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ABSTRACT

Motivated by the fact that time-dependent currents are ubiquitous in the ocean, this work studies the two-

layer Phillipsmodel on the beta plane with baroclinic shear flows that are steady, periodic, or aperiodic in time

to understand their nonlinear evolution better. When a linearly unstable basic state is slightly perturbed, the

primary wave grows exponentially until nonlinear advection adjusts the growth. Even though for long time

scales these nearly two-dimensional motions predominantly cascade energy to large scales, for relatively short

times the wave–mean flow and wave–wave interactions cascade energy to smaller horizontal length scales.

The authors demonstrate that the manner through which these mechanisms excite the harmonics depends

significantly on the characteristics of the basic state. Time-dependent basic states can excite harmonics very

rapidly in comparison to steady basic states. Moreover, in all the simulations of aperiodic baroclinic shear

flows, the barotropic component of the primary wave continues to grow after the adjustment by the non-

linearities. Furthermore, the authors find that the correction to the zonal mean flow can be much larger when

the basic state is aperiodic compared to the periodic or steady limits. Finally, even though time-dependent

baroclinic shear on an f plane is linearly stable, the authors show that perturbations can grow algebraically in

the linear regime because of the erratic variations in the aperiodic flow. Subsequently, baroclinicity adjusts the

growing wave and creates a final state that is more energetic than the nonlinear adjustment of any of the

unstable steady baroclinic shears that are considered.

1. Introduction

Shear flows with strong spatial gradients are a very

important means through which geophysical fluids are

able to produce vortical motions that mix physical, chem-

ical, and biological properties. To date, the majority of

the literature has focused on studying steady shear flows.

The relatively few works that have investigated time-

dependent shear flows have almost entirely focused on

the extreme cases in which the shear flows are time pe-

riodic (Davis 1976) or white noise (Farrell and Ioannou

1996, 1999). Two notable exceptions are Durski et al.

(2008), who recently studied an aperiodic time-dependent

coastal upwelling jet, and Inoue and Smyth (2009), who

investigated themixing efficiency of unsteady shear flows.

Because the majority of realistic flows lie somewhere

between the periodic and white-noise limits, these ex-

amples are useful idealizations, but additional research

is needed to understand more realistic time-dependent

shear flows.

This article investigates the dynamics of time-dependent

vertical shear flows that may include erratic variations

similar to what is observed in the oceans. Because it is

difficult to determine the precise manner in which flows

vary in nature, we choose instead to pick a stochastic

process that idealizes realistic time variations. In par-

ticular, we chose the Kubo oscillator (Gardiner 2004;

Risken 1984) because it is a bounded stochastic process

that has time-periodic and highly erratic colored noise
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processes at the limits. This type of noise was used in

Poulin and Flierl (2008) to study the stochastic Mathieu’s

equation for internal frequencies with various degrees

of stochasticity. The stability analysis determined that,

as the internal frequency became slightly aperiodic, the

parametric mode (i.e., an instability that arises because

of parametric resonance) weakened but persisted for a

range of stochasticities. Moreover, we discovered a new

type of unstable mode, the stochastic mode, which was

found to arise for various types of stochastic processes,

thus implying that it is a robust feature.

This work focuses on understanding the stability of

time-dependent baroclinic (BC) shear in the context of

the Phillips model (Phillips 1951, 1954; Pedlosky 1987).

This is a two-layer quasigeostrophic (QG) model on a

beta plane, usually in the confines of a zonal channel

(Pedlosky 1964a,b). This simple geometry is ideally

suited for studying atmospheric flow. The applicability

of the Phillips model to the ocean is complicated by the

presence of coastal boundaries that can alter the dy-

namics. The Antarctic Circumpolar Current (ACC) is

one part of the ocean where the channel geometry is

most applicable (Nowlin and Klinck 1986). The winds in

the Southern Ocean provide forcing that can alter the

baroclinic shear. The seasonal variations in the winds do

not significantly alter the long-term phase of the shear

but cause its strength to wander in amplitude. Even

though the Kubo oscillator depicts a state that has a

random phase, it yields behavior that is similar to one

with a varying amplitude. It is for this reason that we

suggest our analysis is applicable to the ACC and other

examples of baroclinic shear in the ocean.Moreover, the

zonal model can also well describe the zonal extensions

of both theGulf Stream and the Kuroshio (Schmeits and

Dijkstra 2001).

The spatial and temporal variability in the ACC was

studied by Gille and Kelly (1996) usingGeosat altimeter

data. The objective analysis revealed that the ACC had

a strong spectral peak at 0.33 cycles per year, but there

was also significant variability at much higher frequen-

cies. This suggests that it is of interest to understand the

dynamics of baroclinic shear with various spectral peak

frequencies. Here, we focus on baroclinic shears that are

spatially uniform in the horizontal and have spectral

peaks at higher frequencies than the peak that Gille and

Kelly (1996) observed. Our goal is not to study the de-

tails of the ACC and the effect of the observed spectral

peak but instead to understand better the effect that

randomness has on baroclinic instability and adjustment

in general. It is for this reason that we choose to study time

scales on the order of weeks, because these time scales are

the easiest to study in the context of the Phillips model.

