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ABSTRACT

The response of a weakly stratified layer of fluid to a surface cooling distribution is investigated with linear

theory in an attempt to clarify recent numerical results concerning the sinking of cooled water in polar ocean

boundary currents.

A channel of fluid is forced at the surface by a cooling distribution that varies in the down-channel as well

as the cross-channel directions. The resulting geostrophic flow in the central region of the channel impinges

on its boundaries, and regions of strong downwelling are observed. For the parameters of the problem

investigated, the downwelling occurs in a classical Stewartson layer but the forcing of the layer leads to an

unusual relation with the interior flow, which is forced to satisfy the thermal condition on the boundary while

the geostrophic normal flow in the interior is brought to rest in the boundary layer.

As a consequence of the layer’s dynamics, the resulting long-channel flow exhibits a nonmonotonic ap-

proach to the interior flow, and the strongest vertical velocities are limited to the boundary layer whose scale

is so small that numerical models resolve the region only with great difficulty. The analytical model presented

here is able to reproduce key features of the previous nonlinear numerical calculations.

1. Introduction

The location of the sinking of cooled water in polar

regions is one of the fundamental issues that needs

clarification for the theory of the ocean’s overturning

circulation. Recent work on that sinking (e.g., Pedlosky

and Spall 2005) has emphasized the enhancement of the

sinking in the vicinity of lateral boundaries of the basin

where the vorticity produced by stretching can be dis-

sipated by friction. There have been many other studies

of the process (e.g., Pedlosky 1968; LaCasce 2004). How-

ever, in these earlier studies, the sinking was supposed

to occur in boundary regions with significant vertical

stratification. The importance of boundary mixing for the

meridional overturning circulation has been emphasized

by Marotzke (1997) and Marotzke and Scott (1999). In

each of these studies the zones of upwelling or sinking

have been substantially stratified.

In a recent paper (Spall 2008), the downwelling in-

duced by buoyancy loss in a boundary current was studied

in an attempt to describe the process by which cooled

water in polar regions sinks. As previous studies have

shown, the tendency is for the sinking to take place

adjacent to boundaries where the vorticity induced by

the stretching of vortex columns by the sinking fluid

can be dissipated by friction. The calculation in Spall’s

study used the full Massachusetts Institute of Technology

(MIT) general circulation model (Marshall et al. 1997). A

current was introduced at the entrance to a channel and

cooling, uniform in the down-channel direction, produced

an evolution of the current in that direction such that an

along-channel pressure gradient in geostrophic balance

drove fluid to the right-hand boundary of the channel

where it underwent strong sinking. In contrast to earlier

work, the model develops a mixed layer of very weak

but nonzero vertical stratification in which the sinking

occurs but the lateral temperature gradients in the layer

drive a geostrophic flow forcing the downwelling. This

contributes to making the sinking region extremely nar-

row and the narrowness of the sinking region is such that

only a few grid points in the calculation represent the

boundary layer, so its spatial resolution is marginal. Al-

though it is not thought that this affects the overall strength

of the downwelled fluid, it appears conceptually important

to resolve the structure of the dynamics with a simple an-

alytical model: that is the goal of the present study.

One of the curious features of the numerical results is

the nonmonotonic behavior of the along-channel flow
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near the boundary. The numerical model has a double

boundary layer structure in which a broad Prandtl-type

boundary layer appears to act to satisfy the no-slip con-

dition on the along-channel flow: yet, as the boundary is

approached within this layer, u, the along-channel flow,

increases before finally being brought to zero in a very

narrow region within the no-slip layer. In the discussion

that follows a very simple linear model of a weakly

stratified fluid, cooled at the upper surface, is employed

to discuss, in particular, the inner region of the bound-

ary layer where the overshoot of u occurs and where the

strong sinking is found. The use of this linear model is

suggested by the relative insensitivity in the numerical

model of Spall (2008) to the degree of nonlinearity.

Indeed, Spall suggested that the layer was a modified

form of the nonhydrostatic Stewartson layer (Stewartson

1957) found in the theory of homogeneous rotating fluids.

There is much that is unrealistic in the analytic model

and yet its ability to reproduce salient features of the full

numerical model implies that those features are robust

and not dependent on the nonlinear nature of the original

calculation.

Section 2 describes the basic model. Section 3 outlines

the equations for the interior flow outside the Stewartson

layer, while section 4 describes the Stewartson layer and

the matching condition of the layer to the interior, set-

ting a boundary condition on the interior flow. Section 5

presents the main results for a simple example of the

theory. In section 6 some final remarks are made on the

overall nature of the problem and its dependence on

stratification (or its lack).

