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ABSTRACT

The modern depositional environment of the northern

- epicontinental Barents Sea varies from proximal to distal

glaciomarine. The regional surface sediment distribution is
controlled by erosion of shallow banks of the Pleistocene glaciated
surface, with the fine material deposited in the deep basins.
Near-bottom nephelioid layers are often observed indicating that fine
grained sediments are being transported under present conditions.
Minor additional sediment is gsupplied by iceberg rafting englacial
material and sea-ice containing aeolian, resuspended, and beach
sediments.

Glacial flour is supplied by several large stable meliwater
outflow locations along the ice front. Because the water is fresh and
nearly the same temperature as the ambient coastal water, it is
bouyant. Although the traction load deposits as the meltwater plume
rises to the sea surface, sand (as well as finer material) may be
guspended. This material deposits from suspension at some distance
from the discharge location (dependent on both the sediment settling
velocity and the velocity of the ambient coastal water, regulting in
well-sorted deposits near the outflow location). Most of the sediment
in suspension is observed to deposit within a 5km radius of the
outflow location, and suspended matter samples obtained 18km offshore
were -at background levels. However, meltwater plumes can often be
observed in the surface water (in satellite photographs) at distances
of 30km downstream, indicating transport of glacial sediments along
the ice froat.

Near the Nordaustlandet glacier front surface sediments are
disturbed by glaciers advances and retreats which mechanically rework
the sediment surface . The southwestern portion of the glacier front,
Brasvellbreen, surged 18km between 1936 and 1938. An end moraine was
deposited at the maximum extent of the surge. The ice then stagnated
and disintegrated through calving. At present on the eastern portion
of the Brasvellbreen ice front is active with frequent small (less
than 50m) glacier advances and retreats. Evidence for this is shown
by the minor ridge and swale moraines in this eastern area.
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INTRODUCTION

Glacigenic sediments occur in all geologic eras, except for the
Mesozoic (Hambrey and Harland 1981). Although they are of minor
volumetric importance, glacial deposits have been used to reconstruct
former ice sheets, often implying dramatic climactic variations
{(Denton and Hughes 1981, Elverhoi in press). The terrestrial glacial
gsedimentary environment has been extensively investigated, especially
the till deposits (Goldthwait 1971), and recently more emphasis has
been placed on the glaciomarine enviromment (Molpia 1983). A
prerequigite for a better understanding of ancient enviromnments is
thorough knowledge of modern glacial environments. Comparison of
ancient glacial sediments with modern tidewater glacier analogs is
necessary to understand their eﬁvironmental significance.

Large areag of the northern continental shelves have been
subjected to glacier erosion and deposition during the late Cenozoic
(figure 1; Anderson et al. 1983). In many areas glaciers terminated
in the open ocean either as tidewater glacier fronts or ice shelves
(Rust and Romanelli 1975, Denton and Hughes 1981)., Maximum
sedimentary input to the open ocean occurred during retreat of these
glaciers across the continental shelves (Flint 1971). Sediment erocded
by continental ice sheets was transported to the open marine
environment in ice push ridges, englacial material in icebergs, and

basal meltwater. Recent observations of subpolar glaciers indicate
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Figure 1. Proposed limits of late Wisconsin glaciation showing
large extent of northern hemisphere influenced by glaciers

{(Denton and Hughes 1981, p.viii),.
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that perhaps 90% of glacially eroded material is transported to the
ice front by meltwater (figu;e 2; Hagen et al. 1983). Glacial theory
suggests that the most stable discharge mechanism for this meltwater
is through large drainage networks culminating in a limited number of
major meltwater outlets (Shreve 1972), analysis of late Quaternary
deposits now exposed on land also indicate the presence of numerous
meltwater channels deposited above basal till (Rust and Romanelli
1975). Thus input, dispersal, and deposition of suspended sediment
from submarine meltwater plumes will determine the regional
sedimentary impact of open—mariné glacier systems analogous to
Pleistocene coutinental shelf deglaciation conditions.

Previous work on glacier sediment Input to the ocean has
concentrated on subaerial meltwater streamé (Syvitski et al. in
prep.), fjord‘tidewater glacier systems (Powell 1980 and 1983}, and
the ice shelves of Antarctica (An&erson 1983). The Antarctic
environment represents a situation where meltwater is generally
absent, sedimentation is presently dominated by mass wasting and
biogeneous.deposition, and the continental margin is deep, steep, and
the shelf dips landward in contrast to other formerly glaciated
marging (Molnia 1983). Fjord-glacier systems of Alaska, Canada, and
Norway represent waning stages of glaciation with glaciers depositing
sediment in coastal embayments (Elverhoi, in press). Some aspects of
sedimentation from glacial meltwater in these restricted environments
may also be applied to the open-marine environmment. Sediment
transport via meltwater is greatest during the summer ablation season

and minimal during the winter (Collins 1979, Farrow et al. 1983),
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Figure 2. Tidewater glacier front sedimentary features (Edwards

1978, p.423).
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Suspended sediment concentrations are highest in the first large
summer discharges as winter erosional products are winnowed by
subglacial streams (Collins 1979) but will only occasionally be high
enough (greater than 38,000mg/l) to cause underflows in the marine
environment {Powell 1980, Hoskin and Burrell 1972). Discharge of
these meltwater streams into the ocean may occur at the base of the
glacier (Edwards 1978) if the glacier is not extensively fractured or
is actively retreating (Weertman 1972). The tunnel may migrate to sea
- level due to intrusion of salt water at the glacier terminus (Elverhoi
et al. 1980). Deposition of fine—grainéd suspended sediment in the
ice-proximal marine environment is enhanced by biclogic scavaging and
consequent fecal pellet production (Syvitski 1980, Syvitski and Murray
1981).

A number of questions unresolved by previous studies of glacier
~ ocean environments are: How will meltwater plumes disperse in the
open marine environment? Where will various grain-sizes of sediment
discharged in meltwater be deposited? What sedimentation rates may be
expected? This study investigates these questions through comparison
of the proximal tidewater glacier zone of the Nordaustlandet ice dome
with regional depositional patterns of the recently glaciated Barents
Sea. The Nordaustlandet region is a better analog for Pleistocene
deglaciation conditions than previously studied fjord-tidewater
glaciers because the glacier meltwater is discharged directly into the

marine environment. Analysis of surface sediment characteristics,
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circulation patterns, and suspended sediment distribution permit
modelling of the input, dispersal, and deposition of suspended
sediment from glacier meltwater plumes.

The thesis consists of four papers: 1) water mass analysis of
the northern Barents Sea, 2) regional surface sgediment response to the
hydrographic regime, 3) recent glacial history and sea floor
morphology of the western Nordaustlandet ice dome, and 4) analysis of
processes controlling deposition of glacial sediment from glacier
- meltwater plumes discharged from Nordaustlandet. The first paper
discusses the hydrographic regime through analysis of water mass
distribution. Water mass transport directions and regions of
intensified bottom currents are delineated. Regional circulation is
dominated by a cyclonic gyre in the northern Barents Sea. Shallow,
cold, and sea~ice bearing Arctic water flows southwest into the
Barents Sea from the Arctic and Kara Seas. Warm Atlantic water enters
the southern Barents Sea, meeting the Arctic water at the Polar Front
(approximately 74°N). North of the Polar Front the water column is
stratified with a surface low density layer of sea-ice meltwater at
0-30m, cold Arctic water at 30-150m, warm Atlantic water at 150-250m,
and cooled Atlantic water in some basins deeper than 250m. Transport
of modified Atlantic water into both the Norwegian-Greenland Sea and
the Arctic Ocean may contribute to deep water formation.

The second paper discusses the surface sediment texture im
relation to the bottom nepheloid layer distribution, near-bottom

circulation, and iece rafting and gouging effects. Fine sediment is
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winnowed from banks shallower than 200m (leaving a sandy-gravelly lag)
by a combination of waves and tides superimposed on mean currents.
Near-bottom nepheloid layers indicate that winnowing is a modern
process anq is associated with regions of current shear indicated by
hydrographic profiles. Resuspended fine-grained sediment is observed
to be transported via bottom nepheloid layers to deep hagins. Mean
currents may be locally strong enough to form sediment waves in one
narrow strait at 250m water depth.

The third paper discusses the recent glacial history and gea
floor morphology near Brasvelibreen, the westernmost sector of the
Nordaustlandet ice dome. Brasvellbreen surged 18km from 1936-1938;
this is the largest surge in recorded history (Patersom 1969). It
subsequently retreated 0.5-2.0km and reached i£s present position in
19583 providing a unique opportunity to observe a recently glaciated
sea floor. Sea floor affected by the surge is limited to a Skm zone
seaward of the present glacier front. It consists of a till ridge,
subparallel to the present frount, and a network pattern of abandoned
crevasse fills. This sea floor morphology is only 20 years old and
shows no signs of recent modification except for occasional ice
gouges, clean cobble pavement, and arcuate ridges in close proximity
to the present—day glacier front (due to ice push or solifluction).
Sedimentation during the surge occurred all along the glacier margin.

The fourth ﬁaper examines the recent input, dispersal and
deposition of suspended sediment from two major meltwater plumes

presently draining most of the Nordaustlandet ice dome; the plume
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located just east of Brasvellbreen is discussed in the most detail,
because sea~ice limited sampling to this region. These two meltwater
plumes have been active at.least since 1976, when the first Landsat
satellite images were obtained. These images together with suspended
gsediment information show that the plumes are generally advected

- westward along the ice front. The plumes are seasonally variable,
with gsediment discharge reaching the sea surface only during July and
August. Width of the plumes remains relatively constant (2.5km)
downstream, suspended matter profiles are vertically homogenous, and
concentration decreases offshore. Bounds on sediment and meltwater
input may be obtained from downstream concentrations and dispersal
patterns. Sediment suspended in meltwater is both predicted and
observed to be deéosited within a narrow (2.5km) ice-proximal zone.
Deposition of material greater than 100um genérally occurs within

lkm of the exit point, while fine maﬁerial (less than 16um) can be
transported great distances in a coastal current if not agglomerated
by some means. Sea-floor depocenters are sensitive to the grain size
distribution of the source, although surface sediment lithology,
texture, and deposition rate are complicated due to the recent glacier
surge when meltwater may have been discharged aleng the entire glacier
base. Surface sediments greater than 40 km away appear unaffected by

sediment input from the present-day Nordaustlandet glacier.
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CHAPTER 1

Water masses of the northern Barents Sea

Stephanie L. Pfirman
Woods Hole Oceanographic Institution
Woods Hole, Massachusetts
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ABSTRACT

The water columm of the Barents Sea north of the Polar Front is
stratified in the zummer and consists of surface water (0~10m), Arctic
Water (30-150m), Atlantic Water (150—250m), and Cold Deep Water
(greater than 250m). Both Atlantic and Arctic Water have northern and
southern sources. Mixing relationships between these water masses
vary in differeﬁt basins and are largely bathymetrically controlled.
In the summer of 1981, northern sources for both Arctic and Atlantic
Water were fresher than southern sources. If these observations are
representative of summertime conditions, Atlantic Water which enters
the Barents Sea from the north during the summer cannot provide a szalt
source for Arctic deep water. Southern Atlantic Water is shown to be
extensively modified as it passes over shalidw sills, and it could be

a source for Arctic deep water.
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INTRODUCTION

Formation of dense water in the Barents Sea hasg been speculated on
for many years {(Nansen 1915). This shallow sea was thought to be an
ideal location for cooling of Atlantic Water, thereby forming dense
bottom water and perhaps contributing to the deep water of the Arctic
Ocean and the Norwegian-Greenland seas (Aagaard 1981; Swift et al.
1983, Midtun, in prep.). The location and the processes of formation
of high-latitude deep water are important as they determine the
circulation and nutrient distribution of most of tﬁe other world
oceans. Although detailed descriptions of the hydrography have
previously been reported (e.g. Tantsiura 1959, Novitskiy 1961}, the
data bases are not presented and results are difficult to evaluate.
These studies are important to recognize however, because similar
conclugions are reached in this study of the summertime temperature,
salinity, and density of the major water masses in the northern
Barents Sea. Modification and transport of the various water masses
are also discussed, although data from the winter are not available.
Data presented in this paper are limited to hydrographic observations
obtained in the late summer when the northern Barents Sea is free from
sea-ice,

The epicontinental Barents Sea is bounded by the Scandinavian
Peninsula to the south, the Svalbard Archipelago to the west, and
Franz Josef Land and Novaya Zemlya to the east (figure 1). It is
continuous with the Norwegian Sea in the west, the Arctic Ocean to the

north, and the Kara Sea to the east. Currents in this shaliow sea are



w26

Figure 1. Bathymetric map compiled by Solheim (1982). Box encloses

study area shown in subgequent figures.

!

Explantion of Norwegian terminology: renna trough

banken bank
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Figure 2. General circulation map adapted by Loeng (1979) from
Tantsiura (1959). Solid arrows denote warm water, broken
arrows denote cold water. Heavy line indicates Polar Front.
Labelled currents are:

1. West Spitsbergen Current
2. North Cape Current
3. South Cape Current

4. Persey Qurrent

5. Hopen-Byornoya Current
6. FEast Spitsbergen Current
7. Arctic Atlantic Current

8. Novaya Zemlya Current



~29-




—30-

influenced by sea-floor topography and this results in a complex
circulation pattern (figure 2). Accurate and detailed bathymetric
information is therefore crucial to interpretation of the hydrography,
but large regions unfortunately are still not well surveyed. Average
water depth ig 250m, and a series of northeast-southwest trending
basinsg and sills are defined by the 200m isobath.

Hopen-Bjornoya Trough between Spitsbergenbanken and northern
Norway is the major deep-water {greater than 300m) comnnection of the
Barents Sea with the Norwegian—Greenland Sea (figure 1). This Trough
shoals to the morth and east. The major deep-water connection to the
Arctic Qcean is Frans Josef-Victoria Trough between Victoria Island
and Frans Josef Land. Bathymetry of this Trough is not well known,
but depths exceed 300m. Straits to the west between the northern
islands probably have sill depths near 250m. The sill depth between
the Barents and Kara seas is about 250m. Both Hinlopen Strait to the
west of Nordaustlandet, and Storfjord Trough to the west of
Spitsbergenbanken have sill depths less than 150m and are therefore
unimportant for deep water exchange.

Shallow water flow is affected by the numerous islands and shallow
banks. &Shallow banks which are especially important are
Spitsbergenbanken, Storbanken, and Sentralbanken, because they are
centrally located in the Barents Sea. BSpitsbergenbanken is the
shallowest, locally less than 50m, while Sentralbaﬁken igs the deepest,

averaging 200m.
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Hydrography

The Barents Sea hydrography is dominated by two water masses,
Atlantic Water and Arctic Water. Atlantic Water may be further
subdivided into northern and southern componeunts, both derived from
branches of the Norwegian Current (figure 2). Northern north Atlantic
Water (henceforth known as Northern Atlantic Water or ﬁAtW) flows
along the west coast of Spitsbergen as the West Spitsbergen Current.
Once it enteré the Arctic Ocean it continues eastward along the
northern slope and entérs into the Barents Sea between Nordaustlandet
and Franz Josef Land (Mosby 1938). Southern north Atlantic Water
(henceforth known as Southern Atlantic Water or SAtW) splits off from
the North Cape Current along northern Norway, and flows up Hopen -
Bjornoya Trough and splits again in the vicinity of Sentralbanken.
The branch west of Sentralbanken continues northward, and the branch
to the south of Sentralbanken is called the Novaya Zemlya Current
(figure 2). Both NAtW and SAtW are identified as being warm, greater
than 0°C, and saline, greater than 34.7°/,, (figure 3). Southern
Atlantic Water nearly fills the entire water column in the southern
Barents Sea. Northern Atlantic Water is usually identified as a
subsurface maximum in temperature at 200-250m in the northern Barents
Sea.

The second major water mass, Arctic Water (also called winter
water and polar water), is colder than -1.0°C with salinities of
34.2-34.5°/655., This near-freezing water mass originates from a deep

convection layer developed during sea—ice formation at the sea surface
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in the Arctic Ocean, the Barents Sea, and the Kara Sea (Ellertson et
al. 1981). Arctic Water occurs in the Barents Sea from 30-100m water
depth (figure 3). The boundary between this cold water and warm
Atlantic Water to the south is a strong temperature gradient known as
the Polar Front (figure 2). The surface expression of this front is
iocated above the 100m isobath north of Hopen - Bjornoya Trough
(Johannessen and Foster 1978).

The East Spitsbergen and Persey currents transport cold Arctic
Water into the Barents Sea west and south of Franz Josef Land (figure
2, Tantsiura 1959, Novitskiy 1961). These coid, westerly flowing
currents from the north oppose the warm easterly flowing North Cape
Current in the south, resulting in a well-documented cyclonic
circulation over the northern Barents Sea.

Cold Deep Wakter often occurs below warmer Atlantic Water and has
approximately the same salinity (greater than 34.7°/..). This
water mass may form by cooling Atlantic Water near shallow banks
{(Tantsiura 1959, Loeng 1980) or may be due to modification of Arctic
Water by brine rejection during sea-ice formation (Midtun, in prep.).
Distribution of this dense water mass is patchy, with large seasonal
and annual variations (Tantsiura 1959, and Loeng 1980).

Surface water forms during the summer as sea ice melts and
retreats. Surface water ig identified as a layer well mixed in both
temperature and salinity from (0-10m, above a strong pycnocline (figure
3). Away from sea-ice, the surface layer rapidly warms by radiation
during the summer (Loeng 1980). This further increases the density

contrast with underlying water, placing a low-density 1id over the
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Figure 3.

— 3

Station cast (A) and temperature — salinity plot (B) for
station 187 (position indicated by large dot in figure &4).

Station is located north of the Polar Froant in Hinlopen Basin.

Abbreviations: TEM = temperature®C
STH = o,
SAL = Sa}.iﬂityoloo

oy is contoured on the temperature - gsalinity plot
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Barents Sea. The surface water becomes depleted in nutrients during

late summer months (Mosby 1938, and Loeng 1980).

METHODS

Atlantic, Arctic, and Cold Deep Water masses were defined on the
basis of temperature extrema, and the salinity, density, and depth to
these temperature extrema were mapped for hydrographic data cobtained
in late summer, 1981. This method of following water masses is called
the core method (Sverdrup et al. 1942 p.166 (discussion of Wiist
1935)), and was first used in the Barents Sea by Mosby (1938). It was
used here, instead of more conventional plots on density or depth
surfaces, because the water masses are rapidly modified in temperature
and salinity (and therefore in density) as they flow through the
Barents Sea. A north-south section (figure 4b) éhows well defined
cores based on temperature, and to a lesser extent on sélinity. At
these temperatures, density is almost entirely dependent on salinity.

Two problems plague formulation of water—mass distribution maps:
low sampling density and lack of syncronism in measurements. The
sampling problem exists in station location, spacing, and measurement
frequency. The summer, 1981, data set is the most complete, but data
from 1973-1982 are also used for comparison of specific locations and
annual variations. All data (except 1980, 1981 and 1982 to the north
of Kong Karlg Land) were obtained by the Institute of Marine Research

in Bergen, and they are only reported at standard depths (0, 5, 10,
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Figure 4A. Station location map for 1981, the 200m isobath is
contoured. Small dots indicate hydrographic stations taken
by the R/V Lance in August 1981. All other stations were
obtained by the Mafine Research Institute in Bergen.

Large dot indicates station 187 shown in figure 3.

Numbered stations indicate.locations of 80'% samples
discussed in text.

B.North-south temperature, salinity, and density transects
along 37°E, shown to the left by heavy line. Abbreviations

for water masses are discussed in the text.
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20, 30, &40, 50, 75, 100, 125, 150, 200, 250, 300, 350, 400m). Thus
the most extreme values for the core often were not reported.
However, since the core layers are generally vertically homogeneous
over at least 50m, this sampling interval is close enough to show
general patterns in temperature and salinity (figure 3). Since
bathymetry is variable and water mass distribution appears to be
largely controlled by bathymetry (Loeng 1980) the most extreme value
of the water mass may not be sampled. For the 1981 data set this was
not a major problem because spatial sampling density was extensive,
except in narrow northern straits.

Finally, since hydrographic stations are not éynoptic, and thig is
a very shallow sea, large changes can occur in surface water
properties within a few months (Mosby 1938, and Loeng 1980). Waters
below the surface layer in the region near the Polar Fromt, however,
show only small variations over several weeks to a month in the summer
(Loeng 1980). Most stations for this study were taken in August and
September, 1981, and are considered to be synoptic.

H20'" samples were obtained at 61 stations in 1982 to examine
water mass source and mixing relationships (appendix A). Eight
stations were analyzed relative to Standard Mean Ocean Water (SMOW)
{Broecker 1974, p. 145). Atlantic Water has a value of 0.42°/.,,
and is isotopically the heaviest water mass in the Barents Sea.

§0'® will be depleted by precipitation (80'® of
-10.88°/4.) and glacier run—off (80'% of -14.28°/,,) in

surface samples (appendix A), but formation or melting of sea ice will
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not appreciably change the 80'® value. Evaporation enriches
surface water in the isotopically heavy §0'°%.

Volume transport (V.) and geostrophic velocities (uq) were
calculated assuming a level of no motion at 125m, for hydrographic

stations obtained south of Kong Karls Land in 1981.

ug = (ADg)/(2Qsind Ax)
where: AD = dynamic height (referenced to 125m)
g = acceleration due to gravity
+ @ = rotation of the earth
¢ = latitude
Ax = distance between stations
Vi = ugS4x
where: 8§ = water depth over which velocity is calculated.

A reference level of 125m was chosen because it is located between the
cores of Arctic and Atlantic Water and because it yielded transport
directions and velocities consistent with curfent meter observations
(Loeng 1980), water mass distribution, and heat balances in this
study. Results are sensitive to the reference level {Sverdrup et al.
1942 pp.390-395) and must be interpreted with care. Similar results
were obtained by Novitskiy (1961) with a 200m reference level in deep

basins, and a shallower {(150-100m) reference level over banks.

RESULTS AND ANALYSIS

Water Mass Distribution

Surface Water: Surface water temperature generally decreases
northward, from 5°C in the south to less than -1.0°C in the north
(figure 5). The less regular surface salinity contours show a

northward decrease, from 34.0°/,, in the south to less than
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Figure 5, Water mass properties of the upper 100m:
A. Surface water temperature, late summer 1981
B. Surface water salinity
€. Arctic Water temperature
D. Arctic Water salinity
Hatched areas indicate regions where Arctic Water was not
observed, either because of shallow water depth or because of

the Polar Front.
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32.0°/,0 near Kong Karls Land, with a corresponding density decrease
from greater than 27.0 to less than 26.00:.

Surface water in ice-free areas north of the Polar Front usually
has a thermocline as well as a halocline at 10m. In ice-covered areas
the gradient exists only in salinity and not in temperature (Loeng
1980)}. Because at these temperatures and salinities the density of
sea water is dependent almost entirely onm salinity, there is always a
well developed pycnocline at 10-30m, defined by 27.0c. (appendix
A). This pycnocline decouples the surface from the underlying water
(Loeng 1980). Although the surface layer undergoes large changes in
temperature due to solar radiation or sea-ice formation, these changes
are not observed below the surface on the time scale of weeks {Loeng
1980).

The northward decrease in summer surface temperature results from
a longer period of ice cover and therefore a shorter exposure to solar
radiation in northern regions (Loeng 1980). The corresponding
decrease in salinity may be attributed to the proximity of the sea ice
and more recent melting. Deviations from this general pattern include
a tongue of colder water extending southward along the east side of
Spitsbergenbanken, which is probably a surface expression of the
southward flowing Hopen-Bjornoya Current (figure 2).

The surface expression of the Polar Front is seen as a sharp
increase in temperature (to 5.0°C) and salinity (to greater than
34.0°/45) in the southern part of the survey area (figure 5). Note
that Atlantic Water influence is also seen in Storfjord Trough, where

some of the West Spitsbergen Current has split off to the east.
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Spitsbergenbanken, on the other hand, has lower salinity; shallow

waters over the bank are well mixed in both temperature and salinity.

Arctic Water: Vertical profiles of temperature, salinity, and density
(figure 3), show a layer of cold Arctic Water water (colder than
0°C, fresher than 34.7°/.., and denser than 27.60,) located
beneath the surface layer. Minimum temperatures in the Arctic Water
typically occur near 75m water depth, but vary between 40 and 150m.
Temperature-salinity (T-S5} plots show that the Arctic Water mass is
bounded by the freezing line over a broad range of salinity even in
late summer {figure 6). Spatially, the temperature minimum and
associated salinity have several well-defined features (figure ).
The cold core, by definition, is not common south of the Polar Front
(figures 4 and 5). The tongue-like features in the Polar Front are
caused by Atlantic Water extending over sills between banks. Arctic
Water does not occur over very shallow banks or along coasts.
Northern Arctic Water (NArW) in the vicinity of the northern
islands is colder than -1.7°C, with salinities of 34.2 to 34.3%/.06.
Stations are too infreguent to describe the distribution in detail,
but the minimum temperatures appear centered over the deepest portien
of the straits. A well-defined core of southern Arctic Water (SArW)
occurs near Storbanken and has the most extreme water mass properties,
colder than —1.8°C and saltier than 34.5°/... This cold, saline
water may be the westward expression of the Persey Current (figure
2). This current has been described as flowing out of the Arctic

Ocean via the Kara Sea and entering the Barents Sea to the south of
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Figure 6. Compilation of temperature - salinity relationships from

core data. Contours are lines of constant o¢.

Northern Arctic Water NArW
Southern Arctic Water SArW
Northern Atlantic Water NAtW
Southe}n Atlantic Water SALW
Novaya Zemlya Cold Water NZDW
Cold Deep water i Chw
Norwegian Sea Deep Water star
Greenland Sea Deep Water diamond

Arctic Ocean Deep Water dot
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Franz Josef Land, where it mixes with Atlantic Water (Novitskiy, 1960,
and fantsiura, 1959). However, eastern station locations in this
study are too infrequent to determine the source. SArW is
distinguished from NArW by higher salinity and lower temperature.

NArW and SArW merge‘west of Storbanken, where they also mix with
slightly warmer surface water. The result is -1.5°C and 34.3°/,,
water which forms the core of the Hopen-Bjornoya Current along the
east side of Spitsbergenbanken. The Hopen-Biornoya Current is
observed as a tongue of cold water along the east flank of
Spitsbergenbanken. A southward increase in salinity is observed, from
34.3 to 34.4°/,0. A small offshoot of cold water projects eastward
and occurs along a slight ridge of the 100m bathymetric contour at
76°N (figure 5). Thig small tongue was also observed in 1978, 1980,

and 1982.

Atlantic water: Large areas of the Barents Sea do not contain the

warm core of Atlantic Water (greater than 0°C and 34.7°/..).

Atlantic Water is present in Storfjord Trough and the deep basins of
the Barents Sea (figure 7). Northern and southern sources for
Atlantic Water are evident in temperature distributions. Southern
Atlantic Water (SAtW) was slightly more saline (34.9°/..) than
northern Atlantic Water (NAtW — 34.8°/..) in the summer of 1981
{(figures 6 and 7). Maximum temperature of the southern Atlantic Water
core decreases northward, and maximum temperatures of the northern
Atlantic Water are between 1.0 and 1.5°C. This pattern of core

distribution is remarkably similar from year to year (figure 8)
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Figure 7. Atlantic Water properties. Hatched areas indicate regions
where Atlantic Water was not observed.
A. depth
B. temperature
C. salinity

D. density
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although this may be fortuitous because Novitskiy (1961) discusses
large annual variations. On the other hand, variations observed in
Atlantic Water properties for 1978, 1980, 1981, and 1982 (figure 8)
may reflect differing station locations, rather than changes in
distribution of Atlantic Water. NAtW appears to be limited to depths
greater than 150m, while the depth to the core of SAtW increases from
50m to greater than 200m moving northward from the Polar Front.