In future works, we will study the effect of randomness

on different time scales, particularly on the longer time

scales observed in Gille and Kelly (1996).

In a recent work, Poulin (2010) examined the linear

stability of time-dependent baroclinic shear in the con-

text of the two-layer Phillips model on the beta plane

where the shear was a Kubo oscillator. He determined

that, as the shear becomesmore erratic, the growth rates

of the parametric mode decrease and the unstable re-

gion of parameter space widens. This depicts the dual

nature of stochasticity in the linear regime in that it can

either stabilize or destabilize the basic state, depending

on the particular parameters. In this work, we inves-

tigate the nonlinear dynamics of steady, periodic, and

aperiodic baroclinic shear flows. In the steady case, the

most unstable wave, the primary wave, grows expo-

nentially until it reaches finite amplitude where it is

subsequently equilibrated. This nonlinear saturation of

exponential growth of a linearly unstable vertical shear

is referred to as baroclinic adjustment (Stone 1978). We

extend this definition to include the nonlinear saturation

that arises because of any vertical shear, whether it is

steady or time dependent. The nonlinear processes that

achieve this are wave–mean flow and/or wave–wave

interactions. Pedlosky (1970) was the first to look at

equilibration of a baroclinically unstable steady shear

flow resulting from wave–mean flow interactions; since

then, there has been a series of works that have extended

this idea (Mak 1985; Cai and Mak 1990; Cai 1992).

The outline of this paper is as follows: First, we review

the Phillips model and the pseudospectral method used

to perform our numerical simulations. Second, we pres-

ent the nonlinear energy cascades that arise from a clas-

sical baroclinic instability (CBI) where the basic state is

steady. Even though these types of simulations have

been performed frequently, they are useful to present

because they facilitate comparisons with the other novel

simulations. Third, we study the baroclinic adjustment

of time-dependent flows whose mean shear is subcritical

or supercritical because there are examples of both

throughout the ocean. The only study that we are aware

of that has investigated the nonlinear energy cascade

as a result of a parametric instability (PI) is Flierl and

Pedlosky (2007). They choose to look at the energy

partition between the low wavenumbers (mode one and

two) and the higher wavenumbers (mode three and

higher). We focus instead on several of the largest modes

that fit in our domain to learn how their baroclinic ad-

justment transfers energy to the smaller length scales.

Fourth, we do a similar analysis for aperiodic baroclinic

shears on a b plane and contrast this with their periodic

analogs. Fifth, we investigate the nonlinear evolution of

aperiodic baroclinic shear on an f plane that is linearly

stable. Sixth, we show how the different simulations
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generate mean flow corrections to the basic state and

finally summarize our findings.

2. The model equations

To study large-scale time-dependent baroclinic shears

in the ocean, we use the two-layer Phillips model be-

cause it has had some success in modeling the onset and

nonlinear saturation of the instability of somemesoscale

oceanic jets (Charney and Flierl 1981). We assume that

the geometry is a periodic zonal channel of width L and

length 2L on a b plane with external forcing that main-

tains the time-dependent basic state (Flierl and Pedlosky

2007). The governing equations assume the standard

nondimensionalization in QG theory: L and D are the

horizontal and vertical length scales, Udim and UdimD/L

are the horizontal and vertical velocities, the time scale

is advective, and the scaling for pressure is geostrophic

(Pedlosky 1970). The Coriolis parameter is f 5 f0 1
bdimy, and the reduced gravity between the two layers

is g9. This allows us to define the two nondimensional

parameters, the Froude numberF and the nondimensional

b parameter:

F5
f 20L

2

g9D
and b5

b
dim

L2

U
dim

. (1)

If we useGn(y, t) to denote the forcing that maintains

the time-varying shear, the equations that determine the

evolution of the system are
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Note that J is the Jacobian operator and the subindices 1

and 2 denote the upper and lower layers, respectively.

We restrict our attention to the case of equal layer depths

D, but in future studies the importance of varying layer

depths will be considered. Even though there are many

damping mechanisms in the ocean, we choose to in-

vestigate the conservative version of Eq. (2) because it

produces the most energetic energy cascades. Although

dissipation may affect the long time behavior of the

dynamics, we have considered only a simpler conserva-

tive system to focus on the inviscid energy cascade. The

model uses a spectral filter to dampen the small-scale

structure; it does play a significant role in the enstrophy

budget.