2. The model

We consider the flow in a channel of width L and depth

D. The fluid in the channel is cooled at the surface at a

rate H such that at the upper surface, z 5 D,

kv
›T

›z
5 H(x, y), (2.1)

where T is the temperature anomaly above a weak back-

ground vertical gradient, that is,

T total 5 DTyz/D 1 T ; (2.2)

kn is the thermal diffusivity in the vertical direction, and

x and y are the long-channel and cross-channel coordi-

nates, respectively.

The independent variables are scaled:

(x, y, z) 5 (Lx9, Ly9, Dz9). (2.3)

The temperature anomaly is scaled, using (2.1):

T 5
HD

kv
T9, (2.4)

while the horizontal and vertical velocities and the

pressure are scaled in expectation of a geostrophic and

hydrostatic balance holding over most of the domain;

that is,

(u, y, w) 5
gaHD2

f kvL
u9, y9,

D

L
w9

� �

p 5 ro

gaHD2

kv
p9, (2.5a,b)

where a is the coefficient of thermal expansion, g is the

acceleration due to gravity, ro is the constant reference

density, and f is the constant Coriolis parameter. The

Rossby number of the flow,

e 5
gaHD2

f 2kvL2
, (2.6)

will be assumed small enough so that linear theory will

be uniformly applicable. The parameter measuring the

background stratification, S, the Burger number, is

S 5
gaDTvD

f 2L2
. (2.7)

The nondimensional linearized equations of motion

for this incompressible fluid on the f plane are

u 5 �py 1
EH

2
=2y 1

Ey

2
yzz,

�y 5 �px 1
EH

2
=2u 1

Ey

2
uzz,

0 5 �pz 1 T 1
D2

L2

EH

2
=2w 1

Ey

2
wzz

� �
,

0 5 ux 1 yy 1 wz,

wS 5
EH

2sH
=2T 1

Ey

2sy

Tzz. (2.8a--e)

The primes on the dimensionless quantities have been

dropped and the Laplacian operator in (2.8) is the hori-

zontal Laplacian,

=2 5
›2

›x2
1

›2

›y2
.

Subscripts denote differentiation with respect to the in-

dependent variable. The parameters,

(EH , Ey) 5
2

fL2
(yH , yyL2/D2), (2.9)
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and the Prandtl numbers are the ratios

sH 5 yH /kH , sy 5 yy/kv. (2.10a,b)

Different viscosity coefficients have been introduced for

lateral and vertical momentum mixing but, given the

simplicity of the model and the weak stratification that

will be assumed, such detailed assumptions about the

anisotropy of the mixing are problematic. The theory is

qualitatively unchanged if the mixing coefficients are

isotropic.

The boundary conditions are

Tz 5 H, z 5 1,

T 5 0, z 5 0,

Ty 5 u 5 y 5 w 5 0, y 5 0, 1,

uz 5 yz 5 w 5 0, z 5 0, 1. (2.11a--d)

The thermal conditions represent a nonuniform heat-

ing at the upper boundary and a fixed temperature at the

lower boundary, which is our substitute in this simple

model for a fairly passive fluid layer beneath. The side-

walls are thermally insulated.

The last condition in (2.11) expresses the condition of

no stress at the top and bottom of the fluid layer, which

seems appropriate as a model of a heated mixed layer

not in contact with rigid horizontal boundaries. That

condition, through the use of Ekman layers at the top

and the bottom of the layer, is translated into a condi-

tion on the vertical velocity at the edge of the very thin

Ekman layers:

w 5 7
Ey

2

›

›z
[yx � uy], z 5

1
0

� �
, (2.12)

where z 5 0 and 1 are understood to be at the edge of

the Ekman layer.

We will be particularly interested in the limit where S

is small but will insist that the temperature anomaly is

small enough to maintain a stable stratification consis-

tent with our linearization. Our interest will be focused

on the region between the Ekman layers and, in par-

ticular, on the boundary layers on the sides of the

channel where we anticipate the major vertical motion

will occur. We will consider the parameter limit of weak

stratification expressed by [see (4.4) below]

sHS � E 2/3
H (D/L)2/3. (2.13)

3. The interior

In the fluid interior the scales for the variables intro-

duced in the last section are presumed to give an accurate

measure of the relative importance of the individual terms

in the equations of motion. That being the case, the hor-

izontal momentum equations reduce to geostrophic bal-

ance and the vertical momentum equation is simply the

hydrostatic balance. Denoting the interior dependent

variables with a subscript I,

uI 5 �pIy, yI 5 pIx, TI 5 pIz. (3.1a--c)

