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A theoretical model is proposed for a community which has the structure of two
classes (direct and indirect) of commercial sex workers (CSW), and two classes
of sexually active male customers with different levels of sexual activity. The
direct CSW’s work in brothels while the indirect CSW’s are based in commer-
cial establishments such as bars, cafes, and massage parlours where sex can be
bought on request and conducted elsewhere. Behaviour change and the resulting
change of activity class occurs between the two classes of CSW’s and two classes
of males under the setting of the proliferation of human immunodeficiency virus
(HIV)/acquired immunodeficiency syndrome epidemic and the subsequent inter-
vention programmes. In recently years, this phenomenon has been observed in sev-
eral countries in Asia. Given the lower levels of condom use and higher HIV preva-
lence of the indirect CSW’s, ascertaining the impact of this change in the structure
of the sex industry on the spread of HIV is the main focus of this paper. The com-
plete analysis of the disease-free model is given. For the full model, local analysis
will be performed for the case of preferred mixing without activity class change, as
well as the case with activity class change and restricted mixing. The basic repro-
duction number for the spread of epidemic will be derived for each case. Results
of biological significance include: (i) the change of behaviour by the CSW’s has
a more direct effect on the spread of HIV than that of the male customers; (ii) the
basic reproduction number is obtained by considering all possible infection cycles
of the heterosexual transmission of HIV which indicates the importance of under-
standing the sexual networking in heterosexual transmission of HIV; (iii) the social
dynamics of the sex industry is not just a simple ‘supply and demand’ mechanism
driven by the demand of the customers, hence highlighting the need for further
understanding of the changing structure of the sex industry. The main points of this
work will be illustrated with numerical examples using the HIV data of Thailand.

c© 2003 Society for Mathematical Biology. Published by Elsevier Ltd. All rights
reserved.

1. INTRODUCTION

Among many Asian countries, the spread of human immunodeficiency virus/acq-
uired immunodeficiency syndrome (HIV/AIDS) has been closely linked with the
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structure of the sex industry (Brown and Xenos, 1994). The case of Thailand has
been most explosive and most well-documented. The key ingredients to the epi-
demic in Thailand and its neighbouring countries (Cambodia, Vietnam, etc.) are
a ‘core group’ of highly sexually active individuals [the female commercial sex
workers, or CSW’s, see e.g., Weniger et al. (1991)] which spreads the disease and
a ‘bridge population’ of unpartnered young men, mainly low-income male brothel
visitors, who provide a bridge between the core group and the general population
(Bhassorn et al., 1993; Morris et al., 1996). A model was proposed by Busen-
berg et al. (1995) aimed at studying the importance of the CSW’s, although in that
work the bridge population was expanded to include all unpartnered young men
for the purpose of simplifying the model. The results showed that, among oth-
ers, the recruitment rate of the CSW’s and the relative difference in turnover rate
(by death and retirement) of the CSW’s once they become infected are important
factors in determining whether the disease will persist. More recently, Hsieh and
Cooke (2000) propose a model to further study the possible effect of treatment and
behaviour change in the society with the above-mentioned situation. [For a review
of mathematical modelling of infectious diseases, see Anderson and May (1992).]

In both of these studies, there are only one group of CSW’s and one group of
male customers. However, in most of these Asian countries the structure of the
sex industry is more complicated. Let us consider the case of Thailand, since it
is most well-documented [e.g., Wathinee and Guest (1994)]. There are two main
forms of commercial sex in these countries, one is brothel-based (direct) and the
other nonbrothel-based (indirect) sex establishments which includes bars, cafes,
massage parlours, nightclubs etc., where business can be negotiated but not con-
ducted on site [see, e.g., Bhassorn et al. (1993), Wathinee and Guest (1994)]. From
1971 on, the Division of Venereal Diseases of the Thai Ministry of Public Health
(MOPH) kept separate annual counts of the direct and indirect CSW’s (see Fig. 1).
However, since 1996 there are no separate counts of the direct and indirect CSW’s
given due to the lack of reliable data (Pachara Sirivongrangson, personal com-
munication). Recent data in Thailand strongly suggests that many brothel-based
CSW’s have changed their workplace to bars, cafes, etc. (Thai Working Group on
HIV/AIDS Projection, 2001), most likely due to the decrease in brothel business
which was brought on by the consistently high HIV prevalence rate among brothel
CSW’s in the last decade and the economic crisis in 1997–1998. The net result
is more indirect sex which is more diverse in patterns and more covert in nature
(Hsieh, 2002).

Moreover, the difference in the two forms of commercial sex also leads to dis-
crepancy in the customers who would visit a brothel or an indirect sex establish-
ment. The brothels are more frequented by truck drivers, factory workers, and other
low-income men who are more highly active and more likely to visit the brothels.
On the other hand, the less frequent customers are more likely to visit the indirect
sex establishments. In a study by Napaporn et al. (1992), 34% of Thai blue collar
men surveyed had 20 or more commercial sex episodes in the previous year and
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Figure 1. Number of female sex workers in Thailand, 1971–2000.

only 25% had less than 5, while for the white collar men surveyed the figures are
19% with 20 or more and 36% with less than 5. For the same group of men, 40% of
blue collar males visited a brothel for their last commercial sex compared to only
19% of the white collar males. Hence the size of different types of customers is
also important in the dynamics of the social interaction of the sex industry.