We use Un(t), Um, and Us(t) to denote the zonal ve-

locity in each layer for n5 1 and 2, themean velocity and

half of the shear between the two layers, respectively:

U
m
5

1

2
[U

1
(t)1U

2
(t)] and (5)
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(t)5
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2
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1
(t)�U

2
(t)]. (6)

Because we are interested in studying baroclinic effects,

we only consider flows where Um is constant. This im-

plies that we are restricting our attention to flows with

constant across channel transport. Therefore, the stream-

function and PV associated with the basic state are

C
n
5�U

n
y and (7)

Q
n
5 (�1)nF(U

1
�U

2
)y, (8)

and the particular forcing required to maintain this flow is

G
n
(y, t)5 (�1)nF dU

1

dt
� dU

2

dt

� �
y. (9)

Physically, this forcing could be attributed to the winds

and/or buoyancy effects. Our model implicitly assumes

that the atmosphere is passive in that it forces the ocean

but does not respond to the ocean. A more detailed study

could look at the coupled atmosphere–ocean interactions

to investigate how they evolve, but this is beyond the

scope of this work.

We idealize the forcing to be a Kubo oscillator

(Gardiner 2004; Risken 1984) because it is easy to gen-

erate and can produce baroclinic shears with a wide

range of temporal variations. In particular, the func-

tional form of the shear is set to be

U
s
(t)5 g

0
1 h

0
cos

2pt

T
1s

ðt
0

h(s) ds

� �
, (10)

where theKubo oscillator is the sinusoidal portion of the

equation. The parameters g0 and h0 determine the mean

component and fluctuating components of the flow, re-

spectively. The parameters T and s are the mean period

and level of stochasticity. The function h(t) is Gaussian

white noise and its integral is a Wiener process (Gardiner

2004).
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The Kubo oscillator is a bounded function that in one

limit, s 5 0, is a cosine and the other limit, s / ‘, is
highly variable colored noise. For all other values of s,

we have an oscillatory-like function that is erratic, the

degree of which is determined by the magnitude of s.

The power spectrum of the Kubo oscillator is a delta

function at s 5 0; as s increases, the width of the peak

broadens tending to a uniform distribution. Alterna-

tively, because of the functional form of Eq. (10), one

can interpret s as controlling the time-varying phase of

the noise. In the literature on stochastic processes, this

term has been referred to as the phase diffusion because

the phase is allowed to wander in time (Van Kampen

2001; Gleeson 2006; Talkner et al. 2005). Details on

particular realizations of this type of noise and its spec-

trum can be found in Poulin and Flierl (2008) and Poulin

(2010).

We define the perturbation streamfunction and PV

from the basic state to be c9n and q9, respectively:

c
n
5U

n
(t)y1c9

n
and (11)

q
n
5Q

n
1 q9

n
. (12)

The numerical method that we employ to integrate the

fully nonlinear equations to compute the evolution of

the perturbation is the same as used in Flierl and

Pedlosky (2007). It is a pseudospectral method that

solves the two equations for the perturbation potential

vorticity q9n and mean zonal velocity Un:
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and the overbar denotes the zonal average. The function

f in the equation for the zonal mean flow is related to

the transformed Eulerian-mean meridional circulation

defined in Shepherd (1983) and Flierl and Pedlosky

(2007) and satisfies the following equation:

f
0
y
n
*5 (�1)nFf. (17)

3. Numerical method and parameters

We use numerical simulations to explore the nonlinear

dynamics of time-dependent baroclinic shear flows for

a range of mean shears g0, amplitude of oscillations h0,

and stochasticities s. The channel geometry has an as-

pect ratio of 2 to 1 with 128 and 64 points in the x and y

directions, respectively. The code is initiated with two

second-order Runge–Kutta steps and subsequently uses

the third-order Adams–Bashforth scheme. Even though

this mesh is relatively coarse compared to other studies,

the exponential convergence of the spectral method al-

lows for very accurate resolution of a wide range of

length scales. This saving in computational time enabled

us to do many calculations to explore an array of pa-

rameters. Our aim is not to explore all of parameter

space but instead to focus on several interesting cases to

better understand the various characteristics that can

arise because of the different instability mechanisms.

In each simulation, we perturb the basic state with a

random field that is very small in amplitude. In the early

stages, the most unstable mode (primary mode) grows

exponentially by extracting energy from the basic state.

This continues until the amplitude of the unstable mode

is comparable to that of the basic state, and then non-

linear effects become important. Subsequently, the non-

linearities equilibrate the growth of the primary wave

and, because of wave–mean flow and wave–wave inter-

actions, transfer energy to harmonic waves that grow in

amplitude. This nonlinear energy cascade continues to

distribute energy over a vast range of length scales, pro-

ducing a broad energy spectrum. The richer the energy

spectrum, the more chaotic the solution. In all of our

simulations themost unstablemode has a wave vector of

(k, l)5 (1, 1) (nondimensional wavenumber vector), the

largest mode that fits in the channel geometry. In similar

calculations that integrated the solution for a long time,

it was determined that the dynamically most efficient

wave (i.e., the wave responsible for the most baroclinic

adjustment) has a longer wavelength than the primary

wave (Mak 1985; Cai and Mak 1990; Cai 1992). These

waves are not permitted in our model, because the do-

main size does not allow waves larger than the most un-

stable mode.

