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Abstract Pentachlorophenol (PCP) induces liver cancer
in mice, possibly due to covalent binding of PCP me-
tabolites to critical macromolecules. In this work, co-
valent binding was related to PCP biotransformation
and specific (cysteinyl) adducts of chlorinated quinones
in liver and blood of Sprague-Dawley rats and B6C3F1
mice dosed with ['*CJPCP. Using a sequential scheme of
scintillation counting along with selective cleavage of
cysteinyl adducts by Raney nickel, we quantified total
radiobinding, total covalent binding, non-cysteinyl
protein binding, and specific protein adducts in liver
nuclei (Np), liver cytosol (Cp), hemoglobin (Hb), and
serum albumin (Alb). Almost all of the radiobinding to
Np (>98%) was attributed to covalent binding in both
rats and mice. Regarding Cp, more covalent binding was
observed in mice than in rats (100% versus 67%,
P=0.015). Very little binding was attributed to serum
Alb (rats 1.3%, mice 2.6%, P=0.046) or Hb (not de-
tected in either species). These results indicate that the
liver was the main organ for PCP metabolism and that
relatively little of the dose of reactive metabolites be-
came systemically available. Cysteinyl binding account-
ed for 76-91% of total covalent binding to Np and 68—
76% of total covalent binding to Cp. In addition, five
times more PCP was bioactivated in the livers of mice
than in those of rats (2.14% of the dose bound to Cp in
mice and 0.416% in rats). These results reinforce pre-
vious studies, suggesting that the liver was a target organ
of PCP carcinogenicity and that mice were more sus-
ceptible to liver damage than rats. However, the sum of
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all quantified adducts accounted for only 7-8% of total
cysteinyl binding to Np and 2% to Cp, suggesting that
other uncharacterized binding species may be important
to the toxicity of PCP.
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Introduction

Pentachlorophenol (PCP), a ubiquitous environmental
contaminant, is a procarcinogen in rodents and possibly
in humans (Seiler 1991; WHO 1987). PCP induced liver
cancers in mice and mesotheliomas in rats following
2-year chronic bioassays (Chhabra et al. 1999; McConnell
et al. 1991). Human epidemiological studies have linked
possible PCP exposures with soft-tissue sarcomas
(Hardell and Sandstrom 1979), non-Hodgkin’s lym-
phomas (Greene et al. 1978; Hardell et al. 1994; Pearce
et al. 1986), and blood disorders (Roberts 1990).

Although the specific mechanism by which PCP ex-
erts its carcinogenicity remains elusive, metabolism to
chlorinated quinones is believed to play a role (Ehrlich
1990; Witte et al. 1985). PCP is metabolized primarily by
cytochrome P450 (presumably CYP1A2) to tetrachlo-
rohydroquinone and tetrachlorocatechol, which can be
oxidized to their corresponding quinones [tetrachloro-
1,4-benzoquinone (Cly4-1,4-BQ) and tetrachloro-1,
2-benzoquinone (Cly-1,2-BQ)] and semiquinones (tetra-
chloro-1,4-benzosemiquinone and tetrachloro-1,2-ben-
zosemiquinone) (Ahlborg et al. 1978; Lin et al. 1999;
Renner and Hopfer 1990; van Ommen et al. 1986a,
1988).

The toxicity of quinones and their thioether deriva-
tives has been extensively studied. Two general mecha-
nisms have been proposed for the toxic effects of
quinones, namely covalent binding to macromolecules
and generation of reactive oxygen species during redox
cycling between the quinone and semiquinone forms
(Bolton et al. 2000; Bratton et al. 1997; Monks and Lau
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1992; Monks et al. 1992; O’Brien 1991). More specifi-
cally, quinone metabolites of PCP have been shown to
covalently bind to macromolecules (Bodell and Pathak
1998; Ehrlich 1990; Lin et al. 1999, 2001a; van Ommen
et al. 1986a, 1986b, 1988; Waidyanatha et al. 1996; Witte
et al. 1985) and to produce oxidative damage to genomic
DNA (Dahlhaus et al. 1994, 1995, 1996; Jansson and
Jansson 1992; Lin et al. 2001b; Naito et al. 1994; Sai-
Kato et al. 1995; Umemura et al. 1996, 1999; Witte et al.
2000).