Thé major source for SAtW is the North Cape Current which enters
the Barents Sea via Hopen - Bjormoya Trough. Spitsbergenbanken is too
shallow for Atlantic Water to enter the Barents Sea from Storfjord
Trough. BSAtW splits south of Storbanken and flows north and east over
gills., The maximum temperature of the core decreases during passage
over the gills, but the core maintains a salinity close to 34.9°%/.,
and increases in density and depth (figure 7). In the T-8 plot
(figure 6), this is seen as an almost vertical line from the Atlantic
source water of the North Cape and West Spitsbergen Currents, at 2°C
and 35.0%/q0.

It is not clear where NAtW enters the Barents Sea between the
northern islands, since the straits have not all been sampled in one
year since Mosby (1938). NAtW occurs in all northern basins deeper
than 250m (figures 7 and 8). Mosby (1938) found the highest
temperature and salinity water in Franz Josef - Victoria Trough.
Since this strait is the deepest and the widest access to the Arctic
Ocean, it is plausible that NAtW enters the Barents Sea through Frans
Josef - Victoria Trough and flows south and west in the basins near

Kong Karls Land. The strait between Kvitoya and Victoria islands may
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Figure 8. Atlantic Water maximum temperatures for:
A.1978,
B. 1980,
C.1981, and
D.1982. All data for 1978, and data south of 79°N for 1981
and 1982 courtesy of the Institute for Marine Research of

Bergen, Norway.
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be connected to Franz Josef -~ Victoria Trough and also could be a
conduit for NAtW (see figure 1). VBathymetry is not well known in this
region.

NAtW and SAtW merge in the wvicinity of Kong Karls Land. Since
NAtW is less saline (at least in 1981), it is also less dense,
occuring above SAtW where both water masses are present. The fate of
the SAtW to the north of Storbanken is difficult to determine with the
station locations obtained thus far. The temperature maximum of SAtW
occurs at approximately the 250m isobath (figure 7) along the western
flank of Storbanken, indicating northerly flow. Tt is obvious that it
does not flow around Storbanken, because it is not seen on the eastern
side. Modified SAtW may continue to flow northward, possibly through

Franz Josef - Victoria Trough and into the Arctic Ocean.

Cold Deep Water: Cold Deep Water, colder than 0°C and saltier than

34.7%/ .. has a limited distribution and is the densest water mass

in the Barents Sea (greater than 28.0 o,, figure 9). It can be
divided into two different types on the basis_of temperature (figure
6). Novaya Zemlya cold water (NZCW ~ colder than -1.0°C) is located
in the southeastern portion of the study area north of Novaya Zemlya
and hag T-S properties similar to deep water of the Norwegian-
Greenland Sea and the Arctic Ocean (figure 6 and Swift et al.
(1983)). Cold Deep Water (CDW: -1.0°C to 0.0°C)loccurs beneath
SAtW west of Sentralbanken and Storbanken and appears to be slightly
colder but otherwise similar to this warmer water mass {figure 9).

Depth to the western cold water mass is variable, from less than 100m
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to greater than 300m along the east slope of Spitsbergenbanken (figure
9). Salinity is generally around 34.9°/.,., but is less north of
Storhanken.

Regions where CDW is shallowest_and densest (figure 9) are where
Atlantic Water meets Arctic Watér along the Polar Fromt, and the
Atlantic core starts to sink beneath the Arctic Water. Atlantic Water
could be cooled in this region by air-sea interaction because the

surface layer is thin here, by melting sea-ice, or by double diffusion

with the overlying and interleaving cold fresh Arctic Water. A

portion of this CDW in Hopen-Bjornoya Trough (figure 9) may flow south
into the Norwegian-Greenland Sea, contributing dense salty water
(Swift et al., 1983). CDW formed from southern Atlantic Water by
cooling over Storbanken sill can be traced along the western flank of
Storbanken, but stationg do not extend far enough north to see if it
exits the Barents Sea through Frans Josef - Victoria Trough.

60" measurements obtained in 1982 north of Storbanken
indicate that CDW below Atlantic Water may have §0'°® values
similar to the Atlantic Water core (figure 10). Formation probably
occurs by cooling Atlantic Water, rather than by modification of
505~ depleted surface water. In contrast, deep cold water in the
Arctic Basin to the north has depleted §0'° relative to thé warm
Atlantic core; this indicates a different éource (possibly modified
surface water) for this deep water mass (figure 10). However, both
deep water samples were obtained in the transition zone between the
core of warm Atlantic Water and the core of Cold Deep Water (figure
10), so they may not be representative of the extreme Cold Deep Water

properties.
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Figure 9. Cold Deep Water properties. Hatched areas indicate regions
where Cold Deep Water was not observed.
A. depth
B. temperature
C. salinity

D. depth
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18

Figure 10. 80" " examples for 1982.
A, temperature vs. salinity for stations dicussed in the
text. T-S properties of samples for §0'° marked with

symbols.,

B. §0'® vs. salinity
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Cold Deep Water is the densest water mass in the northern Barents
Sea; the Institute of Marine Research data show a density exceeding
28.3¢. in 1973. Because it is the bottom water mass in the
northern Barents Sea, it receives regenerated nutrients diffusing from
the sediments. Ellertsen et al. (1981) have measured silicate values
of 6-7uM in the bottom waters south of Storbanken sill. Its
properties seem to be determined by modification of Atlantic Water as
it passes over the Storbanken g¢ill and is therefore it is probably
- very sensitve to c¢limatic variations. This cooled, dense Atlantic
Water could therefore have a large impact on Arctic deep water if
formed in large enough quantities.

NZCW observed in the southeastern portion of the Barents Sea,
north of Novaya Zemlya, is near the freezing point (figure 6) and is
the densest water mass in the study area (figure 9). This water mass
may form by cooling Atlantic Water of the Novaya Zemlya Current along
fhe bank north of Novaya Zemlya {Novitskiy 1961, Loeng 1980), or by
brine rejection during sea-ice formation in the surface waters
(Midtun, in prep.). Sincé winter data are difficult to obtain, the
origin cannot be resclved at presént. 80'* measurements could
resolve this question but are not available; if NZCW forms by surface
processes (such as sea-ice formation) it should be depleted in
80'% relative to Atlantic Water. NZCW appears to collect in small
basins in the southeastern Barents Sea and has been observed flowing
eastward into the Kara Sea (Midtun, in prep.) (figure 9). Recent
bathymetric data indicate a deep conduit to Frans Josef - Victoria
Trough in the northern Barents Sea (figure 1). NZCW could overflow if
enough was formed in the winter, possibly passing through Frans Josef

— Victoria Trough to the Arctic Ocean.
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Both cold water masses are very dense (greater than 28.0c:)
and probably form during the winter. Late summer observations are

likely to underestimate their importance.

Volume Transport

Volume transport, based on reference level at 125m, shows
circulation patterns consistent with core anmalysis (figure 11 and
chapter 2). NArW sources contribute 0.45x10°m*/sec (10°m’/sec
= 1 Sverdrup (Sv)) to the Hopen-Bjormoyva Current, and SAr¥W sources
contribute 0.65 Sv. Some of this cold water is appears to be lost
through entrainment along the FPolar Front, and 0.9 Sv exits from the
study area along the east slope of Spitsbergenbanken with geostrophic
velocities exceeding 30cm/sec (chapter 2). Approximately 0.5 Sv of
CDW may be transported southwest in northern Hopen-Bjornoya Trough
{also along the eastern siope of Spitsbergenbanken) continuing into
the Norwegian - Greenland Sea (figure 11). Calculated geostrophic
velocities of this southerly slope current locally exceed l0cm/sec
(chapter 2). SAtW splits approximately in half, with 0.4 Sv of SAtW
and CDW flowing north on either side of Storbanken (figure 11). Some
fraction of this modified scuthern Atlantic Water reaches Frans Josef
-~ Victoria Trough. Rudels (in prep.) estimates that 0.4 5v of SAtW
and CDW may exit the Barents Sea between Nordaustlandet and Frans
Josef Land, while Aagaard and Greisman (197%) estimated 0.7sv. Mixing

with NAtW in Frans Josef - Victoria Trough may alter the properties of
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Figure 11. BSchematic representation of Arctic and Atlantic Water
transport paths based on water mass analysis and volume
tranéports‘calculated with a reference level at 125m. Water

mass abbreviations same as figure 6.
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the SAtW-CDW before it exits the northern Barents Sea. Moshy (1938)
found Frans Josef ~ Victoria Trough was filled with NAtW with no Cold
Deep Water near the bottom, indicating that CDW did not exit to the
north through this strait in 1931.

Based on these volume transport and geostrophic velocity
estimates, a heat balance may be constructed. As SAtW is transported
north, it léses heat to the atmosphere south of the Polar Fronmt.

North of the Polar Front it loses heat to the overlying Arctic Water
of the Persey Current. Maximum values for heat loss may be obtained
by assuming the temperature extreme mapped in the water mass analysis
occurs over 100m (Az) for Atlantic Water, and 75m for Arctic Water
(figure 3).

If SAtw decreases in temperature (AT) from 3.0°C to 1.5°C
(figures 7 and 8) over a distance (Ax) of ZOOkm, with an average
velocity (u) of 7ecm/sec (chapter 2), 220 Watts/m®? will be released:

Heat exchange = (uATAzCpp)/Ax
where!: Cp = heat capacity

p = water density
Previous estimates of heat loss to the atmosphere in this region range
from 75 Watts/m®> (Rudels, in prep.) to 100 Watts/m® (Bunker and
Worthington 1976). The excess heat loss calculated here
(approximately 100 Watts) is partly because the temperature extreme
was used rather than the average temperature, partly because heat in
the Polar Front region also goes into melting searice, and partly
because the Atlantic Water actually forms a gyre in northera Hopen -
Bjornoya Trough; so 200km may be an underestimate of the distance over

which heat is lost.
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North of the Polar Front, SAtW is overridden by SArW of the Persey
Current. This cold water mass gains heat from the underlying SAtW,
increasing in temperature from -1.8 to -1.5°C (figure 5), while SAtW
cools another degree to 0.5°C (figure 7). These transformations
occur over approximately 200km (figures 7 and 8), If the velocity of
Arctic Water in the Persey Current is assumed to be 30cm/sec (chapter
2) while SALW continues northward at 7em/sec, heat gained by the
Arctic Water and heat lost by the Atlantic Water balance at
approximately 40 Watts/m® over a 40km zone west of Storbanken. At a
transport rate of 7cm/sec, Atlantic Water will take approximately 2

months to travel the 400km through this transformation region.

DISCUSSION

Formation of dense bottom water in the Barents Sea could occur by
cooling of saline Atlantic Water, or by increasing salinity of ecold
surface or Arctic Water through brine rejection during sea-ice
formation. In late summer, 1981, the densest water mass in the
Barents Sea was NZCW, with temperature — salinity properties similar
to Norwegian—Greenland Sea and Arctic Ocean deep water. Regional
distribution of this water mass is not well surveyed in this study,
but the dense water appears to be confined to a basin north of Novaya
Zemlya during the summer of 1981 (figure 9). Tantsiura (1959)

identified this region north of Novaya Zemlya as a location where deep
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convection is important in the Barents Sea, but the origin of NZICW is
not known. If formed in large quantities, this dense water mass may
overflow the small basins and perhaps affect the surrounding seas
(Midtun, in prep.).

Slightly less dense CDW occurs along the eastern slope of
Spitsbergenbanken (figure 9). Based on a reference level at 125m, CDW
is transported to the southwest., Formation occurs in the region of
the Polar Front, and must be due to cooling of Atlantic Water since
this is not a region where sea—ice forms in large quantities.

Transport of modified Atlantic Water through the Barents Sea into
the Arctic Ocean has been called upon as a possible salt source for
Arctic deep water (Swift et al. 1983). This modified Atlantic Water
may either be SAtW and CDW from a branch of the North Caﬁe Current, or
NAtW from the Arctic Atlantic current which recirculates near the
northern islands (figure 11). In 1981, northern sources were fresher
than southern sources; no matter how much the northern Atlantic Water
was cooled in the Barents Sea, it would still be too fresh to form
dense bottom water like that found in the Arctic GOcean (figure 6).

The salinity difference between NAtW aﬁd SAtW could arise from mixing
of NAtW with NArW (figure 5). NArW is less saline than SArW because
it mixes with northern surface water, which receives fresh water from
sea—ice melting. SArW mixes with saline surface Atlantic Water along
the Polar Front (figures 5 and 7). Alternatively; NAtW may be fresher
initially as it comes through Frans Josef ~ Viectoria Trough. The core
of Atlantic Water may have sunk below the sill depth to the north, so
that water entering the northern Barents Sea is le;s extreme than that
of the Arctic Basin. NAtW may also have been fresher in 1981 because

variations in Atlantic Water properties occur through time (Blindheim
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and Loeng 1981), and NAtW may be of a different vintage than SAtW
since it has travelled around the Svalbard Archipelago. If
differences in salinity are due to mixing with Arctic Water, then
northern Atlantic Water should always be fresher, and therefore less
likely as a deep water source, If the variations are due to initial
variations in Atlantic Water, then modification of water from the
Arctic Atlantic current in the northern Barents Sea could also produce

deep water.

CONCLUSIONS

The most important deep water conduits between the northern
Barents Sea and the surrounding seas are Franz Josef — Victoria
Trough, Frans-Josef - Novaya Zemlya Strait and Hopen-Bjornoya Trough,
while Sentralbanken, Storbanken and Spitsbergenbanken severely
constrain both deep and shallow water flow in the southern regions.

Water column properties observed in late summer north of the Polar
Front (approximately 74°N) in the Barents Sea are stratified; a
layer of surface water is underlain by Arctic Water, which is in turn
underlain by Atlantic Water (see figuré 3). Below Atlantic Water,
temperature usually decreases again, indicating_Cold Deep Water
overlying the sea floor. In the southern reaches §f Franz Josef
Trough, Atlantic Water from both northern and southern sources occurs
(figure 11). To the south, near the Polar Front, Atlantic and Arctic

Water interieave; Atlantic Water may mix with surface water above and
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Arctic Water below instead of the more common situation where it mixes
with the Arctic Water above and the Cold Deep Water below.

Arctic and Atlantic Water-mass cores, based on temperature extrema
mapped in the northern Barents Sea, show distinctive temperature -
salinity relationships in the various basins. Transport paths
suggested by core analysis are consistent with circulation patterns
indicated by volume transport calculations with an intermediate level
of no motion (see also Tantsiura, 1959, Novitskiy 1960). Transport
calculated with a level of no motion at 125m suggests 0.8 Sv of
modified southern Atlantic Water flows northward into Frans-Victoria
Trough, 0.9 Sv of Arctic Water flows southward as the Hopen-Bjornoya
Current, and 0.5 Sv of cold modified Atlantic Water flows south along
the deep eastern flank of Spitsbergenbanken. Northern Atlantic and
Arctic Water were fresher than southern sources in the summer of 1981,
although northern Atlantic Water ultimately comes from the same scurce
as southern Atlanfic Water - the Norwegian Current.

Formation of Novaya Zemlya cold water, with water-mass properties
similar to Norwegian Sea Deep water and Arctic Deep water, apparently
occurs by modification of southern Atlantic Water north of Novaya
Zemlya. This dense water flows both northward and eastward, affecting
the gurrounding seas. Major outstanding problems are: 1) where and
when does the modified Atlantic Water exit the Barents Sea, and 2)
what happens in the winter, i.e. how much of the hydrography observed
in the summer is a remnant from winter conditions, and how

representative is the summer of 19817
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ABSTRACT

Modern surface sedimentation in the northern Barents Sea results
from reworking of late Weichselian (Wisconsin) basal tills and
glaciomarine sediments. At water depths less than 100m, bottom
sediments are gouged by icebergs, causing a rough surface texture, and
winnowed by near-bottom currents from wind;driven waves, creating a
coargse lag deposit. Between 100 and 200m, occasional storm—generated
- waves and tidal currents superimposed on mean currents winnow
fine-grained material from surface sediments. Mean currents are
intensified in narfow straits and along the peripheries of basins,
resulting in a near-bottom nepheloid layer that is associated with
sea—floor winnowing or non—-deposition of surface sediments. These
suspended sediments are advected downstream with the mean currents and
also down slope in bottom nepheloid layers. Deposition of resuspended
fine-grained sediments generally occurs in the interiors of the

aumerous basins within this shallow epicontinental sea.
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INTRODUCTION

The modern epicontinental Barents Sea spans a range of
sedimentary environments, from glacial-marine in the north to year
round ice-free conditions in the south (figure 1). The sea floor
morphology of the Barentg Sea is presently characterized by
northeast—southwest trending basins and shallow banks which are best
delineated by the 200m bathymetric contour (figure 1). Basins are
geldom deeper than 300m, and the banks are typlcally 50-150m deep.
Because there is only a thin cover of unconsolidated sediments
(Elverhoi and Solheim 1983a), the bathymetry is an expression of the
topography of the underlying bedrock which was subaerially eroded
before glaciation during the late Pliocene and Pleistocene (Emelyanov
et al. 1971, Solheim and Kristoffersen 1983, Vorren and Kristoffersen,
in.prep.).

Previous studies cof Barents Sea sediments have concentrated
primarily on the extent and type of Pleis£ocene glacial deposits
(Klenova 1960, Dibner 1970, Emelyanov et al. 1971, Wright 1974,
Grosswald 1980, Elverhoi and Solheim 1983). These authors have
concluded that modern sedimentation is due to winaowing of fines from
shallow banks and their subsequent redeposition in deep basins. This
conclusion ig based on observations that bank sediments are coarse and
basin sediments are fine-grained, with the texturéi change occurring
near 200m water depth (figure 2). Lithology of the coarse fraction of
bank sediments in the Barents Sea reflects the composition of the

underlying bedrock, while the mineralogy of the silt and clay sized
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Figure 1. Bathymetry (Solheim 1984); maximum (heavy wavy line) and
minimum (light wavy line) sea ice extent March 1975-1981,
maximum (heavy dashed line) sea ice extent September
1977-1981; minimum for September is north of the study area
(from Vinje 1984).

Starg indicate locations of current meter arrays discussed
in the text.

Arrows point to locations of side-scan sonar profiles shown
in figures 5 and 13.

Explanation of Norwegian terminology: remna = trough

banken = bank
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Figure 2. Surface sediment map (adapted from from Elverhoi and Solheim

1983a):

Horizontal pattern Sandy mud

Dot pattern Sandy gravelly mud

Open circle pattern Muddy sand and gravel

Gravel pattern Gravel, gravelly sand, sandy gravel

and sand
Surface sediment samples with greater than 2% gravel marked
with open hexagon, samples with greater than 10% sand
(calculated from gravel-free sediment) marked with an
asterisk, (fine-grained samples shown by dot). Regions
deeper than 200m with coarse surface sediment discussed in

the text (A, B, ¢, D, E).
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material reflects a different bedrock source, indicating that
significant transport has occurred (Wright 1974). Surface sediment
textufe along the northeastern coast of Norway similarly has been
attributed to winnowing and redeposition of glacial sediments by a
combination of mean currents and bottom currents driven by wind waves,
internal waves; tides (e.g. Vorren at al. 1978, Holtedahl 1981,
Holtedahl and Bjerkli 1982, Vorren et al. 1983).

The objective of this paper is to explain the distribution of
surface sediment texture of the northern Barents Sea; data on
hydrography, suspended sediment distribution, and ice rafting is used
to determine the relative importance of primary deposition and
redistribution processes. The distribution of Holocene sediments
results from reworking of late Wisconsin glaciomarine sediments by
wind.generated'waves and permanent currents. The modern sedimentary
environment of the northern Barents Sea is a useful analog for
interpretation of post—glacial sediment distribution of lower latitude
continental shelves such as the Gulf of Maine and the Labrador and

Alaskan shelves.

Geologic Setting:

The extent of the last glaciation in the Barents Sea is
controversial (e.g. Grosswald 1980, Denton and Hughes 1980, Boulton et
al. 1982). According to Solheim and Kristoffersen (in press), the
Barents Sea probably was glaciated several times during the late
Cenozoic. Data on glacial rebound from Kong Karls Land imply that at

least the northern part of the Barents Sea was glaciated during late
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Wisconsin (Salvigson 198l). Recent marine geological data indicate an
extensive ice sheet in the Barents Sea during the late Wisconsin
(Elverhoi and Solheim 1983a, Vorren and Kristoffersen, in prep.).
Evidence for a Barents Sea ice sheet includes a blue-gray basal till
which occurs above bedrock over much of the Barents Sea (Dibner 1970,
Elverhoi and Solheim 1983a). The thickness of this unit is not well
known in the northern Barents Sea. Basal till has not been found on
banks shallower than 100m, perhaps due to post-depositional erosion.
~ Seismic investigations indicate that the basal till is probably less
than 5m thick in water depths less than 300m and is less than 15m
thick in deeper basins (Elverhoi and Solheim 1983a). Sediment cores
which could more precisely determine the thickness of the unit are
difficult to obtaini the till contains a large amount of gravel and is
so stiff and overcomsolidated that it is difficult to sample.

The last deglaciation of the Barents Sea probably occurred in
stages. Two steps in the deglaciation have been recounstructed from
ice-marginal end moraines and glaciomarine sediments at 250-300m and
150-200m water depths (Elverhoi and Solheim 1983a). Glaciomarine
deposits are thickest {(15-20m) in water depths greater than 300m, and
are only 1-3m thick in shallower water. They are soft, gray, have a
cold water foraminiferal fauna, and have a large number of
dropstones. On high resolution seismic profiles the surface of the
late Wisconsin glaciomarine and till sequences is rough, perhaps
partly due to ice gouging (Elverhoi and Solheim 1983a). Iceberg
plough marks are observed at water depths to 250m on side-scan sonar

records (Solheim in press). The icebergs which reworked these



—8b—
sediments must have had a draft of 300-350m since raised shorelines
(S8alvigsen 1981) indicate that much of the Barents Sea was 50-100m
deeper when these sediments were deposited (approximately 10,000yrBP,
Elverhoi and Solheim 1983a). The disintegrating Barents ice sheet may
have been the source for the large icebergs.

Sedimentary processes were radically altered during the early
Holocene. Water depth decreased rapidiy due to post-glacial isostatic
rebound (Salvigsen 1981), while iceberg activity decreased with
disappearance of the large ice sheet. C(Circulation was altered as
northward migration of the Polar Front replaced cold Arctic water with
warm, saline Atlantic water (Ruddiman and McIntyre 1973, Kellog 1976,
Vorren et al. 1978, Forsberg 1983). 0live-green Holocene sediments
began to be deposited in deep basins (figure 2) around 10,000yrBP in
response to these environmental changes (Vorren et al. 1978, Holtedahl
and Bjerkli 1982). Holocene sediments are 0.1 to 1.0m thick in deep
basins, have a warmer water fauna, contain occasional dropstones
(especially in the northern Barents Sea) and are in gradational
contact with underlying glaciomarine sediments (Elverhoi and Solheim
1983). Sedimentation rates average 3-5c¢m/1000yr (Kienova 1960,
Elverhoi and Solheim 1983a). If the only significant source for these
recent deposits is reworking of shallow water sediments as suggested
by Klenova (1960), Emelyanov et al. (1971), Wright (1974), Elverhoi
and Solheim {1983a), and Forsberg (1983), then larée quantities of
fine—grained material must have been redistributed in the modern

Barents Sea.
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MATERIALS AND METHODS

Surface sediment distribution discussed in this paper is based on
textural analysis of 80 large diameter (llem) gravity cores and a
surface sediment map compiled by Elverhoi and Solheim (1983b) (figure
2}. Their data set for the map includes surface sediment samples and
seismic profiles collected on our cruises to the Barents Sea in
1980-1983. Core tops were sampled in order to get 100g of sediment,
excluding stones. In very stoney areas this necessitated sampling the
upper SCm{ but usually the upper 3em sufficed. Samples were separated
into gravel (greater than 2mm), sand (2mm-0.063mm), and silt plus clay
(less than .063mm) (appendix B). Side—gcan sonar profiles (Klein
50kHz towfish, 600m swath width) coupled with 3.5kHz profiling
provided local information on sea—floor morphology and sediment type
(figure 1). Analysis of these sonographs is discussed more fully by
Solheim and Pfirman (in press, chapter 3) and Solheim (in prep.).

Near-bottom suspended sediment distribution was mapped from 161
transmissometer profiles obtained in 1980, 1981, and 1982. A
Montedero—Whitney T™U sensor was used to measure light transmission
(white light source, one meter folded path length), light scattering,
water temperature, and pressure. Measurements of water turbidity
generally show a near-surface maximum, a subsurfacg minimum and a
near—-bottom increase in suspended particles (figure 3). The
near-surface maximum is usually caused by biologic material (appendix
C). Only the bottom nepheloid layer gonsisting of suspended mineral

grains and some biologic material is discussed in this study. Water
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Figure 3. Profile of excess turbidity showing high near-surface
concentrations of suspended material due to biologic
activity, a clear water minimum near 150m, and a deep water

incréase in suspended material (bottom nepheloid laver).
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samples were obtained from 115 étations at 3 or 4 depths (often
including surface, biologic maximum at 20-30m, clear water depth, 10
meters above bottom, and 1 meter above bottom). The water samples
were filtered on paired 0.45um Millipore filters. Turbidity
measurements were calibrated by the deep-water suspended sediment
concentrations from filtered water samples, and they are reported in
concentration units (mg/l) (appendix C). Because of instrument drift,
light scattering for all three years is reported relative to the
clear-water value for that particular station, and it thus represents
local "excess turbidity" (appendix C). Excess turbidity yields a
qualitative understanding of the strength of the local near-bottom
nepheloid laver, assuming that all particles in susgpension are
mineralogic and have similar grain size {Moody and Butman in prep.,
Baker and Lavelle in press, appendix C). Although an integrated value
for the whole bottom layer (e.g., Eittreim et al. 1976) might be more
meaningful, this was not calculated here; the station profile often
stopped short of the sea.floor and thus did not sample the entire
bottom nepheloid layer. For the same reason, excess turbidity values
probably underestimate near-bottom suspended sediments.

Information on modern circulation and current shear is required
in order to relate the near-bottom suspended sediment distibution to‘
the modern hydrographic regime. Most of the regional suspended matter
data was collected in 1980 when the conductivity sensor failed on the
Montedero-Whitney unit. Salinity, and therefore density and
geostrophic shear, could not be calculated for this data. However,

hydrographic data were collected by the Institute for Marine Research
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in Bergen in the same region in 1981. Since the temperature
distribution for 1981 is similar to that observed in 1980 (chapter 1),
the 1981 data were used for analysis of current shear in the study
area. Geostrophic velocity calculations are based on a reference
level at 125m and dynamic height calculated from the density
distribution (chapter 1).

Surface marine observations of wave periods and height for sea
and swell in the Barents Sea were obtained from the Natiomal Climatic
Center in order to estimate the effect of sea-surface conditions on
‘sea-floor reworking. The data base includes observations from 1860 to
1974. Data is presented in raw numbers of observations over a 10°
longitude by 5° latitude region for four quadrants of the Barents

Sea (Marsden squares 286 (20-30°E) and 285 (30-40°E)).

RESULTS AND ANALYSIS

Surface sediment texture is generally coarge—grained in water
depths less than 200m and fine-—grained in deeper basins (figure 2).
This basic pattern is examined first to determine which processes
cause the apparent depth—dependence of modern depositional patterns.
This is followed by a discussion of the origin of local deposits of

coarse sediments in deep basins.