The essential reason why spectral methods are compu-

tationally efficient is because of the fast Fourier transform

that allows us to compute the spectral decomposition of

any field very quickly (Press et al. 2007). Our numerical

method decomposes the solution in the zonal and me-

ridional directions using the Fourier and Fourier sine

transforms, respectively. To do the latter, it is necessary

to use the odd extension of the streamfunction. Because

of this discrepancy, mode one in the zonal direction
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corresponds to a full sine wave whereas mode one in the

meridional direction is half of a sine wave. Even though

it is very easy to compute the time series for each mode,

graphically it is very difficult to display all this infor-

mation simultaneously. Thus, we have chosen instead to

focus on the first evolution of the followingmodes: (1, 1),

(2, 1), (1, 2), and (2, 2).Many other waves are included in

the calculations because they are important in the ad-

justment process.

4. Steady baroclinic shear flow

Throughout this work, we investigate the different

spectral characteristics that arise because of various

types of baroclinic shear. To begin, we superimpose a

small-amplitude random perturbation on the basic state

and then let it evolve freely to discover how the non-

linearities baroclinically adjust the instabilities that de-

velop. The most unstable mode always has a mode-one

structure in the meridional direction. Unless otherwise

stated, it is assumed that F 5 20 and b 5 20. For these

parameters, it has been shown in Poulin (2010) that the

critical value for instability in nondimensional units is

Uc 5 0.5825. The primary wave (1, 1) is the only linearly

unstable mode, and it grows exponentially until it is

eventually saturated by nonlinear effects. In this adjust-

ment process, the mode (2, 2) is generated and grows

rapidly because of wave–wave self interactions of the

primary wave. Then, the (2, 2) waves saturate; soon af-

terward, we have other modes that are generated [e.g.,

(2, 1) and (1, 2); shown in Fig. 2]. The saturation level of

the (2, 2) modes are lower than that of the primary wave.

Other modes are generated at this stage, but their am-

plitudes are smaller than that of the primary wave. Dur-

ing the adjustment process, there is an equilibrated mean

flow that is created with meridional variation that allows

for a variety of wave–mean flow interactions.

We first discuss the nonlinear equilibration that takes

place as a result of steady supercritical vertical shears.

Even though the nonlinear evolution of baroclinic in-

stability has been extensively studied in the literature,

we present these results to compare and contrast them

with the baroclinic adjustment that arises from time-

dependent baroclinic shear that appears in the following

sections. Figures 1 and 2 plot the amplitude of the Fourier

coefficient of the barotropic (BT) and BC components

of the growing modes. Figures 1a,b and 2a,b depict the

growth of the modes (1, 1), (2, 2), (2, 1), and (1, 2), re-

spectively. Each subplot is divided into three columns,

each of which displays a different type of instability: the

left is a CBI (with h5 0 and g5 0.6, 0.7, 0.8, and 0.9), the

middle is a PI (with h5 0.1 and g5 0.2, 0.3, 0.4, and 0.5),

and the right is a mixed CBI and PI (with h 5 0.1 and

g5 0.6, 0.7, 0.8, and 0.9). The top subplot in each column

is divided into BT and BC components. We have chosen

to plot all of these figures together to facilitate the com-

parison between the different instability mechanisms. A

log scale is used on both axes because of the large vari-

ation of length scales throughout the simulations.

In the plots of the growth of the primary wave in each

of the four cases, it is readily observed that the rate of

exponential growth increases with the degree of super-

criticality of the basic state, as is well known. Upon close

inspection, it can be verified that the slightly supercrit-

ical flows have more energy in the baroclinic mode, as

predicted by the linear theory (Pedlosky 1987); how-

ever, as g0 increases, the energy is more evenly distrib-

uted. For g0 5 0.9, the primary baroclinic wave achieves

a larger amplitude and possesses stronger oscillations

before equilibrating. Also, as the harmonic wave (2, 2)

extracts energy from the primary wave, it grows much

faster than the primary wave. The level of equilibration

tends to increase with increasing g0; however, the baro-

tropic component of the harmonic wave with g0 5 0.9

equilibrates at a lower level than the flows with g0 5 0.7

and 0.8 and oscillates more rapidly and with a larger

amplitude than the three other examples of CBI. The

(2, 1) and (1, 2) waves plotted in Fig. 2 increase in am-

plitude at a rate in between the (1, 1) and (2, 2) modes.

The levels of equilibration of these waves are compa-

rable to the case with g05 0.6 because it has only started

to grow. The interested reader is directed to the fol-

lowing works on wave–wave interactions in baroclinic

shear and the citations within for further details: Klein

and Pedlosky (1986), Pedlosky and Polvani (1987), Klein

(1990), and Pierrehumbert (1995).

5. Periodic baroclinic shear flow

In this section, we extend our investigation of non-

linear energy cascade to periodic baroclinic shears. The

examples we consider are different from those studied in

Flierl and Pedlosky (2007), as is our focus, because we

investigate how energy is transferred among the differ-

ent modes after baroclinic adjustment has occurred.

First, we pick vertical shears in the Phillips model whose

mean is subcritical of the steady criteria for instability.