Studies of rats dosed with ['*CJPCP showed that liver
contained the highest levels of radioactivity, followed by
the kidney and blood (Braun et al. 1977; Larsen et al.
1972). Regarding specific covalent products, cysteinyl
adducts of chlorinated quinones and two uncharacterized
PCP adducts have been investigated in liver and/or blood
from rats and mice following gavage administration of
PCP (040 mg/kg body weight) (Lin et al. 1997, 1999;
Waidyanatha et al. 1996). Moreover, covalent binding of
Cl4-1,4-BQ and Cly-1,2-BQ has been quantified in mi-
crosomal incubations of ["*C]JPCP (van Ommen et al.
1986a, 1986b) and of unlabeled PCP (Tsai et al. 2001).

Since the proportions of total covalent binding at-
tributable to PCP metabolism and to specific chlorinated
quinone metabolites have not yet been elucidated in
vivo, we measured total binding and the abundance of
particular cysteinyl adducts of PCP metabolites in rats
and mice after administration ['*CJPCP. The PCP-de-
rived protein adducts were determined in proteins iso-
lated from the livers and blood of these animals after
reduction by Raney nickel (Ni), which specifically
cleaves carbon-sulfur bonds (Danenberg and Heidel-
berger 1976; Farnsworth et al. 1990; Perlstein et al.
1971). This allowed us to estimate also the fraction of
total covalent products bound to sulfhydryl groups.

Materials and methods

Chemicals

[C]PCP (>98% radiochemical purity, specific activity 10.4 mCi/
mmol), ammonium sulfate, and ethylenediaminetetraacetic acid
(EDTA) were purchased from Sigma Chemical Company (St.
Louis, Mo., USA). Phenylmethylsulphonyl fluoride (PMSF) was
obtained from Aldrich Chemical Company (Milwaukee, Wis.,
USA). All other chemicals were the same as reported previously
(Tsai et al. 2001).

Animals and tissue collection

Sprague-Dawley rats and B6C3F1 mice were obtained from
Charles River Breeding Laboratories (Raleigh, N.C., USA). To
investigate PCP disposition, six male Sprague-Dawley rats (410—
430 g) and six male B6C3F1 mice (27-29 g) were assigned to
control and dosing groups (three in each). Following gavage dosing
(in 10 mM phosphate-buffered saline), rats received ['*C]/
['?C6]PCP at 20 mg/kg body weight (equivalent to 120 uCi/rat) and
mice received ['*CJPCP at 20 mg/kg body weight (equivalent to
20 pCi/mouse). (Note that ['*CJPCP was administered to mice in-
stead of a ['*C]/['2C¢]PCP mixture to increase the level of radio-
binding). Controls were administered equivalent volumes of
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10 mM phosphate-buffered saline by gavage. Animals were killed
24 h after administration. Blood was collected via cardiac puncture
into a heparinized syringe and the liver was removed after perfusing
with 0.25 M sucrose. Blood and liver samples were processed as
described below.

Isolation of hemoglobin (Hb) and albumin (Alb)

Red blood cells were separated from plasma by centrifuging at
800 g for 5 min. The red blood cells were washed with saline (0.9%
NaCl) and an equal amount of deionized water was added. Samples
were frozen at —20°C overnight to lyse the cells prior to isolation of
Hb.

Hb and Alb were isolated as described in Rappaport et al.
(1993a) with modifications. Briefly, Hb was isolated from lysed red
blood cells by centrifuging at 30,000 g for 40 min at 4°C followed
by dialysis (molecular weight cut-off, MWCO 6,000-8,000) against
4x3.51 of 1 mM ascorbic acid at 4°C. Globin was precipitated by
dropwise addition of the hemolysate to cold acidified acetone
(0.1% HCI by volume), washing with ice-cold acetone, and drying
to constant weight under vacuum at 37°C. Alb was isolated from
plasma by adding an equal volume of saturated ammonium sulfate
to precipitate the immunoglobulins. After removing immunoglob-
ulins, the supernatant was purified by dialysis (MWCO 12,000—
14,000) against 4x3.5 1 of 1 mM ascorbic acid at 4°C. The dialysate
was dried, weighed, and stored at —80°C prior to analysis.

Isolation of liver cytosol (Cp) and liver nuclei (Np)

Liver Cp and Np were isolated according to the procedure de-
scribed in Lin et al. (1999) with modifications. Livers were thawed,
sliced, and suspended in 0.25 M ice-cold sucrose containing 1 mM
EDTA and 1 mM PMSF. After 10-15 strokes of a tissue grinder,
the homogenate was filtered and centrifuged at 1,000 g for 10 min.
The resulting pellet and supernatant were used to isolate liver Np
and Cp, respectively.