Shallow-water deposits

Seventy-five percent of the 32 surface sediment samples below
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200m water depth have less than 1% gravel (figures 2 and 4). The
proportion of sand (calculated from gravel-free sediment) similarly
decreases with depth. All 24 stations shallower than 125m have
greater than 10% sand and 60% of stations deeper than 200m have less
than 10% sand (figure 4). The surface-sediment textural discontinuity
' may occur because coarse sediments are presently deposited above 200m
or because fine sediments are deposited below 200m. Potential origins
of coarse sediment textures are deposition from ice rafting, iceberg
turbation of the surface layer (by mixing up deeper coarse material),
or winnowing of fines from surface sediments. Possible recent sources
for fine sediments are rivers and glaciers, or sediments resuspended

and transported from other surface sediments,

Ice rafting:

Ice rafting must occur preferentially above 200m to cause the
textual discontinuity, however there is no reason for deposition of
ice-rafted material to be depth-dependent. Sea-ice transport in the
Barents Sea is mainly from northeast to southwest via the East
Spitshergen and Persey Currents (Vinje 1984). The maximum southward
extent of moderm sea-ice occurs im March and the minimum in September
(figure 1, Vinje 1984). Coarse beach sediments, shells, and windblown
material are observed in samples melted from dirty sea-ice. Coastal
material incorporated in sea-ice indicates that it‘was fast-ice, and
is probably from the shores of the Svalbard Archipelago and the
Siberian islands. If ice-rafting by sea-ice is important, deposition

should occur to some degree over the entire northern Barents Sea since
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Figure 4. Surface sediment texture plotted vs. station water depth.
Smali A, B, C, D, E's represent samples cbtained from
locations marked in figure 2.
A. Scatter plot of weight percent gravel vs. water depth for
surface sediment samples.
B. Scatter plot of weight percent sand (calculated on a
gravel-free basis) vs. water depth for surface sediment

samples.



_93_

-
L
an
=

Py

JL.-I!_.I-I"IEHII!II‘
LBE LA BU U RN N0 A L A RS B T I A Y 2N i k2w A 2

‘ -“En*ﬂ'ﬂﬁmﬂaﬂ'aﬁmﬁl
SURFACE SEDIMENTS

e

i

'E!IQIIII'l'

P PP

AP AW W
LELBCRL A A My o R LA RS 2 B R

SURFACE SEDIMENTS .

g

Figure 4



—G4—
it is covered by sea—ice during the winter (figure 1). However,
sediments in deep northern basins (close to island sources) have low
contents of sand.and gravel, indicating that sediments rafted by
sea~ice either are diluted by rapidly accumulating deep basin
sediments or are not significant. Since sedimentation rates are only
a few cm/1000yr (Klenova at al. 1960, Elverhoi and Solheim 1983a), ice
rafting does not appear to be a reasonable mechanism for deposition of
coarse material in shallow regions of the Barents Sea (see also

Emelyanov et al. 1971, Forsberg 1983).

Ice gouging:

I1f surface sediments are reworked by icebergs down to 200m
surface sediment texture could be coarsened because: 1) resuspension
of fine sediments into the water columm enhances redistribution of
surface sediments by bottom currents; 2) bottom roughness increases,
thus increasing bottom—current shear stress and encouraging winnowing;
and 3) homogenization of the surface layer forms an iceberg turbate
(Vorren et al. 1978} with a different character than originaliy
deposited. Eroded plough marks are observed on the sea-floor up to
250m on side-scan profiles (figure 5 and Solheim in press) and
possibly extend to deeper water depths. However, these gouges are
thought to be ancient because only 120m thick icebergs are presently
available in the Barents Sea (Elverhoi and Soiheiml1983a). Recent
iceberg ploughing of the upper 5m of the sea floor is extensive in the
Barents Sea in water depths less than 100m (chapter 3, Solheim in

prep.). Reworking of the sea-floor by modern ice gouging may explain
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Figure 5A. Side-scan sonar sonographs (50kHz towfish, 600m swath
width, orthogonally rectified) obtained near Polar Front,
east side of Spitsbergen Bank. Profile shows difference in
acoustic reflectivity between winnowed plough mark berms
(dark) and probably finer material (light) infilling the ice
gouges.

B. 3.5kHz profile. Surface relief is presently less than 3m

over the reworked ice gouges (see figure 1 for loecation),
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the coarse sediments occurring above 110m, but does not explain the

textural change at 200m.

Sediment redistribution:

Winnowing of fine-grained sediments from shallow banks by bottom
currents appears the most likely explanation for the surface sediment
texture of the Barents Sea. This winnowing could have occurred when
the surface sediments were initially exposed to marine conditions as
the Barents Tce Sheet disintegrated. Since detailed wave, tide, and
current information are not available for this region, the driving
mechanism for the bottom currents cannot be precisely stated. Erosion
of bottom sediments depends on bottom shear stress, size and
cohesiveness of the bottom sediments, bed roughness, and biclogic
activity in thée surface sediments. Sediment transport depends on the
duration, speed, and direction of the erosional event. Conditions
required for erosion of non-cohesive sediments finer than 63um under
oscillating and steady currents are fairly well defined (e.g. Madsen
and Grant 1976) and are used in this study to determine where
reworking of the sea-floor by waves and currents is likely to occur.
Ice gouging causes large variations in the sea floor roughness, but
bed roughness is considered here to be of the same order as the
sediment grains because bottom photographs generally show a smooth
sea—-floor with no bedforms.

Location and velocity of permanent currents is based on the late
summer water-mass distribution and calculations of current shear for

1981 (chapter 1). In general, northern Barents Sea circulation is in
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the form of a cyclonic gyre (figure 6). The water mass structure is
dominated by warm deep Atlantic water flowing north and east and cold
shallow Arctic water flowing to the south and west; the region of
intersection is called the Polar Front. Atlantic water enters the
southern Barents Sea through the Barents Trough and flows
northeastward at 10cm/sec (figure 7 and Ellertsen et al. 1981) along
the west side of Storbanken, possibly exiting the Barents Sea west of
Frans Josef Land (figure 6)."At1antic water also enters the Barents
Sea between the northern islands, from a branch of the Arctic
extension of the West Spitsbergen current (figure 6). Cold,
southeasterly flowing Arctic water intersects Lhe east Spitsbergen
coast south of Kong Karls land. Here it forms a well developed
southerly current, the Hopen-Bjornoya Current, which has surface
velocities of several knots along the eastern and southern flanks of
Spitsbergenbanken (figures 7, 8 and 9, Novitskiy 1961). Cooling of
Atlantic water east of Spitsbergenbanken results in formation of a
cold deep water mass (chapter 1) which flows southward with an
estimated velocity of lbecm/sec along the deep eastern slope of
Spitsbergenbanken (figures 7 and 8).

For a steady current, velocity at lm above bottom (U,n) must be
42cm/sec for resuspension of less than 63um sediments in the absence
of bedforms (23cm/sec for a physical roughness of 3cm — Butman and
Moody 1984):

tria = (W /k) 1n (2/70)
where: ux = shear velocity

k = von Karmen's constant (0.4)
z = digtance above bottom {=1m)

Zo = roughness length scale (taken here to be proportional
to the grain diameter (d(ecm)): 2z, = d/30)
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Figure 6. Cartoon of circulation based on water mass distribution
analysis and volume transport calculated with a reference
level at 125m (chapter 1). At = Atlantic water

Ar = Arctic water
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Figure 7. Temperature (A) and geostrophic velbcity (B) calculated for
hydrographic transect at 75° 30'N. Hydrographic data
courtesy of the Institute for Marine Research in Bergen,
Norway. Negative values of velocity indicate southward

direction.



~103-

75%30'N

&)

WATER DEPTH (m)

N
@)
O

200

300+

1981 VELOCITY (cm/sec)

Figure 7



~104~

Figure 8, Water columm observations obtained at 77°N.
A. Suspended matter observations obtained in 1980. Contours
are of near-bottom excess turbidity and numbers in italics
are measured SPM concentrations.
B. Water temperature (1980).
C. Temperature (light dotted lines) and geostrophic velocity
(heavy dashed and solid lines) calculated for hydrographic
transect (1981) from data courtesy of the Institute for
Marine Research in Bergen, Norway. Negative values of

velocity indicate southward direction.
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Figure 9. Water column observations obtained at 78°N (for details on
data presentation see caption for figure 8)
A. Near-bottom excess turbidity and SPM concentration (1980).
B. Temperature (1980G).
C. Temperature and geostrophic velocity calculated for
hydrographic transect (1981) at same latitude from data
courtesy of the Imstitute for Marine Research in Bergen,
Norway. Negative values of velocity indicate southward

current direction.
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However, the potential for sediment reworking may he
substantially modified by biologic activity (either enhancing or
inhibiting erosion). In addition, larger scale surface roughness
{such as iceberg gouges and dropstones) increases the potential for
local erosion of surface sediments. In situ flume experiments have
shown that sediments are eroded at Uimof 7.5 - 22 cm/sec (Young and
Southard 1978). Geostrophic shear calculations suggest a range of
velocity for mean currents from 5-15cm/sec. Therefore mean velocities
of permanent currents may he high enough to resuspend fine-grained
gsediment. The Hopen-Bjornoya Current which has velocitiesg exceeding
40cm/sec (figures 7 and 8). This current could easily resuspend and
transport sediments southwards along eastern Spitsbergenbanken.

Tidal currents in the Barents Sea are thought to have higher
velocites than permanent currents {other than the Hopen-Bjornoya
Current, Tantsiura 1959). However, only two vertical current meters
arrays have been deployed in the northern Barents Sea which have
records suitable for analysis of tidal currents. Both current meters
arrays are located in deep basins (northern array - 255m water depth
(Aagaard et al. 1984), southern array — 308m water depth (Ellertsen et
al. 1981, located on figure 1)} and both recorded velocities greater
than 15cm/sec in the upper 75m (Ellertseh et al. 1981, Aagaard et al.
1984). Tidallcurrent velocity decreases with depth; the current meter
located 5m above bottom recorded velocities of lesé than 7cm/sec at
the northern current meter (Aagaard et al. 1984) and 10-15em/sec at
the southern current meter {Ellertsen etral. 1981). These near-hottom
velocities may be high enough to resuspend the legs than 63um
fraction., Although no current meter data exigt over the shallow
banks, it is probable that tidal currents are strong enough to
resuspend shallow water sediments (based on the velocity structure of

the two current meter arrays).
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Surface waves generated by storms can cause resuspension of
bottom sediments with much lower velocities since they cause
ogcillitory near-bottom flows (Madsen and Grant 1976). Orbital
velocity decreases with depth and is linearly related to the amplitude
and period of the surface wave. In order to determine the near-hottom
velocity (Upwm) and the maximum excursion amplitude under a wave
(Apm) at a certain water depth (h), the wave period (T), length (L),
and amplitude (a) must be known,

Ubnm = Apmtw = aw/(sinh(k*h)

where: k=2w/L

L=1.56%T* (deep water waves)

w=2w/T :
These values may then be used to determine the wave Reynolds number
(Re), the wave friction factor (f.), and therefore the bottom
shear stress (tnn) and the bottom shear velocity (u™):

fw=2/(Re)1*2 (for low Re)

Re=Upmbum/V

Ton= 1/2 pf Udn

u” = (Tun/p)

These equations can be rearranged to solve for the the wave amplitude
in terms of the wave height, period, and the shear velocity:

a = (u*/v'"*)Ysinh(kh) / w®
This equation can be used to determine the critical wave necessary to
resuspend surface sediments at various water depths (figure 10) since
a bottom shear velocity of 1.3cm/s for oscillating flow is required to
erode less than 125um sediment (assuming cohesionless sediment,

surface roughness on the order of the grain diameter, and no

superimposed mean flow: Madsen and Grant 1976, Butman and Moody 1984).
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lFigure 10. Surface marine observations for the Barénts Sea. The
number of observations from 1860-1974 is contoured for wave
amplitude and period. Superimposed on these contours are
lines of the critical wave required to erode 63um material
on a flat bed in the absence of of a mean current at water
depﬁhs labelled.in the upper left quadrant
A, Sea

B. Swell
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In order to determine the probability that these critical wave
conditions occur in the Barents Sea, shipboard observations of sea
surface conditions are plotted against the critical wave requirements
(figure 10). The number of shipboard observations are limited in the
northern Barents Sea because of sea—ice {(figure 1), and sea-ice also
dampens surface-wave activity thus decreasing the importance of
surface waves in the northern Barents Sea. The data suggest that in
the southern Barents Sea the less than 63um fraction of surface
sediments can be resuspended in shallow depths (less than 100m) by
fairly small surface waves (2m amplitude), and occasional large storms
may resuspend fine sediments to water depths of 150m. Similar
open—ocean swell was observed by Sternberg and Larsen (1975) to
resuspend bottom sediments at 167m water off the coast of California,
suggesting that it is not unreasonable to expect erosion of sediment
at these water depths in southern portions of the epicontinental
Barents Sea.

If waves are superimposed on mean currents, the shear stress
required to erode bottom sediments is markedly decreased (Madsen and
Grant 1976). Tidal and mean current wvelocities discussed above may be
high encugh to cause bottom resuspension with the aid of a surface

wave field.’
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In summary, the modern surface sediment texture is probably the
result of reworking of the upper Wisconsin surface. Ice gouging, wind
waves, and tidal currents (?) are the most important for
redistribution of sediment in water depths less than 100m and
occasional large storms possibly coupled with tidal and mean currents
can cause resuspension in water depths of 100-200m. In water depths
greater than 200m, mean currents must be stronger to resuspend
sediment, since velocity of surface waves and tidal currents decreases
with water depth. Transfer of fine-grained material winnowed from
shallow regions to the deep basins, and regions of sea—-floor reworking

are considered in the following section.

Deep-water deposits

Although the surface sediment texture of deep water deposits
(deeper than 200m) arekgenerally fine-grained, there are no obvious
recent sources for fine-grained materiél, other than winnowing of fine
material from the shallower banks. BSiberian river supply of suspended
sediments to the Barents Sea is negligible, except in close proximity
to the river mouths (Klenova 1960). Sediments suspended in glacial
meltwater similarly are of only local importance since they are
deposited within 40km of the glacial source (Pfirman, et al. 1982,
chapter 4). Transport of sediment in suspensgion from glaciers or
rivers are not likely sources for Holocene material deposited in deep
basins.

However, there are several deep water regions with coarse surface

sediments. The eastern slope of Spitshergenbanken is the most
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striking (figure 2: area A) and has coarse surface sediments in water
depths exceeding 300m. In the northern Barents Sea several locations
along the periphery of basins similarly have greater than 10% sand
(calculated on a gravel-free basis) and greater than 2% gravel,
indicating that winnowing or non-deposition has occurred (figure 2:
areas B, C, D, and E). If winnowing is presently occcurring,
resuspension and advection of fine-grained sediments should be
observed as a bhottom nepheloid layer in these regions.

Near—-bottom excess turbidity distribution delineates regions of
modern resuspension and advection of bottom sediments. In general,
stations with greater than 0.3mg/1 excess turbidity (figure 11) are
contained within or on the margins of deep basins where surface
gsediment texture is fine-grained. A shallow-water exception is the
region with high excess turbidity east of Bdgeoya (figure 11), which
may correspond with the high velocity Hopen-Bjornoya Current (figure
6). Surface sediment texture is coarse in this regiom.

The strongest deep water bottom nepheloid layers (greater than
0.5mg/l excess turbidity) are located in the narrow strait east of
Nordaustlandet (areé B: figures 2 and 11), in the basin south of
Nordaustlandet, in the narrow strait north of Kong Karls Land (area E:
figures 2 and 11), and east of Edgeoya. A hydrographic and excess
turbidity cross-section at 77°N shows that stations with greatest
excess turbidity correspond with regions of near-bottom current shear
(figure 8). This region of current shear is located near 200m water
depth along the east coast of Spitsbergenbanken, between cores of

Arctic and Atlantic water. At 78°N a similar temperature structure
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Figure 11. Regional distribution of excess near-bottom turbidity.
Hatched areas are greater than 0.3mg/l, cross-hatched
regions have greater than 0.5mg/l excess turbidity.
Nephelometer stations shown by open squares. Open circles
show SPM samples from lm above bottom that are 0.3-0.6mg/l,
filled circles are greater than O.6mg/1. Heavy lines show
suspended matter and hydrographic transect locations for

figures 7, 8, 9 and 12.
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is observed (figure 9), but the 1981 transect does not extend far
enough west to determine if a similar region of current shear occurs
(figure 9). On both of these transects turbid water is observed down
-the western slope, suggesting that fine—grained_éediments are also
transported to deep basins in a bottom nepheloid layer.  High current
shear associated with Atlantic watef on the 78°N transect (1981),
however, does not correspond with an exceptionally strong bottom
nepheloid layer (1980) although the water mass struéture_looks similar
both years. Nepheloid layer thicknéss averages about 30m,
corresponding.with the Ekman layer thickness_(height above sea floor
that currents will begin to 'feel bottom”) of 36m for these latitudes
(from Pond and Pickard 1978).

Although suspended matter data is not available further south at
75° 30'N, geostrophic calculations indicate a region of near-bottom
current shear at 250m (figure 7). This area was identified earlier as
a deep region with notably cogfse surface texture (area A, figure 2),
suggesting non-deposition or erosion of fine surfical sediment.
Influence of bottom current activity near this region is also observed
in reworking of ice gouges (figure 5). Berms appear winnowed leaving
a reflective deposit (probably of coarse lag material) observed on
side~scan sonar profiles, while the gouge troughs are filled in with
less reflective (fine—grained) sediment. Elverhoi and Solheim (1983)
suggested that sea-floor erosion occurred here becéuse of current
intensification associated with the Polar Ffont {which is actually
located shallower, near 100m - Johannessen and Foster 1978). The

temperature transect (figure 7) shows that high velocities actually
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occur in the cold, modified Atlantic water which flows southwest along
the deep eastern slope of Spitsbergenbanken (figﬁre 6‘and chapter i);g
Current shear on this southern transect is higﬁér than caiculaped for
77°N, perhaps because additionai southward—fiéﬁing cold deep Qatef
is entrained along the slope.
North of Kong Karls Land at 79° 30'N the highest excess

turbidity occurs along the eastern slope of Noﬁ&aﬁstlan&ét (fngQe
12). A detached nepheloid layer extends.eastﬁard ﬁréﬁ;the siqpé,
intruding into the basiﬁ east of Nordaustiandet aﬁiwgter'dépths of
.230m. o

| A region with high excess turbidity ié a156 obseIYed‘in'the-
eastern part of this transect (area D; figures 2, 11, aﬁdilZ). Eigh
tﬁrbidity is probably associated with flow of Aﬁlantic wéééri although
the_velocity-stfueture iS'nét known in this reg{on because:
measurements of salinity are not available. A side-scan soﬁér’proﬁilé
south of the éransect, but through the region of high turbidity,
indicateéjgea—floor deposition controlled by bottom currents. Lafge
sediment waves (5m wavelength) are orientated transverse to current
flow, with furfows (10 m across) parallel to the inferred westerly

current direction {(figures 6 and 13).

DISCUSSION AND CONCLUSIONS

. A discontinuitity in the modern surface sediment texture

generally is associated with the 200m bathymetric contour (Elverhoi



-120-

Figure 12. Water column observations for 79° 30'N (1980).
A, Near-bottom excess turbidity and SPM

B. Temperature
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Figure 13A. Side-scan sonar sonograph (50khz towfish and 600m swath
| width, orthogonally rectified) showing deep bedforms
observed north of Kong Karls Land near region with large
near—-bottom excess turbidity. Wavelength of sediment waves
approximately 5m (see figure 1 for location).

B. 3.5kHz profile.
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and Solheim 1983). Surface sediments in water shallower than 200m are
blue~gray, poorly sorted sandy muds with abundant gravel. In deeper
waters, Holocene deposits of soft olive-gray fine-grained sediments
predominate. The source of this fine-grained material seems to be
redistribution of Pleistocene diamicton (tills and glaciomarine
sediments). Redistribution must be rather extensive as Holocene
sedimentation rates are estimated to be 3-5cm/1G00yr for fine
sediments in deposited in the basins (Klenova 1960, Forshberg 1983,
Elverhoi and Solheim 1983), and the biologic component of surface
sediments is low (Klenova 1960). Nepheloid layers are ubiquitous in
the Barents Sea indicating that modern redistribution is indeed
occuring; but concentrations of SPM are low; they only locally exceed
0.5mg/1 excess turbidity (figure 11). Siberian river input of
fine—grained sediments is negligible, except in close proximity to the
river mouths in the southern Barents Sea (Klenova 1960). Modern
glacial meltwater input similarly appears to have only local
importance, within 30km of the glacial source (Pfirman, et al. 1982,
chapter 4). Ice rafting is apparently also not extensive (Elverhoi
and Solheim 1983, Forsberg 1983). The fine-grained deposits in the
basins probably are not the result of original deposition beneath the
Wisconsin glaciers because 1) they contain a warm water fauna, and 2)
available dates of this material are less than 8000yrBP (Elverhoi,
pers. comm.) and raised shorelines dated at lO,GOO&rBP indicate that
much of the Barents Ice Sheet had already retreated by this time.

Reworking of sea-floor sediments is caused by different processes
at different depths. Substantial redistribution of the surface

sediments could have
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occurred immediately after withdrawal of the Barents Ice Sheet.
Although water depths were deeper during ice sheet disintegration,
circulation may have been more intense, resulting in winnowing of the
shallow banks. All surface sediments in water depths less than 125m
are sandy. These sediments are probably reworked by modern surface
waves (figure 10): are possibly influenced by tidal currents, and are
reworked by modern icebergs. Sediments in water depths greater than
125m are affected only by waves with periods greater than ligec and
wave heights greater than 2m (figure 10), and are not gouged by modern
icebergs.

Regipns of pronounced resuspension/advection are:

1) in the narrow straits west and south of Kvitoya, and

2) along the southern margin of Nordaustlandet and eastern margin
of Spitsbergenbanken.

Based on analysis of geostrophic velocity calculations, regions
of high current shear are associated with increased near-hottom excess
turbidity, and the geostrophic velocities calculated for 1981 in these
regions appear high enough to resuspend some bottom sediments (figures
8 and 9). However, it 1s possible that material in suspension is
being advected downstream from a higher velocity region. The velocity
calculations could underestimate the actual velocity because 1) the
reference level could have been chosen wrong, 2) a significant
barotropic component was neglected in the calculation of a baroclinic

current, or 3) superimposed surface wave activity increased the bottom
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shear stress enough to resuspend bottom sediments. However, side—scan
profiliné in a region with a strong bottom nepheloid layver does show
evidence of sea-floor reworking by currents, indicating that erosion
is’probably occurring in this region today.

Although highest SPM concentrations occur on western slopes of
basins, nepheloid layers extend into the basins (fiéures 8, 9, and
12). Suspended sediments may be transported downslope (as well as

along-slope), away from the erosional site, thereby advecting

fine-grained sediments into the interior of basins.
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ABSTRACT

Acoustical profiling and bottom photography reveal several
different sea floor morphological features adjacent to the grounded
Brasvellbreen glacier on Svalbard,‘northwestern Barents Sea. Some of
the features and their distribution afe closely related to a major
glacial surge in 1936-38, and as such are valuable in identifying

former surges in other locations. A continuous end moraine with a

characteristic asymmetrical cross-section runs subparallel to the
present glacier front, and defines the maximum extent of the surge.

Part of this moraine was probably pushed up in front of the glacier as

it advanced, and part was deposited from meltwater during the surge.
Subsequent slumping down the distal flank of the moraine modified the
surface topography. A rhombohedral pattern of 5m high discontinous
ridges inside the end moraine probably reflects sediment accumulation
in crevasses formed at the base of the glacier at the end of the
surge. Discontinuous arcuate ridges and swales withim lkm of the
modern ice front define local, minor readvances and retreats an active
glacier. TIceberg plough marks are most frequent seaward of the end
moraine; their orientation is controlled by a combination of a
longshore current, offshore katabatic winds, and sea—-floor
topography. Superimposed on the plough marks are secondary features
such as a "washboard pattern” and striae, most 1ikely caused by
push-up of overconsolidated material during gouging, and multi-keel
icebergs, regpectively. Bottom sediments observed in photographs and

cores are composed of normally consolidated pebbly mud with a high
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variability in clast content, resting on overconsolidated material,
probably basal till. Cores obtained wup to 40km from the ice front
coarsen upwards, perhaps because ice rafting increased during the
surge. Mud deposition from meltwater outflows presently prevails

close to the glacier.
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INTRODUCTION

Glacial readvances during a general deglaciation are usually
interpreted as expressions of climatic fluctuations. However, glacial
surges are important in many areas today, and were probably also
common in the past. Local glacier surges can occur independently of
climatic variations, although they do imply sufficiently high
precipitation over a period of time to build up an unstable mass
distribution. Prest (1969) considered, for example, the posgibility
that several of the Laurentide readvances were due to surging on a
local scale with no climatological significance. Similarly,
Holdsworth (1977), suggests that surge activity on Baffin Island may
have been important during the decay of the last ice sheet. Glacier
thinning through surges, according to Holdsworth (1977), may also help
to explain the apparent difficulties of accounting for the rapid decay
rates of large ice sheets in terms of the energy requirements for
melting ice (Hare, 1976).

Glacial surges occur intermittently at intervals of 30 to 100
years (Meier and Post, 1969). A surge usually lasts 1-2 years
(Paterson, 1981), during which time the glacier front advances
rapidly. Surges constitute a common form of glacier advance on
Svalbard (Liestol, 1969). On Spitsbergen, the largest island in the
archipelago, advances up to 1Zkm in less than one.year have been
measured (Liestol, 1969). The foreward movement of the glacier ceases
at the end of the surge, and in the case of tidewater glaciers,

calving causes retreat of the ice front.
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Brasvellbreen glacier (1110 km?) is part of an ice cap (8130
km®) situated on Nordaustlandet in the Svalbard archipelago,
northwestern Barents Sea {figure 1). Between 1936 and 1938,
Brasveilbreen surged up to 20km (figure 2; Schytt, 1969), and has
retreated 0.5-3.5km since that time. This surge is the greatest
movement so far recorded (Paterson 1981). Extensive crevassing during
the surge is documented from aerial photography (figureg 3 and 4).
Surge boundaries probably were controlled by underlying bedrock
topography in central parts of the Nordaustlandet ice cap (Schytt,
1964; 0, Liestol, pers. comm.). Aerial photographs in 1957 show that
the glacier had retreated to approximately its present position
{figure 2; Blake 1962). The glacier terminus is presently grounded in
water depths ranging from 30 to 100m and forms a vertical wall 25 to
35m above sea level. The terminus presently appears stable.and
crevassing is limited to a few parallel fractures (figure 5).
According to satellite images, large scale features of the ice front,
like embayments and protrusions, have persisted at least since 1376
{chapter 4).

This situation presents a unique opportunity to study the effects
of glacier advances on sea-floor parameters such as morphology,

sediment distribution and composgition, and geotechnical properties.

DATA ACQUISITION
Data were collected during two cruises in August 1982 and August
1983 (figure 6) aboard the R/V Lance. Acoustic instrumentation

consisted of a hull-mounted 3.5 kBz echo-sounder (0.R.E. tranceiver
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Figure 1. Digtribution of glaciated areas (tick pattern) and exposed
land (dotted) on the island of Nordaustlandet. Map area is
shown by hatching in the location map. Heavy line shows

Bragsvellbreen glacier front.
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Figure 2, Ice front positions 1934 (probably the same in 1936), 1938,

1957, and 1984 (from Blake 1961).
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Figure 3. Photo taken in 1938 of the eastern part of Brasvellbreen.
Note how the extensively crevassed glacier surface contrasts
with the present-day situation shown in figure 5. Also note
the "old" ice-front (without many crevasses) in the
right-hand part of the photo, and the boundary between
crevassed (surge) and uncrevassed glacier towards central
parts of the ice cap. Flight height is approximately 2200m,
camera lens 210mm; looking northeast. {Norsk Polarinstitutt

photo $-38, 1958).
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Figure 3
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Figure 4, Photo taken in 1938, showing pattern of crevassing on the
eastern flank of Brasvellbreen. Also note the boundary
between the surging glacier and the "old" glacier, shown by
the marked difference in crevasse patterns. Flight height is
approximately 1800m, camera lens 210mm, looking eagt. (Norsk

Polarinstitutt photo S-38, 1921).
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Figure &
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Figure 5. Photo taken from helicopter in 1982, showing the
present-day Brasvellbreen. Exact location and flight height

is unknown, camera lens 28mm, looking north.
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Figure 6. The survey area outside Brasvellbreen glacier showing track
lines.
A, Numbers on heavy lines and crosses refer to later figures.