We choose small-amplitude oscillations, h0 5 0.1, with

mean shears of g0 5 0.2, 0.3, 0.4, and 0.5 and periods of

T 5 3, 3, 3.5, and 4, respectively. Note that all of these

shear flows are subcritical at each instant of the classical

criteria for stability, except the simulation with g0 5 0.5

that only slightly exceeds it for a brief interval of time in

each period. The different periods are chosen to ensure

that we are in a regime where the vertical shear is para-

metrically unstable. These periods are determined using
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FIG. 1. Plots of the energy of the BT and BC components of the growing modes with F5 20, b5 20 for (a) the primary wave (1, 1), and

(b) first harmonic (2, 2). The subplots are organized in pairs for (top) BT and (bottom) BC components, for (left) a CBI with h5 0 and g5
0.6, 0.7, 0.8, and 0.9; (middle) a pure PI with h5 0.1 and g5 0.2, 0.3, 0.4, and 0.5; and (right) a mixed CBI and PI with h5 0.1 and g5 0.6,

0.7, 0.8, and 0.9.
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FIG. 2. As in Fig. 1, but for (a) mode (2, 1), and (b) mode (1, 2).
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the contour plots of Poulin (2010) that depict the regions

of parametric instability in the linear regime. Given that

the dimensional time scale is the advective time scale,

these periods are on the order of several days to weeks.

The second column of plots in Figs. 1 and 2 present the

time evolution of the first several modes in the four

different cases mentioned previously. Because the mean

flows are subcritical of the steady criteria for instability,

they are not examples of CBI but instead are examples

of PI. Both instabilities are due to a resonant triad that is

established between the barotropic and baroclinic com-

ponents of the primary wave and the mean flow. The

essential difference is that in PI themean flow is periodic

(Pedlosky and Thomson 2003; Poulin et al. 2003), whereas

in CBI the mean flow is steady. This subtle difference is

significant, because PI has an infinite number of unstable

modes, whereas in CBI there is usually one or perhaps

several unstable modes that fit within a channel domain.

One commonality between the simulations of CBI

and PI is that the rate of growth of each particular wave

increases with the parameter g0. However, in PI both

components of the growing primary waves oscillate,

unlike in CBI. One important difference is that, in the

simulation with g0 5 0.2, which has a relatively slow

growing primary wave, in the saturation phase the baro-

tropic component equilibrates at the highest level to all

the other cases in these two figures. This is in contrast to

the baroclinic component of the primary wave that is

significantly weaker in PI than in CBI. As the mean

shear increases, the equilibration level of the barotropic

component decreases. A crucial difference in PI is that

the modes (2, 1) and (1, 2), which are less energetic com-

pared to (1, 1) and (2, 2), have larger magnitudes than

what was observed in CBI by an order of magnitude.

This reveals that PI tends to excite a wider range of

modes more rapidly than what is achieved in CBI.

Next, we study the baroclinic adjustment of oscillatory

vertical shear in the Phillips model, whose mean is su-

percritical. PI only happens for a limited range of pe-

riods and the smaller the amplitude of the oscillation,

the smaller the range of unstable parameters. It was

shown in Poulin (2010) that, as the period increases, the

growth rates of PI decreases and the level of saturation is

the same as was observed in CBI. The results from these

simulations are in the third column of Figs. 1 and 2, and

the following features are observed: First, the expo-

nential growth of the primary wave is not significantly

altered by the presence of a small-amplitude oscillation.

However, the equilibration levels differ significantly from

the first to the third columns. The larger the supercrit-

icality, the larger the levels of saturation of the primary

waves in comparison to CBI. Therefore, the presence of

oscillations in the basic state plays an influential role in

the baroclinic adjustment phase by allowing the baro-

tropic component to achieve a higher energy level. Sec-

ond, the harmonic modes in the third column contain

more energy than in the first column. Therefore, in these

four simulations, the destabilization of the primary wave

is almost entirely due to CBI, but then there is a weak

secondary instability due to PI that further excites the

primary wave and its harmonics.

6. Aperiodic baroclinic shear flow

After having studied typical examples of steady and

periodic baroclinic shear and the nonlinear energy trans-

fer that ensues at the early stages of baroclinic adjustment,

we are now in a position to study the more complex

problem of aperiodic baroclinic shear to learn what ef-

fects aperiodicity has on the nonlinear energy transfers.

We choose two sets of parameters: one has a mean baro-

clinic shear that is subcritical (h 5 0.1 and g 5 0.5) and

the other has a mean shear that is slightly supercritical

(h 5 0.1 and g 5 0.6). Note that in both cases the am-

plitude of the shear is relatively small in comparison to

the shear itself. In Figs. 3a,b, we plot the evolution of the

amplitude of the Fourier coefficients of the BT and BC

components of the perturbation as computed from the

two sets of simulations with s 5 0, 0.5, and 1.0. Even

though the periodic calculations have already been pre-

sented, they are duplicated here to facilitate comparison

of the instabilities that arise from periodic and aperiodic

baroclinic shear.We subsequently refer to the cases with

s 5 0.5 and 1.0 as mild and moderate levels of sto-

chasticity, respectively. In Fig. 3a, the first column shows

the barotropic and baroclinic components for the pri-

mary wave, whereas the second column is the same but

for the first harmonic that is generated from baroclinic

adjustment. Figure 3b is analogous, but the two columns

correspond to the modes (2, 1) and (1, 2), respectively.