Np was isolated from the 1,000 g pellet, resuspended in 0.25 M
sucrose containing 1| mM EDTA and 0.2 mM PMSF, and under-
laid with 2.3 M sucrose containing 1 mM EDTA and 0.2 mM
PMSF. The nuclei were isolated by centrifugation at 105,000 g for
60 min. The 105,000 g pellet was resuspended and centrifuged at
105,000 g for another 30 min. The resulting pellet was extracted
with 0.25 M HCI, and the extract was dialyzed, dried, weighed, and
stored as Np at —80°C prior to analysis. Np from all mice was
pooled prior to analyses due to the small amounts of nuclei ob-
tained from each animal. Cp was isolated from the 1,000 g super-
natant, centrifuged at 15,000 g for 20 min, and the resulting
supernatant centrifuged at 105,000 g for another 60 min. The final
supernatant was dialyzed, dried and stored as Cp at —80°C prior to
analysis.

Analysis of protein adducts

Cysteinyl adducts of Cl4-1,4-BQ, Cls-1,2-BQ, and two uncharac-
terized PCP adducts were analyzed following cleavage of Alb, Cp,
and Np with Raney Ni as described in Tsai et al. (2001).

Gas chromatography-mass spectrometry (GC-MS) analysis

All samples were analyzed by GC-MS in negative ion chemical
ionization mode (GS-NICI-MS) using an HP 5890 gas chromato-
graph coupled to an HP 5989A mass spectrometer. The GC-MS
conditions were the same as described in Tsai et al. (2001).
Radiobinding

Small aliquots of the ['*C]JPCP dosing solutions or the purified
14C-labeled proteins, dissolved in 1 mM ascorbic acid, were added
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to 20 ml scintillant (Econoscint; Fisher Scientific, Pittsburgh, Pa.,
USA) and counted on a Wallac 1409 liquid scintillation analyzer
for 5 min. Three small aliquots, each equivalent to 2 mg protein,
were removed for scintillation counting, as shown in Figl. The first
count was performed upon purified protein after exhaustive dialysis
against 1 mM ascorbic acid using either 6,000-8,000 or 12,000—
14,000 MWCO membrane tubing. This count represents activity
from the total covalent and noncovalent binding arising from PCP.
The second count was performed after protein digestion and
washing with methyl-z-butyl ether (MTBE) to remove noncova-
lently bound and interfering compounds. This count represents
covalent binding of PCP-derived reactive metabolites. The third
count was performed after reaction with Raney Ni followed
by extraction with MTBE to remove the cleaved sulfur-bound
species; this count represents non-cysteinyl covalent binding. The
difference between counts 2 and 3 represents reactive metabolites
bound to free cysteine residues. These cysteinyl adducts were then
characterized and quantified by GC-MS following derivatization
by N-heptafluorobutyrylimidazole (HFBI) as described in Tsai et al.
(2001). Levels of particular mono-S- an multi-S- substituted
adducts derived from Cl4-1,2-BQ or Cly-1,4-BQ were combined
for reporting. Levels of two uncharacterized adducts, mea-
sured as 2,3,4,5- and 2,3,5,6-tetrachlorophenol-HFB were also
combined.

Statistical analysis
The means and standard error (SE) were calculated for all triplicate

samples. Paired t-tests were used to test differences between rats
and mice at a two-tailed statistical significance level of P<0.05.

Results

The proportion of total radiobinding that can be
attributed to PCP-derived covalent binding was esti-
mated from protein solutions (Cp, Np, and Alb) after
digestion and washing with MTBE. Results are

Purified protein from ["*C]PCP dosed rats and mice (Np, Cp, Alb, or Hb)
l dissolve in 1 mM ascorbic acid

Scintillation Counting #1
(Total radiobinding)

protein digestion
MTBE wash (discard)
v
Scintillation Counting #2

(Total protein binding or total covalent binding)

Raney Nickel reaction
MTBE extraction

v

Scintillation Counting #3
(Non-cysteinyl protein binding)

Derivatization with HFBI
GC-MS

Measurement of specific cysteinyl adducts

Fig. 1. Scheme for determining radiobinding of ['*C]pentachlor-
ophenol (PCP) products by scintillation counting. (Np liver nuclei,
Cp liver cytosol, Alb albumin, M TBE methyl-¢-butylether, HFBI
N-heptafluorobutyrylimidazole)

summarized in Table 1. More than 97.9% of total
radiobinding was covalently bound to Np in rats and
mice. Mice showed higher percentages of covalent
binding than rats for both Cp (100% versus 67.0%,
P=0.015) and Alb (2.63% versus 1.30%, P=0.046).
Radiobinding to Hb was indistinguishable from back-
ground levels (i.e., 75 dpm) in both rats and mice even
when 75 mg Hb was used.

