Hz, 4 H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>/CD<sub>3</sub>CN, 5:1)  $\delta$  23.8, 28.6, 31.8, 32.4, 36.7, 46.6, 50.6, 67.4, 73.7, 73.8, 115.4, 119.6, 127.1, 127.4, 127.9, 128.4, 128.5, 128.6, 129.5, 130.2, 130.9, 134.3, 136.3, 137.3, 148.2, 155.2, 157.4; HRMS (ESI): *m/z* [**8**-2H·PF<sub>6</sub>]<sup>+</sup> C<sub>92</sub>H<sub>98</sub>F<sub>6</sub>N<sub>4</sub>O<sub>8</sub>P calcd. 1531.7028, found 1531.7066.

[1] A. Kannan and P. Rajakumar Synth. Commun., 1995, 25, 3053–3065.

[2] D. Grandjean, P. Pale and J. Chuche, Tetrahedron, 1991, 47, 1215–1230.



Figure 1. Partial <sup>1</sup>H NMR spectra (400 MHz, CD<sub>3</sub>CN, 298 K) of (a) macrocycle **2**, (b) an equimolar mixture of **2** and DBA·PF<sub>6</sub> (10 mM), and (c) DBA·PF<sub>6</sub>. The descriptors "UC" and "C" refer to the uncomplexed and complexed states, respectively.





-

Pulse Sequence: s2pul



#### 13C OBSERVE

.

#### Pulse Sequence: s2pul





S14



#### 13C OBSERVE

.

Pulse Sequence: s2pul



#### 13C OBSERVE

#### Pulse Sequence: s2pul



Pulse Sequence: s2pul



#### 13C OBSERVE

Pulse Sequence: \$2pul





#### 13C OBSERVE

.

#### Pulse Sequence: s2pul





400MHz H1 shu4104a





8 H







VIII



400MHz C13 ( 250p to -10p ) suzuki aldehyde



400MHz H1 suzukiacetal





S27

400MHz H1 suzuki diol





400MHz H1 shu4037a









400MHz H1 shu4056e





S35

mdd

400MHz H1 shuDCHOh



Pulse Sequence: s2pul



400MHz H1 shuDC dimer





S39