It follows that the horizontal velocity is nondivergent in

the interior so that the vertical velocity must be inde-

pendent of z. From the boundary conditions (2.12) it

follows that wI is O(Ey) at z 50,1 and so must be of that

order for all z. If S� 1, and assuming that sy is O(1), it

follows that the vertical advection of temperature is

negligible in the thermal equation (2.8e), which then

becomes

EH

2sH
=2TI 1

Ey

2sy

TIzz 5 0. (3.2)

Once the solution for (3.2) is found, the horizontal ve-

locities can be determined up to a barotropic (z inde-

pendent) constant of integration from the thermal wind

relation. The vertical velocity in the interior is very

weak, of order EH, Ey (which for simplicity we will as-

sume are of the same order). However, it is not possible

to determine the solution of (3.2) until boundary con-

ditions are specified on the sidewalls. At the horizontal

boundaries the interior temperature must satisfy the

conditions (2.11a,b). To find the appropriate boundary

conditions for (3.2) and to determine the barotropic

component of the interior flow, it is necessary to ex-

amine the boundary layers at y 5 0 and 1.

4. The sidewall boundary layer

For a very weakly, nearly homogeneous fluid, the

structure of the sidewall boundary layers in linear the-

ory has been described by Stewartson (1957) (see also

Greenspan 1968), although the theory needs some al-

teration to deal with the differing mixing coefficients in

the vertical and horizontal directions and the smallness

of D/L. Fundamentally though the basic ideas are not

significantly altered. In the original theory there are two

possible boundary layers; an outer layer with thickness

that depends on the quarter power of the friction and

which act to satisfy the no-slip condition. That E 1/4
H

layer depends on vorticity dissipation in Ekman layers

on solid horizontal surfaces bounding the fluid on at

least one horizontal boundary. We have chosen to ex-

amine a layer satisfying a no-stress condition on z 5 0

and 1: It is easy to show, with the application of (2.12),

that this outer layer is no longer possible. That will present
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a strong constraint on the interior flow. The inner bound-

ary layer, in our notation, has a thickness,

db 5 (EHD/L)1/3 (4.1)

or, in dimensional units,

d�b 5
2yH

f

� �1/3

D1/3,

and is, as expected, independent of the overall channel

width L.

We define corrections to the interior fields in the bound-

ary layer near y 5 0 as

ub 5 U �u, ygb 5 Udb�yg, yab 5 U
db

(D/L)
�ya,

wb 5 U �w/(D/L), Tb 5 U
(sHS)

db

�T, (4.2a--e)

where U is an unknown scaling constant for all variables

and yg is the geostrophically balanced part of the cor-

rection to y in the boundary layer while ya is the ageo-

strophic part. All correction variables are functions

of the stretched y variable, h 5 y/db and must vanish

for large h. To lowest order in the small parameter

sHS/E 2/3
H (D/L)2/3, the correction functions satisfy

�u 5 ��ph, �yg 5 �px, �ya 5 � 1

2
�uhh, 0 5 ��pz 1

1

2
�whh

�wz 5 ��yah, �w 5
1

2
�Thh.

(4.3a--f)

In order for the buoyancy force to be negligible in the

vertical equation of motion, the condition

sHS � E 2/3
H (D/L)2/3, (4.4)

which defines the parameter restriction of this study. A

similar condition (but without the aspect ratio factor)

was found by Barcilon and Pedlosky (1967). This con-

dition is equivalent to the condition, in dimensional

terms, that the boundary layer thickness

d�b 5
2yH

f

� �1/3

D1/3

is much greater than the deformation radius, ND/f, mul-

tiplied by s 1/2
H , the square root of the Prandtl number.

A single equation for the pressure correction function

can be found; that is,

�phhhhhh 1 4�pzz 5 0. (4.5)

The boundary conditions for (4.5) can be obtained from

the Ekman compatibility conditions (2.12). It is straight-

forward to show that these conditions imply that �w must

be zero on z 5 0,1, from which it follows that �pz 5 0 at

those points. This implies that the solution for �p can be

written as a cosine series; that is,

�p 5 Re�
j51

cos ( jpz)[A1je
�gjh 1 A2je

�gj(1/21i
ffiffi
3
p

/2)h

1 A3je
�gj(1/2�i

ffiffi
3
p

/2)h],

gj 5 (2jp)1/3

(4.6)

from which, with (4.3), all other correction functions can

be found: they are given in appendix A. Note that �p, and

hence the horizontal velocities, have a zero vertical

average, so the interior horizontal velocities must also

have zero vertical average at the channel boundaries.