In recent years, the Thai MOPH behavioural sentinel data shows a decrease in
the number of customers of the sex industry (Fig. 2). However, the available data
(e.g., Fig. 1) seems to indicate that, facing the decrease in demand for brothel
workers, many of the direct CSW’s have changed to work in nonbrothel establish-
ments in search of better and more profitable business. The mixed message points
to a need for further study aimed specifically at understanding this recent change
which could impact on the future spread of HIV/AIDS in these countries.

In this work, we propose a more complete model to study specifically the beha-
viour changes of the two types of CSW’s in reaction to the demands for sexual
contacts by the groups of male customers. We do so by separating the CSW’s into
direct and indirect groups, and the male customers into two groups by their levels
of frequency to use commercial sex. The significant difference between the two
groups in terms of HIV prevalence, frequency of sexual contacts, social make-up
of customers, and use of condoms is well-documented [see, e.g., Bhassorn et al.
(1993) or van Griensven et al. (1995)]. Government seroprevalence sentinel data in
the past decade have consistently showed the prevalence rate among direct CSW’s
to be three to four times higher than that of indirect CSW’s (see Fig. 3).
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Figure 2. Percentage of customers frequenting sex workers among sentinel male popula-
tion in Thailand, 1995–1999.
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Figure 3. HIV prevalence among CSWs in Thailand 1989–2000.

Moreover, the most recent HIV sentinel data shows a significantly sharper incr-
ease in the prevalence of direct CSW’s as compared to that of indirect CSW’s (see
MOPH HIV Sentinel Surveillance, 1993–2000). The group of unpartnered young
men is also divided into a class of highly sexually active unpartnered young men
who are more likely to visit brothels and a class of low sexually active young men
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who are more likely to go to indirect CSW’s (and with less frequency). As unpart-
nered young men become married, their spouses and offspring become exposed to
the danger of HIV infections. With this much more complicated model, we wish
to study the change of behaviour of the CSW’s as well as the sexually active men
who are crucial in the spread of the epidemic within the general population.

We give the model in detail in Section 2. The disease-free model is discussed
in Section 3 with complete analysis. Since the general model is too complicated
for analysis, Sections 4 and 5 will be devoted to discussing the respective local
stability results of the disease-free equilibrium (DFE) of the model in two special
cases. Namely, one with preferred mixing and no change of behaviour by either
CSW’s or their customers, and the other with change of behaviour but restricted
mixing. In each case, we derive the basic reproduction number [see, e.g., Jacques
et al. (1988) or Hyman and Li (2000)] for the spread of disease. In the latter
case, we will also use illustrative examples to demonstrate the possible effect of
behaviour change on the epidemic. Some general remarks are given in Section 6.

2. THE MODEL

We begin by listing the key assumptions of the model:

I. Structure

(1) No homosexual or drug activity.
(2) Recruitment of CSW’s proportional to the total number of sexual contacts at

the time—a ‘Supply and Demand’ assumption.
(3) Two sexual activity classes for CSW’s and unpartnered men.
(4) The highly sexually active men go to the brothels more often for contacts

with the direct CSW’s while the less active men have more contacts with the
indirect CSW’s [i.e., preferred mixing in Jacques et al. (1988)].

(5) Partnered persons and noncommercial females are not considered in this
model.

II. Females

(1) Direct CSW’s have higher contact rate than the indirect CSW’s, but lower
transmission probability due to more frequent use of condoms (Thailand
Social Monitor, 2000). The MOPH survey (2000) also shows lower condom
use among low-income factory workers, who are more likely to frequent
brothels, than military conscripts who are representative of the general young
male population since they are drafted randomly every year from the male
population of 21 year old males.

(2) Movement of direct to indirect CSW class depends on the change in the
fraction of sexual activity of men seeking indirect CSW’s.

(3) CSW’s retire to exit from the sexual network described in the model.
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III. Males

(1) Constant recruitment rate for males.
(2) Movement from more sexually active class to less active class depends on

prevalence of HIV infections in females.
(3) Migration out of the unpartnered class through pairing.

Discussion on the motivation for the assumptions regarding the basic structure of
the model (not involving distinct activity classes) can be found in Busenberg et al.
(1995).

Next the model variables are given below:
Fl—Susceptible women of sexual activity group l where

l = 1: (low activity) indirect CSW’s
l = 2: (high activity) direct CSW’s.

fl—Infected women of sexual activity group l where l = 1, 2 are the same as
above.
Ml—Susceptible men of sexual activity group l where

l = 1: (low activity) single men
l = 2: (high activity) single men.

ml—Infected men of sexual activity group l where l = 1, 2 are the same as above.
The model parameters are listed below:

c jl : Contact rates of susceptibles of sex j , activity group l, with c j1 < c j2.
c̄ j l : Contact rates of infectives of sex j , activity group l, with c̄ j1 < c̄ j2.
β j lk : Transmission probability per contact of individual of sex j and activity group

l to opposite sex of activity group k, with β j lk > β jmn if l + k < m + n. i.e.,
the transmission probability is lower if at least one of individuals involved is
of higher activity groups.

α: Proportionality constant of the number of newly recruited CSW’s to the total
number of sexual contacts required by males at time t , Nm(t), with α ∈
(0, 1).

θ : Fraction of indirect CSW’s needed in order to maintain equilibrium in the frac-
tion of men seeking indirect CSW’s.

ρ f l, ρ̄ f l: Retirement rate of susceptible and infected CSW’s, respectively, of activ-
ity group l.

σl, σ̄l, l = 1, 2: Pairing rate of susceptible and infected single men, respectively,
of group l.

µl , µ̄l : Removal (due to death, AIDS, etc.) rate of susceptibles and infecteds of
sex l.