B. Core station locations.
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with an EPC 3200 analogue graphic recorder), a Klein 50 kHz side-scan
sonar system and an E.G.&én one kJ sparker system (only in 1983) with
a single~chanmel streamer (pass band 100-600 Hz). Bottom photographs
were taken with a Benthos deep-sea camera, and 4i sediment cores were
~acguired with a 110mm diameter gravity—corér and 90mm diameter
vibro-corer. Shear strength (su.(kPa)) of sediment cores was
measured with a pocket penetrometer and falling-cone apparatus.
Textural analysis of the top 5cm of the sediment samples was carried
out by standard seive and pipette methods (Folk 1968) Mineralogy of
the less than 63um fraction was determined by x-ray diffraction
(XRD). Unweighted major peak areas from the diffractograms were
measured and calculated to 100% to show relative changes in the
amounts of quartz, calcite, dolomite, and feldspar in thé pro~glacial
region (appendix B). Sediment texture and geotechnical results are
presented more fully in Solheim (in prep.).

Due to severe sea—ice conditions, the side-scan survey of 1982 was
limited to a narrow region of open water along the western part of the
glacier front. However, extensive coverage was obtained with the 3.5
kHz écho~sounder, which was rﬁn continuously. In 1983, the area was
almost ice-free, and additional profiling provided more extengive
coverage with side-scan sonar and sparker, totalling 150km of

side-scan sonar profiles and 400km of 3.5 kHz echo-sounder profiles.

MORPHOLOGICAL FEATURES
Brasvellbreen glacier thins to the west, exposing bare land and

forming the southwestern boundary of the Nordaustlandet ice cap



~151-

{figure 1). The tidewater glacier front of the ice cap continues
northeastward from the study area for another 120 km. Water depths
increase to the east in the study area, from less than 30m to 100m,
with the steepest bathymetric slopg being midway along the front where
a broad depression runs perpendicular to the glacier (figure 6).

Several distinct bottom morphological patterns are present in the
survey area. The most promipent feature is a continuous ridge,
subparallel to the glacier front. The distance from the ridge crest
to the glacier front varies from 500m in the westerm sector to 3.5km
in the central, deeper regions (figure 6). Ridge height varies from 8
to 20m, and width ranges from 500 to 1700 m (figures 7 and 8). The
ridge is highest and widest in the central bathymetric depression
(figures 6 and 7). Gradients are 2-3 degrees on the distal side and
4-6 degrees (locally steeper) on the proximal side. The distal flank
is acoustically more transparent than the central and inner portions
of the ridge. A distinet contact with an underlying surface is
vigible on 3.5 kHz records near the seaward extent of the ridge
(figure 7a). The underlying surface cannot be followed under the
crest and inner slope omn 3.5khz records, but sparker profiling reveals
a flat seismic reflector underneath the deposit (figure 7b). Slumps
are observed on the distal slope in side-scan profiles (figure 8bJ,
with locally rougher surface morphology and lobate margins.

Sea—floor morphology inside the continuous ridée is quite
different from that outside, with respect to both relief and type of
features (figure 9). In general, the sea floor has a more chaotic

appearance inside than the more regular, ice—ploughed surface outside
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Figure 7. Seismic profiling of the continuocus outer ridge (for
location, see figure 6).-
A. 3.5 kHz echo-sounding across the continuous outer ridge.

B. 1 kJ sparker record across the ridge.
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Figure 8. Side-scan sonographs of continuous outer ridge (for
location, see figure 6): |
A. oblique profile across ridge showing rhombohedral pattern
inside ridge and iceberg plough marks on distal flank, 3.5khz
profile at bottom.
.B. slump on distal flank of ridge, note rougher.surface in

slump region and lobate form of distal slump margin.
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Figure 9. Location of sea-floor morphological types discussed in the
text (based on interpretation of side-scan sonar and 3.5khz
profiles).

End moraine crest is denoted by a heavy line, dotted line

shows approximate outermost extent of end moraine material.
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the ridge (figure 7a). Distinguishable features inside the ridge

include:

1) Rhombohedral patterns, formed by linear discontinuous ridges with
a relief of about 5m and 20-50m spacing (figure 10a). The network
pattern has greater relief and is more closely spaced near the
continuous ridge.

2) Irregularly distributed mounds up to 10m high (figure 10a).

3) Discontinuous arcuate ridges, running subparallel to the glacier
front over short distances, concave towards the glacier fromt
(figure 10b). 'The scale of the ridges varies considerably, but
they tend to be less than 25m wide and 2-5m high.

Iceberg gouges are most prominent and frequent on the smoother sea
floor outside the méjor ridge, with only a few occurrences closer to
the glacier (figure 9). Furrow widths range from 10-30m (figure 11),
and vertical relief is 2-5m. These dimensions have also been found in
relict plough marks on the North Sea shelf (Belderson and Wilson,
1973), although most relict plough marks'along the Norwegian coast are
larger (Rokoengen, 1980; Lien, 1983). Most of the gouges show
distinct levees. Plough directions are predominantly subparallel to
the glacier front, but some at high angles are also observed,
especially inside the ridge.

Secondary features are includgd within some of the ice gouges
proximal to the glacier. A distinct "washboard pa&tern" (Lien, 1982)
ig observed at the outer edges of a wide plough mark proximal to the
glacier (figure 1la), while other plough marks are striated parallel

to the gouge direction (figure 11b).
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Figure 10. Side-scan sonographs along the glacier front (for
lbcation, see figure 6):
A, rhombohedral ridge pattern and irregular mounds (3.5khz
. profile included for the same area),

B. discontinuous arcuate ridges paralleling the ice front
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Figure 11. Side scan sonographs showing iceberg plough marks with
secondary features (for locatiom, see figure 6):
" A. "washboard pattern'" along edge of plough mark,

B. striated.plough mark
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Figure 11
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SEDIMENT DISTRIBUTION
Inside the ridge:

The surface sediments have high lateral variability in the study
area. They are generally pebbly muds, but the pebble content shows
considerable range both in cores and bottom photographs (figure 12).
Photographs from four stations taken withian 200m of the glacier front
have turbid water obscuring most of the picture; however the sea floor
appears to be muddy with few cobbles. Turbid bottom water was not
observed in bottom photographs at greater distances from the glacier.
Patchy regions of clean cobble pavement (figure 12c) are observed in
bottom photographs outside the continuous ridge. Except for the
presence of this pavement, no signs of current activity (i.e. ripples
or scour marks) are seen in any bottom photographs.

Textural analyses of surface sediment samples near Brasvellbreen
glacier reveal a uniform-grain size distribution from -2 to 4¢
indicative of poor sorting (figure 13). Station 65, located Zkm from
the ice front and inside the ridge is the sandiest core on the
transect, and the proportion of coarse material remains relatively
constant downcore (figure l4). This station has a significant gravel
fractioﬁ throughout the entire core.

The main change down core inside the ridge is in the degree of
consolidation. The top layer is usually an unconsolidated (s, less
than 10kPa) pebbly mud and is observed in 3,5khz profiles to form most
of the surface topography. A thin and patchy layer of somewhat
overconsolidated material (g, 30~50 kPa) exists below the top layer

inside the ridge. In a few cores, very stiff material (s, in excess
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of 100 kPa) was recovered below the slightly overconsolidated
material. This lowermost layer forms an even reflector on the 3.5 kHz
records and is interpreted to represent basal till, probably of late
Weichselian (late Wisconsin) age. The intermediatly consolidated
material may owe its overconsolidation to the overburden pressure of
the surging glacier (Solheim, in prep.). This material is probably
too patchy and hags too small acoustic impedence contrast to be
resolved with the seismic equipment used. The reflector beneath the
continuous outer ridge (figure 7b) represents the assumed upper

Wisconsin till.

Qutgide the ridge:

Outside the continuous ridge the general shape of the grain size
distribution of the surface sediments stays the same as inside the
ridge (figure 13), but with increasing distance from the glacier (from
1-40km) the percent of fine-grained material (less than 4um) increases
while the gravel fraction (greater than 2mm) decreases. Lack of a
dominant size mode suggests that surface sediments have not been
reworked significantly by bottom currents. Cores from stations 67 and
69, located 9 and 20km from the glacier (outside the ridge) show
decreases in the sand and gravel fraction down core (figure 14).
Stations 319 at 30km and 71 at 34km also decrease in coarse fraction
down core, but ﬁave have lower surficial gravel coﬁtents than stations
closer to the glacier. Core 321 at 25km is exceptional as it is

finest at the surface.



-166~

Figure 12. Bottom photographs (for location, see figure 6):
A. Muddy surface with dropstones located inside the end
moraiﬁe.
,‘B' On the end moraine, showing mud with high content of
cobbles.
C. Outside the end moraine, showing variation between

mud~dominated surface and clean cobble pavement.
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Figure 13. Grain size distribution of surface sediments for a
transect of cores ranging from lkm to 35km from the
present—day glacier front (see figure 6 for location).
Percent of material smaller than 2mm (gravel) is calculated

~on gravel-free sample weights.
A. Inside the continuous ridge

B. Outside the continuocus ridge
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Figure 14. Percent gravel (greater than 2mm), sand (2.0 - 0.063mm),
and silt plus clay (less than 0.063mm) of down-core sediment
samples form six cores (note that only top portion of
triangular diagram is shown). Samples are denoted by station
number followed by —depth {(cm) down core (for station

locations see figure 6).
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Erosional products of the Brasvellbreen glacier are probably the
only major local source carbonate, because bedrock consisting of
gsilicified carbonates and dolomites only occur in the southernmost
region of Nordaustlandet (Orvim, 1969). Sediment supplied in
meltwater by the present-day glacier or by meltwater released during
the surge thus should be identified by an increase in the amount of
fine-grained carbonate in core samples. X-ray diffraction (XRD)
analysis of the less than 63um fraction shows that surface sediments
close to the glacier contain abundant carbonate (calcite and
dolomite), along with quartz (figure 15). The relative amount of
feldspar and clay minerals increases with distance from the glacier
front, while dolomite remains approximately constant. If station 232
(the core obtained closest to the glacier) is assumed to contain 100%
of the glacial-erosion mineralogy, then surface sediments at 22km from
station 232 are 50% diluted by other material, while at &44km
essgntially no input from the glacier is observable in surface
sediments {(figure 15 and appendix B).

Sediment mineralogy also changes down core. The amount of calcite
in the less than 63pm size fraction decreases below l2cm at stations
319 (25km from the glacier) and 321 (30km from the glacier) (appendix
B). Core descriptions indicate that limestone makes up most of the
gravel fraction above 12cm, but not helow. The general
coarsening-upward and mineralogic change observed-in these cores
outside the ridge may represent deposition from ice rafting and
meltwater released during the 1936-1938 surge. If this is true, then
12cm of sediment at a distance of at least 30km are affected by a

change in depositional patterns during the surge.
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However, this discussion ignores down core mixing by bioturbation and
biogenic carbonate contributions, so correlation with the recent surge

cannot be confirmed until the cores are dated.

FORMATION OF THE MORPHOLOGICAL FEATURES
The continuous ridge is interpreted as the end moraine deposited

during maximum extent of the recent glacier surge (figure 16),

although effects from former surges can not be excluded. Evidence

that the ridge probably formed as an ice-contact feature during

1936-38 is:

1) The ridge is continuous and subparallel to the recent glacier
front.

2} The cross-sectional shape is characteristic of formation in close
contact with an ice front, with the steepest slope toward the
glacier {Elverhoi et al., 1983).

3) A marked change in bottom morphology occurs across the ridge,
shown by all acoustic profiles.

4) Frequency of plough marks dramatically decreases inside the ridge
indicating either a shorter period of exposure to iceberg gouging
or that gouging was more frequent prior to the ice retreat.
Sediments incorporated in the end moraine are partly pushed up in

front of the advancing glacier ("bulldozer effect'"; Sugden and John

1976). The gentle slopes of the end moraine surfaée contrast with

45° slopes observed on submarine push-up ridges in Arctic Canada

(Lewis et al., 1977), suggesting that the surface topography may be

modified by later sedimentation. An internal reflector is often
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Figure 15. Percent of calcite in surface sediments (based on
compérison of unweighted peak areas from XRD analysis
(appendix B)) vs. distance from station 232. All stations
sampled outside of the region shown have zero relative
calcite (see appendix B). Inset shows plan view of surface
sediment samplies. Stippled area is greater than 40% relative
calcite, heavy dotted line is 30% and light dotted line is

20% contour.
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Figure 16, Schematic profiles of Brasféllbreen glaciqmariﬁe_
environment:
A) at maximum extent of the surge (1938)
B) ice disintegration and calving from 1938(?) to 1957(?)

C) at present.
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covered by draped, acoustically semitransparent éediments in upper and
distal parts of the end moraine (figure 7a). The internal reflector
could be caused by an acoustic impedence contrast between ice push
material and later deposits.

The continuous drape of overlying sediments suggests deposition
along the entire ice front during maximum glacier extension. Both.
theory and field evidence for high rates of meltwater output during a
surge indicate high material tranport capacity during a surge
(Weertman, 1969; Thorarinson, 19763 Robin and Weertman, 1973; Sugden
and John, 1976). Deposition of coarse material from meltwater océurs
in close proximity to the discharge location (chapter 4}, and may
account for the continuous drape of sediment. Slumping (figure 8b)
down the distal side probably modified the shape of the end moraine,
and caused the abrupt termination observed on seismic profiles {figure
7b and mapped as "outer ridge'" figure 9). The presence of slumps
indicates unstable conditions caused by rapid deposition and possible
oversteepening from glacier push.

The rhombohedral ridge pattern and the irregularly distributed
moﬁnds may be an expression of relief in the glacier sole during the
surge. Similar features observed on land are inferred to be crevasse
fills, formed by squeeze-up of underlying material (Gravenor and
Kupsch, 19593 Flint, 1928). 1In order to preserve these features,
Brasvellbreen glacier must have become stagnant and retreated by
calving with minimal basal movement after maximum glacial extent
(figure 16). Ice stagnation after a surge is also observed for other

glaciers (Meier and Post, 1969).
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The small, arcuate, discontinuous ridges (figure 10b) near the
modern Brasvellbreen glacier are probably caused b& minor glacier
movements (Andrews and Matsch, 1983 pl5). These features are
morphologically similar to the swells and swales described by Gwynne
(1942) and the washboard pattern of Elson (1957) and Gravenor and
Kupsch (1959), which have been interpreted as annual events. The
arcuate ridges are only observed in close proximity (less than lkm) fo
the present-day eastern glacier front (figures 9 and 16).

The two dominant directions for iceberg gouging are parallel and
normal to the ic¢e front. These directions are prébably determined by
currents, wind and bathymetry. A strong, westward, surface coastal
current is observed along the ice front (Novitskiy, 1961; chapter 4),
while offshore katabatic winds from the ice cap dominate the local
wind field. Therefore icebergs should be transported either along the
front, or offshore, depending on the relative strength of the wind or
current. The western part of the study area is much shallower than
the eastern part, so icebergs are either grounded in this region or
deflected southward. The most prominent aspect of iceberg gouging,
however, is the marked decrease in gouging frequency inside the
continuous ridge (figure 2). Since the end moraine crest has variable
water depth, it can not represent a barrier to icebergs in general.
The decrease in plough mark frequency inside the moraine ridge may be
because sea—-floor inside the end moraine has only Eeen exposed to
marine conditions and drifting icebergs for less than 50 years.
Alternately, ice gouging may ﬁot occur as frequently now as when the
glacier was at its maximum extent. A decrease in the present-day

frequency of ice gouging could be caused by a decrease in the size of
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recent icebergs or a decrease in calving rate. Since Brasvellbreen
probably disintegrate& by calving atter the surge, the icebergs
produced during this time must have been too small to affect the sea
floor. At present, only occasional large icebergs are observed in the
study area.

Striated gouge pétterns (figure 11b) are most likely caused by
multi-keeled icebergs. Similar features are described from Arctic
Canada by Lewis et al. (1968). Ice gouge "“washboard patterns" (figure
1la), described from the Antarctic continental shelf by Lien (1982),
are attributed to wobbling of grounded icebergs. The features
described from Antarctica are, however, an order of magnitude larger
than those observed in the Brasvellbreen study and are caused by
tabular icebergs. WObbling of icebergs by tides or waves may be a
possible cause of the washboard pattern outside Brasvellbreen, but the
tidal range is less than 1m (USNHO, 1958}, and waves generally are
small because of sea-ice cover. Another possibility is that the
pattern arises from blocks of overconsolidated material that are

pushed up during gouging (Barnes and Reimnitz, 19743 Lien, 1983).

DISCUSSION
The sea-floor morphologic features mapped outside the
Brasvellbreen glacier may be summafized as follows:
1) A continuous ridge, subparallel to the giacier front at a
distance of 0.5 to 3.5km, is interpreted as the end moraine deposited
during maximum extent of the glacier surge in 1936-38. A part of the

moraine may have been pushed up as the glacier advanced. However, the
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cross—sectional acoustic stratigraphy seen on 3.5 kHz echo~soundings
implies that later deposition, probably from basal ﬁeltwater, took
place all along the surging ice front at the time of maximum glacier
extension. Continuous deposition along the ice front during the surge
contragsts with the modern sedimentary environment. At present,
meltwater is discharged at only two major outlets for the entire
Nordaustlandet ice cap (chapter 4). The original shape of the end
moraine is partly modified by slumping on the distal flank.

Although sediment contained within the end moraine represents
material eroded beneath the glacier during many years prior to the
surge, it was deposited during only a few years. Estimates of the end
moraine dimensions yield a sediment volume of 0.5 km®. This volume
of material is approximately equivalent to the annual sediment
discharge of the Amazon River, which has the third largest sediment
discharge of all the world rivers (Milliman and Meade, 1983). If all
the material contained in the end moraine was derived from erosion of
the bedrock underlying Brasvellbreen (over an area of 1110km?), the
subglacial surface would be lowered by 45cm. Judging from the amount
of material moved during this latest Brasvellbreen surge, glacier
surges may prove to be important mechanisms in the long-term transport
history of glacial sediments.

2) A rhombohedral ridge pattern between the end moraine and the
modern glacier may represent accumulation of sediﬁent in crevasses in
the glacier sole during the surge. Post-surge ice stagnation with
disintegration by calving allowed preservation of these features. The
rhombohedral pattern continues up to the western, shallow water ice

front, but arcuate ridges forming swell and swale topography are
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observed near the modern eastern glacier front. These features are
most likely caused by minor, local readvances of the glacier, and
indicate an active, though fairly stable glacier margin. A modern,
stable glacier margin is consistent with satellite photographs showing
no apparent activity since 1976 (chapter 4) and with minor crevassing
in the present-day Brasvellbreen glacier observed in aerial
photographs. The distribution of the crevasse fills and arcuate
ridges indicates.that the thicker eastern part of the glacier
disintegrated approximately 3km through calving before becoming
active. In its westernmost part, the glacier is probably stiil
stagnant. Gradation from crevasse-fill deposits to swell and swale
morphology in Pleistocene glacler reconstructions has also been
interpreted ag a shift from stagnant to active ice conditions
(Gravenor and Kupsch, 1959).

3) Iceberg plough marks show two prevailing directions, E-W and
N-S, most likely controlled by a combination of a westerly ceoastal
current, offshore katabatic winds and sea floor topography. Plough
mark frequency decreases markedly inside of the end moraine,
indicating shorter time of exposure to drifting icebergs or a decrease
in large iceberg activity since the surge and during disintegration of
the surge ice. Striated plough marks are caused by multi-keel
h.icebergs, and "washboard" pattern glong plough marks inside the
moraine ridge is most likely caused by push-up of émail blocks of

material during ploughing.
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The end moraine and the general distribution of sea-floor
morphological features are considered to be related to recent Surge
activity. The scale of these features may seem small when discussing
larger ice sheets, but these morphqlogic features are important aids
in interpreting Pleistocené and older glacigenic shelf acéumulatiops.

Orientation and distribution of such structures yield information on

the direction and distance of glacier movement and the retreat history

of the glacier.
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ABSTRACT

During Pleistocene deglaciations marine environments dominated
by glaciai meltwater were common on northern continental shelves.
Suspended sediment supplied by meltwater to the open-marine
environmenf is subject to coastal processes of larger SCalé than the
restricted fjord—glacier environments thét'have been studied to date.
Sediment-laden melfwétgr plumes were investigated at two loéalities_
along the open—mariné'glaciEr front offNordaustlandet in the Svalbard
archipeiago. Suspéﬁded_sediment‘concentrations decrease by at least
an order of magﬁitﬁde to norméi Bafents Sea 1évelsrwi£hin 18km
offshore from thé glacier front, but.fine;grained'sédimeﬁt susPénded
in the plumes is advected at least 30im-élong the ice front in a
westward coéstal current. An l8km'glaéiél surge in 1936 and recent
élaciél movemeﬁts have reworked surface sediménts near the-outflow
iocation and-pfecludes‘clgar:définition of present-day depocenters. A
model.for meltwater plume digpersal‘and sediment depositioQ is
devéioped iﬁ orderlté e#amine pbssib1e depositional pattérns, This
model is Coﬁsiétent:with observed currents and‘éuspended parﬁicﬁlate
concentrétiohs, aﬁd prédicts areai distribﬁtion and sedimentation
rates for meltwate;édoﬁinated glaciomariﬁe environments in Pleistocene

and ancient glacial deposits.
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INTRODUCTION

Surficial sediments of glaciated continental shelves reflect
depositional and erosional conditions during deglaciation, when
glaciers terminated as tidewater glacier fronts or ice shelves (Denton
and Hughes 1981, Rust and Romanelli 1975). The volume of freshwater
released in meltwater and by calving of icebergs during Pleistocene
deglaciation may have been 1.5-2.0 times the freshwater supplied by
the Amazon River (Jones and Ruddiman 1982). Glacial theory (Shreve
1972) and observations of Pleistocene outwash deposits (Rust and
Romanelli 1975} indicate that meltwater from the glacier surface is
often channeled into drainage networks at the base of the glacier,
with discrete outflow points into the sea. When basal meltwater is
present, 90% of glacial sediment transport occurs through outwash
(Hagen et al. 1983). Deposition of suspended sediment discharged to
the open sea in outflows of glacial meltwater is an important part of
the glacial sedimentary cycle, and it is this phenomenon that is
investigated in this study,.

Previous investigations of modern glaciomarine environments have
concentrated on the special conditions of the Antarctic continental
shelf and fjord-glaciers of Alaska, Canada, and Norway. Biogenic
deposition and low meltwater discharges characterize the modern
Antarctic glacier marginsg (Anderson 1983). Although deposition from
meltwater is important in fjord-glacier environments, sediments are
largely trapped within the fjord (Farrow et al. 1983, Powell 1980).

Important results from these studies are: 1) suspended sediment supply
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is highiy variable and is dependent on variations in meltwater
discharge (Collins 1979) and glacial erosion (Elverhoi in press); 2)
flocculation, pelletization, and agglomeration of fine-grained
particles greatly ipcreases sediment settling.rates in the fjord
environment (Syvitski and Murray 1981, Syvitski 1980)# 3) meltwater
may be discharged subadueously through tunnels at the base of a
glacier (Edwards 1978) or may migrate within the glacier up to sea
level af some distance from the discharge point (Elverhoi et al.
1980); and 4) suspended sediment concentrations in meltwater outflows
are rarely high enough (greater than the required 38g/l) to cause
dengity underflows of turbid freshwater beneath seawater (Péwell 1980,
Gilbert 1978, Hoskin and Burrell 1972).

The northern Barents Sealenvironmenf today is similar to
Pleistécéne glaCiatéd shelves. Tﬁe dpen—marine'afea‘close to the
Nordaustlandet ice dome (Svalbard Archipelago) is presently dominated
by.déposition of suspendéd se&iment from méltwater plumes.. Suspended
sediment supplied via these plumes and its dispersal in the coastal
environment is mapped in this étudy from Landsat satellite images and
direct measurements. 'ﬁecént-glacial-activity'has reworked the surfagé
‘sédiments in this regioﬁ (éhapter 3); therefqré‘the distribution of
glaciomariné_sedimenté observed in cores and acoustic profiles is not
representative:of médern coﬁditions.. However, processes gdntrﬁlliﬁg
deposition can be;analyzed.using a plume model for dispersal and
Sédimehtatidn, with variable freshwater supply and oceanographic
conditions. The bulk of sedimgnt suspended in meltwater outflow is

~both predicted énd observed to be deposited close to the ice front,
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but fine-grained sediments are transported alongshore in a westerly

coastal current.

Study Area: Nordaustlandet

Nordaustlandet is the second largest island (14,600 sgq.km) in
the Svalbard Archipelago, located at the northwestern edge of the
epicontinental Barents Sea. It is largely covered by an ice dome
(figure 1) with maximum thickness greater than 550m near its northern
boundary (Schytt 1964). TIce thickness decreases towardé the
southeastern glacier margin. The glacier is thought to be at the
pressure melting point in the interior because of its thickness, while
the perimeter may be frozen to the base (Schytt 1964, Hollins in
prep.). The ice dome mostly overlies Caledonian crystalline rocks in
the north and Jurassic silicified limestones and dolomites in the
south (Orvin 1969).

The Nordaustlandet glacier is grounded along its entire length
of 200km, making it the most extensive marine glacier in the northern
hemisphere. The glacier front reaches maximum thicknesses of 130m
with 5 to 30m above sea level, and 0-100m below sea level. Water
depths along the ice front increase from less than 30m near western
Brasvellbreen to more than 100m in the east, but bathymetry is well
known only in the western area (figure 1 and Chapter 3, Kristoffersen
et al. in press). Erik Eriksen Strait is 150m deép south of
Nordaustlandet, and increases to greater than 300m deep to the east.
The sea—floor gradient from Nordaustlandet south to Erik Eriksen

Strait averages 0.2°.
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Figure 1. Study area in southwest corner of Nordaustlandet, the
Svalbard Archipelago. Region of Nordaustlandet glacier
which was involved in the surge is delineated by heavy
dashed line. Exposed land is stippled. Crosshatching in
front of Brasvellbreen delineates end moraine deposited by
1936-1938 glacier surge. Stations connected by solid line
are from‘1980 survey, dotted line 1981 {(and 1982) survey.
Stations numbered 0-100 obtained in 1980.

Stations numbered 100-199 obtained in 1981,
Stations numbered 200-299 obtained in 1982.
"A" indicates major western outflow.
"B indicateg minor western outflow.

"C'" indicates major eastern ocutflow.
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Brasvellbreen glacier, the southwestern sector of the
Nordaustlandet ice dome, surged 18km between 1936 and 1938 (chapter 3
Schytt 1964). During the surge, large quantities of sediment-laden
meltwater were probably discharged along the base of the glacier
(chapter 3), contrasting with the present situatation where méltwater
outflow is limited to two major discharge locations. A ridge composed
of ice push material, meltwater deposited drape, and mass flow
sediments was deposited at the outermost extent of the surge (figure 1
and chapter 3). By 1957 the ice front had retreated 0.5-3.5km to
approximately the present position (Blake 1962). Sea-floor in the
surge zone has only been exposed to marine conditions since sometime
after 1938 and before 1957 (46-27 years ago). There does not appear
to have been comparable glacier activity along the eastern
Nordaustlandet glacier front (Blake 1962). Minor recent advances and
retreats of the glacier front (perhaps annual oscillations) have
formed a ridge and swale topography within 1lkm of the present ice

front.

MATERTALS AND METHODS

Processes affecting dispersal and deposition of suspended
sediment from meltwater plumes were investigated through analysis of
the modern suspended sediment distribution. Twenty three Landsat
images (band 4 obtained in 1976-1981) showed the location of major

turbid meltwater discharges and variablity of the surface plumes
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(figure 2). Width of the western plume was measured at lkm intervals
downstream on 5 satellite photographs {(figure 3). Freéuent c¢clouds and
sea-ice precluded gimilar examination of the eastern plume, but
average widths do not appear to differ from the western plume. Aerial
photographs and shipboard observations at the discharge locations
provided more details of plume behavior.