Thus, the structure of the Stewartson layer imposes a

strong condition on the interior flow.

With the solutions to the boundary layer equations,

we are now in a position to carry out the matching

procedure at y 5 0. A similar process will occur at y 5 1

but those details can be skipped.

The matching conditions become, at y 5 0,

uI 1 U �u 5 0,

yI 1 U
db

D/L

� �
�ya 1

D

L
yg

� �
5 0,

wI 1 U
L

D
�w 5 0,

TIy 1 U
sHS

E 2/3
H (D/L)2/3

�Th 5 0. (4.7a--d)

Here uI , yI , and TI are O(1) and wI is O(EH). In the

classical Stewartson layer problems involving a homo-

geneous fluid, the interior velocity normal to the bound-

ary is zero or, if there is a geostrophic, order one yI, then

the geostrophically balanced yI must satisfy the zero

conditions on its own. This, however, cannot be the case

here. Since the parameter,

sHS

E 2/3
H (D/L)2/3

,

measuring the contribution of the boundary layer to the

temperature gradient at the wall is, by hypothesis, small,

the interior temperature gradient must, to lowest order,

satisfy the insulating condition on y 5 0. It is then im-

possible for the interior to satisfy that condition and the
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condition on y. We are forced to the conclusion, then,

that we must choose U, the scale for the boundary layer

correction to achieve that balance; that is,

U 5
D/L

db
� 1. (4.8)

This unusual constraint on the interior can be easily

understood in the limit as S goes to zero. Then, the

thermal equation is decoupled from the vertical advec-

tion and the temperature satisfies a form of Laplace’s

equation. It is obvious in this limit that the temperature

field must directly satisfy the insulating condition directly

with the interior variables.

It then follows that to lowest order,

�u 5 0, �w 5 0, �ya 1
D

L
�yg 5 �yI , h 5 0 . (4.9a--c)

Those three conditions determine A1j, A2j, and A3j.

Note that this implies that the flow in the boundary layer

is forced by the impinging geostrophic flow in the inte-

rior at the wall, a conclusion that Spall (2008) has found

in his numerical study. Thus, the sinking in the bound-

ary layer is forced indirectly by the cooling as it gener-

ates a down-channel pressure gradient and a geo-

strophic flux toward the boundary where the sinking

takes place.

The interior problem is then reduced to a solution of

(3.2) subject to the condition that TIy 5 0 at y 5 0,1.

That determines the baroclinic flow in the interior. The

barotropic component of the interior flow, for which

T and w are zero, satisfies

EH=2zIb 5 0, zIb 5 =2pIb, (4.10a,b)

where the subscript b denotes a barotropic pressure

field independent of z. The boundary conditions for this

flow are that the geostrophic, barotropic velocities must

cancel the vertical average of the baroclinic solution

obtained from (3.2) so that

ð1

0

(uI , yI)dz 5 0, y 5 0, 1, (4.11)

since the boundary layer corrections to the horizontal

velocity have no vertical average.

5. An example

To illustrate the theory, consider a simple example: a

cooling function, as in (2.11 a), of the form

H 5 ReH1eikx cos py, 0 # y # 1. (5.1)

The form imposes a cooling on one-half of the channel

and a heating on the other half. We will focus on the

boundary, at y 5 0, where the cooling will take place

(for specified values of x). The form is chosen to make

the satisfaction of the thermal conditions on the side-

walls, TIy 5 0, very simple. The solution to (3.2) that

accomplishes that is

TI 5
H1

K

sinh Kz

cosh K
eikx cos py,

K2 5 (k2 1 p2)
syEH

sHEy

, (5.2a,b)

and the real part of the above expression is understood.