γ f , γ̄ f : Rates of movement from direct to indirect CSW class (or from indirect to
direct depending on the signs of G1 and G2) for susceptibles and infecteds,
respectively.
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γm, γ̄m: Rates of changed behaviour of susceptible and infected single men, respec-
tively, from high to low sexual activity due to the epidemic. Hence the rates
are proportional to the endemic fraction of CSW population. Alternatively,
we could also consider a movement from low to high activity class in the
event of eradication of disease, or even perhaps due to a false sense of secu-
rity brought on by the success of the prevention measures. However, there is
no evidence of this occurring in Thailand at the present (Hsieh, 2002).

δ: Yearly constant recruitment rate of sexually active single men, δ � 1.
φ: Initial fraction of susceptible men who are of low activity group.
pkl : The preference probability that a male of group k will have contact with a

CSW of group l, with pk1 + pk2 ≤ 1 and p22 > p21.

The preference probability, pkl , requires some explanation. The basic idea is
similar to ‘preferred mixing’ (Jacques et al., 1988), except pk1 + pk2 might be less
than one due to the possibility of males having sexual contacts with noncommercial
female (steady or casual) partners. If pkl = δkl , the Kronecker delta, all contacts of
males of group k are restricted to those of CSW’s in group k and we have ‘restricted
mixing’. That is, a male customer is either strictly a brothel-visitor or a customer
of nonbrothel sex establishments only.

The incidence rates of new infections, λ f k and λmk , where the subscript f denotes
females and m denotes males, are given by:

λ f k(t) = c f k

2∑

l=1

plk c̄mlβmlkml(t)

Nm(t)
, k = 1, 2.

λmk(t) = cmk

2∑

l=1

pkl c̄ f lβ f lk fl(t)

N f (t)
, k = 1, 2.

The total numbers of sexual contacts for males and females Nm and N f , where
f denotes females and m denotes males, are:

Nm(t) =
2∑

l=1

[cml Ml(t) + c̄mlml(t)]

N f (t) =
2∑

l=1

[c f l Fl(t) + c̄ f l fl(t)].

The equations for the model depicted in Fig. 4 are, with ‘′’ denoting derivative
with respect to time:

F ′
1(t) = θαNm(t) − [µ f + ρ f 1 + λ f 1(t)]F1(t) + γ f G1(t)

×
[

cm1 M1(t) + c̄m1m1(t)

Nm(t)
− θ

]2

, (1)
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Figure 4. The model.

F ′
2(t) = (1 − θ)αNm(t) − [µ f + ρ f 2 + λ f 2(t)]F2(t) − γ f G1(t)

×
[

cm1 M1(t) + c̄m1m1(t)

Nm(t)
− θ

]2

, (2)

M ′
1(t) = φδ − [µm + σ1 + λm1(t)]M1(t) + γm M2(t)

∑2
l=1 fl(t)∑2

l=1 Fl(t) + fl(t)
, (3)

M ′
2(t) = (1 − φ)δ − [µm + σ2 + λm2(t)]M2(t) − γm M2(t)

×
∑2

l=1 fl(t)∑2
l=1 Fl(t) + fl(t)

, (4)

f ′
1(t) = −[µ̄ f + ρ̄ f 1] f1(t) + λ f 1(t)F1(t)

+ γ̄ f G1(t)

[
cm1 M1(t) + c̄m1m1(t)

Nm(t)
− θ

]2

, (5)

f ′
2(t) = −[µ̄ f + ρ̄ f 2] f2(t) + λ f 2(t)F2(t)

− γ̄ f G1(t)

[
cm1 M1(t) + c̄m1m1(t)

Nm(t)
− θ

]2

, (6)

m ′
1(t) = λm1(t)M1(t) − [µ̄m + σ̄1]m1(t) + γ̄mm2(t)

∑2
l=1 fl(t)∑2

l=1 Fl(t) + fl(t)
, (7)

m ′
2(t) = λm2(t)M2(t) − [µ̄m + σ̄2]m2(t) − γ̄mm2(t)

∑2
l=1 fl(t)∑2

l=1 Fl(t) + fl(t)
, (8)
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where

G1(t) =
{

F2(t) if cm1 M1(t)+c̄m1m1(t)
Nm (t) ≥ θ

−F1(t) otherwise,

G2(t) =
{

f2(t) if cm1 M1(t)+c̄m1m1(t)
Nm (t) ≥ θ

− f1(t) otherwise.

The functions Gi(t), i = 1, 2 describe the change of behaviour by the suscepti-
ble and infected CSW’s, respectively, as dictated by whether the fraction of men
seeking indirect CSW’s at time t exceeds some equilibrium fraction value, θ . More
precisely, G1(t) equals F2(t) if the fraction of men seeking indirect CSW’s at time
t exceeds θ , indicating a flow from direct to indirect CSW’s. Alternatively, it equals
−F1 if the fraction of men seeking indirect CSW’s at time t is below θ , resulting
in a flow from indirect to direct CSW’s. Similarly for G2(t).

The squared terms in equations (1), (2), (5) and (6) represent the effect of ‘over-
crowding’ (too much supply over demand) in the two CSW’s groups which leads
to the respective change of activity group from F1 and f1 to F2 and f2, or vice
versa. Moreover, the squared terms also maintain the smoothness of the right-hand
side of equations (1)–(8), which ensures that the system above is well-posed in
the region D8 = {Fi , Mi > 0, fi , mi ≥ 0, i = 1, 2} in the 8-dimensional space
{(Fi , fi , Mi , mi ), i = 1, 2}.