The water column was sampled along transects perpendicular to
the glacier fromt in August of 1980, 1981, and 1982 (figure 1).
Extensive sea-ice prohibited sampling of the plume sources in 1980 and
1982;'0ne section parallel to and 0.5-1.0km from the glacier wall was
obtained in 1981. CTD casts (conductivity, temperature, and depth
with a Neil Brown CTD) were obtained at 60 stations. Geostrophic
velocity was calculated for hydrographic sections perpendicular to the
glacier front assuming zero velocity at the deepest station pair on
each section. The calculated velocities indicate regions of current
shear and are not absolute since no current meters were deployed in
this region.

Suspended particulate matter (SPM) was measured by 72 light
attenuation profiles (Mountedoro-Whitney TMU transmissometer with one
meter folded path length and white light source), and one to Eive
water samples were filtered on 0.45pm Millipore filters at each
station. Light attenuation was correlated with concentrations
obtained from filtered water samples and is converfed to concentration
units (mg/1) (appendix C). Thirty SPM samples were analyzed for
content of combustible organic material, and sediment grain size was

estimated by microscopic examination of 54 filters from 17 stations
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Figure 2. Satellite images of Nordaustlandet glacier and surrounding
Barents Sea,
A. landsat satellite photograph from 23 July 1976 showing
western and eastern meltwater plumes (band 4).
B. Landsat satellite photograph from 7 September 1980 of
survey area (band 4). Sea—ice in Nordaustlandet Coastal

Current shows large eddies and current dimensions.
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Figure 3. Average width of western meltwater plume based on 5
satellite photographs. Diamonds at 10.5km represent 90°

corner in ice front discussed in the text.
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(appendix C). The largest diameter of mineralogic grains was measured
at 2pm intervals, beginmning at 2pm. 50 to 150 grains were
measured on each filter by counting the number of grains in each size
class in 10 fields. Weight percent in each phi size class was
calculated by assuming a density of 2.65g/cm”, spherical particles,
and ignoring contribution by grains smaller than 2um.

Forty four sea floor samples were obtained in the vicinity of
Bragvellbreen by a combination of vibracores, gravity cores, grab
samplers, and dredges (figure 1); 19 of these stations also included
bottom photographs. Results of textural of the top 5qm of nipe
gsediment samples are discussed in. this paper. For mineralogic
analysis and further discussion see chapter 3 and Solheim {in prep.}.

Sediment texture statistics for material in suspension and on the
sea floor were calculated by the method of Folk (1968). These
statistice are heavily dependent on the number of large grains
observed on each SPM filter. Since large grains are often under-
sampled, the statistics should be used with cautiqn. Grain size is
reported in ¢ units: |

¢ = ~logz(size(mm))

Mean grain size is calculated from a cumulative percentage curve,
beginning with the coarsest samples (from small to large ¢ size
claggesa}. The l6th, 50th, and 84th percentiles are required:

M, = ($16+$50+484)/3

TABLE 1
¢ Grain Size(um) Description
-1 2000 gravel
0 1000 very coarse sand
1 500 coarse sand
2 250 ' medium sand
3 125 . fine sand
4 63 very fine sand
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TABLE 1 (continued)

¢ Grain Size(pm) Description
5 32 coarse silt
6 16 medium gilt
7 8 fine silt
8 4 very fine silt
9 2 clay

Sediment dispersion {or sorting) is a measure of the sorting of the

sediment sample.

required:

The 5th, 1é6th, 84th and 95th percentiles are

or = ($84-416)/4 + ($95-$5)/6.6

TABLE 2

0
0.35-0.50
0.50-0.71
0.71-1.00
1.00-2.00
2.00-4.00
4.00»

Description
very well sorted

well sorted

moderately well sorted
moderately sorted
poorly sorted

very poorly sorted
extremely poorly sorted’

Sediment skewness is a measure of the symmetry of the distribution:

Sk: = ($p16+p84~2450)/2(d84~d16) + (5+$95-2¢50)/2($95-¢5)

Skewness is particularly sensitive to the presence of a few large

grains which are difficult to sample without sediment traps.

Therefore, although skewness is a useful parameter for discussionm,

absolute values determined by these methods cannot be strictly

interpreted.
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TABLE 3
Sk Description
+1.00 - +0.30 strongly fine-skewed
+G.30 - +0.10 fine-skewed
+0.10 - -0.10 near-symmetrical
-0.10 - -0.30 coarse-skewed
-0.30 - -1.00 strongly coarse—-skewed

Acoustic profiles comsisted of 400km of 3.5khz echo scunder
records (hull mounted 0.R.E. transceiver with EPC 3200 analog graphic
recorder) and 150km of side—scan sonar data (Klein, operated at 50khz)
in the Brasvellbreen area (figure 1). Analysis of these acoustic

profiles is reported in more detail in Chapter 3.

RESULTS

SUSPENDED SEDIMENT
Distribution of the turbid outflow plume in surface waters!:

Landsat images of the northwestern Barents Sea show the region
.near Nordaustlandet to be covered by extensive sea—ice from November
to May.(chapter 2}, with éatchy sea-ice during the summer. Turbid
water begins to discharge from the glacier front in July and ceases in
September. Seasonality in the discbarge indicates that a substantial
portion of basal_meltwater comes from melting of tﬂe glacier surface
during July and August. A similar ablation season is observed om
western Svalbard (Elverhoi et al. 1980) and western Nordaustlandet

(Gien 1941).
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Two major meltwater outflows are present each year in the same
locations (figure 3a) and they are located iﬁ embayments of the ice
front. Embayments form near meltwater outflows because the flow of
water along the glacier base increases ice calving (Wright 1887,
Powell 1980, Weertman and Birchfield 1982). Another peculiarity of
the outflow region is that the glacier front often is 20m thicker,
forming a dome-like structure over a 50m wide indentation or tunnel at
the sea surface. Turbulent turbid water discharges from the tunﬁel,
forming eddies at the sea surface. Birds feed at meltwater outflow
points, as well ag seals and whales, because of an increase in
productivity in the outflow region (the so-called "brown zone' of
Hartley and Dunbar (1937)).

Turbid water emanating from the embayments is generally
deflected to the west, along the tidewater glacier front. The western
plume discharges from the eastern margin of Brasvellbreen glacier
(figure 2). Turbid surface water of the western plume spreads to a
width of 1.8km within 1km from the ice front (figure 3). Four
kilometers downstream the plume is 2.5km wide. and maintains this width
up to 10km from the outflow location., The width of the eastera plume
appears in at least ome satellite photograph (figure 2), to have
approximately the same along—giacier distribution. The major
difference between the two plumes is that near a 90° corner in the
Brasvellbreen glacier {10km downstream) the westerﬁ plume often
separates from the ice front. The separation from the glacier front
could be because the current is following the bathymetric contours

which are also perpendicular to the ice front near the 90° corner
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(figure 1). The western sediment plume spreads and becomes less
distinct in the downstream region, sometimes forming large (15km

diameter) eddies (figure 2).

Coastal hydrography:

Meltwater plumes observed in satellite photographs are deflected
to the wes£; therefore they must be discharged into a westerly coastal
current which has higher velocity than the local tidal current.
Hydrographic transects obtained in August-1980 and 1981 (figures 4 and
5) show that a coastal water mass exists which is nearly isothermal
(averaging 0°C). The coastal water mass is less saline at depth
than the water in nearby Erik Eriksen Strait, causing downwarping of
igohalines and isopycnals along the slope. Based on this hydrographic
structure a westerly geostrophic current 1Is calculated from the 1981
data (figure & and appendix A). The current is approximately 20km
wide parallel to the glacier, with an outer limit centered over the
100m isobath {figure 4). Relative current shear increases toward the
west from 4cm/sec on a tramsect north of Kong Karls Land, to greater
than l6cm/sec near the western border of Brasvellbreen (appendix A).
The coastal currvent transports both suspended sediment discharged in
meltwater outflows (figure 2a) and sea-ice along the Nordaustlandet
glacier front (figure 2b).

Surface waves are generally small in this région because of the

perennial sea-ice cover.
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Figure 4,

-2(8~

Eastern hydrographic of eastern transect from 1981

obtained perpendicular to the Nordaustlandet glacier front.

Station numbers are labelled across the top of each transect

(location on figure 1, north is to the left):

A. temperature®C). The Nordaustlandet Coastal Current,

.surface water, Arctic Water (ArW), and Atlantic Water (AtW)

are labelled.

B. salinity °/o.)

C. sigma-t

D. geostrophic velocity (cm/sec). Negative numbers indicate

westward velocity (transect location figure 3b).
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Figure 5. Transects obtained in 1980 perpendicular to ice front
(locations on figure 1, north is to the left).
A, eastern transect temperature
B. eastern transect suspended matter. Calibrated
attenuation is contoured, concentration of SPM from filtered
‘waters samples are in italics
C. eastern transect percent non-combustible SPM
D. western transect temperature
E. western transect suspended matter

F. eastern transect perceant mnon-combustible SPM
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Suspended sediment distribution:

The maximum concentration observed in a suspended matter sample
at the eastern outflow was 15mg/l, and at the western outflow the
maximum was 28mg/l (figure 6). Both samples are from the surface of
the water column at stations located approximately 100m from the
glacier front near the meltwater outflows. Average concentrations
decrease rapidly within the first 3-5km westward along the ice front,
downstream from the discharge 1ocationsr(figuré 6), although maximum
plume cqncentrations may not have been sampled downstream because of
difficulties in locating and sampiing the plume axis. Concentration
of SPM decreases downstream because the plume widens (figure 3) and
coarse material settles from suspension., Suspended matter
concentrations average 3.5mg/l west of the eastern plume (figure 6).
The western meltwater outflow does not have a downstream extension of
turbid water along the ice front, probably because the plume separates
from the glacier wall as it passes the 90° corner‘as discussed above
(figure 2). Suspended sediment appears to be transported southwards,
out of the transect.

Two suspended matter profiles cbtained in 1980 perpendicular to
the ice front and west (downstream) of the outflow locations show the
general cross—sectional features of the plumes (figure 5). Suspended
éediment distribution for the eastern transéct was similar in 1980 and
1981. Maximum concentrations, gfeater than 2mg/1,loccur at stations
closest to the glacier. These samples contain greater than 75%
noncombustible material. Concentrations decrease offshore and reach

normal Barents Sea background values (less than 0.2mg/l and less than
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25% noncombustible material) at approximately 18km. This offshore
distance corresponds to the outer limit of the coastal current defined
by the 0°C isotherm (figures 4 and 5), suggesting that sediment
supplied to the coastal current from meltwater plumes is not
transported directly into Erik Eriksen Strait. However, glacial
material originally deposited near the glacier may be transported
offshore as well as alongshore by bottom currents, since near-bottom
nepheloid layers occur in all tramsects perpendicular to the glacier
front.

The turbid-water fromt obgerved in satellite photographs may be
related to a seaward decrease in suspended matter concentration away
from the ice front from greater than 2.0mg/l to less than 1.0mg/l
(1980). This change occurs at 2km from the glacier on the eastern
profile (figure 5b), but is detached f:om the glacier front on the

western profile (figure 5e), as is also shown by satellite images.

Suspended sediment composition:

The two meltwater outflows discharge different sediment
mineralogy which aids in distinguishing their sedimentary influence.
Suspended sediment in the eastern outflow is composed of iron-stained
quartz grains which results in brick-red SPM samples. A likely source
for the sediment is rock flour from red sandstones. The western
outflow is composed primarily of carbonate mineral grains and chert
fragments derived from Jurassic silicified limestone (Orvin 1969).
SPM samples obtained at station 144 (the westerﬁ outflow samples)
appear greenish-gray, but the $PM samples obtained downstream still
have a slight reddish tinge indicating that some eastern outflow

material is still in suspension.
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Figure 6. Suspended matter profile obtained (1981 stations begin with
1, 1982 stations begin with 2) paraliel to the
Nordaustlandet ice front at distance of 0.5-1km (transect
location figure 3).

A. Calibrated attenuation is contoured along ice front.
Actual concentrations from filtered water samples are in
italics.

B. Concentration (mg/l) of SPM samples, line is drawn
through maximum concentration at each station. Dots are
samples along the ice front, crosses are samples obtained

offshore (see figure 1 for station locations).
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Suspended sediment texture:

On the average, mineral grains suspended in the eastern meltwater
plume become finer-grained downstream from the discharge location
(figure 7). The eastern plume has grains larger than 32um only at
the discharge location where they constitute 20% (by weight) of the
greater than 2um fraction of suspended matter (figure 7a). Grains
of 16pm to 32pum size make up 50% of the greater than 2um
fraction at 2.5km {mean SPM ¢ 6), but have dropped to less than 30%
at 10km. This coarse material settles from suspension within the
first 10km, after which the grain size and concentration of material
in suspension remainsg fairly constant with a mean size near 6.5¢
(figures 6 and 7). The SPM samples have a large variation in sorting
at a particular station, but a slight trend from moderately well
sorted to moderately sorted is observed downstream. Skewness
similarly is quite wvariable, but is generally slightly more positive
(fine-skewed) in close proximity to the western outflow (stations 174
and 172). Skewness decreases downstream where the SPM grainsize
distribution is near-symmetrical.

Offshore variations in suspended sediment texture are shown by
stations 167, 173 and 176. These stations are outside the main axis
of the plume and therefore have lower SPM concentrations (figure 6).
Stations 176 and 167 have nearly the same mean size as the stations
(174 and 170) located near the ice front. Station‘l73 is slightly
finer-grained. Mean sorting for stations 173 and 176 are gimilar to
the inner gtations, while station 167 is less sorted. Station 176 has

a very large variation in skewness, while stations 167 and 173 are
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nearly the same as the inner stations. The offshore stations of the
eastern plume do not appear very different from the inner stations,
except that they have lower SPM concentrations.

Discussion of suspended sediment texture for the western plume is
limited by the number of SPM stations in 19813 only two stations (144
and 141) had SPM samples at several water depths. In 1982 more SPM
stations were obtained (231, 232, 234, 238, 239}, but only downstream
from the meltwater outflow (station 144 — 1981). The concentrations
obtained from SPM samples are similar both years (figure 6), so
textural data is plotted together (figure 7). Discussion of the
western plume is also complicated because the plume appears to be
detached from the ice front near the 90° corner (between stations
144 and 143, 238).

Comparison of alongshore suspended sediment texture shows that
samples obtained upstream of station 144 in 1981, do not appear very
different from station 147. The mean size is not coarser, and the
sediments are slightly better sorted and are normally distributed.
There igs no evidence from the sediment textural parameters that these
samples were obtained in a glacier meltwater outflow, except that the
SPM concentration is an order of magnitude higher. Station 141 (18km
downstream) has approximately the same mean size and sorting as
station 144, but ig strongly fine-skewed.

The 1982 surface SPM samples (station 238 and‘232) are generally
much coarser than 1981, bringing the mean size up to 5.85¢. Both
samples are moderately sorted and station 238 is strongly fine-skewed

while station 232 ig fine-skewed. Station 231 (28km downstream from
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Figure 7. Grain size distribution statistics measured from filtered
water samples obtained along ice front in.1981 (and 1982},
A. Histograms of weight percent in 5,6,7,8,9¢ classes.
B. Mean size (¢) of all SPM gamples obtained at this
station {vertical bars are lo)
C. Mean dispersion (¢)

D. Mean skewness
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station 144) is probably out of the plume altogether as seen by the
very low SPM concentrations. SPM is well sorted and is nearly
normally distributed.

Because the western plume separates from the glacier front near
the 90° corner, average SPM samples from stations 239 and 234 (3.9km
away from the glacier front) have mean sizes and concentrations
similar to the immer stations (figures 6 and 7). These outer stations
are less dispersed {méderately well sorted), and have similar skewness
as their inmer counterparts. Although these textural statistics have
large variationg, it appears that the SPM samples offshore from the
western plume have similar concentration and mean si%é as the inner

stations, but are better sorted. There also may be a downstream trend

from fine-skewed toward a more symmetrical distribution.

Suspended matter samples obtained at the western outflow location
in 1981 (station 144) do not contain the coarse grains (greater than
32um) observed downstream in 1982 (figure 7). Three possible
explanations for this are that the coarse sediment observed in
suspension downstream is resuspended from the sea floor, comes from a
different source, or that at the time of sampling (L981) only
fine-grained material was supplied by the glacier. Resuspension along
the transport path is probably not a likely source for coarse material
in suspension because the coarsest samples are high in the water
columnr(figure 7). Turbid water emanating from oﬁher outflows is not
observed on satellite photographs, but side-scan profiling of the
glacier front revealed a small indentation of the ice front, 6km

downstream from the major discharge location (figure 2). Coarse
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sediment could be discharged at this location; but no water samples
from this area are available. Temporal variation in sediment

discharge is the most obvious explanation and is discussed later.

SEA-FLOOR SEDIMENT

Sediment deposited from meltwater plumes might be expected to
extend as a drape of material westward from the outflow locations with
an ice-rafted component superimposed on the meltwater deposits. The
region downstream of the western plume was examined through sediment
cores and acoustic profiles for evidence of deposition from the

meltwater plumes.

Surface sediment texture:

Core samples obtained downstream from the western plume do show a
general decrease in mean sediment size, from 2.5¢ (statiom 232 and
233, 13.1km downstream from station 144) to 5.4¢ (station 65, 18.7km
downstream from station 144);

TABLE &4

Station X Y Median Mean Disgpersion Skewness %Gravel
232 0.7 13.1 2.495 2.649 3.811 0.034 28
65 1.9 18.7 4.348 3.662 3,505 -0.314 29
233 2,2 13,1 1.883 2.486 3.761 0.181 42
234 3.9 15.5 5.494 4,486 3.287 . -0.510 25
239 3.9 11.8 5.476 4.412 3.309 ~(3.506 20
67 10.6 6.602 5.542 2.739 -0.686 49
237 16.7 6.278 5.386 2.637 -0.568 28
69 21.3 6.778 5.378 2,994 -0.784 25
73 53.3 7.160 6.664 1.393 -0.470 1

(X = distance offshore (km))
(Y = distance downstream from station 144 (km))
Statistics are based on gravel-free deposits (greater than 3mm).
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Dispersion decreases slightly from 3.8 to 3.5¢ downstream and
skewness shifts from nearly syhmetrical to strongly coarse-skewed at
station 65.

An offshore transect of sqrface sediment samples shows a
general decrease in mean size of surface sediments from very fine sgand
to medium silt at 2lkm offshore. The dispersion also decreases from
very poorly sorted to poorly sorted, while the distribution becomes
more coarse-skewed, up to to -0.8 (strongly negatively skewed).
However, this offshore transect is probably not representative of
modern deposition because of the recent glacier surge (chapter 3).
Glaciomarine sediments deposited prior to the surge in 1936-38 were
overrun and reworked by the glacier. In order for even lem of
sediment to accumumlate since 1938 (-1957), sedimentation rates must
be very high (20 — 40cm/1000yr). As will be seen later, such high
accumulation rates will only occur in the outflow embayments and no

cores are available from these regions.

Sea-floor morphology:

Side—gcan profiling along the glacier front at the western
plume shows an indentation in the ice front which is probably the
major outflow tunnel (figure 8). The tunnel is approximately 200m
wide at the glacier base and is located below a 50m wide surface
indentation, from which high turbidity water emanétes. A valley
(approximately 20m deep and 800m wide) is located just to the west of
the western meltwater outflow. Meltwater drainage of glaciers is

predicted to occur preferentially in topographic depressions (Flint
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1971, Weertman 1972), suggesting that this valley may continue
westward under the glacier and is a conduit for meltwater outflow.

Arcuate ridges of acoustically transparent material are observed
within the valley (figure 8). The ridges are similar to others
occurring along the ice front downstream, but are at least twice as
large in the outflow valley (figure 8). These swales and swells are
interpreted to be material pushed up or deposited by the glacier
during small advances and retreats (chapter 3). The fact that they
are larger in the outflow region may indicate that more unconsolidated
material 1s available. Other than these deposits, the only evidence
from acoustic profiling for enhanced deposition in the outflow region
is the smoother sea—-floor near the tunnel, perhaps caused by recent
deposition of sediment.

A small indentation, 50m wide, is observed 6km to the west of
the major outflow (figure 9). An accumulation of acoustically
transparent sediment is observed on the sea—fiocor in front of this
tunnel. The deposit is 5m high and 400m wide. If this material
accumulated since 1936 (-1957), the local sedimentation rate is
Sm/(46-27yr) or 10-20cm/yr. Ho@ever, the surface morphology of the
deposit appears similar to the surrounding sea floor, indicating that
it may have been deposited before 1936 and perhaps was overrun by the
surging glacier,

Several unidentified targets were cobserved Qn gide—scan profiles
in front of the major western outflow (figure 8). They are
approximately 40m high and 50m in diameter, and at least one was

observed in 1981 as well as 1982. They appear to be discrete mounds
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Figure 8. Side-scan sonar (A) and 3.5kHz (B) profiles along ice front
(located in front of major westernm butflow "A", figure 1).
Vertical lines on sonograph are due to interference from
sparker profiler. Major outflow tunnel is observed as an
embayment in the ice front, located to the east of the
outflow‘valley seen on 3.5khz proftile.
Several discrete unidentified side-scan targets also appear
on this side-scan sonograph and 3.5khz profile. They are
approximately 40m high and occur to the east of the outflow

tunnel. At present their origin is in questiomn.
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Figure 9. Side-scan sonar (A) and 3.5kHz (B) profiles along ice front
(located in front of minor western outflow "B", figure 1).
Vertical lines are due to interference from sparker
profiler.. Minbr outflow embayment observed in ice front

corresponds with sediment accumulation observed on 3.5klHz

profile.
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since they cast triangular shadows on the side-scan sonographs, and
appear acoustically transparent on the 3.5khz profiles. The
transparency and peakedness of the mounds may, however, be caused by
gside—echoes. The mounds may be composed of bedrock, ice, or
sediment, Since the surrounding sea floor is smooth and the bedrock
is nearly conformable to the sea surface in this region (Orvin, 1969),
the mounds are probably not composed of bedrock. They could be formed
by sediment-laden ice, calved from the glacier sole. The coastal
~current water temperature averages 0°C, which could mean that they
would melt slowly. However, the sediment concentration would have to
be extremely high in order to weigh down a 40m thick block of ice.
The most obvious explanation is that they are mounds of sediment,
accumalated in fromt of the outflow., If this is true, then the
se&imentation rate has been extremely high in very localized regions
during sporadic glacier retreat, Pleistocene esker deposits are often
"beaded" (Flint 1971), perhaps reflecting a similar depositional
environment. The very steep angle of repose of the unidentified
targets would tend to imply that the deposits are very coarse.

Obviously more observations need to be obtained in this region.

MELTWATER INPUT, DISPERSAL, AND DEPOSITION

Because SPM samples are limited at the Nordaustlandet ice front
and the glacier surge probably reworked any recent deposits,

deposition from meltwater plumes camnot be defined clearly by
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available field observatioms. However, these observations can be used
together with knowledge of the local geomorphology and glacier theory
for a discussion of general features of the input, dispersal and
deposition of suspended sediment from meltwater plumes in the marine
environment., Specific questions that can be addressed are: Over what
area are sediments deposited from meltwater plumes? What sedimentation
rates can be expected? How will grain size distributions from
different sources change sedimentation patterns under variable
hydrographic conditions? The problem can be separated into
consideration of source, near, intermediate, and far field regions
(figure 10). Source conditions (A-B-C, figure 10) of interest are
meltwater discharge (volume, velocity, and variability) and sediment
transport (concentration, grain size, and variability). The near
field (C-D, figure 10) concerns injection of material into the water
column from a meltwater tunnel and the immediate buoyancy and momentum
effects. The intermediate problem examines initial expansion of the
plume and deposition of sand. In the far field (D-E, figure 10) a
source grain size distribution and concentration is dispersed and

allowed to settle from suspension in a coastal current.

Source:!

Questions to be answered at the source are how much and what
grain size of suspended material can be expected té be supplied via
meltwater discharge, and what conditions must occur hefore the turbid
plume is observed at the sea surface in satellite photographs.

Behavior of meltwater introduced to the marine environment will depend
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Figure 10, Schematic of sedimentary regime near meltwater outflow.
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on the volume discharge of meltwater and sediment, discharge velocity,
dimensions of the outflow tunmel, the density difference between the
fresh meltwater and the ambient seawater, the marine density
stratification, and the coastal current velocity (Brooks 1973, Fischer
et al. 1979). Since only the marine density stratification is known,
the other parameters are estimated from glacial theory and the
geomorphology and glaciology of the Nordaustlandet region,

Discharge of meltwater plus sediment is not known, but may be
estimated from glacier theory (Shreve 1972, Weertman 1972), coﬁpled
with observations from this investigation, as follows. The drainage
area for the western outflow point is estimated from the fact that
water at the base of a glacier will gemerally flow parallel to the
pressure gradient caused by the surface elevation of the glacier
.(Flint 1971, Weertman 1972). A drainage area of 900km® is
estimated, roughly following the limits of Brasvellbreen glacier
(Orvin 1969) (figure 1). Since discharge of turbid water is low in
winter and high in July and August (based on satellite photographs),
summer outflow must come from surface meltwater which is transported
to the glacier base (A-B, figure 10). Weertman (1972) suggests that
1-2m of ice could be melted over the entire (Brasvellbreen) glacier
surface during the summer ablation season. If lm/yr is agsumed here
to be contributed to basal meltwater over the 900km® drainage area,
an average discharge of 174m’/sec will be release& for the two
summer months. Large variability in meltwater discharge can be
expected during the summer because of meteorological fluctuations

(Collins 1979).
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Bounds on winter discharge may similarly be derived from a
discussion by Weertman (1972). An avérage of 1.5cm/yr may be melted
from the base of the glacier; including 0.5cm/yr from geothermal
heating and 1.0cm/yr from frictional sliding (this value depends on
the velocity of the glacier). If basal melting occurs over 900km?,
then an average winter discharge of 0.43m’/sec is derived.

Channelization of meltwater occurs at the base of glaciers,
forming a dendritic pattern in topographic lows of the bedrock similar
to river networks (Flint 1971, Shreve 1972, and Weertman 1972). This
results in several large stable meltwater outflows, located along
valleys in the bedrock and flowing parallel to the glacier flow. If
the tunnel is melted into the ice at the base of the glacier,
dimensions of the meltwater tunnel and transport velocity can be

estimated, using Weertman's (1972) equations:

R = tunnel radius melted into the ice (m)
- [Q/WB.SPé/2]3/8
V = velocity of meltwater in a tunnel beneath the glacier
{m/sec)
- S-SP;/2R2/3
where: = discharge (m*/s)

= water density = 0.9998g/cm’ (not including SPM)
= ice density = 0.917g/cm’

= gravity = 980cm/s”

= surface slope of the glacier = 0.0126

¢ = pressure gradient = p'ga+(p—p'lega

R MU D O

The radius of the meltwater conduit is estimated at 2m, with a
discharge velocity of 13m/s for an average summer discharge of
200m°/s. However, this estimate is probably a maxiﬁum velocity
because the channel is probably bigger than the 4m diameter estimated
by ice melting considerations. The channel is thought to be larger

because it is observed to remain in the gsame location from year to
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year, and so is probably related to bedrock topography of a larger
scale. If 13m/s is assumed to be the velocity over the entire
drainage length of 30km, then meltwater would take 38min to reach the
glacier front (B-C, figure 10), and may be susceptible to daily
meterological fluctuations. However, meltwater must first travel from
the surface to the base of the glacier (A-B, figure 10), and then must
be collected in a series of channels. The reservoir time at each of
these stages 1s not well documented in the glacial literature (Shreve
1972, Embleton and King 1975 p. 327). Weekly variations in plume
width and turbidity are observed from satellite photographs (figure
4), but these patterns could also be due to variations in the coastal
current.