Each column in this figure depicts the energy of a par-

ticular mode for a single realization of aperiodic shear

flow and therefore we cannot generalize to say that these

characteristics must always occur. However, we consid-

ered several different realizations and the results pre-

sented here are typical of our relatively small ensemble.

These simulations were performed to idealize oceano-

graphic (and some atmospheric) baroclinic shear flows

that are near criticality with a significant but small-

amplitude disturbance that is aperiodic but still some-

what regular.

There are several important results that can be de-

duced from this figure. First, the presence of randomness

decreases the exponential growth rates of the primary

wave. The fact that sufficiently strong randomness (s

large enough) can quench the linear instability is very
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FIG. 3. Plots of the energy of the BT and BC components of the perturbation with F5 20,

b5 20, g5 0.6, and h5 0.1 fors5 0, 0.5, and 1.0. The first basic state is periodic and is provided

for reference. The second and third have background flows that possess mild and moderate

levels of stochasticity. (a) h05 0.1 and g05 0.6 and (b) h05 0.1 and g05 0.6. The subplots are

for the waves (left) (1, 1) and (right) (2, 2), for the (top) BT and (bottom) BC energies.
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important, because this means that the basic flow must

be sufficiently well behaved in time to allow for an in-

stability and a turbulent cascade. Figure 4 of Poulin

(2010) presents the growth rates for the linear stability of

aperiodic baroclinic shear. It clearly shows that, when

the erratic component of the baroclinic shear is large

enough, the growth rate of the basic state is equal to that

of its time average. This demonstrates that PI cannot

manifest itself unless the basic state is close to periodic.

This is why we cannot study baroclinic adjustment for

a wide range of values of s, because when s is large

enough the instability mechanism can be suppressed.

Second, baroclinic adjustment takes place when the

perturbations become finite amplitude and wave–wave

and wave–mean flow interactions are then possible. This

excites a wider range of modes than in the periodic or

steady limits. However, unlike in the steady and periodic

scenarios, the barotropic component of the primary

wave does not saturate and continues to grow to become

very large in amplitude. The baroclinic components do

saturate but at a higher level than in the periodic case

and oscillate more irregularly with larger amplitudes.

The end result is that the barotropic component of the

primary wave is dominant for the remainder of the

simulation. The growth is stronger for the supercritical

scenarios. Third, because the primary wave continues to

extract energy from the background flow, the harmonics

and other modes can acquire more energy and also grow

to be much larger in amplitude. Fourth, by comparing

the energy in the primary barotropic mode with mild

and moderate stochasticities, it is readily seen that the

dominance of the barotropic component of the primary

wave resulting from an aperiodic basic state is enhanced

with increasing values of s. The primary wave and its

harmonics have higher energy levels because of the

coupling of both CBI and PI in the vertical shear up to

a point; beyond that point, the flow can be completely

stabilized.

7. Aperiodic baroclinic shear flow on the f plane

Flierl and Pedlosky (2007) showed that the growth

rates of any periodic baroclinic background shear on the

f plane is equal to that of the time average of the shear.

More recently, Poulin (2010) extended this result to dem-

onstrate that it applies to any time-dependent baroclinic

shear with zero mean. However, Flierl and Pedlosky

(2007) verified through nonlinear simulations that, if the

initial amplitude of the perturbation is large enough, the

basic state is subject to a nonlinear instability. The linear

stability of these states is perhaps surprising, given that

the flow is supercritical for some intervals of time for any

level of the shear.

In this section, we investigate the nonlinear evolution

of aperiodic baroclinic shear on an f plane. In Fig. 4, we

plot the time evolution of the first several Fourier co-

efficients for the case of F5 20, b5 0, g0 5 0, h0 5 0.25,

s 5 2.0, and T 5 3 up to t 5 300 nondimensional units.

Unlike all the previous manifestations of instability, in

this simulation there is no indication of exponential

growth. The (1, 1) wave, which we can no longer refer to

as the primary wave because it is not linearly unstable,

increases in energy in a rather erratic and strongly non-

monotonic fashion. In the four subplots, this wave is the

most energetic and achieves large enough amplitudes

that nonlinear adjustment takes place even though the

wave is linearly stable. In the phase of baroclinic ad-

justment, wave–wave self interactions generate the (2, 2)

wave that grows to be very strong in amplitude as well.

The (2, 1) and (1, 2) waves only start to get excited near

the end of the simulation, but many other modes are

excited as well. As a result, at the final time, the solution

has a very broad spectrum of waves. Throughout, there

does not appear to be a significant difference in the am-

plitude of the barotropic and baroclinic components.