3. THE DISEASE-FREE CASE

We start by considering the disease-free case where the population is free from
HIV infections. Consequently we have f1 = f2 = m1 = m2 = 0, and the system
(1)–(8) simplifies to

F ′
1(t) = θαNm(t) − [µ f + ρ f 1]F1(t) + γ f G1(t)

[
cm1 M1(t)

Nm(t)
− θ

]2

, (9)

F ′
2(t) = (1 − θ)αNm(t) − [µ f + ρ f 2]F2(t) − γ f G1(t)

×
[

cm1 M1(t)

Nm(t)
− θ

]2

, (10)

M ′
1(t) = φδ − [µm + σ1]M1(t), (11)

M ′
2(t) = (1 − φ)δ − [µm + σ2]M2(t). (12)

Note that Nm now stands for
∑2

l=1 cml Ml(t).
To find the equilibrium of the system, we will assume that the retirement rate of

the two groups of CSW’s are the same and the pairing rate of the two groups of
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young men are also the same. That is, ρ f 1 = ρ f 2 = ρ and σ1 = σ2 = σ . We
also redefine µm to be the former µm + σ , µ f to be the former µ f + ρ. Note that
this simplification does not mean the retirement and pairing rates are neglected,
just that they have the same significance as the removal by death or AIDS, etc.
Consequently, M ′

1(t) = 0 yields

M̂1 = φδ

µm
, (13)

and M ′
2(t) = 0 yields

M̂2 = (1 − φ)δ

µm
. (14)

Moreover, by letting N̂m = cm1 M̂1 + cm2 M̂2, (F1(t) + F2(t))′ = 0 implies

F̂1 + F̂2 = α N̂m

µ f
. (15)

It follows that for cm1 M̂1

N̂m
≥ θ ,

F̂1 = α N̂m

µ f
− (1 − θ)α N̂m

γ f

(
cm1 M̂1

N̂m
− θ

)2 + µ f

, (16)

F̂2 = (1 − θ)α N̂m

γ f

(
cm1 M̂1

N̂m
− θ

)2 + µ f

. (17)

If cm1 M̂1

N̂m
< θ ,

F̂1 = θα N̂m

γ f

(
cm1 M̂1

N̂m
− θ

)2 + µ f

, (18)

F̂2 = α N̂m

µ f
− θα N̂m

γ f

(
cm1 M̂1

N̂m
− θ

)2 + µ f

. (19)

Therefore the equilibrium of the system exists and is unique. We now show that
the unique equilibrium is globally asymptotically stable for all positive solutions.
We drop the cap ‘ˆ’ in the equilibrium value (F̂1, F̂2, M̂1, M̂2) and in N̂m hereafter
for sake of simplicity. The first result is the local stability of the unique equilibrium.
The proof is in the Appendix.
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LEMMA 1. The equilibrium point (F1, F2, M1, M2) is locally asymptotically
stable.

We now give the global result, also proved in the Appendix.

THEOREM 2. The unique equilibrium (F1, F2, M1, M2) is globally asymptotically
stable for the system in the positive 4-dimensional region D+

4 = {(F1(t), F2(t),
M1(t), M2(t)) | Fi (t), Mi (t) > 0, i = 1, 2} for a sufficiently small value of γ f .

We give a numerical example to illustrate the result in the disease-free state. Let
c f 1 = 100, c f 2 = 1000, cm1 = 10, cm2 = 50, µ f = 0.16, µm = 0.09, α = 0.0005,
δ = 500 000, θ = 0.5, φ = 0.8, γ f = 0.1, p11 = 0.5, p12 = 0.5, p21 = 0.1,
p22 = 0.9. The parameter values are consistent with the known literature for pre-
1990 Thailand (before the HIV epidemic) and the assumptions of our model. For
example, we let µ f = 0.16 = 0.01 + 0.15 where 0.01 is the mean mortality rate
of a CSW approximated from Thai demographic data, and 0.15 is the retirement
rate of the CSW. This value gives a mean working time of a CSW at approximately
4 years while a 1992 survey by Bhassorn et al. (1993) showed that the CSW’s in
Thailand worked an average of approximately 3.5 years (Busenberg et al., 1995).

We use the initial population values of F1 = 26 000, F2 = 18 000, M1 =
4000 000, M2 = 1000 000. The initial values for the CSW’s are approximate val-
ues of government census numbers of 25 846 and 17 525, respectively, for 1971.
The values for the male customers are deduced from the 1990 behaviour survey
(Sittitrai et al., 1992) which reported that approximately 27% of the males of age
15–49 who responded said that they have had commercial sex in the last 12 months.
Moreover, out of this group roughly one out of five (22%) are ‘frequent’ customers
in the sense that they have had at least five different commercial sex partners during
the last 12 months and used commercial sex often. We then use the demographic
figure of approximately 18 million Thai men are of age 15–49 to arrive at our initial
choice of population sizes. Figure 5 gives the numbers of CSW’s obtained from
numerical simulation of our theoretical model for 19 years, starting from 1971.

4. FULL MODEL WITH PREFERRED MIXING AND NO CHANGE IN

ACTIVITY CLASS

For the full model without change in behaviour, we have γ f = γ̄ f = γm = γ̄m

= 0. Moreover we assume ρ̄ f 1 = ρ̄ f 2 = ρ̄ and σ̄1 = σ̄2 = σ̄ as we did for the
susceptible groups in the previous section. We also redefine µ̄m to be the former
µ̄m + σ̄ , µ̄ f to be the former µ̄ f + ρ̄, and the system (1)–(8) simplifies to

F ′
1(t) = θαNm(t) − [µ f + λ f 1(t)]F1(t), (20)

F ′
2(t) = (1 − θ)αNm(t) − [µ f + λ f 2(t)]F2(t), (21)
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Figure 5. Simulation of the number of female sex workers in disease-free population in
Thailand, 1971–1990.