Possible velocities on the order of meters/second indicate that
very coarse material may be transported in the meltwater channel along
the glacier base. This result is consistent with observations of
esker sediments which contain coarse sand and well rounded pebbles and
cobbles and are thought to be deposits formed by subglacial rivers
(Flint 1971, Embleton and King 1975). Channel dimensions and
discharge velocity will change at the ice frontas the waters enters
the ocean. Powell (1980) suggested that melting of the jce fromt by
outflow turbulence (C-D, figure 10} can cause the outflow tunnel to
migrate up to sea level, thus widening the discharge area and
separating the meltwater from the sea-floor. Elverﬁoi et al. (1980)
observed that meltwater with entrained seawater was discharged at the
sea surface from the extensively fractured Kongsfjord glacier. The

meltwater discharging from the glacier was fairly saline (28°%/..)
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with a suspended matter concentration of 500mg/l at the discharge
location. Migration up to sea level within the glacier will not only
decreagse the exit SFPM concentfation and buoyancy (due to entrainment
of seawater), but deposition of the traction load and suspended sand
will begin at some distance behind the general ice front.

When discharge area of the conduit increases, discharge velocity
decreases, but these numbers are difficult to quantify. The tunnei
mouth cannot be greater than the 75m water depth. The indentation in
the side-scan sonograph observed near the sea floor is 200m wide
(figure 8), while the surface expression of the tunnel is
approximately 50m wide. If the discharge is assumed to remain
constant at 200m*/s, but the tunnel area increases to 100m?, then
the exit velocity will decrease to 2m/s., Eddies are observed at the
sea surface at the Ngrdaustlandet discharge locationé. These eddies
could result from buoyant flow discharged at depth (discussed also by
Wright 1887, Edwards 1978, Powell 1980), therefore in the following
discussion, meltwater is assumed to discharge from the base of the
glacier. Consequences of surface discharge (as observed by Elverhoi
et. al (1980)) are discussed later.

Initial sediment concentration in the meltwater plume is
estimated from annual glacier erosion rates because 90% of glacier
erosion products are transported_in suspension when meltwater is
present at the base of the glacier (Hagen et al. i983). Sedimentary
bedrock similar to that underlying Brasvellbreen is eroded at lmm/yr
on western Svalbard (Elverhoi et al. 1980), while crystalline basement

is eroded at 0.4mm/yr (Hagen et al. 1983). If 0.8mm/yr of
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fine—grained erosional products from the entire drainage area are
transported to the glacier front, then the average concentration of
suspended sediment in meltwater during the two month ablation season
is estimated at a maximum of 2000mg/l (assuming sediment density is
2.65g/cm’). This average value is comsistent with suspended
sediment concentrations measured in meltwater streams (see discussion
in Jopling and McDonald 1975), but will vary during the ablation
season because of variations in meltwater discharge and channel
locations (Collins 1979). If sediment concentrations greater than
38,000mg/1 occur, underflows (density currents) can develop when
meltwater is discharged into the marine environment. Since such high
‘concentrations have rarely been measured (Powell 1980), sediment
concentration in the ocutflow is assumed to have a negligible effect on

buoyancy.

Near Field:

Plume trajectory immediately after discharge into the sea depends
on initial discharge velocity (M = momentum flux) and bouyancy (B =
buoyancy flux) which determine how far from the source the outflow
behaves as a jet {(ln) (Fischer et al. 1979). If the meltwater is
discharged horizontally from the glacier base, lw is the distance
from the ice front that the meltwater will flow before it loses its
initial momentum and starts to rise:

lm = M3/4/B1/z
where: pw = density of sea water = 1.0273

M = momentum flux = V@
B = bouyancy flux = Qglpw—pl)/p
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Since 13m/s is an upper velocity for meltwater discharge based on
previous calculations and In for 13m/s is only 48m, the outflow will
be considered a bouyant plume from the start. (If the outflow
velocity is 2m/s, thenm it will start to rise after it flows only 12m
from the tunnel mouth.)

In a stratified coastal environment with no ambient velocity, the
plume will have a terminal height of rise (hs) dependent on its
buoyancy (Fischer et al. 1979). Even though the meltwater ocutflow is
more buoyant than seawater the height to which it can rise is limited
because it entrains seawater as it rises, thereby increasing its
density. A linear density stratification in the coastal water column
is estimated from the 1981 density profile at gtation 144, located
100m from the outflow point (figure 11). |

he

= 3.88i/4/(g8|)3/8
where: H =
h

water depth

depth to base of pycnocline

Pwa = density of bottom water (at depth H)

pws = density of water below pycnocline (at depth h)

g' = (pwa — Pws)/Hpwa
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Figure 11. Density stratification for 1981 station 144 (for location

see figure 1), located 100m from western outflow.
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The average summertime discharge of 200m’/sec produces a 293m
terminal height of rise. Since water depth is only 75m, the plume
will reach the surface under summer discharge conditions (C-D, figure
10). If discharge is less than 0.9m°/sec, the plume will reach a
subsurface limit (determined by rearranging the above equation to
solve for Q at hs = 75m):

Q = ha(ge')* ® / 3.8%g(pw - p)/p
This result ig congistent with winter discharge of turbid water being
too low to be observed in satellite images. Since maximum winte;
discharge is estimated at 0.43m’/sec, it reaches a terminal height
Lof 62m gnd will not be observed in satellite images. An ambient
coastal current (velocity = U (m/sec)) will alter these estimates
(Fischer et al. 1979):

Zg = height of rise in an ambient current (without

stratification)
= B/U®
In order to advect the summer discharge plume downstream before it
reaches the surface, the coastal current must have a velocity of
85cm/sec.(this is actually an upper value since stratification is not
congidered).

The grain size distribution of material in suspension depends on
the vertical velocity (Ww = maximum vertical velocity) of the
meltwater plume near the discharge point as well aé the type of
sediment supplied by glacier erosion. The time of rise of the plume
(T) and vertical velocity may be estimated from the buoyancy of the
meltwater (does not include effects of stratification) from Fischer et

al. 1979:
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We = &.7(B/H) 73

T = H/W, = 18sec (H = 75m, B = 54.3)

Particles greater than lim may be carried to the surface in the
summer. While rising to the surface entrainmeﬁt of seawater into the
plume significantly decreases the concentration (Co, = source
concentration) of material in suspension (Fischer et al. 1979):

{m = maximum concentration

= 9.1QCo / Bl 3gs 3
Cay = average conéentration (assuming a normal distribution
across the axis of the plume)
= Ca/l.4

An initial concentration of 2000mg/l yields an average surface
concenkration of 50%mg/l gnd a maximum concentration on the axis of
the plume of 713mg/l, assuming no sedimentation during rise to the
surface, Observed concentrations at Nordaustlandet are on the order
of 10's of mg/l, suggesting either deposition from am initially coarse
suspension has occurred before sampling, initial concentrations were
lower than 2000mg/l1 (100's of mg/l), initial discharge was lower than
200m3/s, or more seawater has been entrained than is considered in
the model. These estimates of velocity and concentration are based on
plume theory which assumes a normal distribution of veloecity and
suspended gsediment concentration across the plume axis (Fischer et al.
1979).

The source texture also depends on the glacier type and the
bedrock lithology (Flint 1971). Predominately coarse-grained sediment

may be discharged in meltwater from erosion of metamorphic, igneous,
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or initially coarse-grained sedimentary rocks such as sandstones,
conglomerates or breccias. In general, fine-grained initial size
distribution occurs during erosion of carbonate rocks, siltstones,
shales and mudstones, although the glacial thermal regime (therefore
the type of erosion) and transport mechanism also has a large impact
on the resultant particle size. A bimodal distribution may result
from erosion of two different bedrock types, or erosion of a
silicified carbonate. Since the two meltwater outflows at
Nordaustlandet drain very different source regions, the initial grain
size distributions should be different. Erosion of the eastern
sandstone should produce a fairly uniform source without many large
grains. The western source should be bimodal as chert fragments will
be large, while glacial erosion of limestone produces fine-grained
sediments. Surface samples obtained downstream from the western

outflow in 1982 (stations 232 and 238) are indeed bimodal (figure 7).

Intermediate field:

Expansion of the plume occurs at the sea surface because of
excess buoyancy of the summertime plume (Garvine 1982 and 1984). The
small embayments associated with meltwater digcharge locations along
the Nordaustlandet ice front are observed to he filled with turbid
water in satellite photographs, indicating that near-surface spreading
may be limited by the geometry of the ice front. The turbid westerm
plume observed in satellite images is 1.7km wide at lkm from the ice
front; it countinues to widen for approximately 4km downstream, where a

constant width of 2.5km is attained (figure 3). Westward advection at
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approximately lkm from the discharge location suggests that at this
point the turbid water has dispersed from the embayment into the
higher velocity coastal current, Within the 4km long initial
spreading zone, average suspended sediment concentration drops to less
than Smg/l (figure 6) due to dilution by mixing and to fallout of
material from suspension. The concentration and grain size of
material in suspengion remains fairly constant at distances greater
than 3-5km from the outflow (figure 7). This intermediate field
region is difficuit.to model, especially because it depends on the
geometry of the ice front, but is important because sand settles from
suspension in this region (figure 10):

TABLE 5

Size (um) w{em/s)* S5cm/s  10cm/s 15cm/s”

2000 19.1 0.0196 0.0392 0.0588
1000 10.8 0.0347 0.0694 0.104
500 5.27 0.0711 0.142  0.213
250 2.12 0.177 0.354 0.530
125 0.695 0.539 1.14 L.62
64 0.198 1.89 3.78 5.67
32 0.0496  7.56 15.1 22.7
16 0.0124 30.2 60.5 90.7

*Fall velocity
*Fallout distance downstream(km) for 75m water depth and variable
coastal current velocity

The fall velocities of the less than 100um fraction are estimated by
Stokes equation which assumes spherical particles and settling of
individual sediment grains. Fall velocities of larger particles are
estimated from Baba and Komar (1981). These estimates of fallout
distance show that sediments smaller than 64pm escape from the

outflow embayment even if the effective velocity is as low as 5cm/s.
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If the small 400 by 5m deposit near the minor western outflow is
assumed to extend 300m to the glacier front, 4.1-2.4x10'%g/yr have
accumulated since the surge (assuming a sediment density of
1.86g/cm®). This corresponds to deposition of hO—ZBmg/l for a

discharge of 200m®/s and an annual 2 month ablation season.

Far field:

In the far field the plume is advected along the Nordaustlandet
ice front by a westerly coastal current and silt settles from
suspension. Width, velocity, suspended matter concentratiomn, and
grain sige distribution of the advected plume are of interest for
location of depocenters and determination of accumulation rates
(figures 10 and 12). The velocity of the coastal current determines
the trajectory of different grain sizes of suspended material
discharged in glacial meltwater.

The coastal current may be driven by regional winds, local
winds, or density differences between the coastal water mass and the
adjacent Barents Sea. Fresh water supplied along a coast and mixed
throﬁghout the water column can drive a westerly coastal current in
the Northern Hemisphere (Csanady 1982, Griffiths and Linden 1983).
Continual supply of meltwater may drive a summertime Nordaustlandet
coastal current, since the velocity of the current is observed to
increase as it flows along the glacier front (appéndix A}, Also,‘the
sea-ice distribution observed in wintertime satellite photographs does

not require the presence of a coastal current.
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Katabatic winds from the glacier may also contribute to
formation of the coastal current. These winds form by air cooling
near the glacier surface, forming a downslope density flow of cold air
which can extend 50km away from a glacier front (Flint 1971). The
temperature difference between the glacier surface and air is greatest
in the summer, causing highest velocity winds when meltwater discharge
is greatest. Increased winds also cause increased ablation (Martin
1975, Shcheglova and Chizhov 1981) probably resulting in increased
meltwater discharge. A 10m/s offshore wind is not unﬁsual for
katabatic inversion winds (Whillans 1975), and might drive a coastal
current flowing to the right of the glacier front. These offshore
winds could also widen the surface plume. It is not possible at this
stage to partition and accurately calculate the effects of density and
wind in driving a coastal current with the data available. However,
it seems likely that a fast and narrow coastal current can develop
along marine glacier margins by a combination of meltwater—produced
density gradients and katabatic winds. Such a current is also likely
to be influenced by the larger scale coastal flow created by regional
hydrographic and meteorologic conditions. Nordaustlandet coastal
current velocities of 5 and 10cm/s are estimated from geostrophic
velocities calculated for transects through the coastal region

(appendix A}.

Generalities of sediment deposition from a meltwater plume in
both the near and far field are illuminated through a one dimensional

settling and accumulation model (figure 12). An initial concentration
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Figure 12. Schematic of one dimensional advection and settling model.
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Figure 13. Downstream plume behavior for 25mg/l initial suspended
concentration advected along the ice front for a normally
distributed source grain size distribution.

A. Source grain size distribution,

B. Concentration downstream

C. Accumulation rate of material downstream

D. Mean size of material in suspension and deposited on the
sea floor

E. Digpersion of material in suspension and deposited on the
sea floor

F. Skewness of material in suspension and deposited on the
sea floor
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Figure 14. Downstream plume behavior for 25mg/l initial suspended
concentration advected along the ice front for a coarse
source grain size distribution.

A. Source grain size distribution.

B. Concentration downstream

C. Accumulation rate of material downstream

D. Mean size of material in suspension and deposited on the
sea floor (note change of scale)

E. Dispersion of material in suspension and deposited on the
sea floor

F. Skewness of material in suspension and deposited on the

gsea floor
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Figure 15. Downstream plume behavior for 25mg/l initial suspended
concentration advected along the ice front for a fine source
grain size distribution.
A. Source grain siée distribution.
B. Concentration downstream
C. Accumulation rate of material downstream 5
D. Mean size of material in suspension and deposited on the
sea floor
E. Dispersion of material in suspension and deposited on the
gsea floor

F. Skewness of material in suspension and deposited on the

sea floor
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Figure l6. Downstream plume behavior for 25mg/l initial suspended
concentration advected along the ice front for station 174
(10m) source grain size distribution.

A, Bource grain size distribution,

B. Concentration downstream

C. Accumulation rate of material downstream.

D. Mean size of material in suspension and deposited on the
sea floor

E. Dispersion of material in suspensién agd deposited on the
sea floor

F. Skewness of material in suspension and deposited on the

sea floor
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v

with various source grain size distributions is supplied to a unit
width of either the entire water column (H = Hr, Hy = 0) or to a
surface layer (H = Hr, Hp?0). The flux of material for these
different conditions does not remain constant. The sediment-laden
plume is then advected by variable coastal current velocities (u = 5,
1l0cm/sec)., Sediment is assumed to settle as single particles using
Stokes' velocities (w;) for sediment smaller than 100um, and Baba
and Komar (1981) for the larger grains. Suspended sediment
concentration, deposited sediment accumulation rates, and grain size
distribution statistics are computed for threé ambient conditions:
uniform plume over whole water depth at 5cm/s coastal curreant
velocity, 25m thick surface layer plume in 5cm/s coastal current, and
a uniform plume over whole water depth at 10cm/s. The intial
concentration {C.) is assumed to be 25mg/l and sediment is
accumulated on the sea floor for 2 months (or 1 year, assuming a 2
month ablation season). Average water depth is 75m. Four initial
size distributions are examined: normally distributed (figure 13),
coarse (positively skewed) {figure 14), fine (negatively skewed)
(figure 15), and the natural distribution obtained from the 10m water
depth gample from station 174 (the coarsest saﬁple from the eastern
plume) (figure 16). These results are then compared with
Nordaustlandet SPM observations.

Several major features appear on model runs for all source grain
size distributions. Deposition from the surface layer plume does not
begin until some distance downstream. Sediment accumulated on the sea

floor from the surface plume always has the same statistics,
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regardless of the source distribution. The deposits are well-sorted
and are normally distributed (not skewed). Other general features
are: sediment in suspension has a smaller mean grain size than
sediment depositing at the same distance downstream; mean grain size,
dispersion, and skewness of both deposited sediments and sediments
in suspension generally decrease downstream; doubling the current
speed stretches out the accummulation zone downstream; and for coarser
source size distributiong the gedimentation rate near the source is
higher.

If a normal distribution (mean 4.7¢ and o2¢) is supplied
to the whole water column, then concentrations of suspended sediment
should remain mnear source levels until about lkm downstream (figure
13). Concentrations then decrease fairly rapidly until about 10km
downstream where most of the modal material is deposited from
suspension. In this depositional region, sediment accumulates at a
rate of 9cm/yr with a mean size of 4¢. The deposits are moderately
sorted and normally distributed. Deposition from the surface plume
does not begin until about 100m from the source and it also decreases
after 10km,

Sediment in suspension maintains the source statistics until
about 500m downstream. After this point the grain size distribution
of material in suspension decreases logarithmically and becomes more
well sorted and slightly positively skewed.

If the source distribution is initially coarse, sediment falls
out sooner from suspension (figure 14}, thus accumulating faster
(1.6m/yr) over a narrower region (0-200m downstream), up to 75m im 50

years! These rates are similar to those obtained in fjord
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gsedimentations studies (reviewed by Syvitskiy, in prep., Powell,
pers.comm.). A well-developed delta should form with very coarse
sediments (mean 1.5¢) which are positively skewed (except for
deposits from the gurface plume, which are normally distributed)
deposited within the first 50~70m.

Sediment in suspension decreases markedly between 10m and lkm
from the coarse source. Between 10m and 100km from the source the
mean ¢ of material in suspension increases from 2.5 to 8. The
suspended sediments are poorly sorted at the source and then become
more poorly sorted near 30km dowanstream. Further downstream the
material in suspension is moderately sorted. Sorting decreases at
intermediate distances from the source because of the strong initial
positive skewness. As coarse material is deposited, the sediments
become less skewed so the statistical dispersion increases until a
normal distribution is attained. Then as material continues to fall
from suspension, the dispersion decreases. A downstream increase in
dispersion of suspended sediments should be apparent in all initial
strongly fine-skewed distributions.

A fine-grained, negatively skewed suspended sediment source has
very different downstream behavior (figure 15). ' The concentration of
suspended particulate matter does not decrease because only a very
small amount of coarse material is fallinmg from suspension. Therefore
the mean size of material in suspension is nearly eonstant and remainsg
strongly negatively skewed. Sorting decreases and shifts from

moderate to moderately well-sorted at distances greater than 10km.
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Only 1.5cm of sediment is predicted to accumulate in the 1-1&4m
range downstream, and for the surface plume only 0.2cm accumulates in
this region. The mean size of deposited material decreases markedly
with increasing distance from the source. Sorting decreases slightly,
from poorly sorted to moderately sorted at distances greater than
20km. These sediments are initially strongly positively skewed and
become positively skewed downstream.

Grain size measured from SPM sample obtained from 10m water depth
at station 174 was chosen as the matural sediment source (figure 16),
because this sample was the coarsest obtained at the western plume
outflow. The source grain size distribution is strongly positively
skewed, moderately sorted, and has a mean of 5.2¢. The predicted
downstream concentrations and accumulation region are similar to the
normal distribution discussed earlier, bhut the grain size statistics
are more reminiscent of the strongly positively skewed coarse source.
Concentration decreases between 2 and 1lkm ag the coarse sediment
settles from suspension. Approximately 2.5cm of sediment should
aceumulate in 1 year in this region. Deposits from the surface plume
accumulate between 2 and 10km from the source. The mean size of these
sediments is similar to that in suspesion, 5¢, but the sediments are
well sorted and only slightly fine-skewed to nearly normally
distributed.

Sediment in suspension retains the source meén gize until 4km
where the dispersion begins to increase and the skewness drops
sharply. Once sediment in suspension is approximately nmormally
distributed, dispersion begins to decrease, as noted earlier for the

coarsg source.
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These model results may be compared with actual grain statistics
measured up to 25 and 28km downstream from the meltwater outflows
along the Nordaustlandet ice front (figures 6 and 7). Some of the
features predicted by the simple advection and settling model are
observed in these samples, but because of the large variablity in
natural suspended matter samples only general tendencies can be
discussed.

Between 3 and 5km downstream the Nordaustlandet concentration
drops to a nearly constant value as predicted for a positively skewed
initial distribution (compare figures 6 and 14). Mean grain size
should decrease downstream from about 5.5 to 7.5¢ at 30km. The
eastern source show some evidence of a decrease in grain size from 6
to 6.5¢. SPM sorting is predicted to decrease downstream, since the
source is strongly positively skewed, but there is no real evidence
for this at the eastern plume and the western plume SPM samples were
obtained in different years. Dispersion for the natural distribution
(station 174) model run increased between 4 and 10km downstream to
1.0¢ and then decreased to 0.5¢. In general, these values
corregpond with the 0.5-0.9¢ range observed at both eastern and
western Nordaustlandet plumes. Skewness should decrease from an
initial positive skewness to a nearly symmetrical distribution. There
is some evidence for this in SPM samples from both plumes.

Approximately lm of sediment is predicted to éccumulate since the
Nordaustlandet glacier surge using the natural grain size distribution
and 4.5m if the coarse initial distribution is used. These values

appear reasonable since a subaqueous fan is not oberved near the
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western outflow location. Recent glacier activity has formed a swale
and swell morphology along the innermost lkm which could mask these

deposits.

DISCUSSION

Further aspects of glaciomarine deposition can now be discussed
with reference to the basic sédimentation model depicted above and
preservation potential in the geologic record.

Several source grain size distributions were used above to show
that sediment accumulation rates and location of depocenters are
sensitive to the type of material which is supplied by the glacier.
The initial texture is determined largely by the type of bedrock
eroded by the glacier, the glacial thermal regime, and.the transport
efficiency of the subglacial meltwater conduit. The grain size
distribution of sediment supplied to the ice front will probably be
positively skewed. Fine-skewness results from deposition of.the
coarse tail, truncating the normal distribution. This occurs when the
fresh meltwater stream encounters seawater. Thé very coarse sediments
found in eskers (Flint 197L, p.216; Embleton and King 1975, g.h67)
support this supposition, Because the meltwater is bouyant, it will
rise and the traction load will be deposited. 30m-wide sand lenses
observed above glacier till by Rust and Romanelli (1975) may be

Pleistocene analogs to this depositional environment.
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Glacial outflows are intrinsically different from river discharge
because they originate at some depth below the sea surface and are
buoyant, thus will maintain coarse material in suspension. If outflow
turbulence or calving and crevassing of the glacier leads to migration
of the tunnel to sea level within the glacier, then a coarse deposit
will form at some distance behind the general ice front. Sand may
settle from suspension before the meltwater is discharged as a surface
plume. Sediments deposited from a surface plume typically are
normally distributed and very well sorted. Deposition from suspension
before discharge at the glacier front may cause the initial low
concentrations observed and fine grain size (no grains coarser than
40um) of Nordaustlandet suspended matter samples. If discharge

.oeccurs from a tunnel at the glacier base, then the plume may be more
or less distributed over the entire water column. Deposits will be
strongly fine-skewed and well sorted with a very well-defined
accumulation region having a nearly constant mean grain size. The
outer border of the depocenter is defined by the coastal current
velocity and the time it takes the mean grain size to settle from the
sea surface to the sea floor.

However, at least some of the fine-grained material in suspension
could be incorporated into fecal pellets. Packaging of mineralogic
material into larger pellets by grazing organisms is well documented
in fjord-glacier environments (Syvitski 1980, Syvifski and Murray
1981). This process is certainly important at Nordaustlandet
particularly in view of the high productivity observed at the

meltwater outflows. Intact fecal pellets containing mineral grains
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are observed on some filtered water samples. Incorporation of
sediment into fecal pellets by zooplankton and agglomeration of grains
into composite particles leads to deposition of fine-grained material
much closer to the discharge location than suggested hy the model,
increased accumulation rates, and deposition of unsorted sediment;
this essentially adds a random fine component to the meltwater
deposits. Flocculation would have the same effect, and may also be
important where the meltwater outflow first encounters seawater. If
the suspended sediments are not settling particle-by-particle, then
the mean grain size of material in suspension would not be expected to
have a systematic trend, although the absolute maximum size in
suspension might be related to the settling velocity.

Ice rafting will add an essentially random coarse component to
the surface sediments. Sediments may be ice rafted from ice bergs
calved from the glacier front, or from sea ice transported with the
coastal current. Ice rafting is observed mostly in the coarse
fraction because even a very small amount of coarse material skews the
sediment texture.

Because of the combined effects of a probable positively skewed
source and biologic aggregation, "significant' accumulations from
meltwater plumes may be limited to a range of about 10-30km from the
discharge location. "Significant™ accumulation in the Barents Sea is
considered to be greater than the average of 5cm/1000yr (Elverhoi and
Solheim 1983). In the geologic record thick accumulations of marine

meltwater deposits should indicate that the ice front was within about
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10km, because the source flux of fine-grained material must be very
high for enough silt and clay to be carried in suspension downstream
that significant accumulation rates occur at greater distances.

Fine silt and clay will remain in suspension for distances
greater than 30km downstream, if they escape aggregation. Because
transport distances of fine gilt and clay are so large, material
discharged at one outflow may be superimposed on the next outflow
downstream. This continual rain of fine material results in a
negatively skewed surface texture {(since all paticles less than 2um
are presented as one class in most size analyses). When a coarse
(positively skewed), ice-rafted component is superimposed on the fine
meltwater deposit, a saddle-shaped grain size distribution results
(chapter 3).

Deposition has been considered only in the dowanstream direction.
The width of the plume will determine the offshore extent of glacial
meltwater impact. At Nordaustlandet, the surface plume is several
kilometers wide. Concentration decreases with distance from the ice
front, but grain texture is not appreciably different. The offshore
concentration decrease may be caused by mixing with ambient coastal
water. Textural characteristics of meltwater déposits should not vary
as rapidly offshore as they do downstream, but accumulation rates will
decrease, corresponding with the decrease in SPM concentration.

In this discusgion the meltwater outflow loca£ions have been
assumed to remain constant. Subglacial drainage is determined partly
by topography of the glacier surface and partly by topography of the

underlying bedrock. Variations in either surface may result in a
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shift in the drainage pattern. The glacier surface changes as
ablation and accumulation vary. The bedrock surface is continually
eroded both by the glacier and subglacial streams, although the
general topography remains fairly cqnstant. Also the actual discharge
location may migrate on a local scale since the ice front is a dynamic
region. 1f the dgainage pattern shifts dramatically the lens of
coarse material deposited near the ice front will be covered by silty
clay from upstream plumes, while minor shifts in outflow location will
spread o;t coarse deposits over a broader region.

Because grounded-marine glacier margins are generally shallow
(otherwise the glacier would not be grounded), the glaciomarine
envirgament is subjected to reworking by a number of different
processes. Ice bergs calved from the glacier and transported along
the glacier front in the coastal current may gouge the sea floor,
reworking the upper few meters of sediment, At Nordaustlandet, there
are surprisingly few ploughmarks in the recent surge deposits along
the ice front (chapter 3). The coastal current not only prevents fine
material from being deposited near the ice front, but may have high
enough velocity to rework sea floor sediments. Also, surface waves
and tidal currents, although not important at Nordaustlandet, may be
significant for sea-floor reworking along other glaciated shelves.

In addition, meltwater discharge implies that the glacier is
melting. Subglacial meltwater drainage associated ﬁith large eskers
appears to form during the waning stages of glaciation when the
surface gradient is low and the discharge of meltwater is high (Shreve

1972). Depositional environments similar to the present-day
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Nordaustlandet ice front were probably widespread on continemtal
margins during late Pleistocene deglaciation {e.g. Rust and Romanelli
1975). After deglaciation, isostatic rebound results in shallowing
water depths and even subaerial exposure, therefore many glaciomarine
sequences have been extensively reworked and they grade into sandur

deposits or glaciofluvial sequences.