To better understand the structure of the growing

nonlinear instability, in Fig. 5 we present snapshots of

the barotropic and baroclinic potential vorticity fields

for this simulation at the nondimensional times of t 5
205, 213, 236, and 330. Figure 5a shows that, at time t 5
205, the mode-one component of the fastest growing

mode is clear and strongly established. Previously, there

were instances when the same structure appeared but

then disappeared soon afterward. As explained in Poulin

(2010), for an instability to occur on the f plane, it is

necessary that the vertical shear is uniform in sign for

long enough that the perturbations grow and enter the

nonlinear regime. Because the shear varies in an erratic

fashion, this is bound to happen eventually, but it may

take a very long time for it to materialize.

Figure 5b plots the PV at t5 213 and shows that there

are other harmonics present because there is a clear

asymmetry in the meridional direction. None of the other

simulations we presented had any noticeable asymmetry

early on. Previous to this time, the (1, 1) wave grew and

then decayed in amplitude. This loss of energy could

have contributed to the growth of the first harmonic as

a result of nonlinear self interactions of the (1, 1) wave.

Indeed, Fig. 4 indicates that the second strongest mode

at time t 5 213 is the (2, 2) wave, and this structure is

consistent with the mode-two structure observed in the

second frame. Therefore, the image at t 5 213 is a com-

bination of a strong (1, 1) wave and a (2, 2) wave.

At the third time, t 5 236, the solution must have

significant nonlinear effects because the amplitude of

the perturbations is on the order of 0.4. The roll up of the
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modes at this stage is a result of wave breaking and was

not observed in any of our simulations that were linearly

unstable. This leads to the final image at t 5 330 that

consists predominantly of the primarywave butwithmany

filament structures. These filaments are due to the strong

presence of higher harmonics in the end state. From this,

we gather the following insight: Even though f-plane dy-

namics is linearly stable, the aperiodicity of the basic state

generates a much more chaotic end state because of the

absence of baroclinic adjustment. This can be attributed

to the fact that the disturbances that are generated do not

propagate away from the source because the group speed

is zero, and this enables the energy to build up in a given

location and thus create a more turbulent state.

8. Mean flow corrections on the b plane

It has long been appreciated that the process of baro-

clinic adjustment generates a mean flow that, in addition

to altering the basic state, can contribute to the wave–

mean flow interactions and thus further enhance the

turbulent energy cascade. In Figs. 6a,b, we present the

equilibrated mean flow from our simulation of unstable

steady baroclinic shear with g0 5 0.6, h0 5 0.0, and s 5
0.0. In each figure, the top and bottom panels cor-

respond to the barotropic and baroclinic mean flow,

respectively, that is generated. Figure 6a focuses on the

initial adjustment process, whereas Fig. 6b looks at a

later interval of time after the perturbations have been

equilibrated. The zonal barotropic velocity that is in-

duced has a mode-three structure that reaches its max-

imum amplitude near t 5 35 and then decreases in

magnitude. This equilibrated flow oscillates in ampli-

tude but persists for all time. The baroclinic portion of

the zonal flow is similar, except the structure is pre-

dominantly mode one in the meridional direction. In the

long time evolution, the baroclinic component of the

generated mean flow is larger in amplitude in comparison

FIG. 4. Plots of the energy in the BT and BC components of the unstable perturbation of an aperiodic BC shear on

an f plane with F5 20, g05 0, h05 0.25, s5 2.0, andT5 3. The subfigures plot the energy of themodes for the waves

(1, 1), (1, 2), (2, 1), and (2, 2).
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to the barotropic part. In this scenario, the mean shear is

only slightly supercritical; consequently, the amplitude

of the equilibrated shear is very small. In the other cases

of CBI that we have considered (not shown here), we

found that, if the mean baroclinic shear increases in

strength, the resulting mean flows were similar but larger

inmagnitude. Interestingly, in CBI the equilibratedmean

flow achieves its maximum at the early stages of equili-

bration. Subsequently, the wave–mean flow interactions

transfer energy from the equilibrated flow to various

waves, leaving a much weaker mean flow.

In contrast to Flierl and Pedlosky (2007), who looked

at how the equilibrated mean flow resulting from a pe-

riodic baroclinic shear depends on the nondimensional

parameters, we instead investigate how the mean flow

varies temporally. In Figs. 6c,d, we plot the barotropic

and baroclinic mean zonal flow corrections (organized

as before) with g0 5 0.2, h0 5 0.1, and s 5 0.0; this basic

state is at every instant subcritical of CBI. Initially, both

the barotropic and baroclinic components of the equil-

ibrated flows grow but in a manner that is far different

than CBI. In the early stages of adjustment, both the

barotropic and baroclinic components have a mode-

three meridional structure superimposed with oscillations.

The equilibrated flow is much stronger in amplitude in

comparison to CBI, as are the relative amplitude of the

oscillations, and each component is comparable in mag-

nitude. For larger values of the mean baroclinic shear

approaching criticality, the equilibrated baroclinic shear

tends to become larger than the barotropic one and both

mean flows are more irregular. In these cases, the domi-

nance of the baroclinic field is presumably due to the fact

that there are instances where the basic state is super-

critical and thus occasionally subject to CBI.