The percentage of total covalent binding (i.e., total
protein adduction) attributable to reactions with free
cysteine residues was estimated from the fractions of
radioactivity released following treatment with Raney
Ni. As shown in Table 2, large proportions of PCP-de-
rived adducts were bound to cysteine in both species.
The percentage of Cp binding was greater in rats
(76.3%) than in mice (68.3%, P=0.003), while that of
Alb binding was greater in mice (88.7%) than in rats
(26.5%, P=0.001). Subsequently, the concentrations of
particular PCP-derived quinone adducts and two un-
characterized cysteinyl adducts were determined. Be-
cause ['*CJPCP had been administered to mice instead of
a ["*C)/['*C¢]PCP mixture (to increase the level of ra-
diobinding), the particular adduct levels in mice were
adopted from a parallel experiment in which 20 mg
[>C¢]PCP/kg body weight was administered to matching

Table 1. Percentages of total radiobinding attributed to ['*C]pen-
tachlorophenol (PCP)-derived covalent binding in various tissue
fractions in rats and mice following administration of 20 mg PCP/
kg body weight. Data represent mean values with SE in paren-
theses, n=3 (Np liver nuclei, Cp liver cytosol, A/b albumin)

Protein PCP-derived covalent binding (% of total radiobinding)
Rat Mouse

Np 97.9 (2.00) 100*

Cp 67.0 (1.80) 100* (2.65)

Alb 1.30 (0.064) 2.63* (0.287)

“No error estimate is available because the liver nuclei proteins in
mice were pooled

P<0.05, significant difference between rats and mice by paired
t-test

Table 2. Percentages of ['“C]pentachlorophenol (PCP)-derived
covalent binding associated with cysteine residues, as estimated by
treatment with Raney Ni, in various tissue fractions in rats and
mice following administration of 20 mg PCP/kg body weight. Data
represent mean values with SE in parentheses, n=3 for rats (Np
liver nuclei, Cp liver cytosol, A/b albumin)

Protein PCP-derived cysteinyl binding (% of total
covalent binding)
Rat Mouse

Np 91.2 (2.49) 75.5%

Cp 76.3 (0.310) 68.3* (0.353)

Alb 26.5 (2.91) 88.7* (2.00)

“No error estimates are available because the liver nuclei proteins
were pooled

P <0.05, significant difference between rats and mice by paired
t-test



animals. The fractions of total covalent binding and of
total cysteinyl binding attributable to particular adducts
are summarized in Table 3. Adducts of Cls-1,4-BQ were
the major products in all tissue fractions in both species.
Adducts of Cly-1,2-BQ were detected in liver and blood
proteins of mice, but not of rats. The percentages of
total adducts represented by two uncharacterized PCP
adducts were small in both species (0.006-0.385% in rats
and 0.001% for Cp in mice).

Discussion

The disposition of reactive PCP metabolites in rats and
mice was investigated based on the assay described by
Tsai et al. (2001), which uses Raney Ni to selectively
cleave sulfur bonds, corresponding to cysteinyl protein
adducts in this context. Several studies have successfully
applied Raney Ni to cleave cysteinyl adducts in various
tissues, i.e., those of styrene 7,8-oxide styrene in blood
proteins (Ting et al. 1990; Rappaport et al 1993;
Yeowell-O’Connell et al. 1996), of benzoquinone in
blood and bone-marrow proteins (McDonald et al.
1993; Rappaport et al. 1996), of chlorinated quinones
from PCP in blood and liver proteins (Lin et al. 1999;
Tsai et al. 2001; Waidyanatha et al. 1996), and of
polychlorinated biphenyl quinones in liver and brain
proteins (Lin et al. 2000).