From the thermal wind relation the horizontal velocities

are determined up to a barotropic component; that is,

uI 5 p
H1

K2

cosh Kz

cosh K
eikx sin py 1 uIB(x, y),

yI 5 ik
H1

K2

cosh Kz

cosh Kz
eikx cos py 1 yIB(x, y). (5.3a,b)

Note that the thermally driven, baroclinic, part of the

down-channel velocity satisfies the no-slip condition on

the channel boundaries. Since the barotropic velocities

must cancel the vertical mean of the baroclinic velocity

on y 5 0,1 the boundary conditions for the barotropic

velocities are

uIB 5 0

yIB 5 �ik
H1

K3
tanh K cos py

9=
;, y 5 0, 1. (5.4)

The barotropic interior velocities are in geostrophic

balance and are found from the pressure field that is a

solution of (4.10); namely,

pIB 5 eikx A

2k
y

cosh ky

cosh k
1

B

2k
(y� 1)

cosh k(y� 1)

cosh k

�

1 E
sinh ky

sinh k
1 F

sinh k(y� 1)

sinh k

�
.

uIB 5 � ›pIB

›y
, yIB 5

›pIB

›x

(5.5)

The coefficients A, B, E, and F are determined by ap-

plying (5.4). The result is shown in appendix B.

The coefficients for the boundary layer solution (4.6)

are found by applying (4.9) now that the interior flow is

determined. For the example under consideration, it

can be shown that

A1j 5 0, A3j 5 �A2je
2pi/3,
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and

A2j 5
2ikH1(�1)j tanh K

(1� e2pi/3)(j2p2 1 K2)[(ik(D/L) 1 jp)]
,

(5.6a--c)

which completes the solution. In constructing the solu-

tions discussed below, and shown in the following fig-

ures, 30 vertical modes of the boundary layer series (4.6)

were retained. Adding more modes did not change the

solution.

Figure 1 shows the contours of the velocity in the

cross-channel direction at a position, kx 5 1.25p, where

the flow in the upper part of the water column is being

driven toward the boundary y 5 0. Half the channel

width is shown: The solution for y is antisymmetric

about y 5 0.5. In 0 # y # 0.5 flow is being driven to-

ward the boundary y 5 0 where it sinks in a boundary

layer of width db 5 0.037. The resulting velocity profile

of the zonal velocity shown in the half channel (the

zonal velocity is symmetric across the channel) at z 5

0.8 in Fig. 2. Note the monotonic decrease of the zonal

velocity as y 5 0 is approached by the interior solution

but, as we approach the boundary layer, the structure of

the Stewartson layer produces a local enhancement of

the down-channel velocity—just as found in the nu-

merical model of Spall (2008). We can see here that this

is due entirely to the damped oscillatory behavior of the

layer’s structure and the relatively large amplitude of

the correction driven by the need of the Stewartson

layer to bring the cross-channel velocity to rest. Figure 3

shows the profile of the vertical velocity, again at z 5

0.8. The vertical velocity is entirely limited to the side-

wall boundary layer since the interior velocity, fric-

tionally driven, is extremely small, that is, O(EH , Ev).

As in the numerical model, the sinking is limited to the

boundary region where the vorticity production due to

vortex tube stretching can be balanced by viscous dis-

sipation.

Although the motion is three-dimensional, the verti-

cal velocity is produced by the ageostrophic component

of y in the boundary layer, which satisfies

›ya

›y
1

›w

›z
5 0 (5.7)

so that a streamfunction for this ageostrophic circulation

can be generated (Fig. 4). The contours of that stream-

function in the vertical plane give a clear picture of that

part of the flow that leads to the sinking. A very similar

structure is seen in Spall’s nonlinear numerical calcu-

lations where the oscillatory structure of the stream-

function field in y is evident. Note that the ageostrophic

velocity in the boundary layer is largely driven by the

geostrophic velocity in the interior.

FIG. 1. The cross-channel velocity y in 0 # y # 0.5 for EH 5 0.001, D/L 5 0.05, and H1 5 21.

The contours of y are scaled with its absolute maximum of 0.0377.
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6. Discussion

A simple linear model has been used to discuss the re-

sponse of a weakly stratified layer to a nonuniform cooling

of the surface. The nonuniformity in the downstream di-

rection is imposed to mimic the downstream variation

that would appear naturally if the cooling were uni-

form but if, as in the nonlinear model of Spall (2008),

FIG. 2. The profile of the down-channel velocity u at z 5 0.8 for the same parameters as

in Fig. 1.

FIG. 3. The vertical velocity profile at z 5 0.8. Parameters as in Fig. 1.
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nonlinear advection is included. In particular, the cooling

has been chosen so that the geostrophic velocity in the

cross-channel direction, forced by the cooling, drives

an amplified response in a narrow sidewall boundary

layer that is, for all intents and purposes, the same as

the boundary layer introduced by Stewartson (1957).

The principal difference in the treatment here is that for

the layer to bring the geostrophic cross-channel velocity

to rest at the boundary requires an amplitude for the

boundary layer correction that is much larger than in

the classical theory, where the interior flow is two-

dimensional and the cross-channel velocity in the interior

is weak and ageostrophic.