Figures 7a,b present the equilibrated zonal mean

shear for a periodic basic state whose mean is slightly

FIG. 5. Snapshots of the fully nonlinear perturbation PVs of an aperiodic BC shear on an f plane with F5 20, g0 5 0, h0 5 0.25, s5 2.0,

and T5 3 at the four different times of t5 (a) 205, (b) 213, (c) 236, and (d) 330. The top and bottom panels in each pair are the BT and BC

modes, respectively.

1862 JOURNAL OF PHYS ICAL OCEANOGRAPHY VOLUME 40



supercritical: g05 0.6, h05 0.1, ands5 0.0. The plots are

very similar to what we observed in Figs. 6a,b, because

the mean shear is the same; the only difference is that

there is also a relatively small periodic component. The

main difference is that in Figs. 7a,b there is a combination

of the natural frequency of oscillation and the frequency

of the forcing. In contrast, Figs. 7c,d depict the equili-

bratedmean flows for the case with g05 0.6, h05 0.1, and

s 5 1.0 (i.e., moderate stochasticity in the baroclinic

shear). The effect of the erratic variation is remarkable.

The baroclinic adjustment creates barotropic and baro-

clinic zonal flows that aremuch stronger than in either the

periodic or steady analogs. The magnitude of the baro-

clinic component is larger than the barotropic component

and is more than 10 times larger than what occurred in

the periodic version. This implies that supercritical

flows, as occur in the ACC, that have erratic variations

can developmuch stronger zonally correctedmean flows

compared towhat is found in either the steady or periodic

counterparts. Therefore, the three essential ingredients to

create this strong modulation are that the flow is super-

critical, the amplitude of the time-dependent component

is moderately strong, and the variations in the basic state

are sufficiently erratic but not too erratic.

9. Conclusions

The Phillips model is an excellent paradigm in which

to study large-scale geophysical shear flows, because it

FIG. 6. Plots of the equilibrated zonal flow resulting from BC adjustment: (top) focuses on an example where the basic state is steady

(g0 5 0.6, h0 5 0.0, s 5 0.0); the left panel looks at early times and the right focuses on later times. The top and bottom plots in each

quadrant are the BT and BC mean flow corrections, respectively. (bottom) As in (top), but for a periodic basic state far from criticality,

with g0 5 0.2, h0 5 0.1, and s 5 0.0 and structured in the same way.
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can display a wealth of different behaviors. It has long

been known that the Phillips model can exhibit both

barotropic and baroclinic instabilities when the steady

shear has large enough gradients (Pedlosky 1987). Re-

cently, Pedlosky and Thomson (2003) and Flierl and

Pedlosky (2007) demonstrated that, if the basic state is

periodic in time, then PI can occur. In this present work,

we have studied the nonlinear evolution of steady, pe-

riodic, and aperiodic baroclinic shear to understand the

effect of time dependency in the nonlinear regime. Our

numerical simulations indicate the following: A tempo-

rally periodic vertical shear can further excite the baro-

tropic component of the primary wave and the harmonics

in comparison to a steady shear. Thus, even though para-

metrically unstable modes tend to growmore slowly in the

linear regime, the baroclinic adjustment of these waves

is more effective in generating the higher harmonics.We

have also found that, with an aperiodic baroclinic shear,

the barotropic component of the primary wave can

continue extracting energy from the mean flow, giving

rise to a much stronger primary wave than in either the

steady or periodic situations. Also, the higher harmonics

can achieve a larger amplitude than what was observed

in the periodic limit. Furthermore, aperiodicity of a time-

dependent basic state whose mean is supercritical can

have very strong corrections in the zonalmean flow. This

signifies that the aperiodicity of the basic state plays a

vital role in baroclinic adjustment of an unstable vertical

shear. Presumably, this difference extends to the long

time behavior of the adjustment process, but showing

this result is beyond the scope of this work.

Our results suggest that care should be taken when

considering data collected of oceanic currents. Because

any oceanic dataset is necessarily sparse in both space

FIG. 7. As in Fig. 6, but focusing on an example where the basic state is periodic and has a mean shear that is slightly supercritical: g05 0.6,

h0 5 0.1, and s 5 0.0. (bottom) As in (top), but for an aperiodic basic state with g0 5 0.6, h0 5 0.1, and s 5 1.0.
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and time and always processed, the data are necessarily

smoother than what actually transpired in the ocean.

This filtering of noise can be very convenient to the

modeler, but it yields that the data of the observed

current are different in comparison to the real current.

Our analysis of aperiodic baroclinic shear suggests that

the linear stability of observed (databasedwith temporal

variability removed, except perhaps for seasonal changes)

oceanic flows is likely to be too large and that the amount

of energy cascade is too small. Therefore, special attention

should be given in parameterizing time-dependent shear

flows, because their dynamics can be quite different in

comparison to their time averages.
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