CONCLUSIONS

Meltwater outwash plumes discharged from the Nordaustlandet ice
dome dominate the modern offshore sedimentary regime. Although field
observations along the glacier front are limited, comparison of
suspended sediment concentration, grain size, suspended sediment
sorting and skewness, against estimates of glacier erosion rates,
meltwater discharge, and coastal hydrography provides a framework for
discussion of the glaciomarine sedimentary environment. Because
meltwater plumes are observed in satellite images only during the
summer, meltwater is assumed to be derived primarily from melting of
the glacier surface. Since the meltwater is turbid as it discharges
at the ice front, it must flow along the glacier base where
resuspension of glacial erosional products occurs. Topographic
depressions in the bedrock surface guide the subglécial dentritic
drainage network. Meltwater discharge therefore occurs at discrete
and limited outflows near bathymetric depressions along the ice cap
margin. Embayments tend to form around the outflow locationm because

meltwater at the base increases calving of the ice front.



-267-

Coarse material can be transported in the high velocity
subglacial meltwater streams. When the meltwater encounters the open
ocean it rises buoyantly to the sea surface and deposits the traction
load but carryies coarse sand to the sea surface. $Sand is deposited
from this coarse, positively skewed suspended matter in the outfiow
embayment; it forms an outflow delta if the flux of coarse material is
high enough and if the ice front and discharge location remain stable
during deposition, Depending on biologic activity, appreciable
amounts of silt and clay may be deposited within fecal pellets of
zooplankton. Deposition of silt and clay in fecal pellets, with a
possible additional component of agglomerated and flocculated material
will superimpose a random, fine component on the sandy outflow
deposits.

A coastal current (flowing to the right in the northern
hemisphere) may be set up by a combination of katabatic winds off the
glacier surface and the summertime discharge of low salinity (and
therefore low density) water along the glacier front. Although the
outflow embayments are to some degree protected f?om the general ice-
front coastal current, silt and clay will escape the embayment and be
transported along the ice front. 8ilt and clay plumes supplied at
several discharge points will overlap and more or less continually
deposit sediment during the summer melt season. In general,
glaciomarine sediments along the ice front therefo?e will be
negatively skewed, when all the less than 2um particles are
presented as one size class,

The width of the turbid plume along the Nordaustlandet ice fromnt,

as observed in both satellite photographs and offshore concentration
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of suspended matter, is approximately 2.5km, Although the
concentration of mineralogic material in suspension decreases
offshore, sediment textural parameters do not appear to vary.
Therefore, accumulation rates willlbe highest near the glacier front
but similar sediment textures will be observed several kilometers away
from the ice front. Sharp bends in the ice front or bathymetric
changes may cause the coastal current to detach from the glacier
front, advecting suspended glacial material farther offshore.

Meltwater outwash deposits in the marine environment should form
lenges of fairly well-sorted sand in eskers and in ridge and swale
deposits typical of active, but fairly stable, ice fronts. They will
probably be located behind end moraines and amidst ice—disintegration
features (like crevasse fills) caused by glacier surges (chapter 3).
In the geologic record glaciomarine deposits are likely to be
reworked., They are accumulated in largest volume oun shallow shelves
of receding or disintegrating ice margins. Because of the shallow
water depth and high local sedimentation rate, the combined effects of
the ice front coas£a1 current, surfacerwaves, tidal currents, and
iceberg gouging may rework the sea floor. After the glacier has‘
retreated, the previously glaciated surface will isostatically
rebound, prehaps even causing subaerial exposure of the meltwater
deposits.

Further analysis of depositional conditions néar meltwater
outflows would be greatly facilitated by sediment traps, current
meters, and coring at the exit point, as well as vertical side-scan
profiling of the ice front to determine discharge tunnel dimensions

and location.
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Appendix A

Hydrographic Data
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1978

All data is from the Institute for Marine Research, in Bergen.
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Figure lA. Surface temperature
B. Surface salinity
C. Arctic Water temperature

D, Arctic Water salinity
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Figure ZA, Atlantic Water temperature
B. Atlantic Water salinity
C. Bottom water temperature

D. Bottom water salinity
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1980

All data was collected on the Norwegian Polar Research Institute
cruise of 1980 to the northern Barents Sea, from the Norvarg. Further
details of the cruise, including station locations, may be found in

the NPRI cruise report prepared by ¥Yngve Kristoffersgen.
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Figure 3. 1980 station locations. Hatching in the north denotes

region with heavy sea-ice.
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Surface temperature
Surface salinity
Bottom water temperature

Bottom water salinity
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1981

Hydrographic data complied from both a NPRI cruise to the northern
Barents Sea and the Institute for Marine Research cruise to the
southern Barents Sea. Further information on the 1981 NPRI cruise can
be obtained from the cruise report by Anders Elverhoi and Anders

Solheim, NPRI.
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Figure 5. Station locations for 1981 NPRI cruise.
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Figure 6. Hydrographic transects for Nordaustlandet region. Data
collected and processed by Tor Gammelsrod, Geophysics
Department, University of Bergen.

a, Stations 128-136
b. Statioans 211-216
c. Stations 148-157
d. Stations 162-167

e. Stations 207-2L1
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Figure 7. Surface water properties:

Property Average Standard Deviation
Depth 2.1 0.8m

Temperature 2.10 L.91°C

Salinity _ 32.95 2.33%/ 0

o 26,33 1.84 :

A. Surface temperature
B. Surface salinity

C. Surface density
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Figure 8. Arctic water core properties:

Property Average Standard Deviation

Depth 70.9 20.5m
Temperature ~1.48 0.37°C
Salinity 34,37 0.20% 0
Ty 27.68 0.17

A. Arctic water depth
B. Arctic water temperature
C. Arctic water salinity

D. Arctic water density
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Figure 9A. Location of stations with extreme water mass
characterigtics

B. Temperature -~ salinity plot of Arctic water core data
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Figure 10. Atlantic water core properties:

Property
Depth
Temperature
Salinity
Gt

Atlantic water

. Atlantic water
. Atlantic water

. Atlantic water
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Average
149.4

1.35

34.86

27.92
depth

temperature
salinity

densify

Standard Deviation
73.6m

1.12°¢

0.11%/ 460

0.11
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Figure 11A, Location of stations with extreme water mass
characteristics

B. Temperature — salinity plot of Atlantic water core data
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Figure 12, Cold deep water core properties:

Property Average Standard Deviation
Depth 234.1 51.7m

Temperature -0.75 0.58°C

Salinity 34,88 0.05%/q0

o 28 28.06 0.05

A. Cold Deep Water depth
B. Cold Deep Water temperature
C. Cold Deep Water salinity

D. Cold Deep Water density
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Figure 13A. location of stations with extreme water mass
characteristics

B. Temperature - salinity plot of cold deep water core data
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Figure 14. Bottom water properties:

Property Average Standard Deviation

Depth 174.2 91.2m
Temperature -0.11 1.19°¢C
Salinity 3444 2.31%/ 60
= 27.67 1.86

A. Bottom temperature
B. Bottom salinity

C. Bottom density



1 °eand1g

ALINIIVS WOLLOE 186

-313-




~314~

Figure 15. Hydrographic properties at 100m water depth
A. Temperature
B. Salinity

C. Density
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§0'* analysis for samples obtained from station casts in the

northwestern Barents Sea. All samples were analyzed in Richard

Fairbank's lab at the Lamont-Doherty Geophysical Obsgervatory:

Station #
238

248

281

299

318

331

335

338

Depth
0

20
70
0
109
0
28
75
300
0
10
30
75
225
0
30
75
190
30
75
300
20
75
870
0
10
300

sotd
0.13
0.05
0.19
0.29
0.30
0.23
0.17
0.25
0.41
0.14
0.13
0.26
0.21
0.45
0.05
0.11
0.14
0.38
0.29
0.23
0.32
0.28
0.43
0.24
~.60
-.13
0.35

Salinity
31.753
33.512
34.158
33.534
34.105
32.598
33.814
34.308
34,866
32.219
32.579
34,061
34,355
34.867
31.732
34.181
34,236
34.720
33.970
34,222
34.768
34.067
34,947
34.923
32.302
32.949
34.874

Temperature
-0.686

-0.769
-1.100
-1.311
-1.058
-0.189
-1.659
-1.484

0.154
-0.955
~0.207
~-1.698
-1.671

0.242
-1.127
-1.712
-1.836

0.994
-1.337
-1.525

1.055
776
.265
463
.689
.201
.166

MW O e N
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_Figure 16. Station locations for 80'* samples. Labelled stationms

were analyzed.
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1982 OXYGEN-18 STATIONS

— 200m

Figure 106
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Figure 17A. Temperature — salinity plot for analyzed §0'°
samples.

B. 80'® - salinity plot.
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1982

Hydrographic data for 1982 is compi;ed from the NPRI cruise to the
northern Barents Sea and data from the Institute for Marine Research
in Bergen. Further information on the NPRI cruise can be obtained
from the cruise report and the prelimiary data report by Tor Larsen,
NPRI. The data report contains hydrographic transects and profiles of

light attenuation.



Figure 18,
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Station locations for the NPRI cruise.
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Appendix B

Surface Sediment Data
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Sediment grain size for down core at l¢ intervals was analyzed

by standard sieve and pipette techniques (determined by the NPRI).

Sediment gmaller than 2mm (-2¢) is presented as weight percent of

the gravel-free sediment:
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1981 - 232.2
Depth(ecm) -3 -2 -1 0 1 2 3 4 5 6 7 8 ¢
000-000 28.4 13.2 11.2 9.1 7.3 4.5 9.4 4,9 6.1 6.6 7.5 20.1
1981 - 233.1

000-000 42.1 12.6 9.7 9.7 10.7 8.1 3.6 3.1 7.9 8.6 5.0 20.7
1981 - 234.2

000-000 25.1 5.7 4.1 4.1 4.8 4,4 3.2 6.1 9.2 16.8 7.2 34.2
1981 - 237

000-000 27.5 2.1 2.5 2.5 2.6 2.1 12.6 2.1 7.7 10.1 17.8 36.4
1981 - 239

000000 19.8 4.9 4.5 5.1 6.2 5.2 1.7 7.5 7.0 16.5 8.0 33.3
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Surface Sediment Data:

Grain size and Composition

Surface texture separated into larger than 2mm (g = gravel),
hetween 2mm and 0.063mm (s = sand), and less than 0.063mm (f = fine
sediments). Sand and finer sediments (sf) equals the weight of the
gravel-free fraction.

Surface sediment composition was determined by x-ray diffraction
of the less than 0.063mm siz fraction. Peak areas on the
diffractogram were estimated by measuring the peak height and the
width at half the peak heigth. Major peak areas were measured for
quartz (qtz), calcite (cal), doiomite (dol), and feldspar (fel), and
each peak area was divided by the total area to determine relative
percentages (Jack Hathaway, pers. comm.). These percentages are

reported for each sample under "XRD" data.

Grain size data: XRD data:

yr no d £ s g f/sf s/sf gtz cal dol fel

80 15 310 59.0 37.0 04.0 61.0 39.0

80 19 230 78.0 21.0 00.4 79.0 21.0

80 22 140 70.0 18.0 12.0 80.0 20.0

80 29 300 97.0 02.4 00.0 97.0 02.4 86.0 00.0 00.0 14.0

80 30 330 99.0 01.0 00.0 99.0 01.0 76.0 02.0 06.0 16.0

80 31 175 98,0 01.7 00.0 98.0 01.7 73.0 00.0 08.0 19.0
77.0 00.0 06.0 16.0

80 32 135 94.0 03.0 04.7 97.0 03.1 73.0 00.0 08.0 19.0

80 36 64.0 07.0 17.0 11.0

80 37 150 94.7 03.9 01.3 96.0 03.2

80 38 120 34.0 59.0 7.0 37.0 3.0 81.0 00.0 00.0 19.0

80 39 107 23,0 77.0 00.2 24.0 76.0 81.0 00.0 00.0 19.0

80 44 130 7L.0 17.0 12.0 81.0 19.0 '

BO 45 125 69.0 19.0 13.0 78,0 22.0

80 46 230 72.0 21.0 07.0 77.0 23.0

80 50 325 97.6 05.4 00.0 97.6 05.4

80 52 200 89.0 11.0 00.0 89.0 11.0

80 53 125 48.0 42.0 10.0 53.0 47.0

80 55 250 99.8 00.2 00.0 99.8 00.2

B0 56 100 36.0 56.0 07.0 39.0 61.0
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XRD data:

Grain size data:

dol fel

cal

atz

[T

T
w

U

oy O
« e e

2
0
0

o OO
uy Yy

5

/

210 97,5 02.5 00.0 97

330 99.4 00.5 0
305 99.1 00.9 0

£

6.0 99
0.1 99

g
345 90.0 09.5 00.4 90.0 09.5
130 67.0 26.0 06.0 72.0 28.0

£ s

d

80 57
80 58
80 59
80 60
80 61
80

yr_ no

74,0 22,0 04.0 77.0 23.0
320 98.0 01,4 00.2 99.0 01,4
085 43.0 23.0 34.0 65.0 35.0

080 68.2 20.0 12.0 77.0 23.0

225

62

75.0 00.0 07.0 18.0

80 64

80 65

48.0 39.0 13.0 00.0

80 66

52.0 3%.0 15.0 00.0

080 49.0 07.0 44.0 87.0 13.0

80 67

080 42.0 07.0 51.0 86.0 14.0

80 67

0
0
0
0
.0
0
0
0
0

00.
64.0 07.0 08.0 21.

00.

64.0 20.0 le.0

135 61.0 10.5 28.5 85.0 15.5
178 80.0 12.5 07.5 86.0 14.0

80 69
80

80.0 05.0 15.0

71

1.

73.0 ¢0.0 06.0 2

320 97.8 01.3 00.8 99.0 01.3
250 56.6 03.0 00.0 95.0 05.0

142 68.0 22.0 10.0 76.0 24.0

80 84

L

/5.0 00.0 11.0 1

80 85

74,0 05.0 07.0 14

80 86

255 97.2 02.5 00.4 97.0 02.5
275 98.2 01.6 00.2 98.0 0l.6

80 87

2.

72.0 60.0 07.0 2
78.0 00.0 08.0 1

80 88

4,

275 38.0 41.0 21.0 48.0 52.0

80 89

74.0 00.0 06.0 19.

13.0 69.0 31.0

225 60.0
295 98.1

140 86.5

90
91
93

80
80
80

170 37.0 45.0

101

80
80

80

170 59.0 40.0

180 55.0

102

149 40.0

104
105

80
80
80

165 51.0 1%.0 25,0 73.0 27.0
78.0 19.0 03.0 80.0 20.0

107 185

106
108

55.2 44,8 00.0 55.2 44.8

175

80
80
80

109 260 34.4 34,2 27,2 50.0 50.0

111

215 86.8 12.5 00.0 86.8 12.5

80 112 147 42.6 18.7 38.8 69.0 31.0

113 214 82.0 17.5 00.1 82.0 17.6
114 340 97.0 03.0 00.0 97.0 03.0

80
80

300 90.0 09.2 00.8 91.0 09.2

115
116

80
80
80

262 95.0 04.9 00.0 95.0 04.9

118 2806 99.0 01.0 00.0 99.0 01.0

175 65.0 24.0 12.0 73.0 27.0

119 307 99.3 00.7 00.0 99.3 00.7
124 330 99.0 00.9 00.3 99.0 00.9

121

80
80
80
80
80
80

74.0 00.0 07.0 19.0

71.0 00.0 07.0 22.0
76.0 06.0 06.0 18.0
62.0 05.0 08.0 25.0

72,0 06.0 06.0 22.0

336 97.0 01.5 01.5 98.0 01.5

125
126

98.0 03.0 00.3 97.0 02.9

285

67.0 24,0 09.0 74.0 26.0

80 128 265 85.0 14.0 01.0 86.0 14.0

130

127

115 35.0 13.0 52.0 73.0 27.0
134 165 92.6 07.4 00.0 92,6 07.4

131

80
80

137 125 57.1 42,3 00.6 57.0 43.0

80

71.2 12.0 16.0 86.0 14.0

82 229 055 51.6 18.0 29.0 74.0 26.0
82 230 081 59,7 22,0 18.0 73.0 27.0

82 225 036
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Grain size data:
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Appendix C

Suspended Sediment Data
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Filtered Water Samples
Concentration data

yr sta

[=N

conc

[=H

conc d conc d conc d conc

80 003 400 0.78 025
80 021 109 0.25 040
80 023 157 0.27 030
80 028 279 0.02 025
80 030 229 0.69

86 032 134 0.14 115
80 034 021 2.22 003
80 036 124 0.32

.05 005 0.22
.25 020 0.31
.25 010 0,13
.20 010 0.16

o0 O o

—

-98 075 0.45 035 0.41 015 0.26
.94

—

80 038 119 0.21 018 0,93 003 0.28
80 051 215 0.14 005 0.15

80 052 199 0.15 0306 0.10 005 0.14
80 053 130 0.16 050 0.26 025 0.33 005 0.23
80 054 217 0.32 040 0.27

80 058 329 0.48 0306 0.29

80 060 244 0.18 145 1.95

80 062 224 0.22 175 0.02 100 0.23
80 064 225 0.52 160 0.06 030 ¢.24
80 065 087 2.28 050 2.76 003 1.51
80 067 089 0.68 050 1.65 003 1.86
80 069 134 0.16 050 0.77 003 0.58
80 071 177 0.42 050 0.14 002 0.30
80 073 149 0.41 0.13 050 0.10
80 074 086 2.56 050 1.58 003 1.89
80 075 100 0.83 050 0.48 003 1.11
80 079 214 0.40 161 0.22 020 0.56
80 081 099 0.22 050 1l.44 QG3 0.15
80 083 121 0.21 072 0.43 020 1.01
80 086 141 0.19 090 0.25 030 0.50
80 089 179 0.21 130 0.74 030G 0.54
80 091 264 0.32 065 (.22 005 0.32
80 096 132 1.00 070 1.91 020 0.82
80 101 164 0.61 030 1.02

80 113 213 0.60 150 0.20 030 0.50
80 115 299 0.42 030 0,13

80 118 299 0.43 130 0.24 030 0.95
80 120 299 1.03 250 0.24 020 0.57
81 122 080 0.17 065 0.10 020 0.34
81 123 134 0.24 050 0.20 020 0.43
81 124 239 0.29 075 0.26 025 0.44
81 125 348 0.51 110 6.20 035 0.41 020 0.70
81 126 085 0.31 025 0.64 001 0.80
81 128 090 0.71 020 0.59 001 1.22
81 129 114 0.35 020 Q.98 002 0.26
81 130 060 0.48 020 0.90 002 0.28
81 131 030 0.74 020 0.63 002 0.38



yr ska

81
81
81
81
81
81
81
81
81
81
81
81
81
81
81
81
81
81
81
81
81
81
81
81
81
81
81
81
81
81
81
81
81
51
81
81
82
82
82
82
§2
82
82
82
82
82
82
82
82
82

132
133
136
141
T4k
148
150
151
152
153
154
155
156
157
i58
159
161
162
163
164
165
166
168
170
171
172
173
174
176
177
178
208
209
210
211
215
212
213
214
215
228
229
231
232
233
234
236
237
238
243

([=¥

041
074
098
079
020
060
090
085
1190
170
200
155
110
(60
055
090
060
086
124
201
239
184
065
045
060
055
054
100
110
115
075
100
155
105
045
(85
Q47
063
137
076
009
042
072
072
088
077
087
102
067
068

conc

0.41
0.50
<99
.99
.59
.22
.06
.81
.86
.38
.28
.33
.33
46
.13
.33
.13
.17
.12
.63
.26
.78
49
.67
47
.29
.23
.55
17
.36
.00
.06
A5
.33
.66
5l
.31
.27
.03
.82
.56
.57
.97
A7
.11
.70
.38
.91
.87

wn
-

S~ O QPO OOOONMNOCODCCOOOOOQOHMENMFEEFERENWHODOODOOOOODODODODO T OMNMNMNMMNMNMNMOO
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d conc d conc 4 conc
020 1.42 002 0.35
060 0.50 021 1.24 Q02 (.21
088 0.46 020 0.50 001 0.29
070 1.80 020 1.18 001 1.46
00128.46
050 4.64 020 3.33 '
080 1.52 020 3.47 001 2,89
075 1.09 020 0.89 001 0.69
100 0.93 020 3.92 001 0.48
160 0.86 020 1.17 001 ¢.31
190 0.29 020 0.31 001 0.00
145 0.19 020 0.26 001 0.27
100 0.25 020 0.72 001 0.58
050 9.35 020 0,48 001 G.55
045 0.40 020 0.67 001 1.27
080 0.19 020 0.37 001 0.30
050 0.38 020 0.50 001 0.49
114 0.09 Q19 0.32 001 3.12
228 0.28 099 0.01 019 0.33
050 1.78 020 1.34 001 1.08
035 3.09 020 2.38 001 3.97
0le 2.78 000 3.37
045 2.30 020 3.36 000 4.47
045 0.55 020 0.81 000 0O.64
090 1.02 01011.80 005i0.67
010 2.78 000 0.65
01014.96 00012.20
065 1.47 010 5,88 000 8.15
080 0.30
145 0.06 020 0.16 001 0.27
095 0.15 020 0.22 001 0.18
020 0.51 001 0.84
075 0.37
040 0.38 017 1.03
016 0.65
130 0.34 010 0.29
033 0.57 0G0 2.50
007 0.93 000 0.57
032 0.38 020 0.80 000 2,23
062 .39 020 0.34 020 0.406
062 1.22 020 0.47 000 0.65
020 0.67 000 L.14
020 0.83 000 1.83
077 0.55 020 0.29 000 0.41
089 0.32 020 0.29 000 0.81
057 1.39 020 1.34 Q00 1.27
000 1.02

d conc d conc
002 0.31
00112.33 000 7.92

000 0.97



yr sta

82
82
82
82
82
82
82
82
82
B2
82
82
82

244
246
247
248
249
250
251
252
314
317
318
337
338

d

025
068
109
109
109
109
109
109
100
127
190
130
298

cone d cone d conc
0.44 000 0.34
0.53 600 1.51
0.74 000 1.06
0.43 000 1.02
0.37 000 0.91
0.67 000 2.60
0.46 000 0.97
0.54 000 1.35
0.32 020 0.55 000 0.79
0.33 030 0.83 00C 0.43
0.65 020 0.62 000 0.58
0.94 010 1,07 000 1.30
0.53 010 0.43 000 1.58
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d conc

d conc

d conc
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Bottom Filtered Water Samples -
Concentration and position

O T T N . s e e - e s s = = » P - . .
SO DO OO DD OO0 OO OO0 00O oo OO0

sta sd wd conc long lat

3.0 350.0 400.0 0.78 23.29 73.19
21.0 100.0 109.0 0.25 26.60 77.04
23.0 160.0 157.0 0.27 28.03 77.02
28.0 275.0 279.0 0.02 30.03. 77.99
30.0 230.0 229.0 0.69 27.69 78.03
32.0 135.0 134.0 0.14 25.45 78.02
34.0 22.0 21.0 2.22 22.06 78.59
36.0 125.0 124,0 0.32 23.66 78.71
38.0 120.0 119.0 0.21 25.39 78.78
51.0 215.0 215.0 0.14 31.10 78.00
52.0 200.0 199.0 0.15 32.05 77.99
53.0 125.0 130.0 0.16 32.97 78.00
54.0 215.0 217.0 0.32 34.44 78.00
58.0 330.0 329.0 0.48 34.51 78.80
62.0 225.0 224.0  0.22 30.9%9 79.00
65.0 85.0 87.0 2.28 23.51 79.18
67.0 80.0 89.0 0.68 23.68 79.10
69.0 135.0 134.0 0.16 23.67 79.01
71.0 178.0 177.0  0.42 24,01 78.87
73.0 150.0 149.0 0.41 24.54 78.75
74.0 85.0 86.0 2.56 25.10 79.31
75.0 96.0 100.0 0.83 25.10 79.30
79.0 212.0 214.0 0.40 25.58 79.10
81.0 100.0 99.6 0.22 26.25 78.87
83.0 111.0 121.0 0.21 27.41 78.95
86.0 142.0 141.0 0.19 29.99 79.79
96.0 119.0 132.0 1.00 32.41 80.31
101.0 170.0 164.0 0.61 33.05 80.81
113.0 214.0 213.0 0.60 34.48 79.83
115.0 300.0 299.0 0.42 34.49 79.51
118.0 280.0 299.0 0.43 33.62 79.51
120.0 300.0 299.0 1.03 31.53 79.51
121.0 175.0 193.0 0.30 30.59 79.49
124.0 330.0 325.0 0.31 29.25 79.52
126.0 285.0 284.0 0.15 27.85 79.50
128.0 265.0 275.0 0.12 29.50 80.02
130.0 125.0 106.0 0.52 30.57 80.00
133.0 168.0 187.0 0.28 34.48 77.83
135.0 188.0 191.0 0.16 34.50 77,50
126.0 105.0 85.0 0.31 17.16 B0.30
128.0 105.0 90.0 0.71 21.80 78.88
129.0 127.0 114.0 0.35 22,13 78.9%
130.0 74.0 60.0 0.48 22.50 79.01
131.0 42.0 30.0 0.74 22.81T 79.08
132.0 50.0 41.0 0.41 22.90 79.13
133.0 88.0 74.0 0,50 23.08 79.17
136.0 109.0 98.0 0.51 23.58 79,14
141.0 94.0 79.0 0.99 23.56 79.19



sta

ofF

OO0 OO0 OO OO SO0

148.0
156.0
151.0
152.0
155.0
156.0
158.0
159.0
161.0
164.0
166.0
168.0
170.0
172.0
173.0
174.0
176.0
177.0
208.0
209.0
211.0
81.0 215.0
82.0 212.0
82.0 213.0
82,0 215.0
82.0 228.0
82.0 229.0
82.0 231.0
82.0 232.0
82.0 233.0
82,0 234.0
82.0 236.0
82.0 237.0
82.0 238.0
82.0 243.0
82.0 244.0
82.0 246.0
82,0 247.0
82.0 248.0
82.0 249.0
82,0 250.0
82.0 251.0
82.0 252.0
82.0 314.0
82.0 317.0
82.0 318.0
82.0 337.0
82.0 338.0

0O 00 00 00 00 00 00 00 00 00 OO GO 00 00 00 00 00 00 0o
P et b e bl el ped o b b bt ek f 2 e e

o0 oo 0O
[
s e e
OO o

gd

144.0 82.0

73.0
102.0
98.0
124.0
175.0
130.0
66.0
10£.0
76.0
210.0
151.0
76.0
62.0
61.0
56.0
107.0
129.0
128.0
117.0
171.90
59.0
97.0
54.0
80.0
0.0
21.0
55.0
83.0
82.0
101.90
79.0
97.0
105.0
83.0
79.0
39.0
83.0
124.0
123.0
123.0
123.0
119.9
11%.0
112.0
142.0
207.0
136.0
308.0

63.
60.
90,
85.
110.
155.
110.
55.
90.
60,
201.
184.
65.
45,
55.
54,
100.
110.
115,
100.
155.
45,
85.
47.
63.
76.