M ′
1(t) = φδ − [µm + λm1(t)]M1(t), (22)

M ′
2(t) = (1 − φ)δ − [µm + λm2(t)]M2(t), (23)

f ′
1(t) = −µ̄ f f1(t) + λ f 1(t)F1(t), (24)

f ′
2(t) = −µ̄ f f2(t) + λ f 2(t)F2(t), (25)

m ′
1(t) = λm1(t)M1(t) − µ̄mm1(t), (26)

m ′
2(t) = λm2(t)M2(t) − µ̄mm2(t). (27)

Again the system is well-posed in D8. The basic reproduction number R0 is the
expected number of secondary infections caused by an infected individual entering
a population of all susceptibles [see, e.g., Anderson and May (1992)]. We have the
following result for the basic reproduction number of the system. Let

R2
f kl = pkl c̄ f lβ f lk

µ̄ f

cmk Mk

Nm
, k, l = 1, 2;

R2
mkl = pkl c̄mlβmkl

µ̄m

c f k Fl

N f
, k, l = 1, 2.

The basic reproduction number R0 ≥ 0 of the system (20)–(27) is given by

R2
0 = R2

m12 R2
f 12 + R2

m21 R2
f 21 + R2

m11 R2
f 11 + R2

m22 R2
f 22 + R2

f 11 R2
m12 R2

f 22 R2
m21

+ R2
f 21 R2

m11 R2
f 12 R2

m22 − R2
f 11 R2

m11 R2
f 22 R2

m22 − R2
f 21 R2

m12 R2
f 12 R2

m21. (28)

Consequently we have the following lemma on local stability of DFE, the detailed
proof is given in the Appendix.
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Figure 6. Infection cycles of length 2.

LEMMA 3. If R0 < 1, the DFE (F1, F2, M1, M2, 0, 0, 0, 0), with F1, F2, M1, M2

given in equations (13), (14) and (16)–(19), is locally asymptotically stable.

To consider the epidemiological significance of the basic reproduction number,
we define an infection cycle to be a path or a series of heterosexual transmissions of
HIV culminating in a return to the starting point. Figures 6 and 7 give all possible
infection cycles of length 2 and 4, while Fig. 8 shows all nonexistent cycles of
length 4, i.e., all paths of infections involving the four groups that do not return
to the starting point. Using this terminology, the square of the basic reproduction
number R2

0 is the sum of squares of the number of secondary infections produced
by all possible infection cycles minus those produced by the nonexistent infection
cycles. The result intuitively resembles the situation when one counts the number
of elements in a union of sets, where we add all elements of the sets minus the
elements in the intersections. A global stability result is difficult to obtain and will
not be discussed here.

5. FULL MODEL WITH RESTRICTED MIXING AND CHANGE IN ACTIVITY

CLASS

Now we consider the full model with pi j = δi j , the Kronecker delta. That is,
the males of group k only have contact with CSW’s of group k. This is called
‘restricted mixing’ by Jacques et al. (1988). Consequently we have p12 = p21 = 0
in the incidence rates λ f k and λmk of the system (1)–(8). We first prove some
preliminary result useful in obtaining the basic reproduction number for this case.

LEMMA 4. (i) For cm1 M1
Nm

≥ θ .

If R2
f 11 R2

m11 < 1 and R2
f 22 R2

m22 − γ̄

f (cm1 M1 − θ Nm)2N2
m µ̄ f < 1 where R2

f kl

and R2
mkl are as defined in Section 4, then the DF E(F1, F2, M1, M2, 0, 0, 0, 0) is

locally asymptotically stable.
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Figure 7. Infection cycles of length 4.
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Figure 8. Nonexistent infection cycles of length 4.

(ii) For cm1 M1
Nm

< θ .

If R2
f 22 R2

m22 < 1 and R2
f 11 R2

m11 − γ̄

f (cm1 M1 − θ Nm)2 N2
mµ̄ f < 1 where R2

f kl

and R2
mkl are as defined in Section 4, then the DF E(F1, F2, M1, M2, 0, 0, 0, 0) is

locally asymptotically stable.



Modelling Social Dynamics of Sex Industry 157

IV

IV

III

II

I

I

f (  )

Figure 9. Basic reproduction number for restricted mixing: R1 for Region I, R2 for
Region II, R3 for Region III, and R4 for Region IV.

The proof is also given in the Appendix.
Let us now define R2

01 = R2
f 11 R2

m11 and R2
02 = R2

f 22 R2
m22 and consider the case

where cm1 M1
N2

m
= θ . It is easy to show that for φ ∈ [0, 1], H (φ) = R2

02 − R2
01 is a

strictly decreasing function of φ in [0, 1]. Moreover, H (0)H (1) < 0 hence there
exists a unique number φ̄ ∈ (0, 1) at which H (φ̄) = 0. We also let θ̄ = cm1 M1

N2
m

|φ=φ̄

so that θ̄ ∈ (0, 1).
The expression for the basic reproduction number depends on φ̄ and θ̄ . More

precisely, if cm1 M1
Nm

≥ θ ,

R0 =
{

R1 if 0 ≤ φ̄ ≤ φ

R2 if 0 ≤ φ < φ̄.