The analysis confirms the interpretation of Spall (2008)

that the narrow zone to which strong vertical motion is

limited in the numerical model that he investigated is

essentially the same as the linear Stewartson layer. This

is somewhat intriguing since the numerical model is

strongly nonlinear, but it does seem to imply that the

basic process determining the region of sinking by cool-

ing is robustly governed by the balance between vorticity

generated by vortex stretching and the dissipation of that

vorticity in narrow regions near the boundary. In par-

ticular, the net downwelling at the boundary is set by the

magnitude of the geostrophic flow in the interior, driven

to the boundary by the along-channel pressure gradient

produced by the cooling. The local boundary enhance-

ment of the along-channel velocity is also well described

by this simple analytical model and is, again, a funda-

mental feature of the Stewartson E 1/3
H layer when that

layer is forced by a geostrophic interior impinging flow.

If the stratification were increased enough to reverse

the inequality (4.4) so that sHS� E 2/3
H ðD/LÞ2/3 (so that

the deformation radius exceeds the width of the Stew-

artson layer), then the Stewartson layer would split

(Barcilon and Pedlosky 1967) into a hydrostatic layer of

thickness (sHS)1/2 and a very narrow buoyancy layer

whose thickness is (EHD/L)1/2/(sHS)1/4; however, with

insulating sidewalls this second layer is essentially absent.

The vertical velocity is much reduced in the stratified

hydrostatic layer, and the constraint on the interior ve-

locity eliminates the forcing of the boundary layer by the

geostrophic cross-channel flow. Thus, as might be ex-

pected, the strong downwelling seen in the model de-

scribed here depends essentially on the weakness of the

stratification, which in the numerical model of Spall is

self-generated as the cooling-forced mixed layer.

Acknowledgments. I am grateful to M. Spall for shar-

ing with me his unpublished numerical calculations,

which suggested the analysis of the present paper and

for many helpful conversations concerning this work.

This research was supported in part by NSF Grant

OCE 0451086.

FIG. 4. The circulation streamfunction of the ageostrophic velocity in the y–z plane.

All parameters are as in Fig. 1. The streamfunction contours are scaled with its numerical

maximum 5 0.007 63.

APRIL 2009 P E D L O S K Y 1067



APPENDIX B

The Coefficients for the Interior Barotropic Flow

Applying (5.4) to (5.5) yields

B 5 A,

F 5 E,

E 5 F � A

2k2

1 1 1/ cosh k 1 k tanh k

coth k 1 1/ sinh k

� �
,

and

A 5 2kH1 tanh K/K3

�
1� 1 1 1/ cosh k 1 tanh k

coth k 1 1/ sinh k

� �
.

(B.1a--d)
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APPENDIX A

The Boundary Layer Correction Functions

From (4.3) and (4.6) we find that

�u 5 �
j51

gj(A1je
�gjh 1 (1/2 1 i

ffiffiffi
3
p

/2)A2je
�gj(1/21i

ffiffi
3
p

/2)h 1 (1/2� i
ffiffiffi
3
p

/2)A3je
�gj(1/2�i

ffiffi
3
p

/2)h) cos (jpz),

�yg 5 �
j51

›A1j

›x
e�gjh 1

›A2j

›x
e�gj(1/21i

ffiffi
3
p

/2)h 1
›A3j

›x
e�gj(1/2�i

ffiffi
3
p

/2)h

� �
cos (jpz),

�ya 5 � 1

2
�
j51

g3
j (A1je

�gjh �A2je
�gj(1/21i

ffiffi
3
p

/2)h �A3je
�gj(1/2�i

ffiffi
3
p

/2)h) cos (jpz),

�w 5
1

2
�
j51

g4
j (�A1je

�gjh 1 (1/2 1 i
ffiffiffi
3
p

/2)A2je
�gj(1/21i

ffiffi
3
p

/2)h 1 (1/2� i
ffiffiffi
3
p

/2)A3je
�gj(1/2�i

ffiffi
3
p

/2)h)
sin (jpz)

jp
. (A.1a--d)

The lateral temperature gradient correction is

�Th 5 �
j51

gj
3 A1je

�gjh � 1

2
A2je

�gj(1/21i
ffiffi
3
p

/2)h � 1

2
A3je

�gj(1/2�i
ffiffi
3
p

/2)h

� �
sin (jpz)

jp
. (A.1e)

The real part of the above expression is understood.
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