By administering ['*C/'?C¢]PCP to animals along
with the sequential counting scheme shown in Fig. 1, we
estimated the fractions of total radiobinding associated
with covalent binding (Table 1), of total covalent bind-
ing associated with cysteinyl binding (Table 2), and of
total covalent binding/total cysteinyl binding associated
with particular metabolites (Table 3). Almost all of the
radiobinding was associated with covalent binding to
liver proteins in both rats and mice (Table 1). This
supports experimental results indicating that the liver
was the primary organ for PCP metabolism in both
species and was the target organ for PCP toxicity (NTP
1989, 1999). One purpose of this study was to estimate
how much PCP had been metabolized in the livers of
rats and mice. To answer this, we estimated the covalent
binding attributable to PCP binding as the ratio of total
Cp radioactivity (count #2 in Fig. 1) to the total radio-
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activity administered (120 pCi/rat and 20 pCi/mouse).
Assuming the liver weight to be 4% of total body weight
for rats (420 g) and 5.5% for mice (28 g) (Travis et al.
1990), and that 24.5 mg of purified liver Cp were ob-
tained per gram of liver (Lin et al. 1996), the proportions
of PCP bound to liver Cp were 0.416% in rats and
2.14% in mice. For example, in rats:

5342 dpm/2 mg protein
2.2x10° dpm/mCi

0.04 g liver
g body wt

24.5 mg protein
gliver

x 420 g body wt x
120 mCi

X

x 100% = 0.416%

This indicates that mice metabolized about five times
more PCP to liver-binding species than rats. Since me-
tabolism is necessary for PCP-induced toxicity, this re-
sult supports the finding of liver tumorigenesis observed
in mice but not in rats dosed with PCP (Chhabra et al.
1999; McConnell et al. 1991).

Results showed that less than 3% of the radiobinding
was covalently bound to Alb in rats and mice (Table 1),
and that radiobinding was not detected in Hb. This in-
dicates that very little of the dose of PCP’s reactive in-
termediates was available for extrahepatic transport in
the blood. Indeed, the observed covalent binding to Alb
could well represent intrahepatic reactions of binding
species with prealbumin, which is synthesized in the
hepatocyte. Previous studies indicated extensive binding
of PCP to serum proteins in rats and mice (>96%)
(Braun et al. 1977; Reigner et al. 1993); this probably
reflects non-covalent binding that was removed by di-
gestion of proteins followed by extraction with MTBE in
our assay (Fig. 1).

In this study, we also determined that most of the
covalent binding was associated with cysteinyl adducts,
as shown in Table 2. This supports our original idea of
using cysteinyl adducts as biological dosimeters of ex-
posure to PCP.

Finally, results indicate that we are currently able to
account for specific protein adducts representing 7-8%
of total cysteinyl binding to Np and 2% to Cp in rats
and mice (Table 3). This suggests that the brunt of
covalent products involve other uncharacterized binding
species, which may play important roles in the toxicity of
PCP.

Table 3. Percentage of total protein adducts and total cysteine-bound adducts accounted for by chlorinated quinones (Cly-1,4-BQ and
Cly-1,4-BQ) and uncharacterized pentachlorophenol (PCP) adducts. Data represent mean values with SE in parentheses, n=3 (Np liver

nuclei, Cp liver cytosol, A4/b albumin, N.D. not detected)

Species Protein Percentage of total covalent binding Percentage of total cysteinyl binding
Cls-1,4-BQ Cls-1,2-BQ Uncharacterized Cls-1,4-BQ Cls-1,2-BQ Uncharacterized
adducts adducts PCP adducts adducts adducts PCP adducts
Rat Np 5.28 (0.288) N.D. 0.305 (0.045) 6.35 (0.736) N.D. 0.383 (0.066)
Cp 1.53 (0.080) N.D. 0.120 (0.010) 2.02 (0.102) N.D. 0.158 (0.013)
Alb 7.48 (0.838) N.D. 0.495 (0.083) 30.8 (4.94) N.D. 2.06 (0.402)
Mouse Np 5.88 (1.16) 1.06 (0.037) N.D. 7.08 (1.40) 1.28 (0.045) N.D.
Cp 0.667 (0.071)  0.477 (0.039) 0.001 (0.000) 0.987 (0.108)  0.699 (0.058) 0.002 (0.000)
Alb 12.3 (0.635) 0.934 (0.006) N.D. 16.4 (0.463) 1.25 (0.038) N.D.
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