If cm1 M1
Nm

< θ ,

R0 =
{

R3 if 0 ≤ φ̄ ≤ φ

R4 if 0 ≤ φ < φ̄,

where M1 and Nm are the disease-free numbers of M1(t) and Nm(t), respectively,
in Section 3 and

R2
1 = R2

f 11 R2
m11, R2

4 = R2
f 22 R2

m22,

R2
2 = R2

f 22 R2
m22 − γ̄

f
(cm1 M1 − θ Nm)2 N2

m µ̄ f ,

R2
3 = R2

f 11 R2
m11 − γ̄

f
(cm1 M1 − θ Nm)2 N2

m µ̄ f .
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Figure 10. Simulation of model with behaviour change and restricted mixing,
R0 = 5.9697.

Let cm1 M1
Nm

= f (φ) = cm1φ/[cm1φ + cm2(1 − φ)] from equations (13) and (14). It
follows that the value of the basic reproduction number is as given in Fig. 9 in the
rectangular region of φ, θ ∈ [0, 1], with Region I denoting where R1 is the basic
reproduction number, Region II denoting R2, Region III denoting R3, and Region
IV denoting R4.

Note that for a fixed θ ∈ [0, 1] not equal to θ̄ , the basic reproduction number
changes twice as the value of φ increases from 0 to 1. For θ = θ̄ , there is only one
switch. Similar switching occurs if we fix φ ∈ [0, 1] and let θ vary from 0 to 1.

To illustrate the results above, we again use numerical examples. First we let
pi j = δi j , the Kronecker delta. We use the initial population values of F1 =
45 000, F2 = 41 000, M1 = 4000 000, M2 = 1000 000. The initial values for
male customers are the same as in the previous section. The initial values for the
CSW’s are approximately the census numbers of Thai MOPH in 1990, the onset
of HIV among Thai CSW’s. All other parameter values given in Section 3 are
used similarly. Moreover, we give the following set of epidemiological parameters
for HIV in Thailand: c̄ f 1 = 100, c̄ f 2 = 850, c̄m1 = 10, c̄m2 = 50, µ̄ f = 0.25,
µ̄m = 0.13, β f 11 = 0.05, β f 12 = β f 21 = 0.02, β f 22 = 0.005, βm11 = 0.08,
βm12 = βm21 = 0.004, βm22 = 0.01. The parameter values used are reasonable
values taken from available literature. For example, in a study of 21 year old
military conscripts whose principal mode of HIV transmission is sex with CSW’s,
Mastro et al. (1994) estimated the female-to-male HIV-1 transmission probability
per sexual contact to be 0.056. Hence we let β f 11 = 0.05 since condoms are
used much less frequently by indirect CSW’s. For the behaviour change, we let
γ̄ f = 0.1, γm = γ̄m = 0.1. Consequently, we have θ̄ = 0.6909 and φ∗ = 0.9179.
Thus we have θ = 0.5 < θ̄ and φ = 0.8 < φ̄. Moreover, f (φ) = 0.4444 and
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Figure 11. Simulation of model with behaviour change and restricted mixing,
R0 = 0.9626.

consequently the example falls in Region IV and R0 = R4 = 5.9697. Hence the
system approaches the endemic equilibrium in the numerical simulation given in
Fig. 10.

Note that for this case, γ̄ f does not appear in the basic reproduction number
for Region IV and hence has no bearing on the dynamics of the system. Again,
if after 10 years of the epidemic we decrease βm22 to 0.002 and β f 22 to 0.001,
then θ̄ = 0.7143 and φ̄ = 0.9259. Given that φ and θ remain the same, we are
again in Region IV and R0 = 0.9626 which is less than unity. Consequently in
the simulation shown in Fig. 11, the same initial populations would approach the
DFE. Note that it is possible to choose the parameters so that if the source of lowly
active males is not sufficiently high (φ < φ∗) and the changing of behaviour by
males from the high to low activity group occurs rarely, the infected indirect CSW
and lowly active male customer groups will be extinct. A similar statement holds
for the high activity classes.

6. CONCLUDING REMARKS

From the results on basic reproduction number obtained and the numerical exam-
ples given in this work, we make the following epidemiologically significant con-
clusions:

(1) The basic reproduction number for the model without behaviour change given
in equation (28), Section 4, adds the expected number of secondary infections for
all possible paths of infection involving infection cycles of length 2 (Fig. 6) or 4
(Fig. 7), minus those of nonexisting infection cycles of length 4 (Fig. 8) which
are intersections of cycles of length 2 and hence have already been accounted
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Figure 12. Infection cycles for restricted mixing.

for previously in the secondary infections caused by infection cycles of length 2.
It accounts for all possible secondary infections without any redundant counting.

(2) The basic reproduction number obtained for the ‘restricted mixing’ model in
Section 5 for the case of pi j  = δi j  is determined by the values of θ and φ (Fig. 9).
Note that R1 gives the number of secondary infections caused by an individual
(male or CSW) in the low activity class infection cycle without change of behaviour
by a CSW, while R3 is the number of secondary infections caused by an individual
in the low activity class with CSW’s switching activity group. R4 and R2 are the
respective numbers for the high activity class infection cycle (Fig. 12). Note that
although θ and φ, which describe the relative sizes of the two classes of CSW’s
and male customers in the disease-free state, do not appear in the expressions for
basic reproduction number, the fact that their values determine the form of the basic
reproduction number underscores their importance in the dynamics of the system
in question.