42,
72,
72.
88.
77.
87.
102.
67.
68.
25.
68.
109.
109.
109.
109.
109.
109.
100.
127.
190.
130.
298,

.
=
C,DOOC)C)OC)OCJCDC)C)OCDOC)OOCDCDOOOOOOODOOOOOODOQOOOOOOOOOQOO'Q

conc
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iong

lat

9.99
2.59
2.22
2.06

0.81

0.28
0.53
0.46
0.13
0.33
0.12
G.26
1.78
3.49
447
1.29
1.23
2.55
1.17
0.00
0.06
0.33
0.66
0.51
0.31
2.03
0.82
0.56
0.57
1.97
0.47
1.11
0.70
0.38
1.91
0.87
0.44
0.53
0.74
0.43
0.37
0.67
0.46
0.54
0.32
0.33
0.65
0.94
0.53

24,13
25,05
25.15
25.20
25,23
25,96
26.18
26.82
27.07
27.93
26.93
26,16
25.61
25,60
25.86
25.94
25,74
25,92
25.71
25.67
25.02
23.84
23.85
18.01
18.06
17.80
22,63
22.96
23.09
23.79
23.79
23.73
23.49
23.55
24,04
23.27
22.56
20.56
20.06
20.06
20.06
20.06
20.06
20.06
27.71
25.77
25.00
12,02
11.98

79.26
79.31
79.29
79.27
79.25
79.00
78.93
78.88
78.90
78.93
79.13
79.30
79.40
79.40
79.49
79.50
79.51

79.53

79.53
78.54
7/8.57
78.33
79.14
79.60
79.69
79.82
79.31
79.15
79.22
79.19
79.18
79,16
79.11
79.04
79.19
79.18
79.11
79.15
79.12
79.12
79.12
79.12
79.12
79.12
79.00
78.92
78.93
78.96
78.93
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Suspended sediment data

Number of grains in each size class:
1980:

Sta. Depth -4 -6 -8  -10 -12 -14 -16 -18 =20 =-22 -24 =26 -28

21 109 25 15 7 4 5 1 3 1 1 0 i

23 157 27 17 10 3 7 1 0 0 1 1(28um), 1(30pm)
120 299 30 29 7 4 5 4

126 235 22 18 8 3 1 0 0 0 0 1

126 284 30 26 11 6 2 4 2 1 1 0 1
1981:

S5ta. Depth -4 -6 -8 -10 =12 -14 =16 =18 -20 -22 -24 -26 -28
141 1 31 24 9 3 3

141 20 24 16 11 4 2 1 1 0 2

141 70 38 31 7 b 5 1 0 2 0 i

141 80 34 21 11 7 7 4 1 1 1(28um), 1(38um)
144 1 19 28 17 ) 7 2 2 1 0 0 L

144 20 35 27 12 8 7 5 1 3 0 i 2

144 63 35 47 27 15 8 3 2 1

145 0 36 29 11 2 0 1

148 20 32 27 13 7 3 3 0 1 0 0 1

148 50 99 49 17 10 4 0 1

148 60 24 26 13 6 7 4 1 1 0 0 2

167 0 18 15 g 3 1 1

167 20 20 12 6 1 4 3 2 0 L

167 75 20 18 9 6 3 2 1

167 85 20 15 10 8 [ 1 2

170 1 51 40 10 3 3 1 0 0 0 0 0 1
170 20 21 19 5 2 2

170 35 26 24 i2 3 5 2 2 0 1

170 45 27 35 18 10 12 3 3 1 i 1

171 0 31 23 7 i1 4 1 1

171 16 24 25 7 7 6 1 3 1 1 0 1

171 60 37 33 16 10 6 6 1 3 1 0 1

172 0 211 154 54 8 3 7 3 1 2 0 1

172 16 32 19 7 10 4 6

172 45 39 43 18 7 7 5 3 2 3 1 4

172 55 27 34 25 11 12 3 5 3 0 2 2 2
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Suspended sediment data (cont')

Number of grains in each size class:
1981: _
Sta. Depth -4 =6 -8 ~-10 -12 -i4 -16 -18 -20 -22 -24 -26 -28

173 0 22 15 5 3 2 1 1 0 1

173 20 14 15 5 30 4 1 0 1

173 45 6 13 4 3 1

173 54 24 25 12 2 5 0 3 .01 0 1

174 0 9 12 5 2 3 0 2 1(32um)

174 1 50 48 18 13 15 4 2 1

174 5 30 29 14 2 5 3 1

174 10 33 39 19 5 3 2 2 2(26pm), 1(32um), 2{34um)
174 90 27 21 11 2 4 2 4 1 1 1(28um)

174 100 27 14 11 3 6 3 2 (28um), 1(36um)

176 0 5 8 5 4 2 0 2 1

176 10 9 4 7 6 1 2 30 0 1 1(42um)

176 110 23 16 12 5 2 1 0 30 0 0 1

177 0 18 11 6 & 6 1 0 i 1

177 10 57 8 49 18 10 7 2 1 2 1 0 0 1
177 115 22 26 12 8 4 1

1982: _
Sta. Depth -4 -6 -8 -10 -12 -14 -16 -18 -20 -22 -24 -26 -28
231 20 7 9 5 3 3 1 1 o0 1 |
231 62 7 5 5 3 3 1 1

231 72 11 8 5 5 4 1

232 0 24 23 4 2 3 4 1 1 1 1{38um)

232 20 26 28 18 8 3 1 0 0 0 0 0 0 1
232 62 23 13 4 6 4 1 o 0 0 0 0 0 1
232 72 25 16 12 1 7 5 2 1 1(30pm)

234 20 18 8 s 2 4 0 2 2

234 77 15 7 0 3 2 3 1 3 1 2

238 0 19 23 11 9 5 2 2 1(36um)

238 20 12 14 7 4 5 2 1 1(28um), 1(32pm)

238 57 29 20 6 5 3 3 0 1

238 67 33 22 9 3 4 5 0 1 21 1

239 O 42 35 9 5 5 1 1

239 20 21 13 8 4 6 1 1 1(34um), 1(38um)

239 60 19 8 3 3 1 2 0 0 1 1

239 70 31 17 11 2 1 2 2 L 1(30um)



Eastern

Station
Station
Station
Station
Station

Western

Station
Station
Station
Station
Station

Plume:

174
172
171
170
148

Plume:

144
232
238
141
231

Distance
0.0
2.8
10.0
i3.7
27.6

Distance
0.0
6.3
11.7
16.5
26.7
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Averaged'suspended matter data

$5
13.54%
0.0

o OO0
o 00

5
0.0
14,41
14,91
11.6
0.0

$6

33.
50.
29,
87
.09

23
29

$6
32

10

80%
71
14

.60
37.
40.
29.

71
61
10

.57

&7

38.
29.
.03
46.
.60

51
43
$7

48
35

17%
98

22

.21
.88
31.
34,
7l.

65
50
79

$8

13.17%

1l6.
17.
26.
23.

$8
17.
10.
11.
21,
16.

83
43
71
36

93
58
52
80
22

[VSIR SV R R i e ]

P L0 e D

Avg
.33% 12.
.15 3
A0 2
.70 3
.95 3

Avg
.26 28.
.43 1
.31 1
.00 1.
A3 G

Conc
33mg/1

.65
.94
.23
.52

Conc
46

.48
.08

36

.58
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Transmissometer/Nephelometer Calibrations

The transmissometers and nephelometers used in this atudy are
manufactured by the Montedoro-Whitney quporation. The
transmissometer has a one meter folded path length. and uses a white
light source. The same light source is used for the nephelometer
which has a prism orientated at 90° to the source. This instrument
has been extensively calibrated in a laboratory test tank at the U.S.
Geological Survey in Woods Hole (figure 1). While working for
Bradford Butman at the U.S8.G.5., T built the tank and began the
calibrations. They have since been continued by John Moody, and his
results on natural sediments will be presented here (Moody and Butman
in prep.). Calibration has also been done with glass beads of various
sizes, and recently with diatom cultures.

Sediments used in this experiment were from the same station
location but were separated into different size classes by pipetting.
They were then introduced into the test tank in increasing
concentrations. The same three T/N units were used in all
experiments. Concentrations were determined by filtration of water
samples and normalization to the clean tank sample.

The light attenuation calculated from the light transmisson (tr)
referenced to the light transmission in clear water (Lrcy):

a = -ln(tr/trey)
is shown to be linearly dependent on the concentration of suspended
material (figure 2). Any instrumental gain factor on the

transmissometer is normalized out of the equation, so need not be
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Figure 1. Schematic of tegt tank.
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considered. The beam attenuation actually measured in the tank is the
sum of the attenuation by the water itself, plus the attenuation by
the suspended particles.

When different grain size size material ig used the relationship
of concentration and attenuation remains linear, but with different
slopes (figure 2). Therefore, if the grain size of the suspended
material is known, then the concentration can be determined, and vice
versa. In the field, it is often assumed that ounly a single grain
gsize distribution of material is in suspension, s¢ the measured
concentrations are linearly regressed with the optical measurements
(e.g., Spinrad et al 1983)., The slope becomes steeper with coérser
material, that is the larger the grain size the less it attenuates for
the same weight concentration (mg/l) of material. (This might be
eXpected, as the weight is dependent on the volume, rather than the
cross—sectional area which is being measured optically.)

Scattering measured through at 45-30° by the nephelometer, also
is linearly related to concentration for a specific grain size (figure
3)}. The value used is the scattering measured at the particular
concentration (ne) with the scattering in clear water (necy,)
subtracted:

Cne = (ne - necy) / £

f = gain factor
There is a problem with the nephelometers in that the géin range can
be set differently for the instrument, and this gain factor is not
normalized out of the computation as it is in the transmissometer beam
attenuation calculation. Therefore Moody found that application of a

"gain factor" was necessary in order to compare the instruments. This
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Figure 2. Light attenuation vs. concentration (mg/l)
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Figure 3.
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Light scattering vs. concentration (mg/l)



-351-

¢ BINITL

e o

L ol \ - \ , \“\ \ -
- \\\ -~ - -
P - - P b

-4 mﬂ\\\ #\.\\ n\ﬁ\ J -+ oz
agen . , \K\ \\F‘ -
e eo \\\ \\ -
T - \\\\ \\ T
Ir \\\ \\ = =

ra ’ \

—— . 7 \\ -t O
- , P s \\\ oo
4 ey -t

!\ »\

gl i
e em o

“ } b _ + } b At ov

(1/9M)ONDD



=352~

Figure 4. Flourescence (line A) and light attenuation (line B - not

normalized)vs. pressure (db = depth (m)).
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Figure 5. Clear water values for 1980.
A. Nephelometer

B. Transmissometer
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gain factor was determined by correlating the results all to one
standard nephelometer. Alternatively, the instruments can all be set
as close as possible before deployment to a standard concentration.
However, this was not done before use in the Barents Sea resulting in
problems discussed below. |

A typical suspended matter profile in the Barents Sea has a
near—surface maximum, a mid-depth clear water minimum and a
near-bottom maximum (figure 4). The nephelometer was flooded by
surface light in the upper 30m, so light scattering can only be used
in the near-bottom nepheloid layer. The near—surface maximum in light
attenuation is generally caused by biologic activity, shown by the
fact that phytoplankton abundance (estimated by a floﬁrometér which
measures chlorophyll) is very well correlated to light atternuation
above the clear water minimum (figure 4).

Light scattering measurements were used in the regiongl
distribution of suspended matter in the Barents Sea (chaptér 2},
because data from the transmissometer was not recorded on scale for
many stations south of Kong Karls Land in 1980 (before station 58)
(figure 5). At each station cast, the clear water value for that cast
was subtracted, yielding excess turbidity. However, because of
instrument drift during the 1980 cruise and the fact thét
nephelometers used on different cruises were not set briginally at the
same scale, the gain factor mentioned previously is miséing. Light'
scattering must somehow be correlated with measured suspended sediment
concentrations from filtered water samples.and the light scattering

adjusted by this factor. In this study, calibration wés done by first
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determining a reference value (ner.¢) which should be equal to the
clearest water in the Barents Sea, subtracting the reference value
from the scattering measured in volts, and then correlating this value
with the concentration measured for samples below the clear water

minimum (Cys, figures 6, 8, 10):

I

Cne = (ney - neree) (volts)

fre = Cnel/Cys (volts/(mg/l))

Nere¢ was determined by plotting the clear water values (in volts)
for each station, and drawing an assumed clear water value for the

Barents Sea below this (figures 5, 7, 9). Actual values usged were:

Year Stations Calibration fac
1980 0- 89 nerer = (sta#-30)0.006+0.333 0.8
90-118 nerer = 0.730
119-138 neree = (sta#-119)0.022-0.753
1981 all nerc¢ = L.470 2.4
1982 all nerer = 3.696 2.0

Excess turbidity was multiplied by fn. in order to adjust for the

gain factor, and at the same time allow contouring of estimated excess
"concentration', Calculation of f.. assumes that the gain factor

did not drift when the gain range did.

In analysis of the suspended sediment distribution near
Nordaustlandet, the suspended matter distribution of the entire water
column was of interest. Light attenuation from the.transmissometer
must be used because the nephelometer was contaminated by sunlight
near the surface and whole water column observations are important in
this region. As discussed above, there is no probiem with a gain

factor for the calibration of light transmission, but in order to look



-358-

Figure 6. 1980 suspended matter calibration data:
A. Light scattering vs. concentration {mg/1)

B. Light attenuation vs. concentration (mg/l)
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Figure 7. Clear water values for 1981,
A. Nephelometer

B. Transmissometer
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Figure 8. 1981 suspended matter calibration data:
A. Light scattering vs. concentration (mg/1)

B. Light attenuation vs. concentration (mg/1)
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Figure 9. Clear water values for 1982,
A. Nephelometer

B. Transmissometer
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Figure 10. 1982 suspended matter calibration data:
A. Light scattering vs. concentration (mg/1)

B. Light attenuation vs. concentration (mg/1)
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at suspended matter "concentrations', not excess turbidity, a reference
value must be obtained for background Barents Sea water (Er..¢):
a = ~lo(tr/trees)
Clear water values were examined, and straight lines were fit to the

background voltage values (figures 6, 8, 10). Actual values used were:

Year Stations Calibration fac
1980 DNR | 0.4
58— 86 treer = {sta#-58)0.066-13.780
89-118 trrer = (sta#-89)0.086~8.502
119-136 trres = (sta#-119)0.195-7.129
1981 all trrer = 5.888+(seq#-98)0.056 0.8
1982 212-273 trres = 6.519 1.0
274-339 trrar = 7.324

In order investigate the fit to the actual concentration, f¢. was
calculated;:

fir = (“In(tr/trree) / Cys
This value should not vary between the cruises, but it is observed to
do so, by a factor of 2. Samples were obtained throughout‘the Barents
Sea in 1980 while in 1981 and 1982 they were obtained mostly close to a
Nordaustlandet, in shallow water and close to a source for
coarse-grained sediment. The ﬁariation could be due to an average
grain size change, as mentioned above. Based on the trends obser§ed,
that would mean that samples close to the glacier were‘in general
finer-grained than throughout the Barents Sea, which at first seems
contradictory.l However, the fine-grained component could net be

estimated in the optical measurement of the grain size distribution
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and it is possible that it is actually more important in this region,
than further offshore. Another explanation may be that the optical
properties of the water masses are different. Most 1980 samples were
obtained in the deep nepheloid layer, within Atlantic Water, while
1981 and 1982 samples were obtained in shallow Arctic or Coastal
Water, which is generally "dirtier" than Atlantic Water (Aas 1979).
If this is true, then rather than multiplying by f.., a different
reference value should be used.

In 1981, the nephelometer reference level remained comstant, while
a linear drift was removed from the trangmigsometer value for 43
stations (figure 7). Since the maximum level decreased throughout the
cruise, the trend can easily be explained by corrosion of the
transmissometer mirror. For 1981, the variation in trer was 5.888 -
2.752 volts for the entire cruise, or (after taking the natural log)}
1.773 - 1.012, a range of 0.761 (0.609mg/1l if f.. is applied). For
stations 141 - 178 which are of interest in chapter & the values are
5.496 - 3.816 volts, or (taking the natural log) 1.704 - 1.339 with a
range of 0.365 (0.292mg/1 if f.. of 0.8 is applied). These numbers
are large, but are justified because the base level on the
nephelometer does not change while a marked trend is observed in the
transmissometer. Although there is a lot of scatter in the
correlation between light scattering and concentration, and between
light attenuation and concentration, a definite corfelation does exist
(figure 8).

In 1982 only 30 samples were available. A constant reference
level also removed from the the nephelometer data (figure 9). Two

different constants 6.519 and 7.324 (after ln = 1.875 and 1.991 a
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range of 0.116 (0.llémg/1}) were removed from the transmission data
because the gain was altered between stations 173 and 174 {(figure 9).
These constant values were obtained by matching stations A and A'
which are located in the same vicinity. The correlations between
light scattering and concentration, and between:light attenuation and
scattering are not well-defined for this year (figure 10).

The most extensive regional sampling program was in 1980 (33
stations), and this year both the nephelometer and transmissometer
drifted (figure 5). Drift may have occured because 1) the sensor was
found to be corroding at station 89, so screws were tightened,
possibly reorientating the nephelometer and transmissometer mirrors
slightly, and 2) the light source was replaced at station 118.
Straight lines were fit to the clear water minimum to obﬁain reference
values. For 1980, the variation in nere;y is from 0.335 - 0.753, or
a range of 0,418 volts. When this is multiplied by a f.. of 0.8, a
maximum variation of 0.334mg/l is subtracted thoughout the study
area, Although this number is large, the ner.r values are only used
tb obtain an estimate of the gain factor (f,.). Varying the
scattering data by 0.4 volts will not substantially alter this
estimate (figure 7). Ranges in trer in 1980 are from 13.790 - 3.140
volts for the whole cruise (2.589 and 1.144, range of 1.445 or
O.SiSmg/l), however only stations 65-81 have been examined in detail
(chapter 4). Tror for these stations varies from 13.318 - 12.262,
or when the natural log is taken: 2.589 ~ 2.507 which is a variation
of 0.082 (0.033mg/1 if f,, of 0.4 is applied), and is below the

contour interval for that discussion (chapter 4).



-371~

REFERENCES

Aas, F. (1979) Light scatterance and flourescence observations in the
Barents Sea. Inst. for Geof., Un. qf Oslo. Institute report
serieg No. 39. 48pp.

Baker, E.T. and J.W. Lavelle (in press) The effect of particle size on
the light attenuation coefficient of natural suspensions. J.G.R.
37pp.

Moody, J.A. and B. Butman (in prep.) Light attenuation and scattering
as a function of partiéle size.

Spinpad, R.W., J.R.V. Zaneveld, J.C. Kitchen (1983) A study of the
optical characteristics of the suspended particles in the benthic
nepheloid layer of the Scotian Rise. J. Geophys. Res.

88:7641-7645.



yr

80
80
80
80
80
80
80
80
80
80
80
80

80
80
80
80
80
80
80
80
80
80

-372-

Optical Measurements

Explanation of table presented helow:

yr =
no =

st =

cd =

cd =

wd =

sd =
co =
no

003
009
011
017
018
019
021
022
023
0287

et et e e (D gt e e

030 2.

032

034
035 1
036

—

038 1.

051

052 1.

053

054 1.
(58 1.
059 0.

year
station number

nepheloid layer "strength" (maximum near-bottom scattering
divided by clear water minimum value). 0.99 means ﬁo
near-bottom maximum

depth to clear water minimum (m)

depth to near-bottom light scattering maximum (m)

cast depth (m)

water depth (m)

(mx-cw) nepheloid layer thickness (m)

sample depth (m)

concentration (mg/l)

st cw mx cd wd t sd ¢co sd co sd ¢co sd co

400 0.78 025 0.05 005 0.22

.82 164 250 250

.22 92 132 132 125 033

.51 236 250 264 280 044

.26 186 236 240 250 064

.59 176 220 220 230 054

.12 68 90 094 100 032 109 0.25 040 0.25 020 0.31

.21 B8 98 106 106 018

.58 118 138 140 160 042 157 0.27 030 0.25 010 0.13
279 0.02 025 0.20 010 0.16

86 130 226 226 330 200 229 0.69
134 0.14 115 1.98 075 0,45 035 0.41
015 0.26
021 2.22 003 1.94

.41 48 58 58

.81 94 120 122 122 028 124 (.32

18 88 110 110 120 032 119 0.21 018 0.93 003 0.28
215 0.14 005 0.15

94 124 182 186 200 076 199 0.15 030 0.10 005 0.14
130 0.16 050 0.26 025 0.33 005 0.23

12 122 204 206 206 084 217 0.32 040 0.27

11 124 268 268 330 206 329 0.48 030 0.29

99 104 305
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no

060
061
062
063
064
0635
066
067
069
070
071
072
073
074
075
078
079
080
081
082
083
086
089
090
091

092

093
094
095
096
097
098
100
101
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103
104
105
106
107
109
110
111
112
113
114
115
116
117
118
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1.06
0.99
2.41
1.16
.99
1.15
1.38
1.48
1.24
1.06
1.31
1.12
1.70
1.25
1.28
1.06
1.29
1.15
1.32
1.08
1.46
1.43
1.27
1.36

cw mx cd

162

120

128

116
114
110
120
112

50

56
132
142
126

82
118
80
90

66

112

88
98

48
66
84
66
80
106
78
80
116
202
86
126
106
128
224
200
142
100
150

238
204

200

122
152
170
142
138

60

86
170
202
154

119
142
160
204

120
162

164
112

84
116
156
150
106

154

142
140
176
226
112
208
188
178
280
280
246
206
266

238
118
206
40
200
84
74
88
122
152
170
142
138
70
86
170
206
154
94

58

118
142
162
210

120
164

16
164
116

22

84
120
156
158
164
156
142
156
176
242
122
208
192
184
280
282
248
208
266

345
130
206

40
320

85

80

80
135
154
178
152
150

85

90
180
212
162
100

60
118
142
275
225

150
140

20
175
119

32

98
125
170
170
164
180
149
165
185
2432
140
215
197
214
340
300
248
215
280

183
86

192

19
40
68
32
38
35
34
48
70
36

36
34
195
135

84
28

87
21

50
32
86
104

84 7

74
71
85
69
40
54
89
91
B6
116
100
106
115
130

224

225
087

089
134

177
149
086
160
214
099
121
141
179

264

132

164

0.40
0.22
0.21
0.19
0.21

0.32

1.00

0.61

050
050

050
G50
050
161
050
072
090
130

065

070

030

0.14
0.13
1.58
0.48
0.22

l.44

1.91

1.02

100

030
003

003
003

002
050
003
003
020
003
620
030
030

005

020

0.82

213 0.60 150 0.20 030 0.50

299 0.42 030 0.13

299 0.43 130 0.24 030 0.95
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1.50
1.18
.12
1.28
1.23
1.31
1.60
L.46
1.72
1,63
0.99
1.16
1.10

1.08

L.44

1.12

0.99
0.99
1.14
1.13
1.42
1.36
1.59
1.26
2.12
2.05
2.41
L.24
2.05
1.85

CwW

146
198
138
142
150
118

94
100
140

92

108
116

128

108

192

84
70
62
46
50
44
74
20
20
46
42
42

284
274
156
278
258
230
112
238
240
108

156
136

146

138

326

92
92
68
56
62
72
84
68
56
58
82
92

cd

284
278
162
278
268
274
120
254
252
108
104
156
152

146

138

334

68
46
96
94
82
64
64
72
84
76
58
64
82
92

307
300
175
330
330
285
130
265
252
125
115
168
165

160

155

373

81
55
1G9
1a7
94
73
77
82
94
89
43
73
91
102

1.66 136 208 210 227

16l
102

37
188
180
167

36
165
112

33

60
49

32

47

181

25
37
32
27
27
38
20
69

27

49
60

91

299
193
325

284

275

106

187

191

080
134
239
348
085
090
114
080
030
041
074

098

079

020

060

090
(85
110
170
200
155
110

- 060

055
090

0.15

0.12

0.52

0.28

0.16

0.17
0.24
0.29
0.51
0.31
0.71
0.35
0.48
0.74
0.41
0.50

0.51

0.99

2.99

2.59

2.22
2.06
0.381
1.86
0.38
0.28
0.53
0.33
0.46
0.13

250
100
270

= O o

235 0.

200 0.

055 0

140 0.

140 0.

065
050
075
110
025
020
020
020
020
020
060

O OO0 O OO C O

088 0

670 1

00128

=

050
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190
145
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24
.32
.55

10

12

A7

04

11

.10
.20
.26
.20
.64
.59
.98
.90
.63
42
.50

L4h

.80

b4

.52
.09
.93
.86
.29
.19
.25
.35
A0

G080 0.19

020
030
030

G30
030
020
(30

(30

620
020
025
035
001
001
002
002
002
002
021

020

020

46

020

020
020.
020
020
020
020
020
020
020
020

0.47

0.59

0.13

0.54

0.34
0.43
0.44
0.41
0.80
1.22
0.26
0.28
0.38
0.35
1.24

0.50

1.18

3.33

3.47
0.89
3.92
1.17
0.31
0.26
0.72
0.48
0.67
0.37

020

002

001

001

001
001
001
001
go1
001
001
001
001
001

0.70

.21

0.29

1.46

2.89
0.69
0.48
0.31
0.00
0.27
0.58
0.55
1.27
0.30
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160
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163
164
165
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169
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171
172
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174

175
176
177
178
191
193
194
199
208
209
202
204
206
210
211
215
222
225
226
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213
214
215
228
229
231

232
233
234
236
237
238

ew

84
88
134
82

122
60
30
44

40
28
38
76

88
96
106
70
50
114
246
104

54
74

78

74

42

32
58

40
44

80
30

mx

96
126
184
252

142
90
64
60

70
46
52
98

116
118
122

72

54
154
298
158

256
190

134

130

48

L6
72

70
88

104
68

126
184
254

142
90
66
60
50
78
52
52
98

118
118
122

80

62
156
306
158

260
208

74
134

36
130
116

48
132

46

74

76

90

104
68

76
93
116
146
210
267

151
96
76
68
62
85
61
56

107

125
129
125
113

73
268
326
190

276
230

84
190

38
140
127

54
220

55

83

82
101

105
83

32
58
76
185

29
36
46
24

45
33
18
31

37
33
22
43
23
154
80
86

122
156

112

66

12

23
25

42
57

25
53

? 060
086
124
201
239
002
184

065

045
060
055
? 054
100

0.33
0.13
0.17
0.12
0.63
0.31
0.26

1.78

3.49
2.67
4.47
1.29
1.23

00112.33

110
115
075

100
155

105
045
085

047
063
137
076
009
042
072
000
072
088
077
087
102
067

0.51
0.31
0.27
2.03
0.82
0.56
0.57
0.97
1.97
0.47
1.11
0.70
0.38
1.91

050
114

228

050

035
016
045
045
090
000

010

0.38

0.09

0.28

1.78

3.09
2.78
2.30
0.55
1.02
7.92

2.78

01014.96

065

080
145

095
020
075

040
010
130
033
007
032
062

062
020
020
077
089
057

1.47

0.38
0.65
0.34
0.57
0.93
0.38
0.39

1.22
0.67
0.83
0.55
0.32
1.39

020

019

099

020

020
000
020
020
0101

000
0001
010

020

020
001

017

010
000

-000

020
020

020
000
000
020
020
020

0.50

0.32

0.01

1.34

2.38
3.37
3.36
0.81
1.80

0.65
2.20
5.88

0.16

1.03

0.29
2.50
0.57
0.80
0.34

0.47
1.14
1.83
0.29
0.29
1.34

001 0.49

001 3.12

019 0.33

001 1.08
001 3.97
000 &4.47

000 0.64
00510.67

000 8.15

001 0.27

001 0.18

000 2.23
020 0.46

000 0.65

000 0.41

000 0.81
000 1.27



yr

82
82
82
82
82
82
82
82
82
82
82
82
82
82
82
82
82
82
82
82
82
82
82
82
82
82
82

no

239
243
244
245
246
247
248
249
250
251
252
261
272
273
274
275
276
278
279
281
314
317
318
320
321
337
338

36 64

54 112
78 112
80 112
88 112
52 112

40 46

108 114
90 104
78 82

60

114
114
112
112
108

46

82
98

106
122

122
104
104

69

124
123
123
123
119

48
366
368
362
369

330
112
142

207
99
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51

70
45
43
35
67

?
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068
025

068
109
109
109
109
109
109
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127
190

130
298

o

ol eReNeNoNoNo)
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.87
b4

.53
74
.43
.37
.67
46
.54

.32
.33
.65

.94
.53

000
000

000
000
000
000
000
000
000

020
030
020

010
010

—HOMNOF -

[oNeNe]

[h

.51
.06
.02
91
.60
.97

.35 -

.55
.83
.62

.07
.43

000 0.79
000 0.43
000 0.58

000 1.30
000 1.58