(3) For the restricted mixing model, the change of activity class by CSW’s,
namely γ̄ f , is more important for intervention purposes as it could only decrease
the basic reproduction number, while the change of behaviour of the male cus-
tomers γ̄m does not appear directly in the expression for the basic reproduction
number and hence only affects the dynamics indirectly through its influence on
the relative size of low and high activity male groups. In fact a sufficiently large
γ̄ f could effectively drive the population toward the DFE. It shows that the social
dynamics of the sex industry is not just a simple ‘supply and demand’ mechanism
where the demand of the male customers dictates the supply or, in the context of
preventing the spread of HIV, suppresses the supply of CSW’s. Hence the change
of behaviour of the CSW’s or the changing structure of the sex industry must be
monitored closely.

(4) Due to the complicated form of the full model, complete analysis cannot
be readily carried out. However, simulations seem to indicate that the stability is
global. That is, the DFE is globally asymptotically stable in the 8-dimensional
region D8 = {Fi , Mi > 0, fi , mi ≥ 0, i = 1, 2} when it is locally stable, and there
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exists a unique endemic equilibrium which is globally asymptotically stable in D8

when the DFE is unstable. Furthermore, simulations also show that for the full
model with preferred mixing and change of activity class, similar existence and
uniqueness results also prevail. However, the actual expression for the basic repro-
duction number is hard to derive and prove given the complicated 8 × 8 Jacobian
matrix involved.

(5) The removal rates, µ̄ f and µ̄m , which appeared in the denominator of the
basic reproduction numbers on p. 12 and thereafter, account for the removal due
to death or onset of AIDS, as well as for the removal due to pairing of single men
and retirement of CSW’s. Hence an increase in pairing of single men or retirement
of CSW’s, which results in a loss of infected individuals in the sexually active
population, would contribute to a decrease in the basic reproduction number.

(6) The numerical examples using the Thai HIV data seem to indicate that with
the change we observe in the sex industry in Thailand, the level of epidemic is still
high with R0 exceeding 5 (see Fig. 10). Hence a large change of activity class γ̄ f ,
though perhaps helpful in alleviating the magnitude of the epidemic, might not be
sufficient to reverse the spread of disease by decreasing R0 down to less than one.
But if the transmission probabilities of the CSW’s and customers, β f 22 and βm22 in
Fig. 11, are sufficiently lowered, one can still change the course of the epidemic
favourably. Therefore an effective intervention programme targeted toward the
CSW’s and their customers is still very much in need, despite the encouraging
signs in decreasing numbers of new infections in the recent years.

(7) The data used for estimating the parameters pertaining to behaviour change
and the initial values are highly unreliable and therefore the numerical result serves
only as an illustration of the analytical result, not necessarily a true description of
what really happened. The usefulness of mathematical analysis is to understand
qualitatively the behaviour of the system in question. The formulae for the basic
reproduction number in various cases give us the exact condition under which a
change in the parameter values would result in change in the dynamics of the sys-
tem in a qualitative way. The result on the regions where distinct basic reproduction
numbers prevail (p. 15) also shows exactly when a change in initial group sizes will
alter the long-term behaviour of the system in question.

(8) Finally, the government policy for prevention and control has been to decrease
the number of sexual contacts (hence infections) in the sex industry through a
decrease in the direct sex industry, as well the transmission probability through
use of condoms. Both have been successful to a degree. Our analysis shows that,
however, the latter is more important than the former and therefore should be tar-
geted more strongly.
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APPENDIX

Proof of Lemma 1. Let J1 be the Jacobian matrix of the system at (F1, F2, M1,

M2). It suffices to show all eigenvalues of J1 have negative real parts. For cm1 M1
Nm

≥
θ ,

J1 =




−µ f γ f

[
cm1 M1

Nm
− θ

]2
cm1θα cm2θα

+W M2 −W M1

0 −µ f cm1(1 − θ)α cm2(1 − θ)α

−γ f

[
cm1 M1

Nm
− θ

]2 −W M2 +W M1

0 0 −µm 0
0 0 0 −µm




where

Nm = cm1 M1 + cm2 M2,

W = 2γ f F2
cm1cm2

N2
m

[
cm1 M1

Nm
− θ

]
.

J1 is an upper triangular matrix, it follows that the eigenvalues of J1 are −µ f ,
−µ f − γ f [ cm1 M1

Nm
− θ]2, −µm , and −µm .

Since µ f , µm , and γ f are all positive, we have

−µ f − γ f

(
cm1 M1

Nm
− θ

)2

< 0

and hence all eigenvalues are negative. The proof is similar for the case cm1 M1
Nm

< θ .

Proof of Theorem 2. To show global stability, we make use of a result by Li and
Muldowney [Proof of Theorem 2.1, Li and Muldowney (1995)] which states that
it suffices to show that the system is competitive in the region D+

4 .
First we consider the case of γ f = 0, subsequently W = 0 and we have a constant

Jacobian

J1 =





−µ f 0 cm1θα cm2θα

0 −µ f cm1(1 − θ)α cm2(1 − θ)α

0 0 −µm 0
0 0 0 −µm



 .

If we let H = diag(1, 1,−1,−1), HJ1 H has nonpositive off-diagonal elements
and the system is competitive.
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For the case γ f > 0 but small, we note that all terms in J1 involving γ f are linear
in γ f , hence by a continuity argument the stability holds for sufficiently small and
positive γ f .

Proof of Lemma 3. The Jacobian matrix J ∗
2 at the DFE has the form

J∗
2 =

(
J1 ·
0 J2

)

where J1 is the Jacobian matrix of the disease-free case and

J2 =





−µ̄ f 0 b1 b2

0 −µ̄ f b3 b4

a1 a2 −µ̄m 0
a3 a4 0 −µ̄m





with

a1 = cm1 p11c̄ f 1β f 11M1

N f

a2 = cm1 P12c̄ f 2β f 21M1

N f

a3 = cm2 p21c̄ f 1β f 12M2

N f

a4 = cm2 p22c̄ f 2β f 22M2

N f

b1 = c f 1 p11c̄m1βm11F1

Nm

b2 = c f 1 p21c̄m2βm21F1

Nm

b3 = c f 2 p12c̄m1βm12F2

Nm

b4 = c f 2 p22c̄m2βm22F2

Nm
.

We note that λ(J∗
2) = λ(J1) ∪ λ(J2).

We also know that all eigenvalues of J1 have negative real parts and the eigenval-

ues of J2 are − 1
2 (µ̄m + µ̄ f ) ± 1

2

√
(µ̄m − µ̄ f )2 + 2h + 2

√
k and − 1

2(µ̄m + µ̄ f ) ±
1
2

√
(µ̄m − µ̄ f )2 + 2h − 2

√
k, where

h = a1b1 + a4b4 + a2b3 + a3b2
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k = (a1b1 − a4b4)
2 + (a3b2 − a2b3)

2 + 2(a3b1 + a4b3)(a1b2 + a2b4)

+ 2(a3b4 + a1b3)(a2b1 + a4b2).

Clearly a1, a2, a3, a4, b1, b2, b3, b4, µ̄m and µ̄ f are all positive. Let

s1 = − 1
2 (µ̄m + µ̄ f ) + 1

2

√
(µ̄m − µ̄ f )

2 + 2h + 2
√

k

t1 = − 1
2 (µ̄m + µ̄ f ) + 1

2

√
(µ̄m − µ̄ f )2 + 2h − 2

√
k.

To show that all eigenvalues of J ∗
3 have negative real parts, it suffices to show s1

and t1 have negative real parts. We will proceed by considering two separate cases.
Case 1. Assume (µ̄m − µ̄ f )

2 + 2h − 2
√

k < 0, i.e., Re(t1) < 0.
The condition in Lemma 3 is equivalent to

k

(2µ̄mµ̄ f − h)2
< 1.

Given that k > 0, we can take the square root of both sides of the inequality and
obtain

2
√

k + 2h + (µ̄m − µ̄ f )
2 < (µ̄m + µ̄ f )

2.

Since h > 0, it is equivalent to

s1 = − 1
2 (µ̄m + µ̄ f ) + 1

2

√
(µ̄m − µ̄ f )2 + 2h + 2

√
k < 0.

Case 2. Assume (µ̄m − µ̄ f )
2 + 2h − 2

√
k > 0, i.e., s1 > t1.

Again we make use of the equivalent condition

k

(2µ̄m µ̄ f − h)2
< 1,

which combined with (µ̄m − µ̄ f )
2 + 2h − 2

√
k > 0 implies s1 < 0. Since t1 < s1,

it follows that t1 < 0 as well.

Proof of Lemma 4. (i) For cm1 M1
Nm

≥ θ , the Jacobian matrix J ∗
3 at DFE has the

form

J3
∗ =

(
J1 ·
0 J3

)

where J1 is the Jacobian matrix of the disease-free case in Section 3.
It suffices to show that all eigenvalues of J3 have negative real parts where

J3 =




−µ̄ f c b1 0
0 −µ̄ f − c 0 b4

a1 0 −µ̄m 0
0 a4 0 −µ̄m
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with

a1 = cm1c̄ f 1β f 11M1

N f
,

a4 = cm2c̄ f 2β f 22M2

N f
,

b1 = c f 1c̄m1βm11 F1

Nm
,

b4 = c f 2c̄m2βm22 F2

Nm
,

c = γ̄ f (cm1 M1 − θ Nm)2

N2
m

.

Note that λ(J∗
3) = λ(J1) ∪ λ(J3).

We know that all eigenvalues of J1 have negative real parts. The eigenvalues
of J3 are − 1

2 (µ̄m + µ̄ f ) ± 1
2

√
(µ̄m − µ̄ f )2 + 4a1b1 and − 1

2 (µ̄m + µ̄ f + c) ±
1
2

√
(µ̄m − µ̄ f − c)2 + 4a4b4. Since a1, a4, b1, b4, c, µ̄m and µ̄ f are all positive,

we only need to show that

− 1
2 (µ̄m + µ̄ f ) + 1

2

√
(µ̄m − µ̄ f )2 + 4a1b1 < 0

and

− 1
2 (µ̄m + µ̄ f + c) + 1

2

√
(µ̄m − µ̄ f − c)2 + 4a4b4 < 0.

The first condition in Lemma 4 is

µ̄mµ̄ f > a1b1

which is equivalent to

− 1
2(µ̄m + µ̄ f ) + 1

2

√
(µ̄m − µ̄ f )2 + 4a1b1 < 0.

Similarly, the second condition in the lemma is

µ̄mµ̄ f > a4b4 − µ̄mc

which is equivalent to

− 1
2 (µ̄m + µ̄ f + c) + 1

2

√
(µ̄m − µ̄ f − c)2 + 4a4b4 < 0.

So all eigenvalues of J2, and subsequently J ∗
2 , have negative real parts.

(ii) Similarly for the case cm1 M1
Nm

< θ .
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